1
|
Shin J, Wu J, Park H, Kim SI, Shin N, Shin HJ, Ren G, Kim JA, Hwang PTJ, Jun HW, Lee SY, Lee S, Kim HG, Kim DW. Microglial pyroptosis drives neuropathic pain and targeting NLRP3 alleviates pain and neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167737. [PMID: 39971256 DOI: 10.1016/j.bbadis.2025.167737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 01/22/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Neuropathic pain is triggered by nerve damage or disease and involves chronic neuroinflammation driven by activated microglia releasing pro-inflammatory cytokines. PANoptosis, a complex cell death program encompassing apoptosis, pyroptosis, and necroptosis, has emerged as a key player in neuroinflammation. While individual PANoptosis pathway have been linked to pain, its systemic role in neuropathic pain remains unclear. This study explored the involvement of PANoptosis in microglia under neuropathic pain and its potential therapeutic targeting. After spinal nerve ligation (SNL), robust microglia activation and pro-inflammatory cytokines were increased in spinal dorsal horn. To figure out the major PANoptosis under neuropathic pain, bioinformatic analysis and protein analysis were explored by using spinal dorsal horn on 14 days of post injury. The results supported that pyroptosis was the dominant pathway after injury, and we further investigated pyroptosis-related markers on microglia specifically. Notably, pyroptosis marker (caspase-1) was elevated in microglia compared to apoptosis (cleaved caspase-3) and necroptosis (p-RIPK3) markers. This finding highlights microglia pyroptosis as a key driver of neuropathic pain development. To harness this knowledge therapeutically, we employed intrathecal injection of NLRP3 siRNA nanoparticles. NLRP3, a crucial component of the inflammasome complex triggering pyroptosis, served as our target. Strikingly, this intervention effectively alleviated mechanical allodynia, a hallmark of neuropathic pain, alongside reducing microgliosis and dampening microglial pyroptosis. Our findings reveal that microglia pyroptosis plays a key role in neuropathic pain and suggest NLRP3 siRNA nanoparticles as a promising therapeutic avenue for pain management.
Collapse
Affiliation(s)
- Juhee Shin
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Junhua Wu
- Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hyewon Park
- Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Song I Kim
- Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Nara Shin
- Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hyo Jung Shin
- Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Guang Ren
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeong-A Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Patrick T J Hwang
- Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, 806 Shelby, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Sun Yeul Lee
- Department of Anesthesia and Pain Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Sangkyu Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Hyeong-Geug Kim
- Nanoglia, Daejeon, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Dong Woon Kim
- Department of Oral Anatomy and Developmental Biology, Kyung Hee University College of Dentistry, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Boullon L, Finn DP, Llorente-Berzal Á. Sex differences in the affective-cognitive dimension of neuropathic pain: Insights from the spared nerve injury rat model. THE JOURNAL OF PAIN 2025; 27:104752. [PMID: 39626836 DOI: 10.1016/j.jpain.2024.104752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
Over 40% of neuropathic pain patients experience mood and cognitive disturbances, often showing reduced response to analgesics, with most affected individuals being female. This highlights the critical role of biological sex in pain-related affective and cognitive disorders, making it essential to understand the emotional and cognitive circuits linked to pain for improving treatment strategies. However, research on sex differences in preclinical pain models is lacking. This study aimed to investigate these differences using the spared nerve injury (SNI) rat model, conducting a comprehensive series of behavioural tests over 100 days post-injury to identify key time points for observing sex-specific behaviours indicative of pain-related conditions. The findings revealed that female rats exhibited greater mechanical and cold hypersensitivity compared to males following nerve injury and showed earlier onset of depression-related behaviours, while males were more prone to anxiety, social, and memory-related alterations. Interestingly, by the 14th week post-injury, females displayed no signs of these emotional and cognitive impairments. Additionally, fluctuations in the oestrous cycle or changes in testosterone and oestradiol levels did not correlate with sex differences in pain sensitivity or negative affect. Recognizing the influence of biological sex on pain-induced affective and cognitive alterations, especially in later stages post-injury, is crucial for enhancing our understanding of this complex pain disorder. PERSPECTIVE: This manuscript reports the relevance of long-term investigations of sex differences in chronic pain. It shows differential development of somatosensory sensitivity, negative affective states and cognitive impairments in males and females. It emphasizes the importance of including subjects of both sexes in the investigation of pain-related mechanisms and therapeutic management.
Collapse
Affiliation(s)
- Laura Boullon
- Pharmacology and Therapeutics, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland; Galway Neuroscience Centre, University of Galway, Galway, Ireland; Centre for Pain Research, University of Galway, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland; Galway Neuroscience Centre, University of Galway, Galway, Ireland; Centre for Pain Research, University of Galway, Galway, Ireland
| | - Álvaro Llorente-Berzal
- Pharmacology and Therapeutics, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland; Galway Neuroscience Centre, University of Galway, Galway, Ireland; Centre for Pain Research, University of Galway, Galway, Ireland; Department of Physiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain.
| |
Collapse
|
3
|
Wang R, Yue C, Cong F, Lou Y, Liu Y, Xu C, Li X, Huang Y. A sustained-release gel alleviates neuropathic pain in SNI mice by reversing Glu/GABA imbalance and chloride efflux disorders. Int J Biol Macromol 2025; 286:138501. [PMID: 39647722 DOI: 10.1016/j.ijbiomac.2024.138501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Impaired spinal GABAergic inhibitory neuronal system is one popular target for developing new drugs or procedures for treatment of neuropathic pain, but effective and transferable methods are still lacking. We designed an assembled, temperature sensitive and sustained releasing hydrogel to repair the impaired GABAergic neural system by reversing imbalance of glutamic acid (Glu) and γ-aminobutyric acid (GABA) and healing impaired Cl- extrusion capacity of neurons. Hydrogel solution is a mixture of pluronic F-127, recombinant glutamate decarboxylase 67 (rGAD67) protein and CLP257, a K+-Cl- cotransporter isoform 2 (KCC2) enhancer. The temperature sensitive properties, gel properties and slow-releasing properties of the drug system were determined in vitro. After intrathecal injected in sural spared nerve injury mice model, the hydrogel solution turned into gel, capturing Glu and transforming it into GABA. CLP257 released from gel reversed the suppressed expression of KCC2 in spinal cord, maintaining a low intracellular Cl- concentration in neurons and allowing the normal work of GABA receptors. Combination of rGAD67 and CLP257 showed synergistic effects in alleviating hyperalgesia, altering glia activation, and inhibiting cell apoptosis and inflammatory response. In conclusion, the in situ assembled gel is a long-term effective tool for repairing damaged GABAergic inhibitory system and alleviating neuropathic pain.
Collapse
Affiliation(s)
- Ran Wang
- Department of Pain, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Chunyan Yue
- Medical School and School of Life Science, Nanjing University, Nanjing 210008, China; Institute of Drug R&D, Medical School, Nanjing University, Nanjing 210008, China
| | - Feng Cong
- Department of Pain, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Anesthesiology, the People's Hospital of Rugao, Rugao, China
| | - Youpan Lou
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, China
| | - Yanan Liu
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, China
| | - Chenjie Xu
- Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| | - Xihan Li
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Ying Huang
- Department of Pain, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| |
Collapse
|
4
|
Liu Q, Han J, Zhang X. Peripheral and central pathogenesis of postherpetic neuralgia. Skin Res Technol 2024; 30:e13867. [PMID: 39101621 PMCID: PMC11299165 DOI: 10.1111/srt.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Postherpetic neuralgia (PHN) is a classic chronic condition with multiple signs of peripheral and central neuropathy. Unfortunately, the pathogenesis of PHN is not well defined, limiting clinical treatment and disease management. OBJECTIVE To describe the peripheral and central pathological axes of PHN, including peripheral nerve injury, inflammation induction, central nervous system sensitization, and brain functional and structural network activity. METHODS A bibliographic survey was carried out, selecting relevant articles that evaluated the characterization of the pathogenesis of PHN, including peripheral and central pathological axes. RESULTS Currently, due to the complexity of the pathophysiological mechanisms of PHN and the incomplete understanding of the exact mechanism of neuralgia. CONCLUSION It is essential to conduct in-depth research to clarify the origins of PHN pathogenesis and explore effective and comprehensive therapies for PHN.
Collapse
Affiliation(s)
- Qiuping Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Department of Rheumatology and ImmunologyFirst Affiliated Hospital of Army Medical UniversityChongqingChina
| | - Jingxian Han
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Xuezhu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
5
|
Delibaş B, Kaplan AA, Marangoz AH, Eltahir MI, Altun G, Kaplan S. The effect of dietary sesame oil and ginger oil as antioxidants in the adult rat dorsal root ganglia after peripheral nerve crush injury. Int J Neurosci 2024; 134:714-724. [PMID: 36342428 DOI: 10.1080/00207454.2022.2145475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
AIM The purpose of this study was to investigate the effect of dietary sesame oil and ginger oil supplements on the dorsal root ganglia following a sciatic nerve crush model in male Wistar albino rats. MATERIALS AND METHODS Crush injury models have been done by means of graded forceps (50 Newton). The animals were given a daily sesame oil (4 ml/kg/day) and ginger oil (400 mg/kg/day) via oral gavage for a period of 28 days. Dorsal root ganglia from the L5 levels were harvested. Processing of tissues was done for electron microscopy and light microscopy. Immunohistochemical staining with active caspase-3 antibody and qualitative ultrastructural analyses of tissues were made by a light and a transmission electron microscope, respectively. RESULTS The results showed that crush injury leads to remarkable ultrastructural changes in sensory neurons, such as swollen mitochondria, disruption of cristae structure, glial cell proliferation and, consequently, phagocytosis of the damaged neuron. These ultrastructural changes were less evident in the treated groups, and both natural compounds reduced the expression of activated caspase-3, which may also affect ultrastructural changes. CONCLUSION The application of the natural products sesame oil and ginger oil may represent a supportive approach to the protection of sensory neurons against the destructive effects of peripheral nerve crush injury.
Collapse
Affiliation(s)
- Burcu Delibaş
- Departments of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Faculty of Medicine, İstanbul Medipol University, İstanbul, Turkey
| | | | - Mohammed Issa Eltahir
- Departments of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
- Faculty of Medicine, National University, Khartoum, Sudan
| | - Gamze Altun
- Departments of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Suleyman Kaplan
- Departments of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
- Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania
| |
Collapse
|
6
|
da Silva MDV, Martelossi-Cebinelli G, Yaekashi KM, Carvalho TT, Borghi SM, Casagrande R, Verri WA. A Narrative Review of the Dorsal Root Ganglia and Spinal Cord Mechanisms of Action of Neuromodulation Therapies in Neuropathic Pain. Brain Sci 2024; 14:589. [PMID: 38928589 PMCID: PMC11202229 DOI: 10.3390/brainsci14060589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Neuropathic pain arises from injuries to the nervous system in diseases such as diabetes, infections, toxicity, and traumas. The underlying mechanism of neuropathic pain involves peripheral and central pathological modifications. Peripheral mechanisms entail nerve damage, leading to neuronal hypersensitivity and ectopic action potentials. Central sensitization involves a neuropathological process with increased responsiveness of the nociceptive neurons in the central nervous system (CNS) to their normal or subthreshold input due to persistent stimuli, leading to sustained electrical discharge, synaptic plasticity, and aberrant processing in the CNS. Current treatments, both pharmacological and non-pharmacological, aim to alleviate symptoms but often face challenges due to the complexity of neuropathic pain. Neuromodulation is emerging as an important therapeutic approach for the treatment of neuropathic pain in patients unresponsive to common therapies, by promoting the normalization of neuronal and/or glial activity and by targeting cerebral cortical regions, spinal cord, dorsal root ganglia, and nerve endings. Having a better understanding of the efficacy, adverse events and applicability of neuromodulation through pre-clinical studies is of great importance. Unveiling the mechanisms and characteristics of neuromodulation to manage neuropathic pain is essential to understand how to use it. In the present article, we review the current understanding supporting dorsal root ganglia and spinal cord neuromodulation as a therapeutic approach for neuropathic pain.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Immunology, Parasitology and General Pathology, Londrina State University, Londrina 86057-970, PR, Brazil; (M.D.V.d.S.); (G.M.-C.); (K.M.Y.); (S.M.B.)
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Immunology, Parasitology and General Pathology, Londrina State University, Londrina 86057-970, PR, Brazil; (M.D.V.d.S.); (G.M.-C.); (K.M.Y.); (S.M.B.)
| | - Kelly Megumi Yaekashi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Immunology, Parasitology and General Pathology, Londrina State University, Londrina 86057-970, PR, Brazil; (M.D.V.d.S.); (G.M.-C.); (K.M.Y.); (S.M.B.)
| | - Thacyana T. Carvalho
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Sergio M. Borghi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Immunology, Parasitology and General Pathology, Londrina State University, Londrina 86057-970, PR, Brazil; (M.D.V.d.S.); (G.M.-C.); (K.M.Y.); (S.M.B.)
- Center for Research in Health Sciences, University of Northern Paraná, Londrina 86041-140, PR, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil;
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Immunology, Parasitology and General Pathology, Londrina State University, Londrina 86057-970, PR, Brazil; (M.D.V.d.S.); (G.M.-C.); (K.M.Y.); (S.M.B.)
