1
|
Piña Novo D, Gao M, Fischer R, Richevaux L, Yu J, Barrett JM, Shepherd GMG. Cortical dynamics in hand/forelimb S1 and M1 evoked by brief photostimulation of the mouse's hand. eLife 2025; 14:RP105112. [PMID: 40387088 PMCID: PMC12088680 DOI: 10.7554/elife.105112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025] Open
Abstract
Spiking activity along synaptic circuits linking primary somatosensory (S1) and motor (M1) areas is fundamental for sensorimotor integration in cortex. Circuits along the ascending somatosensory pathway through mouse hand/forelimb S1 and M1 were recently described in detail (Yamawaki et al., 2021). Here, we characterize the peripherally evoked spiking dynamics in these two cortical areas. Brief (5 ms) optogenetic photostimulation of the hand generated short (~25 ms) barrages of activity first in S1 (onset latency 15 ms) then M1 (10 ms later). The estimated propagation speed was 20-fold faster from hand to S1 than from S1 to M1. Amplitudes in M1 were strongly attenuated. Responses were typically triphasic, with suppression and rebound following the initial peak. Evoked activity in S1 was biased to middle layers, consistent with thalamocortical connectivity, while that in M1 was biased to upper layers, consistent with corticocortical connectivity. Parvalbumin (PV) inhibitory interneurons were involved in each phase, accounting for three quarters of the initial spikes generated in S1, and their selective photostimulation sufficed to evoke suppression and rebound in both S1 and M1. Partial silencing of S1 by PV activation during hand stimulation reduced the M1 sensory responses. Overall, these results characterize how evoked spiking activity propagates along the hand/forelimb transcortical loop, and illuminate how in vivo cortical dynamics relate to the underlying synaptic circuit organization in this system.
Collapse
Affiliation(s)
- Daniela Piña Novo
- Department of Neuroscience, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Mang Gao
- Department of Neuroscience, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Rita Fischer
- Department of Neuroscience, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Louis Richevaux
- Department of Neuroscience, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Jianing Yu
- School of Life Sciences, Peking UniversityBeijingChina
| | - John M Barrett
- Department of Neuroscience, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Gordon MG Shepherd
- Department of Neuroscience, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| |
Collapse
|
2
|
Tong Y, Fan Z, Zou X, Yue Q, Wu Z, Chen L. Passive mapping of hand motor cortex across altered states of consciousness. Int J Neurosci 2025:1-11. [PMID: 40260620 DOI: 10.1080/00207454.2025.2496821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/23/2025]
Abstract
OBJECTIVE To evaluate the ability of median nerve stimulation (MNS)-induced high gamma band (HGB) activity in mapping the hand motor cortex at different states of consciousness. METHODS Five patients undergoing awake craniotomy were recruited. MNS-induced electrocorticographic signals were recorded from awake to anesthetic states, with the loss of consciousness (LOC) session divided into three stages (LOC1, LOC2, and LOC3) based on conscious level. HGB signals were analyzed to localize hand motor cortex. Linear models were applied to analyze HGB dynamics during LOC. RESULTS The sensitivity of hand motor cortex mapping based on HGB average envelope at short-latency period was 100%, 96.67%±3.33%, 83.47%±8.19%, and 82.22%±11.44% for the awake, LOC1, LOC2 and LOC3 stages. The sensitivity for HGB average envelope at long-latency period was 92.67%±4.52%, 90.85%±4.13%, 72.27%±17.07%, and 40.53%±12.82% across the same stages. The sensitivity based on HGB average power at short-latency period decreased from 100% in awake stage to 72.83%±12.95%, 48.11%±15.95%, and 21.12%±5.70% across LOC stages. The sensitivity for HGB average power at long-latency period dropped from 92.67%±4.52% in awake stage to 70.94%±10.79%, 58.37%±17.49%, and 25.71%±14.95% in the subsequent LOC stages. The slope coefficient of the simple linear model for long-latency average envelope was significantly smaller than that for short-latency. In the linear mixed effects model, the Condition × Sliding Window estimate coefficient was -0.794. CONCLUSION In awake state, HGB average envelope and average power both effectively localized hand motor cortex. With declining consciousness, the mapping ability of average power significantly deteriorated, while the mapping ability of short-latency average envelope remained relatively stable.
Collapse
Affiliation(s)
- Yusheng Tong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Zhen Fan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Xiang Zou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Qi Yue
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Zehan Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| |
Collapse
|
3
|
Akter Y, Jones G, Daskivich GJ, Shifflett V, Vargas KJ, Hruska M. Combining nanobody labeling with STED microscopy reveals input-specific and layer-specific organization of neocortical synapses. PLoS Biol 2025; 23:e3002649. [PMID: 40184426 PMCID: PMC12002638 DOI: 10.1371/journal.pbio.3002649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 04/16/2025] [Accepted: 02/25/2025] [Indexed: 04/06/2025] Open
Abstract
The discovery of synaptic nanostructures revealed key insights into the molecular logic of synaptic function and plasticity. Yet, our understanding of how diverse synapses in the brain organize their nano-architecture remains elusive, largely due to the limitations of super-resolution imaging in complex brain tissue. Here, we characterized single-domain camelid nanobodies for the 3D quantitative multiplex imaging of synaptic nano-organization using tau-STED nanoscopy in cryosections from the mouse primary somatosensory cortex. We focused on thalamocortical (TC) and corticocortical (CC) synapses along the apical-basal axis of layer five pyramidal neurons as models of functionally diverse glutamatergic synapses in the brain. Spines receiving TC input were larger than those receiving CC input in all layers examined. However, the nano-architecture of TC synapses varied with dendritic location. TC afferents on apical dendrites frequently contacted spines with multiple aligned PSD-95/Bassoon nanomodules of constant size. In contrast, TC spines on basal dendrites predominantly contained a single aligned nanomodule, with PSD-95 nanocluster sizes scaling proportionally with spine volume. The nano-organization of CC synapses did not change across cortical layers and resembled modular architecture defined in vitro. These findings highlight the nanoscale diversity of synaptic architecture in the brain, that is, shaped by both the source of afferent input and the subcellular localization of individual synaptic contacts.
Collapse
Affiliation(s)
- Yeasmin Akter
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America
| | - Grace Jones
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America
| | - Grant J. Daskivich
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Victoria Shifflett
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America
| | - Karina J. Vargas
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Martin Hruska
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
4
|
McKinnon C, Mo C, Sherman SM. DISRUPTION OF TRANSTHALAMIC CIRCUITRY FROM PRIMARY VISUAL CORTEX IMPAIRS VISUAL DISCRIMINATION IN MICE. J Neurosci 2025; 45:e0002252025. [PMID: 40139804 PMCID: PMC12044039 DOI: 10.1523/jneurosci.0002-25.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/06/2025] [Accepted: 03/01/2025] [Indexed: 03/29/2025] Open
Abstract
Layer 5 (L5) of the cortex provides strong driving input to higher-order thalamic nuclei, such as the pulvinar in the visual system, forming the basis of cortico-thalamo-cortical (transthalamic) circuits. These circuits provide a communication route between cortical areas in parallel to direct corticocortical connections, but their specific role in perception and behavior remains unclear. Using targeted optogenetic inhibition in mice of both sexes performing a visual discrimination task, we selectively suppressed the corticothalamic input from L5 cells in primary visual cortex (V1) at their terminals in pulvinar. This suppresses transthalamic circuits from V1; furthermore, any effect on direct corticocortical projections and local V1 circuitry would thus result from transthalamic inputs (e.g., V1 to pulvinar back to V1 (Miller-Hansen and Sherman, 2022). Such suppression of transthalamic processing during visual stimulus presentation of drifting gratings significantly impaired discrimination performance across different orientations. The impact on behavior was specific to the portion of visual space that retinotopically coincided with the V1 L5 corticothalamic inhibition. These results highlight the importance of incorporating L5-initiated transthalamic circuits into cortical processing frameworks, particularly those addressing how the hierarchical propagation of sensory signals supports perceptual decision-making.Significance statement Appreciation of pathways for transthalamic communication between cortical areas, organized in parallel with direct connections, has transformed our thinking about cortical functioning writ large. Studies of transthalamic pathways initially concentrated on their anatomy and physiology, but there has been a shift towards understanding their importance to cognitive behavior. Here, we have used an optogenetic approach in mice to selectively inhibit the transthalamic pathway from primary visual cortex to other cortical areas and back to itself. We find that such inhibition degrades the animals' ability to discriminate, showing for the first time that specific inhibition of visual transthalamic circuitry reduces visual discrimination. This causal data adds to the growing evidence for the importance of transthalamic signaling in perceptual processing.
Collapse
Affiliation(s)
- Claire McKinnon
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois 60637
| | - Christina Mo
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - S. Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
5
|
Piña Novo D, Gao M, Fischer R, Richevaux L, Yu J, Barrett JM, Shepherd GMG. Cortical dynamics in hand/forelimb S1 and M1 evoked by brief photostimulation of the mouse's hand. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.02.626335. [PMID: 39677687 PMCID: PMC11642753 DOI: 10.1101/2024.12.02.626335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Spiking activity along synaptic circuits linking primary somatosensory (S1) and motor (M1) areas is fundamental for sensorimotor integration in cortex. Circuits along the ascending somatosensory pathway through mouse hand/forelimb S1 and M1 were recently described in detail (Yamawaki et al., 2021). Here, we characterize the peripherally evoked spiking dynamics in these two cortical areas. Brief (5 ms) optogenetic photostimulation of the hand generated short (~25 ms) barrages of activity first in S1 (onset latency 15 ms) then M1 (10 ms later). The estimated propagation speed was 20-fold faster from hand to S1 than from S1 to M1. Amplitudes in M1 were strongly attenuated. Responses were typically triphasic, with suppression and rebound following the initial peak. Evoked activity in S1 was biased to middle layers, consistent with thalamocortical connectivity, while that in M1 was biased to upper layers, consistent with corticocortical connectivity. Parvalbumin (PV) inhibitory interneurons were involved in each phase, accounting for three quarters of the initial spikes generated in S1, and their selective photostimulation sufficed to evoke suppression and rebound in both S1 and M1. Partial silencing of S1 by PV activation during hand stimulation reduced the M1 sensory responses. Overall, these results characterize how evoked spiking activity propagates along the hand/forelimb transcortical loop, and illuminate how in vivo cortical dynamics relate to the underlying synaptic circuit organization in this system.
Collapse
Affiliation(s)
- Daniela Piña Novo
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mang Gao
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rita Fischer
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Louis Richevaux
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jianing Yu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - John M. Barrett
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Gordon M. G. Shepherd
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
6
|
McKinnon C, Mo C, Sherman SM. DISRUPTION OF TRANSTHALAMIC CIRCUITRY FROM PRIMARY VISUAL CORTEX IMPAIRS VISUAL DISCRIMINATION IN MICE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637190. [PMID: 39975026 PMCID: PMC11839038 DOI: 10.1101/2025.02.07.637190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Layer 5 (L5) of the cortex provides strong driving input to higher-order thalamic nuclei, such as the pulvinar in the visual system, forming the basis of cortico-thalamo-cortical (transthalamic) circuits. These circuits provide a communication route between cortical areas in parallel to direct corticocortical connections, but their specific role in perception and behavior remains unclear. Using targeted optogenetic inhibition in mice performing a visual discrimination task, we selectively suppressed the corticothalamic input from L5 cells in primary visual cortex (V1) at their terminals in pulvinar. This suppresses transthalamic circuits from V1; furthermore, any effect on direct corticocortical projections and local V1 circuitry would thus result from transthalamic inputs (e.g., V1 to pulvinar back to V1 (Miller-Hansen and Sherman, 2022). Such suppression of transthalamic processing during visual stimulus presentation of drifting gratings significantly impaired discrimination performance across different orientations. The impact on behavior was specific to the portion of visual space that retinotopically coincided with the V1 L5 corticothalamic inhibition. These results highlight the importance of incorporating L5-initiated transthalamic circuits into cortical processing frameworks, particularly those addressing how the hierarchical propagation of sensory signals supports perceptual decision-making.
