1
|
Wu T, Li W, Zhuang L, Liu J, Wang P, Gu Y, Liu Y, Yu Y. Deficiency of Aging-Related Gene Chitinase-Like 4 Impairs Olfactory Epithelium Homeostasis. Cell Prolif 2025:e70055. [PMID: 40389328 DOI: 10.1111/cpr.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/02/2025] [Accepted: 04/23/2025] [Indexed: 05/21/2025] Open
Abstract
Mammalian olfactory epithelium (OE) undergoes consistent self-renewal throughout life. In OE homeostasis, globose basal cells (GBCs) contribute to the generation of olfactory sensory neurons (OSNs) to replace old ones. Chitinase-like 4 (Chil4), a chitinase-like protein expressed in supporting cells, plays a critical role in OE regeneration, while its role in tissue homeostasis is still elusive. Here, we found that Chil4 is upregulated in the aged OE. Deletion of Chil4 leads to a reduction in the number of GBCs and immature OSNs (iOSNs). Chil4-/- GBCs show attenuation in cell cycle progression and an aberrant expression pattern of cell-cycle-related genes such as Cdk1. Chil4 deletion causes loss of a specific subcluster of GAP43+ iOSNs expressing Cebpb, Nqo1 and low level of mature OSN (mOSN) marker Stoml3 (iOSN_CeStLNq), potentially suggesting a transitional state between immature and mature neurons. Chil4 knockout induces inflammatory activation in Iba1+ microglia (MG)-like cells in the OE. Chil4 downregulation in aged organoids reduced the number of mature sensory neurons, suggesting a necessary role of Chil4 in maintaining neuronal generation in the aged OE. Collectively, these observations reveal a previously unidentified function of Chil4, establishing the cellular mechanism underlying OE homeostasis.
Collapse
Affiliation(s)
- Tingting Wu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Weihao Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Jinxia Liu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Ye Gu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yongliang Liu
- Department of Otolaryngology, Zibo Central Hospital, Zibo, Shandong, China
| | - Yiqun Yu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Hara Y, Jha MK, Huang JY, Han Y, Langohr IM, Gaglia G, Zhu C, Piepenhagen P, Gayvert K, Lim WK, Asrat S, Nash S, Jacob‐Nara JA, Orengo JM, Bangari DS, de Rinaldis E, Mattoo H, Hicks A. The IL-4-IL-4Rα axis modulates olfactory neuroimmune signaling to induce loss of smell. Allergy 2025; 80:440-461. [PMID: 39418114 PMCID: PMC11804309 DOI: 10.1111/all.16338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024]
Abstract
IL-4 and IL-13 have non-redundant effects in olfaction, with loss of smell in mice evoked only by intranasal administration of IL-4, but not IL-13. IL-4-evoked pathophysiological effects on olfaction is independent of compromised structural integrity of the olfactory neuroepithelium. IL-4-IL-4Rα signaling modulates neuronal crosstalk with immune cells, suggesting a functional link between olfactory impairment and neuroinflammation. Abbreviations: IL, interleukin; KO, knock-out; wk, week; WT, wild-type.
Collapse
Affiliation(s)
- Yannis Hara
- Type 2 Inflammation, Immunology and Inflammation, SanofiCambridgeMassachusettsUSA
| | - Mithilesh Kumar Jha
- Type 2 Inflammation, Immunology and Inflammation, SanofiCambridgeMassachusettsUSA
| | - Jeremy Y. Huang
- Precision Medicine and Computational Biology, SanofiCambridgeMassachusettsUSA
| | - Yingnan Han
- Precision Medicine and Computational Biology, SanofiCambridgeMassachusettsUSA
| | | | - Giorgio Gaglia
- Precision Medicine and Computational Biology, SanofiCambridgeMassachusettsUSA
| | - Cheng Zhu
- Precision Medicine and Computational Biology, SanofiCambridgeMassachusettsUSA
| | | | - Kaitlyn Gayvert
- Molecular Profiling and Data Science, Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | - Wei Keat Lim
- Molecular Profiling and Data Science, Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | - Seblewongel Asrat
- Immunology and Inflammation, Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | - Scott Nash
- Medical Affairs, Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | | | - Jamie M. Orengo
- Immunology and Inflammation, Regeneron Pharmaceuticals, Inc.TarrytownNew YorkUSA
| | | | | | - Hamid Mattoo
- Precision Medicine and Computational Biology, SanofiCambridgeMassachusettsUSA
| | - Alexandra Hicks
- Type 2 Inflammation, Immunology and Inflammation, SanofiCambridgeMassachusettsUSA
| |
Collapse
|
3
|
Liu J, Zhang Y, Yu Y. Establishment of nasal and olfactory epithelium organoids for unveiling mechanism of tissue regeneration and pathogenesis of nasal diseases. Cell Mol Life Sci 2025; 82:33. [PMID: 39751829 PMCID: PMC11699091 DOI: 10.1007/s00018-024-05557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Organoid is an ideal in vitro model with cellular heterogeneity and genetic stability when passaging. Currently, organoids are exploited as new tools in a variety of preclinical researches and applications for disease modeling, drug screening, host-microbial interactions, and regenerative therapy. Advances have been made in the establishment of nasal and olfactory epithelium organoids that are used to investigate the pathogenesis of smell-related diseases and cellular/molecular mechanism underlying the regeneration of olfactory epithelium. A set of critical genes are identified to function in cell proliferation and neuronal differentiation in olfactory epithelium organoids. Besides, nasal epithelium organoids derived from chronic rhinosinusitis patients have been established to reveal the pathogenesis of this disease, potentially applied in drug responses in individual patient. The present article reviews recent research progresses of nasal and olfactory epithelium organoids in fundamental and preclinical researches, and proposes current advances and potential future direction in the field of organoid research and application.