- Biological Sciences Center, State University of Londrina, Rod. Celso Garcia Cid Pr 445, KM 380, P.O. Box 10.011, Londrina 86057-970, PR, Brazil
| |
Collapse
|
7
|
Pires MP, McBenedict B, Ahmed IE, Yau RCC, Fong YB, Goh KS, Lim YS, Mohamed SA, Ngu O, Devan JN, Hauwanga WN, Lima Pessôa B. Exploring the Thalamus as a Target for Neuropathic Pain Management: An Integrative Review. Cureus 2024; 16:e60130. [PMID: 38864037 PMCID: PMC11165437 DOI: 10.7759/cureus.60130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/11/2024] [Indexed: 06/13/2024] Open
Abstract
Neuropathic pain (NP), resulting from damage to the somatosensory system, is characterized by either spontaneous or evoked pain. In the context of NP, wherein aberrant signaling pathways contribute to the perception of pain, the thalamus emerges as a key player. This structure is integral to the pain network that includes connections to the dorsal horn of the spinal cord, highlighting its role in the affective-motivational aspects of pain perception. Given its significant involvement, the thalamus is targeted in advanced treatments such as thalamotomy and deep brain stimulation (DBS) when traditional therapies fail, emphasizing the need to understand its function in NP to improve management strategies. This review aimed to provide an overview of the role of the thalamus in the transmission of nociceptive information in NP by discussing the existing evidence, including the effectiveness and safety of current techniques in the management and treatment of NP. This is an integrative review involving the qualitative analysis of scientific articles published in PubMed/MEDLINE, Embase, Scopus, and Web of Science. A total of 687 articles were identified, and after selection, 15 articles were included in this study. All studies reviewed demonstrated varying degrees of effectiveness of DBS and thalamotomy in alleviating painful symptoms, although the relief was often temporary. Many studies noted a reduction in pain perception at the conclusion of treatment compared to pre-treatment levels, with this decrease maintained throughout patient follow-ups. However, adverse events associated with these treatments were also reported. In conclusion, there are some benefits, albeit temporary, to using thalamotomy and DBS to alleviate the painful symptoms of NP. Both procedures are considered advanced forms of surgical intervention that aim to modulate pain pathways in the brain, providing significant relief for patients suffering from chronic pain resistant to conventional treatment. Despite limitations, these surgical interventions offer renewed hope for patients facing disabling chronic pain and can provide a significant improvement in quality of life.
Collapse
Affiliation(s)
| | | | | | | | - Yan Bin Fong
- Surgery, Universiti Putra Malaysia, Serdang, MYS
| | - Kang Suen Goh
- Internal Medicine, Monash University Malaysia, Subang Jaya, MYS
| | - Yee Siew Lim
- Surgery, International Medical University, Seremban, MYS
| | - Suber Abdi Mohamed
- Medicine, Jiangsu University, Zhenjiang Jiangbin Hospital, Zhenjiang, CHN
| | - Owen Ngu
- Medicine, University of Malaya, Kuala Lumpur, MYS
| | - Jeshua N Devan
- Surgery, Asian Institute of Medicine, Science and Technology University, Bedong, MYS
| | - Wilhelmina N Hauwanga
- Family Medicine, Faculty of Medicine, Federal University of the State of Rio de Janeiro, Rio de Janeiro, BRA
| | | |
Collapse
|
8
|
Chen X, Gan Y, Au NPB, Ma CHE. Current understanding of the molecular mechanisms of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci 2024; 17:1345811. [PMID: 38660386 PMCID: PMC11039947 DOI: 10.3389/fnmol.2024.1345811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the most common off-target adverse effects caused by various chemotherapeutic agents, such as cisplatin, oxaliplatin, paclitaxel, vincristine and bortezomib. CIPN is characterized by a substantial loss of primary afferent sensory axonal fibers leading to sensory disturbances in patients. An estimated of 19-85% of patients developed CIPN during the course of chemotherapy. The lack of preventive measures and limited treatment options often require a dose reduction or even early termination of life-saving chemotherapy, impacting treatment efficacy and patient survival. In this Review, we summarized the current understanding on the pathogenesis of CIPN. One prominent change induced by chemotherapeutic agents involves the disruption of neuronal cytoskeletal architecture and axonal transport dynamics largely influenced by the interference of microtubule stability in peripheral neurons. Due to an ineffective blood-nerve barrier in our peripheral nervous system, exposure to some chemotherapeutic agents causes mitochondrial swelling in peripheral nerves, which lead to the opening of mitochondrial permeability transition pore and cytochrome c release resulting in degeneration of primary afferent sensory fibers. The exacerbated nociceptive signaling and pain transmission in CIPN patients is often linked the increased neuronal excitability largely due to the elevated expression of various ion channels in the dorsal root ganglion neurons. Another important contributing factor of CIPN is the neuroinflammation caused by an increased infiltration of immune cells and production of inflammatory cytokines. In the central nervous system, chemotherapeutic agents also induce neuronal hyperexcitability in the spinal dorsal horn and anterior cingulate cortex leading to the development of central sensitization that causes CIPN. Emerging evidence suggests that the change in the composition and diversity of gut microbiota (dysbiosis) could have direct impact on the development and progression of CIPN. Collectively, all these aspects contribute to the pathogenesis of CIPN. Recent advances in RNA-sequencing offer solid platform for in silico drug screening which enable the identification of novel therapeutic agents or repurpose existing drugs to alleviate CIPN, holding immense promises for enhancing the quality of life for cancer patients who undergo chemotherapy and improve their overall treatment outcomes.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yumeng Gan
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ngan Pan Bennett Au
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- Institute of Life Sciences and Healthcare, University of Portsmouth, Portsmouth, United Kingdom
| | - Chi Him Eddie Ma
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
9
|
Kim HS, Lee D, Shen S. Endoplasmic reticular stress as an emerging therapeutic target for chronic pain: a narrative review. Br J Anaesth 2024; 132:707-724. [PMID: 38378384 PMCID: PMC10925894 DOI: 10.1016/j.bja.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 02/22/2024] Open
Abstract
Chronic pain is a severely debilitating condition with enormous socioeconomic costs. Current treatment regimens with nonsteroidal anti-inflammatory drugs (NSAIDs), steroids, or opioids have been largely unsatisfactory with uncertain benefits or severe long-term side effects. This is mainly because chronic pain has a multifactorial aetiology. Although conventional pain medications can alleviate pain by keeping several dysfunctional pathways under control, they can mask other underlying pathological causes, ultimately worsening nerve pathologies and pain outcome. Recent preclinical studies have shown that endoplasmic reticulum (ER) stress could be a central hub for triggering multiple molecular cascades involved in the development of chronic pain. Several ER stress inhibitors and unfolded protein response modulators, which have been tested in randomised clinical trials or apprpoved by the US Food and Drug Administration for other chronic diseases, significantly alleviated hyperalgesia in multiple preclinical pain models. Although the role of ER stress in neurodegenerative disorders, metabolic disorders, and cancer has been well established, research on ER stress and chronic pain is still in its infancy. Here, we critically analyse preclinical studies and explore how ER stress can mechanistically act as a central node to drive development and progression of chronic pain. We also discuss therapeutic prospects, benefits, and pitfalls of using ER stress inhibitors and unfolded protein response modulators for managing intractable chronic pain. In the future, targeting ER stress to impact multiple molecular networks might be an attractive therapeutic strategy against chronic pain refractory to steroids, NSAIDs, or opioids. This novel therapeutic strategy could provide solutions for the opioid crisis and public health challenge.
Collapse
Affiliation(s)
- Harper S Kim
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donghwan Lee
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shiqian Shen
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Shan L, Xu K, Ji L, Zeng Q, Liu Y, Wu Y, Chen Y, Li Y, Hu Q, Wu J, Xu Y, Luo Y, Li C, Wu C, Jiang C, Wang Z. Injured sensory neurons-derived galectin-3 contributes to neuropathic pain via programming microglia in the spinal dorsal horn. Brain Behav Immun 2024; 117:80-99. [PMID: 38190982 DOI: 10.1016/j.bbi.2024.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024] Open
Abstract
Emerging studies have demonstrated spinal microglia play a critical role in central sensitization and contribute to chronic pain. Although several mediators that contribute to microglia activation have been identified, the mechanism of microglia activation and its functionally diversified mechanisms in pathological pain are still unclear. Here we report that injured sensory neurons-derived Galectin-3 (Gal3) activates and reprograms microglia in the spinal dorsal horn (SDH) and contributes to neuropathic pain. Firstly, Gal3 is predominantly expressed in the isolectin B4 (IB4)-positive non-peptidergic sensory neurons and significantly up-regulated in dorsal root ganglion (DRG) neurons and primary afferent terminals in SDH in the partial sciatic nerve ligation (pSNL)-induced neuropathic pain model. Gal3 knockout (Gal3 KO) mice showed a significant decrease in mechanical allodynia and Gal3 inhibitor TD-139 produced a significant anti-allodynia effect in the pSNL model. Furthermore, pSNL-induced microgliosis was compromised in Gal3 KO mice. Additionally, intrathecal injection of Gal3 produces remarkable mechanical allodynia by direct activation of microglia, which have enhanced inflammatory responses with TNF-α and IL-1β up-regulation. Thirdly, using single-nuclear RNA sequencing (snRNA-seq), we identified that Gal3 targets microglia and induces reprogramming of microglia, which may contribute to neuropathic pain establishment. Finally, Gal3 enhances excitatory synaptic transmission in excitatory neurons in the SDH via microglia activation. Our findings reveal that injured sensory neurons-derived Gal3 programs microglia in the SDH and contribute to neuropathic pain.
Collapse
Affiliation(s)
- Leyan Shan
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kangtai Xu
- Department of Anesthesiology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Luyao Ji
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qian Zeng
- Department of Anesthesiology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Yaqi Liu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yifei Wu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yiming Chen
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yitong Li
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiaodan Hu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiawei Wu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuanfan Xu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuhui Luo
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Changlin Li
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
| | - Chaoran Wu
- Department of Anesthesiology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Changyu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China.
| | - Zilong Wang
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Key University Laboratory of Metabolism and Health of Guangdong School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
11
|
Chen X, Tang SJ. Neural Circuitry Polarization in the Spinal Dorsal Horn (SDH): A Novel Form of Dysregulated Circuitry Plasticity during Pain Pathogenesis. Cells 2024; 13:398. [PMID: 38474361 PMCID: PMC10930392 DOI: 10.3390/cells13050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Pathological pain emerges from nociceptive system dysfunction, resulting in heightened pain circuit activity. Various forms of circuitry plasticity, such as central sensitization, synaptic plasticity, homeostatic plasticity, and excitation/inhibition balance, contribute to the malfunction of neural circuits during pain pathogenesis. Recently, a new form of plasticity in the spinal dorsal horn (SDH), named neural circuit polarization (NCP), was discovered in pain models induced by HIV-1 gp120 and chronic morphine administration. NCP manifests as an increase in excitatory postsynaptic currents (EPSCs) in excitatory neurons and a decrease in EPSCs in inhibitory neurons, presumably facilitating hyperactivation of pain circuits. The expression of NCP is associated with astrogliosis. Ablation of reactive astrocytes or suppression of astrogliosis blocks NCP and, concomitantly, the development of gp120- or morphine-induced pain. In this review, we aim to compare and integrate NCP with other forms of plasticity in pain circuits to improve the understanding of the pathogenic contribution of NCP and its cooperation with other forms of circuitry plasticity during the development of pathological pain.
Collapse
Affiliation(s)
| | - Shao-Jun Tang
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
12
|
Kimourtzis G, Raouf R. A microfluidic model of the first sensory synapse for analgesic target discovery. Mol Pain 2024; 20:17448069241293286. [PMID: 39415077 PMCID: PMC11565614 DOI: 10.1177/17448069241293286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
The synaptic connections between dorsal root ganglia (DRG) and dorsal horn (DH) neurons are a crucial relay point for the transmission of painful stimuli. To delineate how synaptic plasticity may modulate the excitability of DH neurons, we have devised a microfluidic co-culture model that recapitulates the first sensory synapse using postnatal mouse sensory neurons. We show that DRG-DH co-cultures characterize salient features of the in vivo physiology of sensory neurons. Immunocytcochemical experiments of the cultured DH neurons show a co-localization of Map2 with VGlut2 and of Map2 with Synapsin 1, corroborating the glutamatergic identity of the DH neurons and further suggesting the potential formation of active synapses in this neuronal set. Fluorometric imaging experiments demonstrate the elicitation of calcium responses in DH neurons following the stimulation of DRG cell bodies or axons. Selective NMDA and AMPA receptor blockade appreciably silences DH neuron responses, suggesting that glutamatergic signaling is maintained in vitro. Last, a surrogate model of peripheral nerve injury is introduced in the form of an axotomy, which results in elevated and prolonged calcium responses of DH neurons. Overall, the microfluidic mouse co-cultures provide a method advancement in the study of periphery-to-center pain signaling, where the potential of utilizing the platform for drug target identification is underscored.