Collapse
Affiliation(s)
- C. McKinnon
- Committee on Computational Neuroscience, University of Chicago, Illinois, USA
| | - C. Mo
- Department of Neurobiology, University of Chicago, Illinois, USA
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - S. M. Sherman
- Department of Neurobiology, University of Chicago, Illinois, USA
| |
Collapse
|
7
|
Cassidy RM, Macias AV, Lagos WN, Ugorji C, Callaway EM. Complementary Organization of Mouse Driver and Modulator Cortico-thalamo-cortical Circuits. J Neurosci 2025; 45:e1167242024. [PMID: 39824633 PMCID: PMC11780356 DOI: 10.1523/jneurosci.1167-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 01/20/2025] Open
Abstract
Corticocortical (CC) projections in the visual system facilitate hierarchical processing of sensory information. In addition to direct CC connections, indirect cortico-thalamo-cortical (CTC) pathways through the pulvinar nucleus of the thalamus can relay sensory signals and mediate cortical interactions according to behavioral demands. While the pulvinar connects extensively to the entire visual cortex, it is unknown whether transthalamic pathways link all cortical areas or whether they follow systematic organizational rules. Because mouse pulvinar neurons projecting to different areas are spatially intermingled, their input/output relationships have been difficult to characterize using traditional anatomical methods. To determine the organization of CTC circuits, we mapped the higher visual areas (HVAs) of male and female mice with intrinsic signal imaging and targeted five pulvinar→HVA pathways for projection-specific rabies tracing. We aligned postmortem cortical tissue to in vivo maps for precise quantification of the areas and cell types projecting to each pulvinar→HVA population. Layer 5 corticothalamic (L5CT) "driver" inputs to the pulvinar originate predominantly from primary visual cortex (V1), consistent with the CC hierarchy. L5CT inputs from lateral HVAs specifically avoid driving reciprocal connections, consistent with the "no-strong-loops" hypothesis. Conversely, layer 6 corticothalamic (L6CT) "modulator" inputs are distributed across areas and are biased toward reciprocal connections. Unlike previous studies in primates, we find that every HVA receives disynaptic input from the superior colliculus. CTC circuits in the pulvinar thus depend on both target HVA and input cell type, such that driving and modulating higher-order pathways follow complementary connection rules similar to those governing first-order CT circuits.
Collapse
Affiliation(s)
- Rachel M Cassidy
- The Salk Institute for Biological Studies, La Jolla, California 92037
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92037
| | - Angel V Macias
- The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Willian N Lagos
- The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Chiamaka Ugorji
- The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Edward M Callaway
- The Salk Institute for Biological Studies, La Jolla, California 92037
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92037
| |
Collapse
|
8
|
Rubio-Teves M, Martín-Correa P, Alonso-Martínez C, Casas-Torremocha D, García-Amado M, Timonidis N, Sheiban FJ, Bakker R, Tiesinga P, Porrero C, Clascá F. Beyond Barrels: Diverse Thalamocortical Projection Motifs in the Mouse Ventral Posterior Complex. J Neurosci 2024; 44:e1096242024. [PMID: 39197940 PMCID: PMC11502235 DOI: 10.1523/jneurosci.1096-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Thalamocortical pathways from the rodent ventral posterior (VP) thalamic complex to the somatosensory cerebral cortex areas are a key model in modern neuroscience. However, beyond the intensively studied projection from medial VP (VPM) to the primary somatosensory area (S1), the wiring of these pathways remains poorly characterized. We combined micropopulation tract-tracing and single-cell transfection experiments to map the pathways arising from different portions of the VP complex in male mice. We found that pathways originating from different VP regions show differences in area/lamina arborization pattern and axonal varicosity size. Neurons from the rostral VPM subnucleus innervate trigeminal S1 in point-to-point fashion. In contrast, a caudal VPM subnucleus innervates heavily and topographically second somatosensory area (S2), but not S1. Neurons in a third, intermediate VPM subnucleus innervate through branched axons both S1 and S2, with markedly different laminar patterns in each area. A small anterodorsal subnucleus selectively innervates dysgranular S1. The parvicellular VPM subnucleus selectively targets the insular cortex and adjacent portions of S1 and S2. Neurons in the rostral part of the lateral VP nucleus (VPL) innervate spinal S1, while caudal VPL neurons simultaneously target S1 and S2. Rostral and caudal VP nuclei show complementary patterns of calcium-binding protein expression. In addition to the cortex, neurons in caudal VP subnuclei target the sensorimotor striatum. Our finding of a massive projection from VP to S2 separate from the VP projections to S1 adds critical anatomical evidence to the notion that different somatosensory submodalities are processed in parallel in S1 and S2.
Collapse
Affiliation(s)
- Mario Rubio-Teves
- Department of Anatomy & Neuroscience, Autónoma de Madrid University, Madrid E28029, Spain
| | - Pablo Martín-Correa
- Department of Anatomy & Neuroscience, Autónoma de Madrid University, Madrid E28029, Spain
| | - Carmen Alonso-Martínez
- Department of Anatomy & Neuroscience, Autónoma de Madrid University, Madrid E28029, Spain
| | - Diana Casas-Torremocha
- Department of Anatomy & Neuroscience, Autónoma de Madrid University, Madrid E28029, Spain
| | - María García-Amado
- Department of Anatomy & Neuroscience, Autónoma de Madrid University, Madrid E28029, Spain
| | - Nestor Timonidis
- Department of Neuroinformatics, Donders Centre for Neuroscience, Radboud University Nijmegen, Nijmegen 6525 AJ, The Netherlands
| | - Francesco J Sheiban
- NearLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy
| | - Rembrandt Bakker
- Department of Neuroinformatics, Donders Centre for Neuroscience, Radboud University Nijmegen, Nijmegen 6525 AJ, The Netherlands
- Inst. of Neuroscience and Medicine (INM-6) and Inst. for Advanced Simulation (IAS-6) and JARA BRAIN Inst. I, Julich Research Centre, Jülich 52428, Germany
| | - Paul Tiesinga
- Department of Neuroinformatics, Donders Centre for Neuroscience, Radboud University Nijmegen, Nijmegen 6525 AJ, The Netherlands
| | - César Porrero
- Department of Anatomy & Neuroscience, Autónoma de Madrid University, Madrid E28029, Spain
| | - Francisco Clascá
- Department of Anatomy & Neuroscience, Autónoma de Madrid University, Madrid E28029, Spain
| |
Collapse
|
9
|
Puzzo CD, Martinez-Garcia RI, Liu H, Dyson LF, Gilbert WO, Cruikshank SJ. Integration of distinct cortical inputs to primary and higher order inhibitory cells of the thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.618039. [PMID: 39416152 PMCID: PMC11482941 DOI: 10.1101/2024.10.12.618039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The neocortex controls its own sensory input in part through top-down inhibitory mechanisms. Descending corticothalamic projections drive GABAergic neurons of the thalamic reticular nucleus (TRN), which govern thalamocortical cell activity via inhibition. Neurons in sensory TRN are organized into primary and higher order (HO) subpopulations, with separate intrathalamic connections and distinct genetic and functional properties. Here, we investigated top-down neocortical control over primary and HO neurons of somatosensory TRN. Projections from layer 6 of somatosensory cortex evoked stronger and more state-dependent activity in primary than in HO TRN, driven by more robust synaptic inputs and potent T-type calcium currents. However, HO TRN received additional, physiologically distinct, inputs from motor cortex and layer 5 of S1. Thus, in a departure from the canonical focused sensory layer 6 innervation characteristic of primary TRN, HO TRN integrates broadly from multiple corticothalamic systems, with unique state-dependence, extending the range of mechanisms for top-down control.
Collapse
|
10
|
Sampathkumar V, Koster KP, Carroll BJ, Sherman SM, Kasthuri N. Synaptic integration of somatosensory and motor cortical inputs onto spiny projection neurons of mice caudoputamen. Eur J Neurosci 2024; 60:6107-6122. [PMID: 39315531 PMCID: PMC11483202 DOI: 10.1111/ejn.16538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
The basal ganglia play pivotal roles in motor control and cognitive functioning. These nuclei are embedded in an anatomical loop: cortex to basal ganglia to thalamus back to cortex. We focus here on an essential synapse for descending control, from cortical layer 5 (L5) onto the GABAergic spiny projection neurons (SPNs) of the caudoputamen (CP). We employed genetic labeling to distinguish L5 neurons from somatosensory (S1) and motor (M1) cortices in large volume serial electron microscopy and electrophysiology datasets to better detail these inputs. First, M1 and S1 synapses showed a strong preference to innervate the spines of SPNs and rarely contacted aspiny cells, which are likely to be interneurons. Second, L5 inputs commonly converge from both areas onto single SPNs. Third, compared to unlabeled terminals in CP, those labeled from M1 and S1 show ultrastructural hallmarks of strong driver synapses: They innervate larger spines that were more likely to contain a spine apparatus, more often had embedded mitochondria, and more often contacted multiple targets. Finally, these inputs also demonstrated driver-like functional properties: SPNs responded to optogenetic activation from S1 and M1 with large EPSP/Cs that depressed and were dependent on ionotropic but not metabotropic receptors. Together, our findings suggest that individual SPNs integrate driver input from multiple cortical areas with implications for how the basal ganglia relay cortical input to provide inhibitory innervation of motor thalamus.
Collapse
Affiliation(s)
- Vandana Sampathkumar
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
- Argonne National Laboratory
| | - Kevin P Koster
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - Briana J Carroll
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - Narayanan Kasthuri
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
- Argonne National Laboratory
| |
Collapse
|
11
|
Sherman SM, Usrey WM. Transthalamic Pathways for Cortical Function. J Neurosci 2024; 44:e0909242024. [PMID: 39197951 PMCID: PMC11358609 DOI: 10.1523/jneurosci.0909-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
The cerebral cortex contains multiple, distinct areas that individually perform specific computations. A particular strength of the cortex is the communication of signals between cortical areas that allows the outputs of these compartmentalized computations to influence and build on each other, thereby dramatically increasing the processing power of the cortex and its role in sensation, action, and cognition. Determining how the cortex communicates signals between individual areas is, therefore, critical for understanding cortical function. Historically, corticocortical communication was thought to occur exclusively by direct anatomical connections between areas that often sequentially linked cortical areas in a hierarchical fashion. More recently, anatomical, physiological, and behavioral evidence is accumulating indicating a role for the higher-order thalamus in corticocortical communication. Specifically, the transthalamic pathway involves projections from one area of the cortex to neurons in the higher-order thalamus that, in turn, project to another area of the cortex. Here, we consider the evidence for and implications of having two routes for corticocortical communication with an emphasis on unique processing available in the transthalamic pathway and the consequences of disorders and diseases that affect transthalamic communication.