Collapse
Affiliation(s)
- Georgios Kimourtzis
- Wolfson Centre for Age-Related Diseases, Institute of Psychology, Psychiatry & Neuroscience, King’s College London, London, UK
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
| | - Ramin Raouf
- Wolfson Centre for Age-Related Diseases, Institute of Psychology, Psychiatry & Neuroscience, King’s College London, London, UK
| |
Collapse
|
13
|
Charron A, Pepino L, Malapert P, Debrauwer V, Castets F, Salio C, Moqrich A. Sex-related exacerbation of injury-induced mechanical hypersensitivity in GAD67 haplodeficient mice. Pain 2024; 165:192-201. [PMID: 37578506 PMCID: PMC10723643 DOI: 10.1097/j.pain.0000000000003012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/13/2023] [Accepted: 06/05/2023] [Indexed: 08/15/2023]
Abstract
ABSTRACT Decreased GABA levels in injury-induced loss of spinal inhibition are still under intense interest and debate. Here, we show that GAD67 haplodeficient mice exhibited a prolonged injury-induced mechanical hypersensitivity in postoperative, inflammatory, and neuropathic pain models. In line with this, we found that loss of 1 copy of the GAD67-encoding gene Gad1 causes a significant decrease in GABA contents in spinal GABAergic neuronal profiles. Consequently, GAD67 haplodeficient males and females were unresponsive to the analgesic effect of diazepam. Remarkably, all these phenotypes were more pronounced in GAD67 haplodeficient females. These mice had significantly much lower amount of spinal GABA content, exhibited an exacerbated pain phenotype during the second phase of the formalin test, developed a longer lasting mechanical hypersensitivity in the chronic constriction injury of the sciatic nerve model, and were unresponsive to the pain relief effect of the GABA-transaminase inhibitor phenylethylidenehydrazine. Our study provides strong evidence for a role of GABA levels in the modulation of injury-induced mechanical pain and suggests a potential role of the GABAergic system in the prevalence of some painful diseases among females.
Collapse
Affiliation(s)
- Aude Charron
- Aix-Marseille-université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Marseille, France
| | - Lucie Pepino
- Aix-Marseille-université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Marseille, France
| | - Pascale Malapert
- Aix-Marseille-université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Marseille, France
| | - Vincent Debrauwer
- Aix-Marseille-université, CNRS, Institut des Sciences Moléculaires de Marseille, UMR 7313, Campus Scientifique de St Jérôme, Marseille, France
| | - Francis Castets
- Aix-Marseille-université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Marseille, France
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Aziz Moqrich
- Aix-Marseille-université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Marseille, France
| |
Collapse
|
14
|
Pradier B, Segelcke D, Reichl S, Zahn PK, Pogatzki-Zahn EM. Spinal GABA transporter 1 contributes to evoked-pain related behavior but not resting pain after incision injury. Front Mol Neurosci 2023; 16:1282151. [PMID: 38130683 PMCID: PMC10734427 DOI: 10.3389/fnmol.2023.1282151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
The inhibitory function of GABA at the spinal level and its central modulation in the brain are essential for pain perception. However, in post-surgical pain, the exact mechanism and modes of action of GABAergic transmission have been poorly studied. This work aimed to investigate GABA synthesis and uptake in the incisional pain model in a time-dependent manner. Here, we combined assays for mechanical and heat stimuli-induced withdrawal reflexes with video-based assessments and assays for non-evoked (NEP, guarding of affected hind paw) and movement-evoked (MEP, gait pattern) pain-related behaviors in a plantar incision model in male rats to phenotype the effects of the inhibition of the GABA transporter (GAT-1), using a specific antagonist (NO711). Further, we determined the expression profile of spinal dorsal horn GAT-1 and glutamate decarboxylase 65/67 (GAD65/67) by protein expression analyses at four time points post-incision. Four hours after incision, we detected an evoked pain phenotype (mechanical, heat and movement), which transiently ameliorated dose-dependently following spinal inhibition of GAT-1. However, the NEP-phenotype was not affected. Four hours after incision, GAT-1 expression was significantly increased, whereas GAD67 expression was significantly reduced. Our data suggest that GAT-1 plays a role in balancing spinal GABAergic signaling in the spinal dorsal horn shortly after incision, resulting in the evoked pain phenotype. Increased GAT-1 expression leads to increased GABA uptake from the synaptic cleft and reduces tonic GABAergic inhibition at the post-synapse. Inhibition of GAT-1 transiently reversed this imbalance and ameliorated the evoked pain phenotype.
Collapse
Affiliation(s)
- Bruno Pradier
- Department of Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Daniel Segelcke
- Department of Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Sylvia Reichl
- Department of Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - P. K. Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, BG University Hospital Bergmannsheil, Ruhr-Universität Bochum, Bochum, Germany
| | - E. M. Pogatzki-Zahn
- Department of Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
15
|
Daigo E, Daigo Y, Idogaki J, Fukuoka H, Fukuoka N, Ishikawa M, Takahashi K. Photobiomodulation Activates Microglia/Astrocytes and Relieves Neuropathic Pain in Inferior Alveolar Nerve Injury. Photobiomodul Photomed Laser Surg 2023; 41:694-702. [PMID: 38085185 DOI: 10.1089/photob.2023.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Objective: This study aimed to determine microglial/astrocyte changes and their associated analgesic effect in inferior alveolar nerve injury (IANI) model rats treated with photobiomodulation therapy (PBMT) using a 940-nm diode laser. Background: Very few basic studies have investigated microglial/astrocyte dynamics following PBMT aimed at relieving neuropathic pain caused by IANI. Methods: Rats were divided into an IANI-PBM group, IANI+PBM group, and sham+PBM group. Observations were made on the day before IANI or the sham operation and on postoperative days 3, 5, 7, 14, and 28. PBMT was delivered for 7 consecutive days, with an energy density of 8 J/cm2. Behavioral analysis was performed to determine pain thresholds, and immunohistological staining was performed for the microglia marker Iba1 and astrocyte marker glial fibrillary acidic protein, which are observed in the spinal trigeminal nucleus. Results: Behavioral analysis showed that the pain threshold returned to the preoperative level on postoperative day 14 in the IANI+PBM group, but decreased starting from postoperative day 1 and did not improve thereafter in the IANI-PBM group (p ≤ 0.001). Immunological analysis showed that microglial and astrocyte cell counts were similar in the IANI+PBM group and IANI-PBM group shortly after IANI (day 3), but the expression area was larger (p ≤ 0.001) and hypertrophy of microglia and astrocyte cell bodies and end-feet extension (i.e., indicators of activation) were more prominent in the IANI+PBM group. Conclusions: PBMT after IANI prevented hyperalgesia and allodynia by promoting glial cell activation shortly after injury.
Collapse
Affiliation(s)
| | - Yuki Daigo
- Department of Geriatric Dentistry, Osaka Dental University, Osaka City, Japan
| | - Jun Idogaki
- Department of Geriatric Dentistry, Osaka Dental University, Osaka City, Japan
| | | | | | | | - Kazuya Takahashi
- Department of Geriatric Dentistry, Osaka Dental University, Osaka City, Japan
| |
Collapse
|
16
|
Jevtovic-Todorovic V, Todorovic SM. The Role of Neuroactive Steroids in Analgesia and Anesthesia: An Interesting Comeback? Biomolecules 2023; 13:1654. [PMID: 38002336 PMCID: PMC10669813 DOI: 10.3390/biom13111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Published evidence over the past few decades suggests that general anesthetics could be neurotoxins especially when administered at the extremes of age. The reported pathology is not only at the morphological level when examined in very young and aged brains, given that, importantly, newly developing evidence suggests a variety of behavioral impairments. Since anesthesia is unavoidable in certain clinical settings, we should consider the development of new anesthetics. A promising and safe solution could be a new family of anesthetics referred to as neuroactive steroids. In this review, we summarize the currently available evidence regarding their anesthetic and analgesic properties.
Collapse
Affiliation(s)
- Vesna Jevtovic-Todorovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA;
| | | |
Collapse
|
17
|
ÖZDEMİR F, AKÇAY G, ÖZKINALI S, ÇELİK Ç. [6]-Shogaol and [6]-Gingerol active ingredients may improve neuropathic pain by suppressing cytokine levels in an experimental model. Turk J Med Sci 2023; 53:1593-1604. [PMID: 38813490 PMCID: PMC10760556 DOI: 10.55730/1300-0144.5728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/12/2023] [Accepted: 10/31/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim Neuropathic pain (NP) is a type of chronic pain usually caused by damage to the somatosensory system. Bioactive antioxidant compounds, such as curcumin and ginger, are widely preferred in the treatment of NP. However, the ingredient-based mechanism that underlies their pain-relieving activity remains unknown. The aim of this study was to investigate the therapeutic effects of trans-[6]-Shogaol and [6]-Gingerol active ingredients of the Zingiber officinale Roscoe extract on the spinal cord and cortex in the neuroinflammatory pathway in rats with experimental sciatic nerve injury. Materials and methods Forty-six volatile phenolic components were identified in ginger samples using gas chromatography-mass spectrometry analysis. Thirty 3-month-old male 250-300 g Wistar Albino rats were divided into three groups as (i) sham, (ii) chronic constriction injury (CCI), and (iii) CCI+ginger. NP was induced using the CCI model. A ginger extract treatment enriched with trans-[6]-shogaol and [6]-gingerol active ingredients was administered by gavage at 200 mg/kg/day for 7 days. On the 14th day of the experiment, locomotor activity was evaluated in open field and hyperalgesia in tail flick tests. Results In behavioural experiments, a significant decrease was observed in the CCI group compared to the sham group, while a significant increase was observed in the CCI+ginger group compared to the CCI group (p < 0.05). In the spinal cord and cortex tissues, there was a significant increase in the TNF-α, IL-1β, and IL-18 neuroinflammation results of the CCI group compared to the sham group, while there was a significant decrease in the CCI+ginger group compared to the CCI group. Conclusion In this study, ginger treatment was shown to have a therapeutic effect on neuroinflammation against sciatic nerve damage.
Collapse
Affiliation(s)
- Fikri ÖZDEMİR
- Department of Anatomy, Faculty of Medicine, Hitit University, Çorum,
Turkiye
| | - Güven AKÇAY
- Department of Biophysics, Faculty of Medicine, Hitit University, Çorum,
Turkiye
| | - Sevil ÖZKINALI
- Department of Chemistry, Faculty of Arts and Sciences, Hitit University, Çorum,
Turkiye
| | - Çağla ÇELİK
- Pharmacy Services Program, Vocational School of Health Services, Hitit University, Çorum,
Turkiye
| |
Collapse
|
18
|
Ballon Romero SS, Fuh LJ, Hung SY, Lee YC, Huang YC, Chien SY, Chen YH. Electroacupuncture exerts prolonged analgesic and neuroprotective effects in a persistent dental pain model induced by multiple dental pulp injuries: GABAergic interneurons-astrocytes interaction. Front Immunol 2023; 14:1213710. [PMID: 37954604 PMCID: PMC10639134 DOI: 10.3389/fimmu.2023.1213710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Pain within the trigeminal system, particularly dental pain, is poorly understood. This study aimed to determine whether single or multiple dental pulp injuries induce persistent pain, its association with trigeminal central nociceptive pathways and whether electroacupuncture (EA) provides prolonged analgesic and neuroprotective effects in a persistent dental pain model. Models of single dental pulp injury (SDPI) and multiple dental pulp injuries (MDPI) were used to induce trigeminal neuropathic pain. The signs of dental pain-related behavior were assessed using the mechanical head withdrawal threshold (HWT). Immunofluorescence and western blot protocols were used to monitor astrocyte activation, changes in apoptosis-related proteins, and GABAergic interneuron plasticity. SDPI mice exhibited an initial marked decrease in HWT from days one to 14, followed by progressive recovery from days 21 to 42. From days 49 to 70, the HWT increased and returned to the control values. In contrast, MDPI mice showed a persistent decrease in HWT from days one to 70. MDPI increased glial fibrillary acidic protein (GFAP) and decreased glutamine synthetase (GS) and glutamate transporter-1 (GLT1) expression in the Vi/Vc transition zone of the brainstem on day 70, whereas no changes in astrocytic markers were observed on day 70 after SDPI. Increased expression of cleaved cysteine-aspartic protease-3 (cleaved caspase-3) and Bcl-2-associated X protein (Bax), along with decreased B-cell lymphoma/leukemia 2 (Bcl-2), were observed at day 70 after MDPI but not after SDPI. The downregulation of glutamic acid decarboxylase (GAD65) expression was observed on day 70 only after MDPI. The effects of MDPI-induced lower HWT from days one to 70 were attenuated by 12 sessions of EA treatment (days one to 21 after MDPI). Changes in astrocytic GFAP, GS, and GLT-1, along with cleaved caspase-3, Bax, Bcl-2, and GAD65 expression observed 70 days after MDPI, were reversed by EA treatment. The results suggest that persistent dental pain in mice was induced by MDPI but not by SDPI. This effect was associated with trigeminal GABAergic interneuron plasticity along with morphological and functional changes in astrocytes. EA exerts prolonged analgesic and neuroprotective effects that might be associated with the modulation of neuron-glia crosstalk mechanisms.
Collapse
Affiliation(s)
| | - Lih-Jyh Fuh
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Shih-Ya Hung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Division of Surgery, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chen Lee
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Department of Acupuncture, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chuen Huang
- Department of Medical Research, China Medical University Hospital, School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Szu-Yu Chien
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
19
|
Ser MH, Yılmaz B, Sulu C, Gönen MS, Gunduz A. Nociceptive flexion reflex in small fibers neuropathy and pain assessments†. PAIN MEDICINE (MALDEN, MASS.) 2023; 24:1161-1168. [PMID: 37294833 DOI: 10.1093/pm/pnad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/07/2023] [Accepted: 06/01/2023] [Indexed: 06/11/2023]
Abstract
BACKGROUND The nociceptive flexion reflex (NFR) is a polysynaptic and multisegmental spinal reflex that develops in response to a noxious stimulus and is characterized by the withdrawal of the affected body part. The NFR possesses two excitatory components: early RII and late RIII. Late RIII is derived from high-threshold cutaneous afferent A-delta fibers, which are prone to injury early in the course of diabetes mellitus (DM) and may lead to neuropathic pain. We investigated NFR in patients with DM with different types of polyneuropathies to analyze the role of NFR in small fiber neuropathy (SFN). METHODS We included 37 patients with DM and 20 healthy participants of similar age and sex. We performed the Composite Autonomic Neuropathy Scale-31, modified Toronto Neuropathy Scale, and routine nerve conduction studies. We grouped the patients into large fiber neuropathy (LFN), SFN, and no overt neurological symptom/sign groups. In all participants, NFR was recorded on anterior tibial (AT) and biceps femoris (BF) muscles after train stimuli on the sole of the foot, and NFR-RIII findings were compared. RESULTS We identified 11 patients with LFN, 15 with SFN, and 11 with no overt neurological symptoms or signs. The RIII response on the AT was absent in 22 (60%) patients with DM and 8 (40%) healthy participants. The RIII response on the BF was absent in 31 (73.8%) patients and 7 (35%) healthy participants (P = .001). In DM, the latency of RIII was prolonged, and the magnitude was reduced. Abnormal findings were seen in all subgroups; however, they were more prominent in patients with LFN compared to other groups. CONCLUSIONS The NFR-RIII was abnormal in patients with DM even before the emergence of the neuropathic symptoms. The pattern of involvement before neuropathic symptoms was possibly related to an earlier loss of A-delta fibers.
Collapse
Affiliation(s)
- Merve Hazal Ser
- Neurology Department, Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Istanbul, Fatih 34098, Turkey
| | - Basak Yılmaz
- Neurology Department, Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Istanbul, Fatih 34098, Turkey
| | - Cem Sulu
- Internal Medicine Department, Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Istanbul, Fatih 34098, Turkey
| | - Mustafa Sait Gönen
- Internal Medicine Department, Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Istanbul, Fatih 34098, Turkey
| | - Aysegul Gunduz
- Neurology Department, Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Istanbul, Fatih 34098, Turkey
| |
Collapse
|
20
|
Salberg S, Doshen A, Yamakawa GR, Miller JV, Noel M, Henderson L, Mychasiuk R. The waiting game: investigating the neurobiological transition from acute to persistent pain in adolescent rats. Cereb Cortex 2023; 33:6382-6393. [PMID: 36610738 PMCID: PMC10183733 DOI: 10.1093/cercor/bhac511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 01/09/2023] Open
Abstract
Persistent postsurgical pain affects 20% of youth undergoing a surgical procedure, with females exhibiting increased prevalence of chronic pain compared with males. This study sought to examine the sexually-dimorphic neurobiological changes underlying the transition from acute to persistent pain following surgery in adolescence. Male and female Sprague Dawley rats were randomly allocated to a sham or injury (plantar-incision surgery) condition and assessed for pain sensitivity while also undergoing magnetic resonance imaging at both an acute and chronic timepoint within adolescence. We found that injury resulted in persistent pain in both sexes, with females displaying most significant sensitivity. Injury resulted in significant gray matter density increases in brain areas including the cerebellum, caudate putamen/insula, and amygdala and decreases in the hippocampus, hypothalamus, nucleus accumbens, and lateral septal nucleus. Gray matter density changes in the hippocampus and lateral septal nucleus were driven by male rats whereas changes in the amygdala and caudate putamen/insula were driven by female rats. Overall, our results indicate persistent behavioral and neurobiological changes following surgery in adolescence, with sexually-dimorphic and age-specific outcomes, highlighting the importance of studying both sexes and adolescents, rather than extrapolating from male adult literature.
Collapse
Affiliation(s)
- Sabrina Salberg
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Angela Doshen
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, 94 Mallett St, Camperdown, NSW, 2050, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Jillian Vinall Miller
- Department of Anesthesiology, Perioperative & Pain Medicine, Cumming School of Medicine, University of Calgary, 29 Street NW, Calgary, AB, T2N 2T9, Canada
| | - Melanie Noel
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Luke Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, 94 Mallett St, Camperdown, NSW, 2050, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| |
Collapse
|
21
|
Ding Z, Liang X, Wang J, Song Z, Guo Q, Schäfer MKE, Huang C. Inhibition of spinal ferroptosis-like cell death alleviates hyperalgesia and spontaneous pain in a mouse model of bone cancer pain. Redox Biol 2023; 62:102700. [PMID: 37084690 PMCID: PMC10141498 DOI: 10.1016/j.redox.2023.102700] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023] Open
Abstract
Bone cancer pain (BCP) impairs patients' quality of life. However, the underlying mechanisms are still unclear. This study investigated the role of spinal interneuron death using a pharmacological inhibitor of ferroptosis in a mouse model of BCP. Lewis lung carcinoma cells were inoculated into the femur, resulting in hyperalgesia and spontaneous pain. Biochemical analysis revealed that spinal levels of reactive oxygen species and malondialdehyde were increased, while those of superoxide dismutase were decreased. Histological analysis showed the loss of spinal GAD65+ interneurons and provided ultrastructural evidence of mitochondrial shrinkage. Pharmacologic inhibition of ferroptosis using ferrostatin-1 (FER-1, 10 mg/kg, intraperitoneal for 20 consecutive days) attenuated ferroptosis-associated iron accumulation and lipid peroxidation and alleviated BCP. Furthermore, FER-1 inhibited the pain-associated activation of ERK1/2 and COX-2 expression and prevented the loss of GABAergic interneurons. Moreover, FER-1 improved analgesia by the COX-2 inhibitor Parecoxib. Taken together, this study shows that pharmacological inhibition of ferroptosis-like cell death of spinal interneurons alleviates BCP in mice. The results suggest that ferroptosis is a potential therapeutic target in patients suffering on BCP and possibly other types of pain.
Collapse
Affiliation(s)
- Zhuofeng Ding
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Xiaoshen Liang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Jian Wang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Zongbin Song
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Germany; Focus Program Translational Neurosciences (FTN) and Research Center of Immunotherapy of the Johannes Gutenberg-University Mainz, Germany
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China.
| |
Collapse
|
22
|
Morchio M, Sher E, Collier DA, Lambert DW, Boissonade FM. The Role of miRNAs in Neuropathic Pain. Biomedicines 2023; 11:biomedicines11030775. [PMID: 36979754 PMCID: PMC10045079 DOI: 10.3390/biomedicines11030775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Neuropathic pain is a debilitating condition affecting around 8% of the adult population in the UK. The pathophysiology is complex and involves a wide range of processes, including alteration of neuronal excitability and synaptic transmission, dysregulated intracellular signalling and activation of pro-inflammatory immune and glial cells. In the past 15 years, multiple miRNAs–small non-coding RNA–have emerged as regulators of neuropathic pain development. They act by binding to target mRNAs and preventing the translation into proteins. Due to their short sequence (around 22 nucleotides in length), they can have hundreds of targets and regulate several pathways. Several studies on animal models have highlighted numerous miRNAs that play a role in neuropathic pain development at various stages of the nociceptive pathways, including neuronal excitability, synaptic transmission, intracellular signalling and communication with non-neuronal cells. Studies on animal models do not always translate in the clinic; fewer studies on miRNAs have been performed involving human subjects with neuropathic pain, with differing results depending on the specific aetiology underlying neuropathic pain. Further studies using human tissue and liquid samples (serum, plasma, saliva) will help highlight miRNAs that are relevant to neuropathic pain diagnosis or treatment, as biomarkers or potential drug targets.
Collapse
Affiliation(s)
- Martina Morchio
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
- The Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Emanuele Sher
- UK Neuroscience Hub, Eli Lilly and Company, Bracknell RG12 1PU, UK
| | - David A. Collier
- UK Neuroscience Hub, Eli Lilly and Company, Bracknell RG12 1PU, UK
| | - Daniel W. Lambert
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
- The Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Fiona M. Boissonade
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
- The Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
- Correspondence:
| |
Collapse
|
23
|
Chen O, He Q, Han Q, Furutani K, Gu Y, Olexa M, Ji RR. Mechanisms and treatments of neuropathic itch in a mouse model of lymphoma. J Clin Invest 2023; 133:160807. [PMID: 36520531 PMCID: PMC9927942 DOI: 10.1172/jci160807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Our understanding of neuropathic itch is limited due to a lack of relevant animal models. Patients with cutaneous T cell lymphoma (CTCL) experience severe itching. Here, we characterize a mouse model of chronic itch with remarkable lymphoma growth, immune cell accumulation, and persistent pruritus. Intradermal CTCL inoculation produced time-dependent changes in nerve innervations in lymphoma-bearing skin. In the early phase (20 days), CTCL caused hyperinnervations in the epidermis. However, chronic itch was associated with loss of epidermal nerve fibers in the late phases (40 and 60 days). CTCL was also characterized by marked nerve innervations in mouse lymphoma. Blockade of C-fibers reduced pruritus at early and late phases, whereas blockade of A-fibers only suppressed late-phase itch. Intrathecal (i.t.) gabapentin injection reduced late-phase, but not early-phase, pruritus. IL-31 was upregulated in mouse lymphoma, whereas its receptor Il31ra was persistently upregulated in Trpv1-expressing sensory neurons in mice with CTCL. Intratumoral anti-IL-31 treatment effectively suppressed CTCL-induced scratching and alloknesis (mechanical itch). Finally, i.t. administration of a TLR4 antagonist attenuated pruritus in early and late phases and in both sexes. Collectively, we have established a mouse model of neuropathic and cancer itch with relevance to human disease. Our findings also suggest distinct mechanisms underlying acute, chronic, and neuropathic itch.
Collapse
Affiliation(s)
- Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology,,Department of Cell Biology, and
| | - Qianru He
- Center for Translational Pain Medicine, Department of Anesthesiology
| | - Qingjian Han
- Center for Translational Pain Medicine, Department of Anesthesiology
| | - Kenta Furutani
- Center for Translational Pain Medicine, Department of Anesthesiology
| | - Yun Gu
- Center for Translational Pain Medicine, Department of Anesthesiology
| | - Madelynne Olexa
- Center for Translational Pain Medicine, Department of Anesthesiology
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology,,Department of Cell Biology, and,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
24
|
Time-dependent and selective microglia-mediated removal of spinal synapses in neuropathic pain. Cell Rep 2023; 42:112010. [PMID: 36656715 DOI: 10.1016/j.celrep.2023.112010] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 09/20/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Neuropathic pain is a debilitating condition resulting from damage to the nervous system. Imbalance of spinal excitation and inhibition has been proposed to contribute to neuropathic pain. However, the structural basis of this imbalance remains unknown. Using a preclinical model of neuropathic pain, we show that microglia selectively engulf spinal synapses that are formed by central neurons and spare those of peripheral sensory neurons. Furthermore, we reveal that removal of inhibitory and excitatory synapses exhibits distinct temporal patterns, in which microglia-mediated inhibitory synapse removal precedes excitatory synapse removal. We also find selective and gradual increase in complement depositions on dorsal horn synapses that corresponds to the temporal pattern of microglial synapse pruning activity and type-specific synapse loss. Together, these results define a specific role for microglia in the progression of neuropathic pain pathogenesis and implicate these immune cells in structural remodeling of dorsal horn circuitry.
Collapse
|
25
|
Mechanisms behind the Development of Chronic Low Back Pain and Its Neurodegenerative Features. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010084. [PMID: 36676033 PMCID: PMC9862392 DOI: 10.3390/life13010084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Chronic back pain is complex and there is no guarantee that treating its potential causes will cause the pain to go away. Therefore, rather than attempting to "cure" chronic pain, many clinicians, caregivers and researchers aim to help educate patients about their pain and try to help them live a better quality of life despite their condition. A systematic review has demonstrated that patient education has a large effect on pain and pain related disability when done in conjunction with treatments. Therefore, understanding and updating our current state of knowledge of the pathophysiology of back pain is important in educating patients as well as guiding the development of novel therapeutics. Growing evidence suggests that back pain causes morphological changes in the central nervous system and that these changes have significant overlap with those seen in common neurodegenerative disorders. These similarities in mechanisms may explain the associations between chronic low back pain and cognitive decline and brain fog. The neurodegenerative underpinnings of chronic low back pain demonstrate a new layer of understanding for this condition, which may help inspire new strategies in pain education and management, as well as potentially improve current treatment.