Collapse
Affiliation(s)
- S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - W Martin Usrey
- Center for Neuroscience, University of California, Davis, California 95618
| |
Collapse
|
12
|
Tu Y, Liu Y, Fan S, Weng J, Li M, Zhang F, Fu Y, Hu J. Relationship between brain white matter damage and grey matter atrophy in hereditary spastic paraplegia types 4 and 5. Eur J Neurol 2024; 31:e16310. [PMID: 38651515 PMCID: PMC11235729 DOI: 10.1111/ene.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND AND PURPOSE White matter (WM) damage is the main target of hereditary spastic paraplegia (HSP), but mounting evidence indicates that genotype-specific grey matter (GM) damage is not uncommon. Our aim was to identify and compare brain GM and WM damage patterns in HSP subtypes and investigate how gene expression contributes to these patterns, and explore the relationship between GM and WM damage. METHODS In this prospective single-centre cohort study from 2019 to 2022, HSP patients and controls underwent magnetic resonance imaging evaluations. The alterations of GM and WM patterns were compared between groups by applying a source-based morphometry approach. Spearman rank correlation was used to explore the associations between gene expression and GM atrophy patterns in HSP subtypes. Mediation analysis was conducted to investigate the interplay between GM and WM damage. RESULTS Twenty-one spastic paraplegia type 4 (SPG4) patients (mean age 50.7 years ± 12.0 SD, 15 men), 21 spastic paraplegia type 5 (SPG5) patients (mean age 29.1 years ± 12.8 SD, 14 men) and 42 controls (sex- and age-matched) were evaluated. Compared to controls, SPG4 and SPG5 showed similar WM damage but different GM atrophy patterns. GM atrophy patterns in SPG4 and SPG5 were correlated with corresponding gene expression (ρ = 0.30, p = 0.008, ρ = 0.40, p < 0.001, respectively). Mediation analysis indicated that GM atrophy patterns were mediated by WM damage in HSP. CONCLUSIONS Grey matter atrophy patterns were distinct between SPG4 and SPG5 and were not only secondary to WM damage but also associated with disease-related gene expression. CLINICAL TRIAL REGISTRATION NO NCT04006418.
Collapse
Affiliation(s)
- Yuqing Tu
- Department of RadiologyFirst Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Ying Liu
- Department of RadiologyFirst Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Shuping Fan
- Department of RadiologyFirst Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Jiaqi Weng
- Department of RadiologyFirst Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Mengcheng Li
- Department of RadiologyFirst Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Fan Zhang
- Department of RadiologyFirst Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Ying Fu
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouFujianChina
| | - Jianping Hu
- Department of RadiologyFirst Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| |
Collapse
|
13
|
Mo C, McKinnon C, Murray Sherman S. A transthalamic pathway crucial for perception. Nat Commun 2024; 15:6300. [PMID: 39060240 PMCID: PMC11282105 DOI: 10.1038/s41467-024-50163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Perception is largely supported by cortical processing that involves communication among multiple areas, typically starting with primary sensory cortex and then involving higher order cortices. This communication is served in part by transthalamic (cortico-thalamo-cortical) pathways, which ubiquitously parallel direct corticocortical pathways, but their role in sensory processing has largely remained unexplored. Here, we suggest that transthalamic processing propagates task-relevant information required for correct sensory decisions. Using optogenetics, we specifically inhibited the pathway at its synapse in higher order somatosensory thalamus of mice performing a texture-based discrimination task. We concurrently monitored the cellular effects of inhibition in primary or secondary cortex using two-photon calcium imaging. Inhibition severely impaired performance despite intact direct corticocortical projections, thus challenging the purely corticocentric map of perception. Interestingly, the inhibition did not reduce overall cell responsiveness to texture stimulation in somatosensory cortex, but rather disrupted the texture selectivity of cells, a discriminability that develops over task learning. This discriminability was more disrupted in the secondary than primary somatosensory cortex, emphasizing the feedforward influence of the transthalamic route. Transthalamic pathways may therefore act to deliver performance-relevant information to higher order cortex and are underappreciated hierarchical pathways in perceptual decision-making.
Collapse
Affiliation(s)
- Christina Mo
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA.
| | - Claire McKinnon
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| | - S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
14
|
Gao H, Ramachandran S, Yu K, He B. Transcranial focused ultrasound activates feedforward and feedback cortico-thalamo-cortical pathways by selectively activating excitatory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600794. [PMID: 38979359 PMCID: PMC11230429 DOI: 10.1101/2024.06.26.600794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Transcranial focused ultrasound stimulation (tFUS) has been proven capable of altering focal neuronal activities and neural circuits non-invasively in both animals and humans. The abilities of tFUS for cell-type selection within the targeted area like somatosensory cortex have been shown to be parameter related. However, how neuronal subpopulations across neural pathways are affected, for example how tFUS affected neuronal connections between brain areas remains unclear. In this study, multi-site intracranial recordings were used to quantify the neuronal responses to tFUS stimulation at somatosensory cortex (S1), motor cortex (M1) and posterior medial thalamic nucleus (POm) of cortico-thalamo-cortical (CTC) pathway. We found that when targeting at S1 or POm, only regular spiking units (RSUs, putative excitatory neurons) responded to specific tFUS parameters (duty cycle: 6%-60% and pulse repetition frequency: 1500 and 3000 Hz ) during sonication. RSUs from the directly connected area (POm or S1) showed a synchronized response, which changed the directional correlation between RSUs from POm and S1. The tFUS induced excitation of RSUs activated the feedforward and feedback loops between cortex and thalamus, eliciting delayed neuronal responses of RSUs and delayed activities of fast spiking units (FSUs) by affecting local network. Our findings indicated that tFUS can modulate the CTC pathway through both feedforward and feedback loops, which could influence larger cortical areas including motor cortex.
Collapse
|
15
|
Koster KP, Sherman SM. Convergence of inputs from the basal ganglia with layer 5 of motor cortex and cerebellum in mouse motor thalamus. eLife 2024; 13:e97489. [PMID: 38856045 PMCID: PMC11208046 DOI: 10.7554/elife.97489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
A key to motor control is the motor thalamus, where several inputs converge. One excitatory input originates from layer 5 of primary motor cortex (M1L5), while another arises from the deep cerebellar nuclei (Cb). M1L5 terminals distribute throughout the motor thalamus and overlap with GABAergic inputs from the basal ganglia output nuclei, the internal segment of the globus pallidus (GPi), and substantia nigra pars reticulata (SNr). In contrast, it is thought that Cb and basal ganglia inputs are segregated. Therefore, we hypothesized that one potential function of the GABAergic inputs from basal ganglia is to selectively inhibit, or gate, excitatory signals from M1L5 in the motor thalamus. Here, we tested this possibility and determined the circuit organization of mouse (both sexes) motor thalamus using an optogenetic strategy in acute slices. First, we demonstrated the presence of a feedforward transthalamic pathway from M1L5 through motor thalamus. Importantly, we discovered that GABAergic inputs from the GPi and SNr converge onto single motor thalamic cells with excitatory synapses from M1L5. Separately, we also demonstrate that, perhaps unexpectedly, GABAergic GPi and SNr inputs converge with those from the Cb. We interpret these results to indicate that a role of the basal ganglia is to gate the thalamic transmission of M1L5 and Cb information to cortex.
Collapse
Affiliation(s)
- Kevin P Koster
- Department of Neurobiology, University of ChicagoChicagoUnited States
| | - S Murray Sherman
- Department of Neurobiology, University of ChicagoChicagoUnited States
| |
Collapse
|
16
|
Buchan MJ, Gothard G, Mahfooz K, van Rheede JJ, Avery SV, Vourvoukelis A, Demby A, Ellender TJ, Newey SE, Akerman CJ. Higher-order thalamocortical circuits are specified by embryonic cortical progenitor types in the mouse brain. Cell Rep 2024; 43:114157. [PMID: 38678557 DOI: 10.1016/j.celrep.2024.114157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/14/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
The sensory cortex receives synaptic inputs from both first-order and higher-order thalamic nuclei. First-order inputs relay simple stimulus properties from the periphery, whereas higher-order inputs relay more complex response properties, provide contextual feedback, and modulate plasticity. Here, we reveal that a cortical neuron's higher-order input is determined by the type of progenitor from which it is derived during embryonic development. Within layer 4 (L4) of the mouse primary somatosensory cortex, neurons derived from intermediate progenitors receive stronger higher-order thalamic input and exhibit greater higher-order sensory responses. These effects result from differences in dendritic morphology and levels of the transcription factor Lhx2, which are specified by the L4 neuron's progenitor type. When this mechanism is disrupted, cortical circuits exhibit altered higher-order responses and sensory-evoked plasticity. Therefore, by following distinct trajectories, progenitor types generate diversity in thalamocortical circuitry and may provide a general mechanism for differentially routing information through the cortex.
Collapse
Affiliation(s)
| | - Gemma Gothard
- Department of Pharmacology, Mansfield Road, OX1 3QT Oxford, UK
| | - Kashif Mahfooz
- Department of Pharmacology, Mansfield Road, OX1 3QT Oxford, UK
| | | | - Sophie V Avery
- Department of Pharmacology, Mansfield Road, OX1 3QT Oxford, UK
| | | | - Alexander Demby
- Department of Pharmacology, Mansfield Road, OX1 3QT Oxford, UK
| | - Tommas J Ellender
- Department of Pharmacology, Mansfield Road, OX1 3QT Oxford, UK; Experimental Neurobiology Unit, Universiteitsplein, 2610 Antwerp, Belgium
| | - Sarah E Newey
- Department of Pharmacology, Mansfield Road, OX1 3QT Oxford, UK
| | - Colin J Akerman
- Department of Pharmacology, Mansfield Road, OX1 3QT Oxford, UK.
| |
Collapse
|
17
|
Jones G, Akter Y, Shifflett V, Hruska M. Nanoscale analysis of functionally diverse glutamatergic synapses in the neocortex reveals input and layer-specific organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592008. [PMID: 38746319 PMCID: PMC11092571 DOI: 10.1101/2024.05.01.592008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Discovery of synaptic nanostructures suggests a molecular logic for the flexibility of synaptic function. We still have little understanding of how functionally diverse synapses in the brain organize their nanoarchitecture due to challenges associated with super-resolution imaging in complex brain tissue. Here, we characterized single-domain camelid nanobodies for the 3D quantitative multiplex imaging of synaptic nano-organization in 6 µm brain cryosections using STED nanoscopy. We focused on thalamocortical (TC) and corticocortical (CC) synapses along the apical-basal axis of layer 5 pyramidal neurons as models of functionally diverse glutamatergic synapses in the brain. Spines receiving TC input were larger than CC spines in all layers examined. However, TC synapses on apical and basal dendrites conformed to different organizational principles. TC afferents on apical dendrites frequently contacted spines with multiple aligned PSD-95/Bassoon nanomodules, which are larger. TC spines on basal dendrites contained mostly one aligned PSD-95/Bassoon nanocluster. However, PSD-95 nanoclusters were larger and scaled with spine volume. The nano-organization of CC synapses did not change across cortical layers. These results highlight striking nanoscale diversity of functionally distinct glutamatergic synapses, relying on afferent input and sub-cellular localization of individual synaptic connections.