Collapse
|
26
|
Cao B, Scherrer G, Chen L. Spinal cord retinoic acid receptor signaling gates mechanical hypersensitivity in neuropathic pain. Neuron 2022; 110:4108-4124.e6. [PMID: 36223767 PMCID: PMC9789181 DOI: 10.1016/j.neuron.2022.09.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/27/2022] [Accepted: 09/22/2022] [Indexed: 02/08/2023]
Abstract
Central sensitization caused by spinal disinhibition is a key mechanism of mechanical allodynia in neuropathic pain. However, the molecular mechanisms underlying spinal disinhibition after nerve injury remain unclear. Here, we show in mice that spared nerve injury (SNI), which induces mechanical hypersensitivity and neuropathic pain, triggers homeostatic reduction of inhibitory outputs from dorsal horn parvalbumin-positive (PV+) interneurons onto both primary afferent terminals and excitatory interneurons. The reduction in inhibitory outputs drives hyperactivation of the spinal cord nociceptive pathway, causing mechanical hypersensitivity. We identified the retinoic acid receptor RARα, a central regulator of homeostatic plasticity, as the key molecular mediator for this synaptic disinhibition. Deletion of RARα in spinal PV+ neurons or application of an RARα antagonist in the spinal cord prevented the development of SNI-induced mechanical hypersensitivity. Our results identify RARα as a crucial molecular effector for neuropathic pain and a potential target for its treatment.
Collapse
Affiliation(s)
- Bing Cao
- Department of Neurosurgery, Wu Tsai Neuroscience Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gregory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lu Chen
- Department of Neurosurgery, Wu Tsai Neuroscience Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Kazamel M, Pischik E, Desnick RJ. Pain in acute hepatic porphyrias: Updates on pathophysiology and management. Front Neurol 2022; 13:1004125. [PMID: 36479055 PMCID: PMC9719963 DOI: 10.3389/fneur.2022.1004125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Acute hepatic porphyrias (AHPs) typically present with recurrent acute attacks of severe abdominal pain and acute autonomic dysfunction. While chronic symptoms were historically overlooked in the literature, recent studies have reported increased prevalence of chronic, mainly neuropathic, pain between the attacks. Here we characterize acute and chronic pain as prominent manifestations of the AHPs and discuss their pathophysiology and updated management. In addition to the severe abdominal pain, patients could experience low back pain, limb pain, and headache during acute attacks. Chronic pain between the attacks is typically neuropathic and reported mainly by patients who undergo recurrent attacks. While the acute abdominal pain during attacks is likely mediated by autonomic neuropathy, chronic pain likely represents delayed recovery of the acute neuropathy with ongoing small fiber neuropathy in addition to peripheral and/or central sensitization. δ-aminolaevulinic acid (ALA) plays a major role in acute and chronic pain via its neurotoxic effect, especially where the blood-nerve barrier is less restrictive or absent i.e., the autonomic ganglia, nerve roots, and free nerve endings. For earlier diagnosis, we recommend testing a spot urine porphobilinogen (PBG) analysis in any patient with recurrent severe acute abdominal pain with no obvious explanation, especially if associated with neuropathic pain, hyponatremia, autonomic dysfunction, or encephalopathy. Of note, it is mandatory to exclude AHPs in any acute painful neuropathy. Between the attacks, diagnostic testing for AHPs should be considered for patients with a past medical history of acute/subacute neuropathy, frequent emergency room visits with abdominal pain, and behavioral changes. Pain during the attacks should be treated with opiates combined with hemin infusions. Symptomatic treatment of chronic pain should start with gabapentinoids and certain antidepressants before opiates. Givosiran reduces levels of ALA and PBG and likely has long-term benefits for chronic pain, especially if started early during the course of the disease.
Collapse
Affiliation(s)
- Mohamed Kazamel
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Mohamed Kazamel
| | - Elena Pischik
- Department of Neurology, Consultative and Diagnostic Center With Polyclinics, St. Petersburg, Russia
| | - Robert J. Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
28
|
Morén C, Treder N, Martínez-Pinteño A, Rodríguez N, Arbelo N, Madero S, Gómez M, Mas S, Gassó P, Parellada E. Systematic Review of the Therapeutic Role of Apoptotic Inhibitors in Neurodegeneration and Their Potential Use in Schizophrenia. Antioxidants (Basel) 2022; 11:2275. [PMID: 36421461 PMCID: PMC9686909 DOI: 10.3390/antiox11112275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 09/15/2023] Open
Abstract
Schizophrenia (SZ) is a deleterious brain disorder affecting cognition, emotion and reality perception. The most widely accepted neurochemical-hypothesis is the imbalance of neurotransmitter-systems. Depleted GABAergic-inhibitory function might produce a regionally-located dopaminergic and glutamatergic-storm in the brain. The dopaminergic-release may underlie the positive psychotic-symptoms while the glutamatergic-release could prompt the primary negative symptoms/cognitive deficits. This may occur due to excessive synaptic-pruning during the neurodevelopmental stages of adolescence/early adulthood. Thus, although SZ is not a neurodegenerative disease, it has been suggested that exaggerated dendritic-apoptosis could explain the limited neuroprogression around its onset. This apoptotic nature of SZ highlights the potential therapeutic action of anti-apoptotic drugs, especially at prodromal stages. If dysregulation of apoptotic mechanisms underlies the molecular basis of SZ, then anti-apoptotic molecules could be a prodromal therapeutic option to halt or prevent SZ. In fact, risk alleles related in apoptotic genes have been recently associated to SZ and shared molecular apoptotic changes are common in the main neurodegenerative disorders and SZ. PRISMA-guidelines were considered. Anti-apoptotic drugs are commonly applied in classic neurodegenerative disorders with promising results. Despite both the apoptotic-hallmarks of SZ and the widespread use of anti-apoptotic targets in neurodegeneration, there is a strikingly scarce number of studies investigating anti-apoptotic approaches in SZ. We analyzed the anti-apoptotic approaches conducted in neurodegeneration and the potential applications of such anti-apoptotic therapies as a promising novel therapeutic strategy, especially during early stages.
Collapse
Affiliation(s)
- Constanza Morén
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- U722 Group, Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Carlos III Health Institute, 28029 Madrid, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Nina Treder
- Faculty of Psychology and Neuroscience, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Albert Martínez-Pinteño
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Natàlia Rodríguez
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Néstor Arbelo
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Santiago Madero
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Marta Gómez
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
- Department of Psychiatry, Servizo Galego de Saúde (SERGAS), 36001 Pontevedra, Spain
| | - Sergi Mas
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Patricia Gassó
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Eduard Parellada
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
29
|
Youn DH, Jun J, Kim TW, Park K. Spinal orexin A attenuates opioid-induced mechanical hypersensitivity in the rat. Korean J Pain 2022; 35:433-439. [PMID: 36175342 PMCID: PMC9530684 DOI: 10.3344/kjp.2022.35.4.433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/05/2022] Open
Abstract
Background Repeated administration of opioid analgesics for pain treatment can produce paradoxical hyperalgesia via peripheral and/or central mechanisms. Thus, this study investigated whether spinally (centrally) administered orexin A attenuates opioid-induced hyperalgesia (OIH). Methods [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), a selective μ-opioid receptor agonist, was used to induce mechanical hypersensitivity and was administered intradermally (4 times, 1-hour intervals) on the rat hind paw dorsum. To determine whether post- or pretreatments with spinal orexin A, dynorphin A, and anti-dynorphin A were effective in OIH, the drugs were injected through an intrathecal catheter whose tip was positioned dorsally at the L3 segment of the spinal cord (5 μg for all). Mechanical hypersensitivity was assessed using von Frey monofilaments. Results Repeated intradermal injections of DAMGO resulted in mechanical hypersensitivity in rats, lasting more than 8 days. Although the first intrathecal treatment of orexin A on the 6th day after DAMGO exposure did not show any significant effect on the mechanical threshold, the second (on the 8th day) significantly attenuated the DAMGO-induced mechanical hypersensitivity, which disappeared when the type 1 orexin receptor (OX1R) was blocked. However, intrathecal administration of dynorphin or an anti-dynorphin antibody (dynorphin antagonists) had no effect on DAMGO-induced hypersensitivity. Lastly, pretreatment with orexin A, dynorphin, or anti-dynorphin did not prevent DAMGO-induced mechanical hypersensitivity. Conclusions Spinal orexin A attenuates mechanical hyperalgesia induced by repetitive intradermal injections of DAMGO through OX1R. These data suggest that OIH can be potentially treated by activating the orexin A-OX1R pathway in the spinal dorsal horn.
Collapse
Affiliation(s)
- Dong-Ho Youn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, Korea.,Advanced Dental Device Development Institute, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Jiyeon Jun
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, Korea.,Advanced Dental Device Development Institute, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Tae Wan Kim
- Department of Physiology, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Kibeom Park
- Department of Anesthesiology and Pain Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
30
|
Li C, Li X, Shi Z, Wu P, Fu J, Tang J, Qing L. Exosomes from LPS-preconditioned bone marrow MSCs accelerated peripheral nerve regeneration via M2 macrophage polarization: Involvement of TSG-6/NF-κB/NLRP3 signaling pathway. Exp Neurol 2022; 356:114139. [PMID: 35690131 DOI: 10.1016/j.expneurol.2022.114139] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022]
Abstract
Lipopolysaccharide (LPS)-preconditioned mesenchymal stem cells (MSCs) possessed strong immunomodulatory and anti-inflammatory functions by secreting exosomes as major paracrine effectors. However, the specific effect of exosomes from LPS pre-MSCs (LPS pre-Exos) on peripheral nerve regeneration has yet to be documented. Here, we established a sciatic nerve injury model in rats and an inflammatory model in RAW264.7 cells to explore the potential mechanism between LPS pre-Exos and peripheral nerve repair. The local injection of LPS pre-Exos into the nerve injury site resulted in an accelerated functional recovery, axon regeneration and remyelination, and an enhanced M2 Macrophage polarization. Consistent with the data in vivo, LPS pre-Exos were able to shift the pro-inflammation macrophage into a pro-regeneration macrophage. Notably, TNF stimulated gene-6 (TSG-6) was found to be highly enriched in LPS pre-Exos. We obtained si TSG-6 Exo by the knockdown of TSG-6 in LPS pre-Exos to demonstrate the role of TSG-6 in macrophage polarization, and found that TSG-6 served as a critical mediator in LPS pre-Exos-induced regulatory effects through the inhibition of NF-ΚΒ and NOD-like receptor protein 3 (NLRP3). In conclusion, our findings suggested that LPS pre-Exos promoted macrophage polarization toward an M2 phenotype by shuttling TSG-6 to inactivate the NF-ΚΒ/NLRP3 signaling axis, and could provide a potential therapeutic avenue for peripheral nerve repair.
Collapse
Affiliation(s)
- Cheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxiao Li
- Department of Pathology, Changsha Medical University, Changsha, China; Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Shi
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China; Department of Plastic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Panfeng Wu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jinfei Fu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Juyu Tang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Liming Qing
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
31
|
Apoptosis and (in) Pain—Potential Clinical Implications. Biomedicines 2022; 10:biomedicines10061255. [PMID: 35740277 PMCID: PMC9219669 DOI: 10.3390/biomedicines10061255] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/06/2023] Open
Abstract
The deregulation of apoptosis is involved in the development of several pathologies, and recent evidence suggests that apoptosis may be involved in chronic pain, namely in neuropathic pain. Neuropathic pain is a chronic pain state caused by primary damage or dysfunction of the nervous system; however, the details of the molecular mechanisms have not yet been fully elucidated. Recently, it was found that nerve endings contain transient receptor potential (TRP) channels that sense and detect signals released by injured tissues and respond to these damage signals. TRP channels are similar to the voltage-gated potassium channels or nucleotide-gated channels that participate in calcium and magnesium homeostasis. TRP channels allowing calcium to penetrate into nerve terminals can activate apoptosis, leading to nerve terminal destruction. Further, some TRPs are activated by acid and reactive oxygen species (ROS). ROS are mainly produced in the mitochondrial respiratory chain, and an increase in ROS production and/or a decrease in the antioxidant network may induce oxidative stress (OS). Depending on the OS levels, they can promote cellular proliferation and/or cell degeneration or death. Previous studies have indicated that proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), play an important role in the peripheral mediation of neuropathic pain. This article aims to perform a review of the involvement of apoptosis in pain, particularly the role of OS and neuroinflammation, and the clinical relevance of this knowledge. The potential discovery of new biomarkers and therapeutic targets can result in the development of more effective and targeted drugs to treat chronic pain, namely neuropathic pain. Highlights: Oxidative stress and neuroinflammation can activate cell signaling pathways that can lead to nerve terminal destruction by apoptosis. These could constitute potential new pain biomarkers and targets for therapy in neuropathic pain.