Collapse
|
18
|
Dodd K, Legget KT, Cornier MA, Novick AM, McHugo M, Berman BD, Lawful BP, Tregellas JR. Relationship between functional connectivity and weight-gain risk of antipsychotics in schizophrenia. Schizophr Res 2024; 267:173-181. [PMID: 38552340 PMCID: PMC11332974 DOI: 10.1016/j.schres.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND The mechanisms by which antipsychotic medications (APs) contribute to obesity in schizophrenia are not well understood. Because AP effects on functional brain connectivity may contribute to weight effects, the current study investigated how AP-associated weight-gain risk relates to functional connectivity in schizophrenia. METHODS Fifty-five individuals with schizophrenia (final N = 54) were divided into groups based on previously reported AP weight-gain risk (no APs/low risk [N = 19]; moderate risk [N = 17]; high risk [N = 18]). Resting-state functional magnetic resonance imaging (fMRI) was completed after an overnight fast ("fasted") and post-meal ("fed"). Correlations between AP weight-gain risk and functional connectivity were assessed at the whole-brain level and in reward- and eating-related brain regions (anterior insula, caudate, nucleus accumbens). RESULTS When fasted, greater AP weight-gain risk was associated with increased connectivity between thalamus and sensorimotor cortex (pFDR = 0.021). When fed, greater AP weight-gain risk was associated with increased connectivity between left caudate and left precentral/postcentral gyri (pFDR = 0.048) and between right caudate and multiple regions, including the left precentral/postcentral gyri (pFDR = 0.001), intracalcarine/precuneal/cuneal cortices (pFDR < 0.001), and fusiform gyrus (pFDR = 0.008). When fed, greater AP weight-gain risk was also associated with decreased connectivity between right anterior insula and ventromedial prefrontal cortex (pFDR = 0.002). CONCLUSIONS APs with higher weight-gain risk were associated with greater connectivity between reward-related regions and sensorimotor regions when fasted, perhaps relating to motor anticipation for consumption. Higher weight-gain risk APs were also associated with increased connectivity between reward, salience, and visual regions when fed, potentially reflecting greater desire for consumption following satiety.
Collapse
Affiliation(s)
- Keith Dodd
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Anschutz Health Sciences Building, 1890 N Revere Ct, Aurora, CO 80045, USA; Department of Bioengineering, University of Colorado Denver, 12705 E Montview Blvd Suite 100, Aurora, CO 80045, USA
| | - Kristina T Legget
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Anschutz Health Sciences Building, 1890 N Revere Ct, Aurora, CO 80045, USA; Research Service, Rocky Mountain Regional VA Medical Center, 1700 N Wheeling St, Aurora, CO 80045, USA
| | - Marc-Andre Cornier
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Clinical Sciences Building, CSB 96 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Andrew M Novick
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Anschutz Health Sciences Building, 1890 N Revere Ct, Aurora, CO 80045, USA
| | - Maureen McHugo
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Anschutz Health Sciences Building, 1890 N Revere Ct, Aurora, CO 80045, USA
| | - Brian D Berman
- Department of Neurology, Virginia Commonwealth University, 1101 E Marshall Street, Richmond, VA 23298, USA
| | - Benjamin P Lawful
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Anschutz Health Sciences Building, 1890 N Revere Ct, Aurora, CO 80045, USA
| | - Jason R Tregellas
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Anschutz Health Sciences Building, 1890 N Revere Ct, Aurora, CO 80045, USA; Research Service, Rocky Mountain Regional VA Medical Center, 1700 N Wheeling St, Aurora, CO 80045, USA.
| |
Collapse
|
19
|
Mukherjee A, Halassa MM. The Associative Thalamus: A Switchboard for Cortical Operations and a Promising Target for Schizophrenia. Neuroscientist 2024; 30:132-147. [PMID: 38279699 PMCID: PMC10822032 DOI: 10.1177/10738584221112861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Schizophrenia is a brain disorder that profoundly perturbs cognitive processing. Despite the success in treating many of its symptoms, the field lacks effective methods to measure and address its impact on reasoning, inference, and decision making. Prefrontal cortical abnormalities have been well documented in schizophrenia, but additional dysfunction in the interactions between the prefrontal cortex and thalamus have recently been described. This dysfunction may be interpreted in light of parallel advances in neural circuit research based on nonhuman animals, which show critical thalamic roles in maintaining and switching prefrontal activity patterns in various cognitive tasks. Here, we review this basic literature and connect it to emerging innovations in clinical research. We highlight the value of focusing on associative thalamic structures not only to better understand the very nature of cognitive processing but also to leverage these circuits for diagnostic and therapeutic development in schizophrenia. We suggest that the time is right for building close bridges between basic thalamic research and its clinical translation, particularly in the domain of cognition and schizophrenia.
Collapse
Affiliation(s)
- Arghya Mukherjee
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael M Halassa
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
20
|
Pauls KAM, Salmela E, Korsun O, Kujala J, Salmelin R, Renvall H. Human Sensorimotor Beta Event Characteristics and Aperiodic Signal Are Highly Heritable. J Neurosci 2024; 44:e0265232023. [PMID: 37973377 PMCID: PMC10860623 DOI: 10.1523/jneurosci.0265-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Individuals' phenotypes, including the brain's structure and function, are largely determined by genes and their interplay. The resting brain generates salient rhythmic patterns that can be characterized noninvasively using functional neuroimaging such as magnetoencephalography (MEG). One of these rhythms, the somatomotor (rolandic) beta rhythm, shows intermittent high amplitude "events" that predict behavior across tasks and species. Beta rhythm is altered in neurological disease. The aperiodic (1/f) signal present in electrophysiological recordings is also modulated by some neurological conditions and aging. Both sensorimotor beta and aperiodic signal could thus serve as biomarkers of sensorimotor function. Knowledge about the extent to which these brain functional measures are heritable could shed light on the mechanisms underlying their generation. We investigated the heritability and variability of human spontaneous sensorimotor beta rhythm events and aperiodic activity in 210 healthy male and female adult siblings' spontaneous MEG activity. The most heritable trait was the aperiodic 1/f signal, with a heritability of 0.87 in the right hemisphere. Time-resolved beta event amplitude parameters were also highly heritable, whereas the heritabilities for overall beta power, peak frequency, and measures of event duration remained nonsignificant. Human sensorimotor neural activity can thus be dissected into different components with variable heritability. We postulate that these differences partially reflect different underlying signal-generating mechanisms. The 1/f signal and beta event amplitude measures may depend more on fixed, anatomical parameters, whereas beta event duration and its modulation reflect dynamic characteristics, guiding their use as potential disease biomarkers.
Collapse
Affiliation(s)
- K Amande M Pauls
- Department of Neurology, Helsinki University Hospital, and Department of Clinical Neurosciences, University of Helsinki, 00029 Helsinki, Finland
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Elina Salmela
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Olesia Korsun
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 02150 Espoo, Finland
| | - Jan Kujala
- Department of Psychology, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Riitta Salmelin
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 02150 Espoo, Finland
| | - Hanna Renvall
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
21
|
Zheng Y, Xie L, Huang Z, Peng J, Huang S, Guo R, Huang J, Lin Z, Zhuang Z, Yin J, Hou Z, Ma S. Functional dysconnectivity and microstructural impairment of the cortico-thalamo-cortical network in women with rheumatoid arthritis: A multimodal MRI study. Heliyon 2024; 10:e24725. [PMID: 38304809 PMCID: PMC10830510 DOI: 10.1016/j.heliyon.2024.e24725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/29/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
Background Cognitive deficits are common in rheumatoid arthritis (RA) patients, but the mechanisms remain unclear. We investigated the effective connectivity and structural alterations of the core brain regions in RA patients with cognitive impairment. Methods Twenty-four female patients with RA and twenty-four healthy controls were enrolled. We analyzed abnormal brain activity patterns using functional MRI during the Iowa gambling task (IGT) and core regions effective connectivity using dynamic causal model (DCM). Structural alterations of white matter volume (WMV) and gray matter volume (GMV) were detected using voxel-based morphometry (VBM). Results RA patients showed altered activation patterns of the cortico-thalamo-cortical network, increased coupling strength from the left ventromedial prefrontal gyrus to the anterior cingulate cortex (ACC), the ACC to the right thalamus, and decreased connectivity from the thalamus to left hippocampus. VBM structural analysis showed increased GMV in the bilateral orbital frontal gyrus, bilateral hippocampus and right putamen, and reduced GMV and WMV in the bilateral thalamus in RA patients. Right thalamic GMV and WMV were positively correlated with the right thalamus-to-hippocampus connective strength. Additionally, the bold signal, GMV and WMV of the right thalamus were positively correlated with cognitive performance (IGT score) in RA patients. Conclusion Results suggest a structural and functional deficiency in the cortico-thalamo-cortical network, which is characterized by increased ACC-to-thalamus strength and reduced thalamus-to-hippocampus coupling in RA patients. The cognitive dysfunction may be the result of compensatory measures against imbalanced cortico-thalamic-cortical coupling.
Collapse
Affiliation(s)
- Yanmin Zheng
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Lei Xie
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zikai Huang
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jianhua Peng
- Department of Rheumatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shuxin Huang
- Department of Rheumatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ruiwei Guo
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jinzhuang Huang
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zhirong Lin
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zelin Zhuang
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jingjing Yin
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zhiduo Hou
- Department of Rheumatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shuhua Ma
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
22
|
Suzuki M, Pennartz CMA, Aru J. How deep is the brain? The shallow brain hypothesis. Nat Rev Neurosci 2023; 24:778-791. [PMID: 37891398 DOI: 10.1038/s41583-023-00756-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/29/2023]
Abstract
Deep learning and predictive coding architectures commonly assume that inference in neural networks is hierarchical. However, largely neglected in deep learning and predictive coding architectures is the neurobiological evidence that all hierarchical cortical areas, higher or lower, project to and receive signals directly from subcortical areas. Given these neuroanatomical facts, today's dominance of cortico-centric, hierarchical architectures in deep learning and predictive coding networks is highly questionable; such architectures are likely to be missing essential computational principles the brain uses. In this Perspective, we present the shallow brain hypothesis: hierarchical cortical processing is integrated with a massively parallel process to which subcortical areas substantially contribute. This shallow architecture exploits the computational capacity of cortical microcircuits and thalamo-cortical loops that are not included in typical hierarchical deep learning and predictive coding networks. We argue that the shallow brain architecture provides several critical benefits over deep hierarchical structures and a more complete depiction of how mammalian brains achieve fast and flexible computational capabilities.
Collapse
Affiliation(s)
- Mototaka Suzuki
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Cyriel M A Pennartz
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia.
| |
Collapse
|
23
|
Szul MJ, Papadopoulos S, Alavizadeh S, Daligaut S, Schwartz D, Mattout J, Bonaiuto JJ. Diverse beta burst waveform motifs characterize movement-related cortical dynamics. Prog Neurobiol 2023; 228:102490. [PMID: 37391061 DOI: 10.1016/j.pneurobio.2023.102490] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/03/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Classical analyses of induced, frequency-specific neural activity typically average band-limited power over trials. More recently, it has become widely appreciated that in individual trials, beta band activity occurs as transient bursts rather than amplitude-modulated oscillations. Most studies of beta bursts treat them as unitary, and having a stereotyped waveform. However, we show there is a wide diversity of burst shapes. Using a biophysical model of burst generation, we demonstrate that waveform variability is predicted by variability in the synaptic drives that generate beta bursts. We then use a novel, adaptive burst detection algorithm to identify bursts from human MEG sensor data recorded during a joystick-based reaching task, and apply principal component analysis to burst waveforms to define a set of dimensions, or motifs, that best explain waveform variance. Finally, we show that bursts with a particular range of waveform motifs, ones not fully accounted for by the biophysical model, differentially contribute to movement-related beta dynamics. Sensorimotor beta bursts are therefore not homogeneous events and likely reflect distinct computational processes.
Collapse
Affiliation(s)
- Maciej J Szul
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France.
| | - Sotirios Papadopoulos
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France; Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
| | - Sanaz Alavizadeh
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| | | | - Denis Schwartz
- CERMEP - Imagerie du Vivant, MEG Departement, Lyon, France
| | - Jérémie Mattout
- Université Claude Bernard Lyon 1, Université de Lyon, France; Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
| | - James J Bonaiuto
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| |
Collapse
|
24
|
Ngomba RT, Lüttjohann A, Dexter A, Ray S, van Luijtelaar G. The Metabotropic Glutamate 5 Receptor in Sleep and Wakefulness: Focus on the Cortico-Thalamo-Cortical Oscillations. Cells 2023; 12:1761. [PMID: 37443795 PMCID: PMC10341329 DOI: 10.3390/cells12131761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Sleep is an essential innate but complex behaviour which is ubiquitous in the animal kingdom. Our knowledge of the distinct neural circuit mechanisms that regulate sleep and wake states in the brain are, however, still limited. It is therefore important to understand how these circuits operate during health and disease. This review will highlight the function of mGlu5 receptors within the thalamocortical circuitry in physiological and pathological sleep states. We will also evaluate the potential of targeting mGlu5 receptors as a therapeutic strategy for sleep disorders that often co-occur with epileptic seizures.
Collapse
Affiliation(s)
| | - Annika Lüttjohann
- Institute of Physiology I, University of Münster, 48149 Münster, Germany
| | - Aaron Dexter
- School of Pharmacy, University of Lincoln, Lincoln LN6 7DL, UK
| | - Swagat Ray
- Department of Life Sciences, School of Life and Environmental Sciences, University of Lincoln, Lincoln LN6 7DL, UK
| | | |
Collapse
|
25
|
Mo C, McKinnon C, Sherman SM. A transthalamic pathway crucial for perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.533323. [PMID: 37034798 PMCID: PMC10081228 DOI: 10.1101/2023.03.30.533323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Perception arises from activity between cortical areas, first primary cortex and then higher order cortices. This communication is served in part by transthalamic (cortico-thalamo-cortical) pathways, which ubiquitously parallel direct corticocortical pathways, but their role in sensory processing has largely remained unexplored. Here, we show that the transthalamic pathway linking somatosensory cortices propagates task-relevant information required for correct sensory decisions. Using optogenetics, we specifically inhibited the pathway at its synapse in higher order somatosensory thalamus of mice performing a texture-based discrimination task. We concurrently monitored the cellular effects of inhibition in primary or secondary cortex using two-photon calcium imaging. Inhibition severely impaired performance despite intact direct corticocortical projections, thus challenging the purely corticocentric map of perception. Interestingly, the inhibition did not reduce overall cell responsiveness to texture stimulation in somatosensory cortex, but rather disrupted the texture selectivity of cells, a discriminability that develops over task learning. This discriminability was more disrupted in the secondary than primary somatosensory cortex, emphasizing the feedforward influence of the transthalamic route. Transthalamic pathways thus appear critical in delivering performance-relevant information to higher order cortex and are critical hierarchical pathways in perceptual decision-making.
Collapse
|
26
|
Ahissar E, Nelinger G, Assa E, Karp O, Saraf-Sinik I. Thalamocortical loops as temporal demodulators across senses. Commun Biol 2023; 6:562. [PMID: 37237075 DOI: 10.1038/s42003-023-04881-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Sensory information is coded in space and in time. The organization of neuronal activity in space maintains straightforward relationships with the spatial organization of the perceived environment. In contrast, the temporal organization of neuronal activity is not trivially related to external features due to sensor motion. Still, the temporal organization shares similar principles across sensory modalities. Likewise, thalamocortical circuits exhibit common features across senses. Focusing on touch, vision, and audition, we review their shared coding principles and suggest that thalamocortical systems include circuits that allow analogous recoding mechanisms in all three senses. These thalamocortical circuits constitute oscillations-based phase-locked loops, that translate temporally-coded sensory information to rate-coded cortical signals, signals that can integrate information across sensory and motor modalities. The loop also allows predictive locking to the onset of future modulations of the sensory signal. The paper thus suggests a theoretical framework in which a common thalamocortical mechanism implements temporal demodulation across senses.
Collapse
Affiliation(s)
- Ehud Ahissar
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel.
| | - Guy Nelinger
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| | - Eldad Assa
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| | - Ofer Karp
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| | - Inbar Saraf-Sinik
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| |
Collapse
|
27
|
Brunelle DL, Llano DA. Role of auditory-somatosensory corticothalamic circuit integration in analgesia. Cell Calcium 2023; 111:102717. [PMID: 36931195 PMCID: PMC10755628 DOI: 10.1016/j.ceca.2023.102717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
Our sensory environment is permeated by a diverse array of auditory and somatosensory stimuli. The pairing of acoustic signals with concurrent or forthcoming tactile cues are abundant in everyday life and various survival contexts across species, thus deeming the ability to integrate sensory inputs arising from the combination of these stimuli as crucial. The corticothalamic system plays a critical role in orchestrating the construction, integration and distribution of the information extracted from these sensory modalities. In this mini-review, we provide a circuit-level description of the auditory corticothalamic pathway in conjunction with adjacent corticothalamic somatosensory projections. Although the extent of the functional interactions shared by these pathways is not entirely elucidated, activation of each of these systems appears to modulate sensory perception in the complementary domain. Several specific issues are reviewed. Under certain environmental noise conditions, the spectral information of a sound could induce modulations in nociception and even induce analgesia. We begin by discussing recent findings by Zhou et al. (2022) implicating the corticothalamic system in mediating sound-induced analgesia. Next, we describe relevant components of the corticothalamic pathway's functional organization. Additionally, we describe an emerging body of literature pointing to intrathalamic circuitry being optimal for controlling and selecting sensory signals across modalities, with the thalamic reticular nucleus being a candidate mechanism for directing cross-modal interactions. Finally, Ca2+ bursting in thalamic neurons evoked by the thalamic reticular nucleus is explored.
Collapse
Affiliation(s)
- Dimitri L Brunelle
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Daniel A Llano
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America.
| |
Collapse
|
28
|
Zich C, Quinn AJ, Bonaiuto JJ, O'Neill G, Mardell LC, Ward NS, Bestmann S. Spatiotemporal organisation of human sensorimotor beta burst activity. eLife 2023; 12:e80160. [PMID: 36961500 PMCID: PMC10110262 DOI: 10.7554/elife.80160] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 03/23/2023] [Indexed: 03/25/2023] Open
Abstract
Beta oscillations in human sensorimotor cortex are hallmark signatures of healthy and pathological movement. In single trials, beta oscillations include bursts of intermittent, transient periods of high-power activity. These burst events have been linked to a range of sensory and motor processes, but their precise spatial, spectral, and temporal structure remains unclear. Specifically, a role for beta burst activity in information coding and communication suggests spatiotemporal patterns, or travelling wave activity, along specific anatomical gradients. We here show in human magnetoencephalography recordings that burst activity in sensorimotor cortex occurs in planar spatiotemporal wave-like patterns that dominate along two axes either parallel or perpendicular to the central sulcus. Moreover, we find that the two propagation directions are characterised by distinct anatomical and physiological features. Finally, our results suggest that sensorimotor beta bursts occurring before and after a movement can be distinguished by their anatomical, spectral, and spatiotemporal characteristics, indicating distinct functional roles.
Collapse
Affiliation(s)
- Catharina Zich
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of NeurologyLondonUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
- Medical Research Council Brain Network Dynamics Unit, University of OxfordOxfordUnited Kingdom
| | - Andrew J Quinn
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of OxfordOxfordUnited Kingdom
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - James J Bonaiuto
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229BronFrance
- Université Claude Bernard Lyon 1, Université de LyonLyonFrance
| | - George O'Neill
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Lydia C Mardell
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Nick S Ward
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Sven Bestmann
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of NeurologyLondonUnited Kingdom
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of NeurologyLondonUnited Kingdom
| |
Collapse
|
29
|
Charyasz E, Heule R, Molla F, Erb M, Kumar VJ, Grodd W, Scheffler K, Bause J. Functional mapping of sensorimotor activation in the human thalamus at 9.4 Tesla. Front Neurosci 2023; 17:1116002. [PMID: 37008235 PMCID: PMC10050447 DOI: 10.3389/fnins.2023.1116002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Although the thalamus is perceived as a passive relay station for almost all sensory signals, the function of individual thalamic nuclei remains unresolved. In the present study, we aimed to identify the sensorimotor nuclei of the thalamus in humans using task-based fMRI at a field strength of 9.4T by assessing the individual subject-specific sensorimotor BOLD response during a combined active motor (finger-tapping) and passive sensory (tactile-finger) stimulation. We demonstrate that both tasks increase BOLD signal response in the lateral nuclei group (VPL, VA, VLa, and VLp), and in the pulvinar nuclei group (PuA, PuM, and PuL). Finger-tapping stimuli evokes a stronger BOLD response compared to the tactile stimuli, and additionally engages the intralaminar nuclei group (CM and Pf). In addition, our results demonstrate reproducible thalamic nuclei activation during motor and tactile stimuli. This work provides important insight into understanding the function of individual thalamic nuclei in processing various input signals and corroborates the benefits of using ultra-high-field MR scanners for functional imaging of fine-scale deeply located brain structures.
Collapse
Affiliation(s)
- Edyta Charyasz
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Graduate Training Centre of Neuroscience, Tübingen, Germany
- *Correspondence: Edyta Charyasz,
| | - Rahel Heule
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Center for MR Research, University Children’s Hospital, Zurich, Switzerland
| | - Francesko Molla
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Graduate Training Centre of Neuroscience, Tübingen, Germany
- Center for Neurology, Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - Michael Erb
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Vinod Jangir Kumar
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Wolfgang Grodd
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Jonas Bause
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
30
|
Higher-order thalamic nuclei facilitate the generalization and maintenance of spike-and-wave discharges of absence seizures. Neurobiol Dis 2023; 178:106025. [PMID: 36731682 DOI: 10.1016/j.nbd.2023.106025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023] Open
Abstract
Spike-and-wave discharges (SWDs), generated by the cortico-thalamo-cortical (CTC) network, are pathological, large amplitude oscillations and the hallmark of absence seizures (ASs). SWDs begin in a cortical initiation network in both humans and animal models, including the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), where it is located in the primary somatosensory cortex (S1). The behavioral manifestation of an AS occurs when SWDs spread from the cortical initiation site to the whole brain, however, the mechanisms behind this rapid propagation remain unclear. Here we investigated these processes beyond the principal CTC network, in higher-order (HO) thalamic nuclei (lateral posterior (LP) and posterior (PO) nuclei) since their diffuse connectivity and known facilitation of intracortical communications make these nuclei key candidates to support SWD generation and maintenance. In freely moving GAERS, multi-site LFP in LP, PO and multiple cortical regions revealed a novel feature of SWDs: during SWDs there are short periods (named SWD-breaks) when cortical regions far from S1, such the primary visual cortex (V1), become transiently unsynchronized from the ongoing EEG rhythm. Inactivation of HO nuclei with local muscimol injections or optogenetic perturbation of HO nuclei activity increased the occurrence of SWD-breaks and the former intervention also increased the SWD propagation-time from S1. The neural underpinnings of these findings were explored further by silicon probe recordings from single units of PO which uncovered two previously unknown groups of excitatory neurons based on their burst firing dynamics at SWD onset. Moreover, a switch from tonic to burst firing at SWD onset was shown to be an important feature since it was much less prominent for non-generalized events, i.e. SWDs that remained local to S1. Additionally, one group of neurons showed a reverse of this switch during SWD-breaks, demonstrating the importance of this firing pattern throughout the SWD. In summary, these results support the view that multiple HO thalamic nuclei are utilized at SWD onset and contribute to cortical synchrony throughout the paroxysmal discharge.