Collapse
|
32
|
Hiroki T, Suto T, Ohta J, Saito S, Obata H. Spinal γ-Aminobutyric Acid Interneuron Plasticity Is Involved in the Reduced Analgesic Effects of Morphine on Neuropathic Pain. THE JOURNAL OF PAIN 2022; 23:547-557. [PMID: 34678470 DOI: 10.1016/j.jpain.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/16/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022]
Abstract
Systemic administration of morphine increases serotonin (5-HT) in the spinal dorsal horn (SDH), which attenuates the analgesic effects of morphine on neuropathic pain through spinal 5-HT3 receptors. We hypothesized that dysfunction of the descending serotonergic system, including the periaqueductal gray (PAG), contributes to attenuate the efficacy of morphine on neuropathic pain through spinal 5-HT3 receptors and GABA neurons. Morphine (100 ng) injected into the PAG produced analgesic effects in normal rats, but not in spinal nerve ligation (SNL) rats. In vivo microdialysis showed that PAG morphine increased the SDH 5-HT concentration in both groups. Intrathecal injection of the 5-HT3 receptor antagonist ondansetron and the GABAA receptor antagonist bicuculline attenuated the analgesic effects of PAG morphine in normal rats, but increased the effects in SNL rats. The increased analgesic effect of PAG morphine induced by bicuculline was reversed by pretreatment with the tropomyosin receptor kinase B (TrkB) antagonist K252a. Activation of spinal 5-HT3 receptors by 2-methyl-5-HT increased the GABA concentration in both groups. Morphine activates GABAergic interneurons in the SDH by activating descending serotonergic neurons. Functional changes in GABAA receptors from inhibitory to facilitatory through the activation of TrkB receptors may contribute to the attenuated efficacy of morphine against neuropathic pain. PERSPECTIVE: Although morphine provides strong analgesia against acute pain, it has limited efficacy against neuropathic pain. This article demonstrates that functional changes in GABAA receptors in the spinal dorsal horn after nerve injury might strongly contribute to the attenuation of opioid-induced analgesia for neuropathic pain.
Collapse
Affiliation(s)
- Tadanao Hiroki
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Takashi Suto
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Jo Ohta
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shigeru Saito
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideaki Obata
- Department of Anesthesiology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| |
Collapse
|
33
|
San Martín VP, Sazo A, Utreras E, Moraga-Cid G, Yévenes GE. Glycine Receptor Subtypes and Their Roles in Nociception and Chronic Pain. Front Mol Neurosci 2022; 15:848642. [PMID: 35401105 PMCID: PMC8984470 DOI: 10.3389/fnmol.2022.848642] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/28/2022] [Indexed: 01/23/2023] Open
Abstract
Disruption of the inhibitory control provided by the glycinergic system is one of the major mechanisms underlying chronic pain. In line with this concept, recent studies have provided robust proof that pharmacological intervention of glycine receptors (GlyRs) restores the inhibitory function and exerts anti-nociceptive effects on preclinical models of chronic pain. A targeted regulation of the glycinergic system requires the identification of the GlyR subtypes involved in chronic pain states. Nevertheless, the roles of individual GlyR subunits in nociception and in chronic pain are yet not well defined. This review aims to provide a systematic outline on the contribution of GlyR subtypes in chronic pain mechanisms, with a particular focus on molecular pathways of spinal glycinergic dis-inhibition mediated by post-translational modifications at the receptor level. The current experimental evidence has shown that phosphorylation of synaptic α1β and α3β GlyRs are involved in processes of spinal glycinergic dis-inhibition triggered by chronic inflammatory pain. On the other hand, the participation of α2-containing GlyRs and of β subunits in pain signaling have been less studied and remain undefined. Although many questions in the field are still unresolved, future progress in GlyR research may soon open new exciting avenues into understanding and controlling chronic pain.
Collapse
Affiliation(s)
- Victoria P. San Martín
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Anggelo Sazo
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Elías Utreras
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Gustavo Moraga-Cid
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Gonzalo E. Yévenes
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
- *Correspondence: Gonzalo E. Yévenes,
| |
Collapse
|
34
|
Jin Y, Liu Q, Chen P, Zhao S, Jiang W, Wang F, Li P, Zhang Y, Lu W, Zhong TP, Ma X, Wang X, Gartland A, Wang N, Shah KM, Zhang H, Cao X, Yang L, Liu M, Luo J. A novel prostaglandin E receptor 4 (EP4) small molecule antagonist induces articular cartilage regeneration. Cell Discov 2022; 8:24. [PMID: 35256606 PMCID: PMC8901748 DOI: 10.1038/s41421-022-00382-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/28/2022] [Indexed: 01/15/2023] Open
Abstract
Articular cartilage repair and regeneration is an unmet clinical need because of the poor self-regeneration capacity of the tissue. In this study, we found that the expression of prostaglandin E receptor 4 (PTGER4 or EP4) was largely increased in the injured articular cartilage in both humans and mice. In microfracture (MF) surgery-induced cartilage defect (CD) and destabilization of the medial meniscus (DMM) surgery-induced CD mouse models, cartilage-specific deletion of EP4 remarkably promoted tissue regeneration by enhancing chondrogenesis and cartilage anabolism, and suppressing cartilage catabolism and hypertrophy. Importantly, knocking out EP4 in cartilage enhanced stable mature articular cartilage formation instead of fibrocartilage, and reduced joint pain. In addition, we identified a novel selective EP4 antagonist HL-43 for promoting chondrocyte differentiation and anabolism with low toxicity and desirable bioavailability. HL-43 enhanced cartilage anabolism, suppressed catabolism, prevented fibrocartilage formation, and reduced joint pain in multiple pre-clinical animal models including the MF surgery-induced CD rat model, the DMM surgery-induced CD mouse model, and an aging-induced CD mouse model. Furthermore, HL-43 promoted chondrocyte differentiation and extracellular matrix (ECM) generation, and inhibited matrix degradation in human articular cartilage explants. At the molecular level, we found that HL-43/EP4 regulated cartilage anabolism through the cAMP/PKA/CREB/Sox9 signaling. Together, our findings demonstrate that EP4 can act as a promising therapeutic target for cartilage regeneration and the novel EP4 antagonist HL-43 has the clinical potential to be used for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Yunyun Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qianqian Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Peng Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Siyuan Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenhao Jiang
- Yangzhi Rehabilitation Hospital (Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, China
| | - Fanhua Wang
- Yangzhi Rehabilitation Hospital (Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, China
| | - Peng Li
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Alison Gartland
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Ning Wang
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Karan Mehul Shah
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Hankun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xu Cao
- Departments of Orthopaedic Surgery and Biomedical Engineering and Institute of Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Yang
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China.,Center for Health Science and Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China. .,Yangzhi Rehabilitation Hospital (Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Tei Y, Mikami Y, Ito M, Tomida T, Ohshima D, Hori Y, Adachi-Akahane S. Pathogenic Mechanism of Dry Eye-Induced Chronic Ocular Pain and a Mechanism-Based Therapeutic Approach. Invest Ophthalmol Vis Sci 2022; 63:7. [PMID: 34989761 PMCID: PMC8742529 DOI: 10.1167/iovs.63.1.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Dry eye–induced chronic ocular pain is also called ocular neuropathic pain. However, details of the pathogenic mechanism remain unknown. The purpose of this study was to elucidate the pathogenic mechanism of dry eye–induced chronic pain in the anterior eye area and develop a pathophysiology-based therapeutic strategy. Methods We used a rat dry eye model with lacrimal gland excision (LGE) to elucidate the pathogenic mechanism of ocular neuropathic pain. Corneal epithelial damage, hypersensitivity, and hyperalgesia were evaluated on the LGE side and compared with the sham surgery side. We analyzed neuronal activity, microglial and astrocytic activity, α2δ–1 subunit expression, and inhibitory interneurons in the trigeminal nucleus. We also evaluated the therapeutic effects of ophthalmic treatment and chronic pregabalin administration on dry eye–induced ocular neuropathic pain. Results Dry eye caused hypersensitivity and hyperalgesia on the LGE side. In the trigeminal nucleus of the LGE side, neuronal hyperactivation, transient activation of microglia, persistent activation of astrocytes, α2δ–1 subunit upregulation, and reduced numbers of inhibitory interneurons were observed. Ophthalmic treatment alone did not improve hyperalgesia. In contrast, continuous treatment with pregabalin effectively ameliorated hypersensitivity and hyperalgesia and normalized neural activity, α2δ–1 subunit upregulation, and astrocyte activation. Conclusions These results suggest that dry eye–induced hypersensitivity and hyperalgesia are caused by central sensitization in the trigeminal nucleus with upregulation of the α2δ–1 subunit. Here, we showed that pregabalin is effective for treating dry eye–induced ocular neuropathic pain even after chronic pain has been established.
Collapse
Affiliation(s)
- Yuto Tei
- Department of Ophthalmology, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Faculty of Medicine, Toho University, Tokyo, Japan.,Department of Physiology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Yoshinori Mikami
- Department of Physiology, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Masanori Ito
- Department of Physiology, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Taichiro Tomida
- Department of Physiology, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Physiology, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Daisuke Ohshima
- Department of Physiology, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Yuichi Hori
- Department of Ophthalmology, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Satomi Adachi-Akahane
- Department of Physiology, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Physiology, Faculty of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
36
|
Mahmoud MF, Rezq S, Alsemeh AE, Abdelfattah MAO, El-Shazly AM, Daoud R, El Raey MA, Sobeh M. Potamogeton perfoliatus L. Extract Attenuates Neuroinflammation and Neuropathic Pain in Sciatic Nerve Chronic Constriction Injury-Induced Peripheral Neuropathy in Rats. Front Pharmacol 2021; 12:799444. [PMID: 34987408 PMCID: PMC8721232 DOI: 10.3389/fphar.2021.799444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022] Open
Abstract
Sciatic nerve injury is often associated with neuropathic pain and neuroinflammation in the central and peripheral nervous systems. In our previous work, Potamogeton perfoliatus L. displayed anti-inflammatory, antipyretic and analgesic properties, predominantly via the inhibition of COX-2 enzyme and attenuation of oxidative stress. Herein, we extended our investigations to study the effects of the plant's extract on pain-related behaviors, oxidative stress, apoptosis markers, GFAP, CD68 and neuro-inflammation in sciatic nerve chronic constriction injury (CCI) rat model. The levels of the pro-inflammatory marker proteins in sciatic nerve and brainstem were measured with ELISA 14 days after CCI induction. Pretreatment with the extract significantly attenuated mechanical and cold allodynia and heat hyperalgesia with better potential than the reference drug, pregabalin. In addition, CCI lead to the overexpression of prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), tumor necrosis alpha (TNFα), nuclear factor κB (NF-κB), cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), and NADPH oxidase-1 (NOX-1) and decreased the catalase level in sciatic nerve and brainstem. The observed neuro-inflammatory changes were accompanied with glial cells activation (increased GFAP and CD68 positive cells), apoptosis (increased Bax) and structural changes in both brainstem and sciatic nerve. The studied extract attenuated the CCI-induced neuro-inflammatory changes, oxidative stress, and apoptosis while it induced the expression of Bcl-2 and catalase in a dose dependent manner. It also decreased the brainstem expression of CD68 and GFAP indicating a possible neuroprotection effect. Taking together, P. perfoliatus may be considered as a novel therapy for neuropathic pain patients after performing the required clinical trials.
Collapse
Affiliation(s)
- Mona F. Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samar Rezq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Amira E. Alsemeh
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Assem M. El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mohamed A. El Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Division, National Research Centre, Dokki, Cairo, Egypt
| | - Mansour Sobeh
- AgroBioSciences Research, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| |
Collapse
|
37
|
Brenner D, Shorten GD, O'Mahony SM. Postoperative pain and the gut microbiome. NEUROBIOLOGY OF PAIN 2021; 10:100070. [PMID: 34409198 PMCID: PMC8361255 DOI: 10.1016/j.ynpai.2021.100070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Poorly controlled postoperative pain remains a major unresolved challenge globally. The gut microbiome impacts on inflammatory pain and neuropathic pain. Microbiota metabolites can regulate peripheral and central sensitisation. Stress is linked to both postoperative pain and an altered gut microbiome.