Collapse
|
31
|
Oral Treatment with the Extract of Euterpe oleracea Mart. Improves Motor Dysfunction and Reduces Brain Injury in Rats Subjected to Ischemic Stroke. Nutrients 2023; 15:nu15051207. [PMID: 36904206 PMCID: PMC10005587 DOI: 10.3390/nu15051207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Ischemic stroke is one of the principal causes of morbidity and mortality around the world. The pathophysiological mechanisms that lead to the formation of the stroke lesions range from the bioenergetic failure of the cells and the intense production of reactive oxygen species to neuroinflammation. The fruit of the açaí palm, Euterpe oleracea Mart. (EO), is consumed by traditional populations in the Brazilian Amazon region, and it is known to have antioxidant and anti-inflammatory properties. We evaluated whether the clarified extract of EO was capable of reducing the area of lesion and promoting neuronal survival following ischemic stroke in rats. Animals submitted to ischemic stroke and treated with EO extract presented a significant improvement in their neurological deficit from the ninth day onward. We also observed a reduction in the extent of the cerebral injury and the preservation of the neurons of the cortical layers. Taken together, our findings indicate that treatment with EO extract in the acute phase following a stroke can trigger signaling pathways that culminate in neuronal survival and promote the partial recovery of neurological scores. However, further detailed studies of the intracellular signaling pathways are needed to better understand the mechanisms involved.
Collapse
|
32
|
Habig K, Krämer HH, Lautenschläger G, Walter B, Best C. Processing of sensory, painful and vestibular stimuli in the thalamus. Brain Struct Funct 2023; 228:433-447. [PMID: 36239796 PMCID: PMC9944400 DOI: 10.1007/s00429-022-02582-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The thalamus plays an important role in the mediation and integration of various stimuli (e.g., somatosensory, pain, and vestibular). Whether a stimulus-specific and topographic organization of the thalamic nuclei exists is still unknown. The aim of our study was to define a functional, in vivo map of multimodal sensory processing within the human thalamus. METHODS Twenty healthy individuals (10 women, 21-34 years old) participated. Defined sensory stimuli were applied to both hands (innocuous touch, mechanical pain, and heat pain) and the vestibular organ (galvanic stimulation) during 3 T functional MRI. RESULTS Bilateral thalamic activations could be detected for touch, mechanical pain, and vestibular stimulation within the left medio-dorsal and right anterior thalamus. Heat pain did not lead to thalamic activation at all. Stimuli applied to the left body side resulted in stronger activation patterns. Comparing an early with a late stimulation interval, the mentioned activation patterns were far more pronounced within the early stimulation interval. CONCLUSIONS The right anterior and ventral-anterior nucleus and the left medio-dorsal nucleus appear to be important for the processing of multimodal sensory information. In addition, galvanic stimulation is processed more laterally compared to mechanical pain. The observed changes in activity within the thalamic nuclei depending on the stimulation interval suggest that the stimuli are processed in a thalamic network rather than a distinct nucleus. In particular, the vestibular network within the thalamus recruits bilateral nuclei, rendering the thalamus an important integrative structure for vestibular function.
Collapse
Affiliation(s)
- Kathrin Habig
- Department of Neurology, Justus-Liebig-University, Klinikstrasse 33, 35392, Giessen, Germany.
| | - Heidrun H Krämer
- Department of Neurology, Justus-Liebig-University, Klinikstrasse 33, 35392, Giessen, Germany
| | - Gothje Lautenschläger
- Department of Neurology, Justus-Liebig-University, Klinikstrasse 33, 35392, Giessen, Germany
| | - Bertram Walter
- Bender Institute of Neuroimaging, Justus-Liebig-University, 35394, Giessen, Germany
- Center for Mind, Brain and Behavior, Philipps University Marburg and Justus Liebig University, Giessen, Germany
| | - Christoph Best
- Department of Neurology, Philipps-University Marburg, 35043, Marburg, Germany
| |
Collapse
|
33
|
Qi J, Ye C, Naskar S, Inácio AR, Lee S. Posteromedial thalamic nucleus activity significantly contributes to perceptual discrimination. PLoS Biol 2022; 20:e3001896. [PMID: 36441759 PMCID: PMC9731480 DOI: 10.1371/journal.pbio.3001896] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/08/2022] [Accepted: 10/28/2022] [Indexed: 11/29/2022] Open
Abstract
Higher-order sensory thalamic nuclei are densely connected with multiple cortical and subcortical areas, yet the role of these nuclei remains elusive. The posteromedial thalamic nucleus (POm), the higher-order thalamic nucleus in the rodent somatosensory system, is an anatomical hub broadly connected with multiple sensory and motor brain areas yet weakly responds to passive sensory stimulation and whisker movements. To understand the role of POm in sensory perception, we developed a self-initiated, two-alternative forced-choice task in freely moving mice during active sensing. Using optogenetic and chemogenetic manipulation, we show that POm plays a significant role in sensory perception and the projection from the primary somatosensory cortex to POm is critical for the contribution of POm in sensory perception during active sensing.
Collapse
Affiliation(s)
- Jia Qi
- Unit on Functional Neural Circuits, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Changquan Ye
- Unit on Functional Neural Circuits, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shovan Naskar
- Unit on Functional Neural Circuits, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ana R. Inácio
- Unit on Functional Neural Circuits, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Soohyun Lee
- Unit on Functional Neural Circuits, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
34
|
Lohse M, Zimmer-Harwood P, Dahmen JC, King AJ. Integration of somatosensory and motor-related information in the auditory system. Front Neurosci 2022; 16:1010211. [PMID: 36330342 PMCID: PMC9622781 DOI: 10.3389/fnins.2022.1010211] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
An ability to integrate information provided by different sensory modalities is a fundamental feature of neurons in many brain areas. Because visual and auditory inputs often originate from the same external object, which may be located some distance away from the observer, the synthesis of these cues can improve localization accuracy and speed up behavioral responses. By contrast, multisensory interactions occurring close to the body typically involve a combination of tactile stimuli with other sensory modalities. Moreover, most activities involving active touch generate sound, indicating that stimuli in these modalities are frequently experienced together. In this review, we examine the basis for determining sound-source distance and the contribution of auditory inputs to the neural encoding of space around the body. We then consider the perceptual consequences of combining auditory and tactile inputs in humans and discuss recent evidence from animal studies demonstrating how cortical and subcortical areas work together to mediate communication between these senses. This research has shown that somatosensory inputs interface with and modulate sound processing at multiple levels of the auditory pathway, from the cochlear nucleus in the brainstem to the cortex. Circuits involving inputs from the primary somatosensory cortex to the auditory midbrain have been identified that mediate suppressive effects of whisker stimulation on auditory thalamocortical processing, providing a possible basis for prioritizing the processing of tactile cues from nearby objects. Close links also exist between audition and movement, and auditory responses are typically suppressed by locomotion and other actions. These movement-related signals are thought to cancel out self-generated sounds, but they may also affect auditory responses via the associated somatosensory stimulation or as a result of changes in brain state. Together, these studies highlight the importance of considering both multisensory context and movement-related activity in order to understand how the auditory cortex operates during natural behaviors, paving the way for future work to investigate auditory-somatosensory interactions in more ecological situations.
Collapse
|
35
|
Carroll BJ, Sampathkumar V, Kasthuri N, Sherman SM. Layer 5 of cortex innervates the thalamic reticular nucleus in mice. Proc Natl Acad Sci U S A 2022; 119:e2205209119. [PMID: 36095204 PMCID: PMC9499584 DOI: 10.1073/pnas.2205209119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022] Open
Abstract
Neurons in the thalamic reticular nucleus (TRN) are a primary source of inhibition to the dorsal thalamus and, as they are innervated in part by the cortex, are a means of corticothalamic regulation. Previously, cortical inputs to the TRN were thought to originate solely from layer 6 (L6), but we recently reported the presence of putative synaptic terminals from layer 5 (L5) neurons in multiple cortical areas in the TRN [J. A. Prasad, B. J. Carroll, S. M. Sherman, J. Neurosci. 40, 5785-5796 (2020)]. Here, we demonstrate with electron microscopy that L5 terminals from multiple cortical regions make bona fide synapses in the TRN. We further use light microscopy to localize these synapses relative to recently described TRN subdivisions and show that L5 terminals target the edges of the somatosensory TRN, where neurons reciprocally connect to higher-order thalamus, and that L5 terminals are scarce in the core of the TRN, where neurons reciprocally connect to first-order thalamus. In contrast, L6 terminals densely innervate both edge and core subregions and are smaller than those from L5. These data suggest that a sparse but potent input from L5 neurons of multiple cortical regions to the TRN may yield transreticular inhibition targeted to higher-order thalamus.
Collapse
Affiliation(s)
- Briana J. Carroll
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637
| | - Vandana Sampathkumar
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637
- Argonne National Laboratory, Lemont, IL, 60439
| | - Narayanan Kasthuri
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637
- Argonne National Laboratory, Lemont, IL, 60439
| | - S. Murray Sherman
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
36
|
Djebbara Z, Jensen OB, Parada FJ, Gramann K. Neuroscience and architecture: Modulating behavior through sensorimotor responses to the built environment. Neurosci Biobehav Rev 2022; 138:104715. [PMID: 35654280 DOI: 10.1016/j.neubiorev.2022.104715] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022]
Abstract
As we move through the world, natural and built environments implicitly guide behavior by appealing to certain sensory and motor dynamics. This process can be motivated by automatic attention to environmental features that resonate with specific sensorimotor responses. This review aims at providing a psychobiological framework describing how environmental features can lead to automated sensorimotor responses through defined neurophysiological mechanisms underlying attention. Through the use of automated processes in subsets of cortical structures, the goal of this framework is to describe on a neuronal level the functional link between the designed environment and sensorimotor responses. By distinguishing between environmental features and sensorimotor responses we elaborate on how automatic behavior employs the environment for sensorimotor adaptation. This is realized through a thalamo-cortical network integrating environmental features with motor aspects of behavior. We highlight the underlying transthalamic transmission from an Enactive and predictive perspective and review recent studies that effectively modulated behavior by systematically manipulating environmental features. We end by suggesting a promising combination of neuroimaging and computational analysis for future studies.
Collapse
Affiliation(s)
- Zakaria Djebbara
- Department of Architecture, Design, Media, and Technology, Aalborg University, Aalborg, Denmark; Biopsychology and Neuroergonomics, Technical University Berlin, Berlin, Germany.
| | - Ole B Jensen
- Department of Architecture, Design, Media, and Technology, Aalborg University, Aalborg, Denmark
| | - Francisco J Parada
- Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Klaus Gramann
- Biopsychology and Neuroergonomics, Technical University Berlin, Berlin, Germany
| |
Collapse
|
37
|
Conserved patterns of functional organization between cortex and thalamus in mice. Proc Natl Acad Sci U S A 2022; 119:e2201481119. [PMID: 35588455 DOI: 10.1073/pnas.2201481119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceNeuroanatomical tracing provides just a partial picture of information flow in the brain, because excitatory synapses are not all equal. Some strongly drive postsynaptic targets to transfer information, whereas others weakly modulate their responsiveness. Here, we show conserved patterns of synaptic function across somatosensory and visual thalamocortical circuits in mice involving higher-order thalamic nuclei. These nuclei serve as hubs in transthalamic or cortico-thalamo-cortical pathways. We report that feedforward transthalamic circuits in the somatosensory and visual systems operate to efficiently transmit information, whereas feedback transthalamic circuits act to modulate their target areas. These patterns may generalize to other brain systems and show how methods of synapse physiology and molecular biology can inform the exploration of brain circuitry and information processing.
Collapse
|
38
|
Xing XX, Ma ZZ, Wu JJ, Ma J, Duan YJ, Hua XY, Zheng MX, Xu JG. Dysfunction in the Interaction of Information Between and Within the Bilateral Primary Sensory Cortex. Front Aging Neurosci 2022; 14:862107. [PMID: 35462694 PMCID: PMC9029819 DOI: 10.3389/fnagi.2022.862107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background Interhemispheric and intrahemispheric long-range synchronization and information communication are crucial features of functional integration between the bilateral hemispheres. Previous studies have demonstrated that disrupted functional connectivity (FC) exists in the bilateral hemispheres of patients with carpal tunnel syndrome (CTS), but they did not clearly clarify the phenomenon of central dysfunctional connectivity. This study aimed to further investigate the potential mechanism of the weakened connectivity of primary somatosensory cortex (S1) based on a precise template. Methods Patients with CTS (n = 53) and healthy control subjects (HCs) (n = 23) participated and underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning. We used FC to investigate the statistical dependency of the whole brain, effective connectivity (EC) to analyze time-dependent effects, and voxel-mirrored homotopic connectivity (VMHC) to examine the coordination of FC, all of which were adopted to explore the change in interhemispheric and intrahemispheric S1. Results Compared to the healthy controls, we significantly found a decreased strength of the two connectivities in the interhemispheric S1hand, and the results of EC and VMHC were basically consistent with FC in the CTS. The EC revealed that the information output from the dominant hemisphere to the contralateral hemisphere was weakened. Conclusion This study found that maladjusted connections between and within the bilateral S1 revealed by these methods are present in patients with CTS. The dominant hemisphere with deafferentation weakens its effect on the contralateral hemisphere. The disturbance in the bilateral S1 provides reliable evidence to understand the neuropathophysiological mechanisms of decreased functional integration in the brains of patients with CTS.
Collapse
Affiliation(s)
- Xiang-Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Zhen-Zhen Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rehabilitation Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Jie Ma
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Jie Duan
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Xu-Yun Hua,
| | - Mou-Xiong Zheng
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Mou-Xiong Zheng,
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- *Correspondence: Jian-Guang Xu,
| |
Collapse
|
39
|
Law RG, Pugliese S, Shin H, Sliva DD, Lee S, Neymotin S, Moore C, Jones SR. Thalamocortical Mechanisms Regulating the Relationship between Transient Beta Events and Human Tactile Perception. Cereb Cortex 2022; 32:668-688. [PMID: 34401898 PMCID: PMC8841599 DOI: 10.1093/cercor/bhab221] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/20/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022] Open
Abstract
Transient neocortical events with high spectral power in the 15-29 Hz beta band are among the most reliable predictors of sensory perception. Prestimulus beta event rates in primary somatosensory cortex correlate with sensory suppression, most effectively 100-300 ms before stimulus onset. However, the neural mechanisms underlying this perceptual association are unknown. We combined human magnetoencephalography (MEG) measurements with biophysical neural modeling to test potential cellular and circuit mechanisms that underlie observed correlations between prestimulus beta events and tactile detection. Extending prior studies, we found that simulated bursts from higher-order, nonlemniscal thalamus were sufficient to drive beta event generation and to recruit slow supragranular inhibition acting on a 300 ms timescale to suppress sensory information. Further analysis showed that the same beta-generating mechanism can lead to facilitated perception for a brief period when beta events occur simultaneously with tactile stimulation before inhibition is recruited. These findings were supported by close agreement between model-derived predictions and empirical MEG data. The postevent suppressive mechanism explains an array of studies that associate beta with decreased processing, whereas the during-event facilitatory mechanism may demand a reinterpretation of the role of beta events in the context of coincident timing.
Collapse
Affiliation(s)
- Robert G Law
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI 02908, USA
- Department of Psychiatry, Harvard Medical School, Cambridge, MA 02215, USA
| | - Sarah Pugliese
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Hyeyoung Shin
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Danielle D Sliva
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Shane Lee
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI 02903, USA
- Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI 02903, USA
| | - Samuel Neymotin
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Christopher Moore
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Stephanie R Jones
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI 02908, USA
| |
Collapse
|
40
|
Kawabata K, Bagarinao E, Watanabe H, Maesawa S, Mori D, Hara K, Ohdake R, Masuda M, Ogura A, Kato T, Koyama S, Katsuno M, Wakabayashi T, Kuzuya M, Hoshiyama M, Isoda H, Naganawa S, Ozaki N, Sobue G. Bridging large-scale cortical networks: Integrative and function-specific hubs in the thalamus. iScience 2021; 24:103106. [PMID: 34622159 PMCID: PMC8479782 DOI: 10.1016/j.isci.2021.103106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/02/2021] [Accepted: 09/02/2021] [Indexed: 12/03/2022] Open
Abstract
The thalamus is critical for the brain's integrative hub functions; however, the localization and characterization of the different thalamic hubs remain unclear. Using a voxel-level network measure called functional connectivity overlap ratio (FCOR), we examined the thalamus' association with large-scale resting-state networks (RSNs) to elucidate its connector hub roles. Connections to the core-neurocognitive networks were localized in the anterior and medial parts, such as the anteroventral and mediodorsal nuclei areas. Regions functionally connected to the sensorimotor network were distinctively located around the lateral pulvinar nucleus but to a limited extent. Prominent connector hubs include the anteroventral, ventral lateral, and mediodorsal nuclei with functional connections to multiple RSNs. These findings suggest that the thalamus, with extensive connections to most of the RSNs, is well placed as a critical integrative functional hub and could play an important role for functional integration facilitating brain functions associated with primary processing and higher cognition. Multiple large-scale cortical networks converged in the thalamus Neurocognitive associated hub existed in the anterior and medial region Control-processing hub localized in the intermediate thalamus Sensorimotor network was located around the lateral pulvinar nucleus
Collapse
Affiliation(s)
- Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Epifanio Bagarinao
- Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan.,Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hirohisa Watanabe
- Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan.,Department of Neurology, Fujita Health University School of Medicine, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, Japan
| | - Satoshi Maesawa
- Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan.,Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Daisuke Mori
- Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Reiko Ohdake
- Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan.,Department of Neurology, Fujita Health University School of Medicine, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Aya Ogura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiyasu Kato
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shuji Koyama
- Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan.,Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masafumi Kuzuya
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine and Institutes of Innovation for Future Society, Nagoya University, Nagoya, Aichi, Japan
| | - Minoru Hoshiyama
- Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan.,Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Haruo Isoda
- Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan.,Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Norio Ozaki
- Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan.,Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan.,Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
41
|
Convergence of forepaw somatosensory and motor cortical projections in the striatum, claustrum, thalamus, and pontine nuclei of cats. Brain Struct Funct 2021; 227:361-379. [PMID: 34665323 DOI: 10.1007/s00429-021-02405-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The basal ganglia and pontocerebellar systems regulate somesthetic-guided motor behaviors and receive prominent inputs from sensorimotor cortex. In addition, the claustrum and thalamus are forebrain subcortical structures that have connections with somatosensory and motor cortices. Our previous studies in rats have shown that primary and secondary somatosensory cortex (S1 and S2) send overlapping projections to the neostriatum and pontine nuclei, whereas, overlap of primary motor cortex (M1) and S1 was much weaker. In addition, we have shown that M1, but not S1, projects to the claustrum in rats. The goal of the current study was to compare these rodent projection patterns with connections in cats, a mammalian species that evolved in a separate phylogenetic superorder. Three different anterograde tracers were injected into the physiologically identified forepaw representations of M1, S1, and S2 in cats. Labeled fibers terminated throughout the ipsilateral striatum (caudate and putamen), claustrum, thalamus, and pontine nuclei. Digital reconstructions of tracer labeling allowed us to quantify both the normalized distribution of labeling in each subcortical area from each tracer injection, as well as the amount of tracer overlap. Surprisingly, in contrast to our previous findings in rodents, we observed M1 and S1 projections converging prominently in striatum and pons, whereas, S1 and S2 overlap was much weaker. Furthermore, whereas, rat S1 does not project to claustrum, we confirmed dense claustral inputs from S1 in cats. These findings suggest that the basal ganglia, claustrum, and pontocerebellar systems in rat and cat have evolved distinct patterns of sensorimotor cortical convergence.
Collapse
|
42
|
Thalamic connectivity system across psychiatric disorders: Current status and clinical implications. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 2:332-340. [PMID: 36324665 PMCID: PMC9616255 DOI: 10.1016/j.bpsgos.2021.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/20/2022] Open
Abstract
The thalamic connectivity system, with the thalamus as the central node, enables transmission of the brain’s neural computations via extensive connections to cortical, subcortical, and cerebellar regions. Emerging reports suggest deficits in this system across multiple psychiatric disorders, making it a unique network of high translational and transdiagnostic utility in mapping neural alterations that potentially contribute to symptoms and disturbances in psychiatric patients. However, despite considerable research effort, it is still debated how this system contributes to psychiatric disorders. This review characterizes current knowledge regarding thalamic connectivity system deficits in psychiatric disorders, including schizophrenia, bipolar disorder, major depressive disorder, and autism spectrum disorder, across multiple levels of the system. We identify the presence of common and distinct patterns of deficits in the thalamic connectivity system in major psychiatric disorders and assess their nature and characteristics. Specifically, this review assembles evidence for the hypotheses of 1) thalamic microstructure, particularly in the mediodorsal nucleus, as a state marker of psychosis; 2) thalamo-prefrontal connectivity as a trait marker of psychosis; and 3) thalamo-somatosensory/parietal connectivity as a possible marker of general psychiatric illness. Furthermore, possible mechanisms contributing to thalamocortical dysconnectivity are explored. We discuss current views on the contributions of cerebellar-thalamic connectivity to the thalamic connectivity system and propose future studies to examine its effects at multiple levels, from the molecular (e.g., glutamatergic) to the behavioral (e.g., cognition), to gain a deeper understanding of the mechanisms that underlie the disturbances observed in psychiatric disorders.
Collapse
|
43
|
Mease RA, Gonzalez AJ. Corticothalamic Pathways From Layer 5: Emerging Roles in Computation and Pathology. Front Neural Circuits 2021; 15:730211. [PMID: 34566583 PMCID: PMC8458899 DOI: 10.3389/fncir.2021.730211] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022] Open
Abstract
Large portions of the thalamus receive strong driving input from cortical layer 5 (L5) neurons but the role of this important pathway in cortical and thalamic computations is not well understood. L5-recipient "higher-order" thalamic regions participate in cortico-thalamo-cortical (CTC) circuits that are increasingly recognized to be (1) anatomically and functionally distinct from better-studied "first-order" CTC networks, and (2) integral to cortical activity related to learning and perception. Additionally, studies are beginning to elucidate the clinical relevance of these networks, as dysfunction across these pathways have been implicated in several pathological states. In this review, we highlight recent advances in understanding L5 CTC networks across sensory modalities and brain regions, particularly studies leveraging cell-type-specific tools that allow precise experimental access to L5 CTC circuits. We aim to provide a focused and accessible summary of the anatomical, physiological, and computational properties of L5-originating CTC networks, and outline their underappreciated contribution in pathology. We particularly seek to connect single-neuron and synaptic properties to network (dys)function and emerging theories of cortical computation, and highlight information processing in L5 CTC networks as a promising focus for computational studies.