In excess of 300 million surgical procedures are undertaken worldwide each year. Despite recognition of the prevalence of postoperative pain, and improvements in pain management techniques, poorly controlled postoperative pain remains a major unresolved challenge globally. An estimated 71% and 51% of patients experience moderate to severe pain after surgery in in-patient and outpatient settings, respectively. Inadequately controlled pain after surgery is associated with significant perioperative morbidity including myocardial infarction and pulmonary complications. As many as 20–56% of patients develop chronic pain after commonly performed procedures such as hernia repair, hysterectomy, and thoracotomy. Traditional analgesics and interventions are often ineffective or partially effective in the treatment of postoperative pain, resulting in a chronic pain condition with related socio-economic impacts and reduced quality of life for the patient. Such chronic pain which occurs after surgery is referred to as Persistent Post-Surgical Pain (PPSP). The complex ecosystem that is the gastrointestinal microbiota (including bacteria, fungi, viruses, phage) plays essential roles in the maintenance of the healthy state of the host. A disruption to the balance of this microbiome has been implicated not only in gastrointestinal disease but also neurological disorders including chronic pain. The influence of the gut microbiome is well documented in the context of visceral pain from the gastrointestinal tract while a greater understanding is emerging of the impact on inflammatory pain and neuropathic pain (both of which can occur during the perioperative period). The gut microbiome is an essential source for driving immune maturation and maintaining appropriate immune response. Given that inflammatory processes have been implicated in postoperative pain, aberrant microbiome profiles may play a role in the development of this type of pain. Furthermore, the microorganisms in our gut produce metabolites, neurotransmitters, and neuromodulators which interact with their receptors to regulate peripheral and central sensitisation associated with chronic pain. Microbiota-derived mediators can also regulate neuroinflammation, which is associated with activation of microglia as well as infiltration by immune cells, known to modulate the development and maintenance of central sensitisation. Moreover, risk factors for developing postoperative pain include anxiety, depression, and increased stress response. These central nervous system-related disorders have been associated with an altered gut microbiome and microbiome targeted intervention studies indicate improvements. Females are more likely to suffer from postoperative pain. As gonadal hormones are associated with a differential microbiome and pre-clinical studies show that male microbiome confers protection from inflammatory pain, it is possible that the composition of the microbiome and its by-products contribute to the increased risk for the development of postoperative pain. Very little evidence exists relating the microbiome to somatic pain. Here we discuss the potential role of the gut microbiome in the aetiology and pathophysiology of postoperative pain in the context of other somatic pain syndromes and what is known about microbe-neuron interactions. Investigations are needed to determine the specific role of the gut microbiome in this type of pain which may help inform the development of preventative interventions as well as management strategies to improve patient outcome.
Collapse
Affiliation(s)
- David Brenner
- Department of Anesthesia and Intensive Care Medicine, Cork University Hospital and University College Cork, Ireland
| | - George D Shorten
- Department of Anesthesia and Intensive Care Medicine, Cork University Hospital and University College Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
38
|
Mills EP, Keay KA, Henderson LA. Brainstem Pain-Modulation Circuitry and Its Plasticity in Neuropathic Pain: Insights From Human Brain Imaging Investigations. FRONTIERS IN PAIN RESEARCH 2021; 2:705345. [PMID: 35295481 PMCID: PMC8915745 DOI: 10.3389/fpain.2021.705345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Acute pain serves as a protective mechanism that alerts us to potential tissue damage and drives a behavioural response that removes us from danger. The neural circuitry critical for mounting this behavioural response is situated within the brainstem and is also crucial for producing analgesic and hyperalgesic responses. In particular, the periaqueductal grey, rostral ventromedial medulla, locus coeruleus and subnucleus reticularis dorsalis are important structures that directly or indirectly modulate nociceptive transmission at the primary nociceptive synapse. Substantial evidence from experimental animal studies suggests that plasticity within this system contributes to the initiation and/or maintenance of chronic neuropathic pain, and may even predispose individuals to developing chronic pain. Indeed, overwhelming evidence indicates that plasticity within this circuitry favours pro-nociception at the primary synapse in neuropathic pain conditions, a process that ultimately contributes to a hyperalgesic state. Although experimental animal investigations have been crucial in our understanding of the anatomy and function of the brainstem pain-modulation circuitry, it is vital to understand this system in acute and chronic pain states in humans so that more effective treatments can be developed. Recent functional MRI studies have identified a key role of this system during various analgesic and hyperalgesic responses including placebo analgesia, offset analgesia, attentional analgesia, conditioned pain modulation, central sensitisation and temporal summation. Moreover, recent MRI investigations have begun to explore brainstem pain-modulation circuitry plasticity in chronic neuropathic pain conditions and have identified altered grey matter volumes and functioning throughout the circuitry. Considering the findings from animal investigations, it is likely that these changes reflect a shift towards pro-nociception that ultimately contributes to the maintenance of neuropathic pain. The purpose of this review is to provide an overview of the human brain imaging investigations that have improved our understanding of the pain-modulation system in acute pain states and in neuropathic conditions. Our interpretation of the findings from these studies is often guided by the existing body of experimental animal literature, in addition to evidence from psychophysical investigations. Overall, understanding the plasticity of this system in human neuropathic pain conditions alongside the existing experimental animal literature will ultimately improve treatment options.
Collapse
|
39
|
Wang C, Hao H, He K, An Y, Pu Z, Gamper N, Zhang H, Du X. Neuropathic Injury-Induced Plasticity of GABAergic System in Peripheral Sensory Ganglia. Front Pharmacol 2021; 12:702218. [PMID: 34385921 PMCID: PMC8354334 DOI: 10.3389/fphar.2021.702218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022] Open
Abstract
GABA is a major inhibitory neurotransmitter in the mammalian central nervous system (CNS). Inhibitory GABAA channel circuits in the dorsal spinal cord are the gatekeepers of the nociceptive input from the periphery to the CNS. Weakening of these spinal inhibitory mechanisms is a hallmark of chronic pain. Yet, recent studies have suggested the existence of an earlier GABAergic “gate” within the peripheral sensory ganglia. In this study, we performed systematic investigation of plastic changes of the GABA-related proteins in the dorsal root ganglion (DRG) in the process of neuropathic pain development. We found that chronic constriction injury (CCI) induced general downregulation of most GABAA channel subunits and the GABA-producing enzyme, glutamate decarboxylase, consistent with the weakening of the GABAergic inhibition at the periphery. Strikingly, the α5 GABAA subunit was consistently upregulated. Knock-down of the α5 subunit in vivo moderately alleviated neuropathic hyperalgesia. Our findings suggest that while the development of neuropathic pain is generally accompanied by weakening of the peripheral GABAergic system, the α5 GABAA subunit may have a unique pro-algesic role and, hence, might represent a new therapeutic target.
Collapse
Affiliation(s)
- Caixue Wang
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Han Hao
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Kaitong He
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yating An
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Zeyao Pu
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Nikita Gamper
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.,Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Hailin Zhang
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Xiaona Du
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
40
|
Role of microglia and P2X4 receptors in chronic pain. Pain Rep 2021; 6:e864. [PMID: 33981920 PMCID: PMC8108579 DOI: 10.1097/pr9.0000000000000864] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
This study summarizes current understanding of the role of microglia and P2X4 receptor in chronic pain including neuropathic pain and of their therapeutic potential. Pain plays an indispensable role as an alarm system to protect us from dangers or injuries. However, neuropathic pain, a debilitating pain condition caused by damage to the nervous system, persists for a long period even in the absence of dangerous stimuli or after injuries have healed. In this condition, pain becomes a disease itself rather than the alarm system and is often resistant to currently available medications. A growing body of evidence indicates that microglia, a type of macrophages residing in the central nervous system, play a crucial role in the pathogenesis of neuropathic pain. Whenever microglia in the spinal cord detect a damaging signal within the nervous system, they become activated and cause diverse alterations that change neural excitability, leading to the development of neuropathic pain. For over a decade, several lines of molecular and cellular mechanisms that define microglial activation and subsequently altered pain transmission have been proposed. In particular, P2X4 receptors (a subtype of purinergic receptors) expressed by microglia have been investigated as an essential molecule for neuropathic pain. In this review article, we describe our understanding of the mechanisms by which activated microglia cause neuropathic pain through P2X4 receptors, their involvement in several pathological contexts, and recent efforts to develop new drugs targeting microglia and P2X4 receptors.
Collapse
|
41
|
Liao MF, Yeh SR, Lu KT, Hsu JL, Chao PK, Hsu HC, Peng CH, Lee YL, Hung YH, Ro LS. Interactions between Autophagy, Proinflammatory Cytokines, and Apoptosis in Neuropathic Pain: Granulocyte Colony Stimulating Factor as a Multipotent Therapy in Rats with Chronic Constriction Injury. Biomedicines 2021; 9:biomedicines9050542. [PMID: 34066206 PMCID: PMC8151381 DOI: 10.3390/biomedicines9050542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023] Open
Abstract
Our previous studies have shown that early systemic granulocyte colony-stimulating factor (G-CSF) treatment can attenuate neuropathic pain in rats with chronic constriction injury (CCI) by modulating expression of different proinflammatory cytokines, microRNAs, and proteins. Besides the modulation of inflammatory mediators' expression, previous studies have also reported that G-CSF can modulate autophagic and apoptotic activity. Furthermore, both autophagy and apoptosis play important roles in chronic pain modulation. In this study, we evaluated the temporal interactions of autophagy, and apoptosis in the dorsal root ganglion (DRG) and injured sciatic nerve after G-CSF treatment in CCI rats. We studied the behaviors of CCI rats with or without G-CSF treatment and the various levels of autophagic, proinflammatory, and apoptotic proteins in injured sciatic nerves and DRG neurons at different time points using Western blot analysis and immunohistochemical methods. The results showed that G-CSF treatment upregulated autophagic protein expression in the early phase and suppressed apoptotic protein expression in the late phase after nerve injury. Thus, medication such as G-CSF can modulate autophagy, apoptosis, and different proinflammatory proteins in the injured sciatic nerve and DRG neurons, which have the potential to treat neuropathic pain. However, autophagy-mediated regulation of neuropathic pain is a time-dependent process. An increase in autophagic activity in the early phase before proinflammatory cytokines reach the threshold level to induce neuropathic pain can effectively alleviate further neuropathic pain development.
Collapse
Affiliation(s)
- Ming-Feng Liao
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Linkou Medical Center and Chang Gung University, Taipei 33305, Taiwan; (M.-F.L.); (J.-L.H.); (Y.-L.L.); (Y.-H.H.)
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Shin-Rung Yeh
- College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Kwok-Tung Lu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Jung-Lung Hsu
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Linkou Medical Center and Chang Gung University, Taipei 33305, Taiwan; (M.-F.L.); (J.-L.H.); (Y.-L.L.); (Y.-H.H.)
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan
- Graduate Institute of Humanities in Medicine and Research Center for Brain and Consciousness, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan
| | - Po-Kuan Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Hui-Ching Hsu
- Division of Chinese Acupuncture and Traumatology, Chang Department of Traditional Chinese Medicine, Gung Memorial Hospital, College of Medicine, Linkou Medical Center and Chang Gung University, Taipei 33305, Taiwan; (H.-C.H.); (C.-H.P.)
| | - Chi-Hao Peng
- Division of Chinese Acupuncture and Traumatology, Chang Department of Traditional Chinese Medicine, Gung Memorial Hospital, College of Medicine, Linkou Medical Center and Chang Gung University, Taipei 33305, Taiwan; (H.-C.H.); (C.-H.P.)
| | - Yun-Lin Lee
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Linkou Medical Center and Chang Gung University, Taipei 33305, Taiwan; (M.-F.L.); (J.-L.H.); (Y.-L.L.); (Y.-H.H.)
| | - Yu-Hui Hung
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Linkou Medical Center and Chang Gung University, Taipei 33305, Taiwan; (M.-F.L.); (J.-L.H.); (Y.-L.L.); (Y.-H.H.)
| | - Long-Sun Ro
- Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Linkou Medical Center and Chang Gung University, Taipei 33305, Taiwan; (M.-F.L.); (J.-L.H.); (Y.-L.L.); (Y.-H.H.)
- Correspondence: ; Tel.: +886-3-3281200 (ext. 8351)
| |
Collapse
|
42
|
Dhanasobhon D, Medrano MC, Becker LJ, Moreno-Lopez Y, Kavraal S, Bichara C, Schlichter R, Inquimbert P, Yalcin I, Cordero-Erausquin M. Enhanced analgesic cholinergic tone in the spinal cord in a mouse model of neuropathic pain. Neurobiol Dis 2021; 155:105363. [PMID: 33845128 DOI: 10.1016/j.nbd.2021.105363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022] Open
Abstract
Endogenous acetylcholine (ACh) is an important modulator of nociceptive sensory processing in the spinal cord. An increased level of spinal ACh induces analgesia both in humans and rodents while interfering with cholinergic signaling is allodynic, demonstrating that a basal tone of spinal ACh modulates nociceptive responses in naïve animals. The plasticity undergone by this cholinergic system in chronic pain situation is unknown, and the mere presence of this tone in neuropathic animals is controversial. We have addressed these issues in mice through behavioral experiments, histology, electrophysiology and molecular biology, in the cuff model of peripheral neuropathy. Our behavior experiments demonstrate the persistence, and even increased impact of the analgesic cholinergic tone acting through nicotinic receptors in cuff animals. The neuropathy does not affect the number or membrane properties of dorsal horn cholinergic neurons, nor specifically the frequency of their synaptic inputs. The alterations thus appear to be in the neurons receiving the cholinergic signaling, which is confirmed by the fact that subthreshold doses of acetylcholinesterase (AChE) inhibitors in sham animals become anti-allodynic in cuff mice and by the altered expression of the β2 nicotinic receptor subunit. Our results demonstrate that endogenous cholinergic signaling can be manipulated to relieve mechanical allodynia in animal models of peripheral neuropathy. Until now, AChE inhibitors have mainly been used in the clinics in situations of acute pain (parturition, post-operative). The fact that lower doses (thus with fewer side effects) could be efficient in chronic pain conditions opens new avenues for the treatment of neuropathic pain. SIGNIFICANCE STATEMENT: Chronic pain continues to be the most common cause of disability that impairs the quality of life, accruing enormous and escalating socio-economic costs. A better understanding of the plasticity of spinal neuronal networks, crucially involved in nociceptive processing, could help designing new therapeutic avenues. We here demonstrate that chronic pain modifies the spinal nociceptive network in such a way that it becomes more sensitive to cholinergic modulations. The spinal cholinergic system is responsible for an analgesic tone that can be exacerbated by acetylcholinesterase inhibitors, a property used in the clinic to relief acute pain (child birth, post-op). Our results suggest that lower doses of acetylcholinesterases, with even fewer side effects, could be efficient to relieve chronic pain.