Collapse
Affiliation(s)
- Rebecca A. Mease
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
44
|
Antunes FM, Malmierca MS. Corticothalamic Pathways in Auditory Processing: Recent Advances and Insights From Other Sensory Systems. Front Neural Circuits 2021; 15:721186. [PMID: 34489648 PMCID: PMC8418311 DOI: 10.3389/fncir.2021.721186] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022] Open
Abstract
The corticothalamic (CT) pathways emanate from either Layer 5 (L5) or 6 (L6) of the neocortex and largely outnumber the ascending, thalamocortical pathways. The CT pathways provide the anatomical foundations for an intricate, bidirectional communication between thalamus and cortex. They act as dynamic circuits of information transfer with the ability to modulate or even drive the response properties of target neurons at each synaptic node of the circuit. L6 CT feedback pathways enable the cortex to shape the nature of its driving inputs, by directly modulating the sensory message arriving at the thalamus. L5 CT pathways can drive the postsynaptic neurons and initiate a transthalamic corticocortical circuit by which cortical areas communicate with each other. For this reason, L5 CT pathways place the thalamus at the heart of information transfer through the cortical hierarchy. Recent evidence goes even further to suggest that the thalamus via CT pathways regulates functional connectivity within and across cortical regions, and might be engaged in cognition, behavior, and perceptual inference. As descending pathways that enable reciprocal and context-dependent communication between thalamus and cortex, we venture that CT projections are particularly interesting in the context of hierarchical perceptual inference formulations such as those contemplated in predictive processing schemes, which so far heavily rely on cortical implementations. We discuss recent proposals suggesting that the thalamus, and particularly higher order thalamus via transthalamic pathways, could coordinate and contextualize hierarchical inference in cortical hierarchies. We will explore these ideas with a focus on the auditory system.
Collapse
Affiliation(s)
- Flora M. Antunes
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
| | - Manuel S. Malmierca
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
45
|
Sampathkumar V, Miller-Hansen A, Sherman SM, Kasthuri N. Integration of signals from different cortical areas in higher order thalamic neurons. Proc Natl Acad Sci U S A 2021; 118:e2104137118. [PMID: 34282018 PMCID: PMC8325356 DOI: 10.1073/pnas.2104137118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Higher order thalamic neurons receive driving inputs from cortical layer 5 and project back to the cortex, reflecting a transthalamic route for corticocortical communication. To determine whether or not individual neurons integrate signals from different cortical populations, we combined electron microscopy "connectomics" in mice with genetic labeling to disambiguate layer 5 synapses from somatosensory and motor cortices to the higher order thalamic posterior medial nucleus. A significant convergence of these inputs was found on 19 of 33 reconstructed thalamic cells, and as a population, the layer 5 synapses were larger and located more proximally on dendrites than were unlabeled synapses. Thus, many or most of these thalamic neurons do not simply relay afferent information but instead integrate signals as disparate in this case as those emanating from sensory and motor cortices. These findings add further depth and complexity to the role of the higher order thalamus in overall cortical functioning.
Collapse
Affiliation(s)
- Vandana Sampathkumar
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439
| | | | - S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, IL 60637;
| | - Narayanan Kasthuri
- Department of Neurobiology, University of Chicago, Chicago, IL 60637;
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439
| |
Collapse
|
46
|
Neural Dynamics in Primate Cortex during Exposure to Subanesthetic Concentrations of Nitrous Oxide. eNeuro 2021; 8:ENEURO.0479-20.2021. [PMID: 34135005 PMCID: PMC8281265 DOI: 10.1523/eneuro.0479-20.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/07/2021] [Accepted: 05/31/2021] [Indexed: 11/21/2022] Open
Abstract
Nitrous oxide (N2O) is a hypnotic gas with antidepressant and psychedelic properties at subanesthetic concentrations. Despite long-standing clinical use, there is insufficient understanding of its effect on neural dynamics and cortical processing, which is important for mechanistic understanding of its therapeutic effects. We administered subanesthetic (70%), inhaled N2O and studied the dynamic changes of spiking rate, spectral content, and somatosensory information representation in primary motor cortex (M1) in two male rhesus macaques implanted with Utah microelectrode arrays in the hand area of M1. The average sorted multiunit spiking rate in M1 increased from 8.1 ± 0.99 to 10.6 ± 1.3 Hz in Monkey W (p < 0.001) and from 5.6 ± 0.87 to 7.0 ± 1.1 Hz in Monkey N (p = 0.003). Power spectral densities increased in beta- and gamma-band power. To evaluate somatosensory content in M1 as a surrogate of information transfer, fingers were lightly brushed and classified using a naive Bayes classifier. In both monkeys, the proportion of correctly classified fingers dropped from 0.50 ± 0.06 before N2O inhalation to 0.34 ± 0.03 during N2O inhalation (p = 0.018), although some fingers continued to be correctly classified (p = 0.005). The decrease in correct classifications corresponded to decreased modulation depth for the population (p = 0.005) and fewer modulated units (p = 0.046). However, the increased single-unit firing rate was not correlated with its modulation depth (R2 < 0.001, p = 0.93). These data suggest that N2O degrades information transfer, although no clear relationship was found between neuronal tuning and N2O-induced changes in firing rate.
Collapse
|
47
|
Lohse M, Dahmen JC, Bajo VM, King AJ. Subcortical circuits mediate communication between primary sensory cortical areas in mice. Nat Commun 2021; 12:3916. [PMID: 34168153 PMCID: PMC8225818 DOI: 10.1038/s41467-021-24200-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Integration of information across the senses is critical for perception and is a common property of neurons in the cerebral cortex, where it is thought to arise primarily from corticocortical connections. Much less is known about the role of subcortical circuits in shaping the multisensory properties of cortical neurons. We show that stimulation of the whiskers causes widespread suppression of sound-evoked activity in mouse primary auditory cortex (A1). This suppression depends on the primary somatosensory cortex (S1), and is implemented through a descending circuit that links S1, via the auditory midbrain, with thalamic neurons that project to A1. Furthermore, a direct pathway from S1 has a facilitatory effect on auditory responses in higher-order thalamic nuclei that project to other brain areas. Crossmodal corticofugal projections to the auditory midbrain and thalamus therefore play a pivotal role in integrating multisensory signals and in enabling communication between different sensory cortical areas.
Collapse
Affiliation(s)
- Michael Lohse
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
- Sainsbury Wellcome Centre, London, UK.
| | - Johannes C Dahmen
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Victoria M Bajo
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Andrew J King
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
48
|
Brain imaging signature of neuropathic pain phenotypes in small-fiber neuropathy: altered thalamic connectome and its associations with skin nerve degeneration. Pain 2021; 162:1387-1399. [PMID: 33239524 DOI: 10.1097/j.pain.0000000000002155] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
ABSTRACT Small-fiber neuropathy (SFN) has been traditionally considered as a pure disorder of the peripheral nervous system, characterized by neuropathic pain and degeneration of small-diameter nerve fibers in the skin. Previous functional magnetic resonance imaging studies revealed abnormal activations of pain networks, but the structural basis underlying such maladaptive functional alterations remains elusive. We applied diffusion tensor imaging to explore the influences of SFN on brain microstructures. Forty-one patients with pathology-proven SFN with reduced skin innervation were recruited. White matter connectivity with the thalamus as the seed was assessed using probabilistic tractography of diffusion tensor imaging. Patients with SFN had reduced thalamic connectivity with the insular cortex and the sensorimotor areas, including the postcentral and precentral gyri. Furthermore, the degree of skin nerve degeneration, measured by intraepidermal nerve fiber density, was associated with the reduction of connectivity between the thalamus and pain-related areas according to different neuropathic pain phenotypes, specifically, the frontal, cingulate, motor, and limbic areas for burning, electrical shocks, tingling, mechanical allodynia, and numbness. Despite altered white matter connectivity, there was no change in white matter integrity assessed with fractional anisotropy. Our findings indicate that alterations in structural connectivity may serve as a biomarker of maladaptive brain plasticity that contributes to neuropathic pain after peripheral nerve degeneration.
Collapse
|
49
|
Untangling the cortico-thalamo-cortical loop: cellular pieces of a knotty circuit puzzle. Nat Rev Neurosci 2021; 22:389-406. [PMID: 33958775 DOI: 10.1038/s41583-021-00459-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/22/2022]
Abstract
Functions of the neocortex depend on its bidirectional communication with the thalamus, via cortico-thalamo-cortical (CTC) loops. Recent work dissecting the synaptic connectivity in these loops is generating a clearer picture of their cellular organization. Here, we review findings across sensory, motor and cognitive areas, focusing on patterns of cell type-specific synaptic connections between the major types of cortical and thalamic neurons. We outline simple and complex CTC loops, and note features of these loops that appear to be general versus specialized. CTC loops are tightly interlinked with local cortical and corticocortical (CC) circuits, forming extended chains of loops that are probably critical for communication across hierarchically organized cerebral networks. Such CTC-CC loop chains appear to constitute a modular unit of organization, serving as scaffolding for area-specific structural and functional modifications. Inhibitory neurons and circuits are embedded throughout CTC loops, shaping the flow of excitation. We consider recent findings in the context of established CTC and CC circuit models, and highlight current efforts to pinpoint cell type-specific mechanisms in CTC loops involved in consciousness and perception. As pieces of the connectivity puzzle fall increasingly into place, this knowledge can guide further efforts to understand structure-function relationships in CTC loops.
Collapse
|
50
|
Parallel and Serial Sensory Processing in Developing Primary Somatosensory and Motor Cortex. J Neurosci 2021; 41:3418-3431. [PMID: 33622773 DOI: 10.1523/jneurosci.2614-20.2021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 01/21/2023] Open
Abstract
It is generally supposed that primary motor cortex (M1) receives somatosensory input predominantly via primary somatosensory cortex (S1). However, a growing body of evidence indicates that M1 also receives direct sensory input from the thalamus, independent of S1; such direct input is particularly evident at early ages before M1 contributes to motor control. Here, recording extracellularly from the forelimb regions of S1 and M1 in unanesthetized rats at postnatal day (P)8 and P12, we compared S1 and M1 responses to self-generated (i.e., reafferent) forelimb movements during active sleep and wake, and to other-generated (i.e., exafferent) forelimb movements. At both ages, reafferent responses were processed in parallel by S1 and M1; in contrast, exafferent responses were processed in parallel at P8 but serially, from S1 to M1, at P12. To further assess this developmental difference in processing, we compared exafferent responses to proprioceptive and tactile stimulation. At both P8 and P12, proprioceptive stimulation evoked parallel responses in S1 and M1, whereas tactile stimulation evoked parallel responses at P8 and serial responses at P12. Independent of the submodality of exafferent stimulation, pairs of S1-M1 units exhibited greater coactivation during active sleep than wake. These results indicate that S1 and M1 independently develop somatotopy before establishing the interactive relationship that typifies their functionality in adults.SIGNIFICANCE STATEMENT Learning any new motor task depends on the ability to use sensory information to update motor outflow. Thus, to understand motor learning, we must also understand how animals process sensory input. Primary somatosensory cortex (S1) and primary motor cortex (M1) are two interdependent structures that process sensory input throughout life. In adults, the functional relationship between S1 and M1 is well established; however, little is known about how S1 and M1 begin to transmit or process sensory information in early life. In this study, we investigate the early development of S1 and M1 as a sensory processing unit. Our findings provide new insights into the fundamental principles of sensory processing and the development of functional connectivity between these important sensorimotor structures.
Collapse
|