Collapse
Affiliation(s)
- Dhanasak Dhanasobhon
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Maria-Carmen Medrano
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Léa J Becker
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Yunuen Moreno-Lopez
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Sehrazat Kavraal
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Charlotte Bichara
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Rémy Schlichter
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Perrine Inquimbert
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Matilde Cordero-Erausquin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France; University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France.
| |
Collapse
|
43
|
Midavaine É, Côté J, Marchand S, Sarret P. Glial and neuroimmune cell choreography in sexually dimorphic pain signaling. Neurosci Biobehav Rev 2021; 125:168-192. [PMID: 33582232 DOI: 10.1016/j.neubiorev.2021.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Chronic pain is a major global health issue that affects all populations regardless of sex, age, ethnicity/race, or country of origin, leading to persistent physical and emotional distress and to the loss of patients' autonomy and quality of life. Despite tremendous efforts in the elucidation of the mechanisms contributing to the pathogenesis of chronic pain, the identification of new potential pain targets, and the development of novel analgesics, the pharmacological treatment options available for pain management remain limited, and most novel pain medications have failed to achieve advanced clinical development, leaving many patients with unbearable and undermanaged pain. Sex-specific susceptibility to chronic pain conditions as well as sex differences in pain sensitivity, pain tolerance and analgesic efficacy are increasingly recognized in the literature and have thus prompted scientists to seek mechanistic explanations. Hence, recent findings have highlighted that the signaling mechanisms underlying pain hypersensitivity are sexually dimorphic, which sheds light on the importance of conducting preclinical and clinical pain research on both sexes and of developing sex-specific pain medications. This review thus focuses on the clinical and preclinical evidence supporting the existence of sex differences in pain neurobiology. Attention is drawn to the sexually dimorphic role of glial and immune cells, which are both recognized as key players in neuroglial maladaptive plasticity at the origin of the transition from acute pain to chronic pathological pain. Growing evidence notably attributes to microglial cells a pivotal role in the sexually dimorphic pain phenotype and in the sexually dimorphic analgesic efficacy of opioids. This review also summarizes the recent advances in understanding the pathobiology underpinning the development of pain hypersensitivity in both males and females in different types of pain conditions, with particular emphasis on the mechanistic signaling pathways driving sexually dimorphic pain responses.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| | - Jérôme Côté
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Serge Marchand
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| |
Collapse
|
44
|
Yamamoto T, Sasaguri K, Mizumoto N, Suzuki H. The Chemokine CXCL14-like Immunoreactivity Co-exists with Somatostatin, but not NPY in the Rat Dorsal Horn and Has Intimate Association with GABAergic Neurons in the Lateral Spinal Nucleus. Acta Histochem Cytochem 2020; 53:121-129. [PMID: 33177784 PMCID: PMC7642483 DOI: 10.1267/ahc.20-00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies have proposed that the chemokine CXCL14 not only has a chemotactic activity, but also functions as a neuromodulator and/or neurotransmitter. In this study, we investigated the distribution of CXCL14 immunoreactive structures in the rat spinal cord and clarified the association of these structures with somatostatin, glutamic acid decarboxylase (GAD; a marker for GABAergic neurons), and neuropeptide Y (NPY). CXCL14 immunoreactive fibers and puncta were observed in lamina II, which modulates somatosensation including nociception, and the lateral spinal nucleus of the spinal dorsal horn at cervical, thoracic, and lumber spinal cord levels. These CXCL14 immunoreactive structures were also immuno-positive for somatostatin, but were immuno-negative for GAD and NPY. In the cervical lateral spinal nucleus, CXCL14 immunoreactive puncta, which were also immuno-positive for somatostatin, existed along the proximal dendrites of some of GABAergic neurons. Together, these results suggest that CXCL14 contributes to the modulation of somatosensation in concert with somatostatin. Neurons targeted by the CXCL14 fiber system include GABAergic neurons located in the lateral spinal nucleus suggesting that CXCL14 with somatostatin can influence the GABAergic neuron function.
Collapse
Affiliation(s)
- Toshiharu Yamamoto
- Brain Functions and Neuroscience Division, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University
| | - Kenichi Sasaguri
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, School of Medicine
| | | | - Hirohumi Suzuki
- Department of Biology, University of Teacher Education Fukuoka
| |
Collapse
|
45
|
Understanding Diabetic Neuropathy: Focus on Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9524635. [PMID: 32832011 PMCID: PMC7422494 DOI: 10.1155/2020/9524635] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
Diabetic neuropathy is one of the clinical syndromes characterized by pain and substantial morbidity primarily due to a lesion of the somatosensory nervous system. The burden of diabetic neuropathy is related not only to the complexity of diabetes but also to the poor outcomes and difficult treatment options. There is no specific treatment for diabetic neuropathy other than glycemic control and diligent foot care. Although various metabolic pathways are impaired in diabetic neuropathy, enhanced cellular oxidative stress is proposed as a common initiator. A mechanism-based treatment of diabetic neuropathy is challenging; a better understanding of the pathophysiology of diabetic neuropathy will help to develop strategies for the new and correct diagnostic procedures and personalized interventions. Thus, we review the current knowledge of the pathophysiology in diabetic neuropathy. We focus on discussing how the defects in metabolic and vascular pathways converge to enhance oxidative stress and how they produce the onset and progression of nerve injury present in diabetic neuropathy. We discuss if the mechanisms underlying neuropathy are similarly operated in type I and type II diabetes and the progression of antioxidants in treating diabetic neuropathy.
Collapse
|
46
|
Hughes DI, Todd AJ. Central Nervous System Targets: Inhibitory Interneurons in the Spinal Cord. Neurotherapeutics 2020; 17:874-885. [PMID: 33029722 PMCID: PMC7641291 DOI: 10.1007/s13311-020-00936-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Pain is a percept of critical importance to our daily survival. In most cases, it serves both an adaptive function by helping us respond appropriately in a potentially hostile environment and also a protective role by alerting us to tissue damage. Normally, it is evoked by the activation of peripheral nociceptive nerve endings and the subsequent relay of information to distinct cortical and sub-cortical regions, but under pathological conditions that result in chronic pain, it can become spontaneous. Given that one in three chronic pain patients do not respond to the treatments currently available, the need for more effective analgesics is evident. Two principal obstacles to the development of novel analgesic therapies are our limited understanding of how neuronal circuits that comprise these pain pathways transmit and modulate sensory information under normal circumstances and how these circuits change under pathological conditions leading to chronic pain states. In this review, we focus on the role of inhibitory interneurons in setting pain thresholds and, in particular, how disinhibition in the spinal dorsal horn can lead to aberrant sensory processing associated with chronic pain states.
Collapse
Affiliation(s)
- David I Hughes
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland.
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
47
|
Ward H, West SJ. Microglia: sculptors of neuropathic pain? ROYAL SOCIETY OPEN SCIENCE 2020; 7:200260. [PMID: 32742693 PMCID: PMC7353970 DOI: 10.1098/rsos.200260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/01/2020] [Indexed: 05/02/2023]
Abstract
Neuropathic pain presents a huge societal and individual burden. The limited efficacy of current analgesics, diagnostic markers and clinical trial outcome measures arises from an incomplete understanding of the underlying mechanisms. A large and growing body of evidence has established the important role of microglia in the onset and possible maintenance of neuropathic pain, and these cells may represent an important target for future therapy. Microglial research has further revealed their important role in structural remodelling of the nervous system. In this review, we aim to explore the evidence for microglia in sculpting nervous system structure and function, as well as their important role in neuropathic pain, and finally integrate these studies to synthesize a new model for microglia in somatosensory circuit remodelling, composed of six key and inter-related mechanisms. Summarizing the mechanisms through which microglia modulate nervous system structure and function helps to frame a better understanding of neuropathic pain, and provide a clear roadmap for future research.
Collapse
Affiliation(s)
- Harry Ward
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Steven J. West
- Sainsbury Wellcome Centre, University College London, 25 Howland St, London WC1E 6BT, UK
- Author for correspondence: Steven J. West e-mail:
| |
Collapse
|
48
|
Kosaka Y, Yafuso T, Shimizu-Okabe C, Kim J, Kobayashi S, Okura N, Ando H, Okabe A, Takayama C. Development and persistence of neuropathic pain through microglial activation and KCC2 decreasing after mouse tibial nerve injury. Brain Res 2020; 1733:146718. [PMID: 32045595 DOI: 10.1016/j.brainres.2020.146718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/27/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022]
Abstract
Gamma-amino butyric acid (GABA) is an inhibitory neurotransmitter in the mature brain, but is excitatory during development and after motor nerve injury. This difference in GABAergic action depends on the intracellular chloride ion concentration ([Cl-]i), primarily regulated by potassium chloride co-transporter 2 (KCC2). To reveal precise processes of the neuropathic pain through changes in GABAergic action, we prepared tibial nerve ligation and severance models using male mice, and examined temporal relationships amongst changes in (1) the mechanical withdrawal threshold in the sural nerve area, (2) localization of the molecules involved in GABAergic transmission and its upstream signaling in the dorsal horn, and (3) histology of the tibial nerve. In the ligation model, tibial nerve degeneration disappeared by day 56, but mechanical allodynia, reduced KCC2 localization, and increased microglia density remained until day 90. Microglia density was higher in the tibial zone than the sural zone before day 21, but this result was inverted after day 28. In contrast, in the severance model, all above changes were detected until day 28, but were simultaneously and significantly recovered by day 90. These results suggested that in male mice, allodynia may be caused by reduced GABAergic synaptic inhibition, resulting from elevated [Cl-]i after the reduction of KCC2 by activated microglia. Furthermore, our results suggested that factors from degenerating nerve terminals may diffuse into the sural zone, whereby they induced the development of allodynia in the sural nerve area, while other factors in the sural zone may mediate persistent allodynia through the same pathway.
Collapse
Affiliation(s)
- Yoshinori Kosaka
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Tsukasa Yafuso
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Jeongtae Kim
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan; Department of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Shiori Kobayashi
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Hironobu Ando
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Akihito Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan; Department of Nutritional Science, Faculty of Health and Welfare, Seinan Jo Gakuin University, Fukuoka 803-0835, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan.
| |
Collapse
|
49
|
Rosenberger DC, Blechschmidt V, Timmerman H, Wolff A, Treede RD. Challenges of neuropathic pain: focus on diabetic neuropathy. J Neural Transm (Vienna) 2020; 127:589-624. [PMID: 32036431 PMCID: PMC7148276 DOI: 10.1007/s00702-020-02145-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
Neuropathic pain is a frequent condition caused by a lesion or disease of the central or peripheral somatosensory nervous system. A frequent cause of peripheral neuropathic pain is diabetic neuropathy. Its complex pathophysiology is not yet fully elucidated, which contributes to underassessment and undertreatment. A mechanism-based treatment of painful diabetic neuropathy is challenging but phenotype-based stratification might be a way to develop individualized therapeutic concepts. Our goal is to review current knowledge of the pathophysiology of peripheral neuropathic pain, particularly painful diabetic neuropathy. We discuss state-of-the-art clinical assessment, validity of diagnostic and screening tools, and recommendations for the management of diabetic neuropathic pain including approaches towards personalized pain management. We also propose a research agenda for translational research including patient stratification for clinical trials and improved preclinical models in relation to current knowledge of underlying mechanisms.
Collapse
Affiliation(s)
- Daniela C Rosenberger
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Vivian Blechschmidt
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Hans Timmerman
- Department of Anesthesiology, Pain Center, University Medical Center of Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - André Wolff
- Department of Anesthesiology, Pain Center, University Medical Center of Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
50
|
Lunde S, Petersen KK, Kugathasan P, Arendt-Nielsen L, Søgaard-Andersen E. Correction to: Chronic Postoperative Pain After Robot-Assisted Laparoscopic Hysterectomy for Endometrial Cancer by Lunde S, Petersen KK, Kugathasan P, Arendt-Nielsen L and Søgaard-Andersen E. Journal of Gynecologic Surgery 2019;35(3);140-146. DOI: 10.1089/gyn.2018.0068. J Gynecol Surg 2020. [PMID: 32293603 DOI: 10.1089/gyn.2018.0068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
[This corrects the article DOI: 10.1089/gyn.2018.0068.].
Collapse
Affiliation(s)
- Søren Lunde
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
- Center for Clinical Research, North Denmark Regional Hospital, Hjoerring, Denmark
| | - Kristian Kjær Petersen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, The Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Pirathiv Kugathasan
- Department of Clinical Medicine, Aalborg University Hospital, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, The Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Erik Søgaard-Andersen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|