Collapse
Affiliation(s)
- Jinxia Liu
- ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yunfeng Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yiqun Yu
- ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
- Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
- Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China.
| |
Collapse
|
4
|
Ullah MN, Rowan NR, Lane AP. Neuroimmune interactions in the olfactory epithelium: maintaining a sensory organ at an immune barrier interface. Trends Immunol 2024; 45:987-1000. [PMID: 39550314 PMCID: PMC11624989 DOI: 10.1016/j.it.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/18/2024]
Abstract
While primarily a sensory organ, the mammalian olfactory epithelium (OE) also plays a critical role as an immune barrier. Mechanisms governing interactions between the immune system and this specialized chemosensory tissue are gaining interest, in part sparked by the COVID-19 pandemic. Regulated inflammation is intrinsic to normal mucosal healing and homeostasis, but prolonged OE inflammation is associated with persistent loss of smell, belying the intertwining of local mucosal immunology and olfactory function. Evidence supports bidirectional communication between OE cells and the immune system in health and disease. Recent investigations suggest that neuro-immune cross-talk modulates olfactory stem cell behavior and neuronal regeneration dynamics, prioritizing the epithelial-like non-neuronal framework with immune barrier function at the expense of the neurosensory organ in chronic inflammation.
Collapse
Affiliation(s)
- Mohammed N Ullah
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas R Rowan
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew P Lane
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Li W, Wu T, Zhu K, Ba G, Liu J, Zhou P, Li S, Wang L, Liu H, Ren W, Yu H, Yu Y. A single-cell transcriptomic census of mammalian olfactory epithelium aging. Dev Cell 2024; 59:3043-3058.e8. [PMID: 39173624 DOI: 10.1016/j.devcel.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
Mammalian olfactory epithelium has the capacity of self-renewal throughout life. Aging is one of the major causes leading to the olfactory dysfunction. Here, we performed single-cell RNA sequencing (scRNA-seq) analysis on young and aged murine olfactory epithelium (OE) and identified aging-related differentially expressed genes (DEGs) throughout 21 cell types. Aging led to the presence of activated horizontal basal cells (HBCs) in the OE and promoted cellular interaction between HBCs and neutrophils. Aging enhanced the expression of Egr1 and Fos in sustentacular cell differentiation from multipotent progenitors, whereas Bcl11b was downregulated during the sensory neuronal homeostasis in the aged OE. Egr1 and Cebpb were predictive core regulatory factors of the transcriptional network in the OE. Overexpression of Egr1 in aged OE organoids promoted cell proliferation and neuronal differentiation. Moreover, aging altered expression levels and frequencies of olfactory receptors. These findings provide a cellular and molecular framework of OE aging at the single-cell resolution.
Collapse
Affiliation(s)
- Weihao Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Tingting Wu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Kesen Zhu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Guangyi Ba
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Jinxia Liu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Ping Zhou
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Shengjv Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Li Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Huanhai Liu
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China.
| | - Wenwen Ren
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China.
| | - Hongmeng Yu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| | - Yiqun Yu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| |
Collapse
|
6
|
Dietz A, Senf K, Neuhaus EM. ACKR3 in olfactory glia cells shapes the immune defense of the olfactory mucosa. Glia 2024; 72:1183-1200. [PMID: 38477581 DOI: 10.1002/glia.24527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Barrier-forming olfactory glia cells, termed sustentacular cells, play important roles for immune defense of the olfactory mucosa, for example as entry sites for SARS-CoV-2 and subsequent development of inflammation-induced smell loss. Here we demonstrate that sustentacular cells express ACKR3, a chemokine receptor that functions both as a scavenger of the chemokine CXCL12 and as an activator of alternative signaling pathways. Differential gene expression analysis of bulk RNA sequencing data obtained from WT and ACKR3 conditional knockout mice revealed upregulation of genes involved in immune defense. To map the regulated genes to the different cell types of the olfactory mucosa, we employed biocomputational methods utilizing a single-cell reference atlas. Transcriptome analysis, PCR and immunofluorescence identified up-regulation of NF-κB-related genes, known to amplify inflammatory signaling and to facilitate leukocyte transmigration, in the gliogenic lineage. Accordingly, we found a marked increase in leukocyte-expressed genes and confirmed leukocyte infiltration into the olfactory mucosa. In addition, lack of ACKR3 led to enhanced expression and secretion of early mediators of immune defense by Bowman's glands. As a result, the number of apoptotic cells in the epithelium was decreased. In conclusion, our research underlines the importance of sustentacular cells in immune defense of the olfactory mucosa. Moreover, it identifies ACKR3, a druggable G protein-coupled receptor, as a promising target for modulation of inflammation-associated anosmia.
Collapse
Affiliation(s)
- André Dietz
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Katja Senf
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Eva M Neuhaus
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
7
|
Merle-Nguyen L, Ando-Grard O, Bourgon C, St Albin A, Jacquelin J, Klonjkowski B, Le Poder S, Meunier N. Early corticosteroid treatment enhances recovery from SARS-CoV-2 induced loss of smell in hamster. Brain Behav Immun 2024; 118:78-89. [PMID: 38367845 DOI: 10.1016/j.bbi.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024] Open
Abstract
Among the numerous long COVID symptoms, olfactory dysfunction persists in ∼10 % of patients suffering from SARS-CoV-2 induced anosmia. Among the few potential therapies, corticoid treatment has been used for its anti-inflammatory effect with mixed success in patients. In this study, we explored its impact using hamster as an animal model. SARS-CoV-2 infected hamsters lose their smell abilities and this loss is correlated with damage of the olfactory epithelium and persistent presence of innate immunity cells. We started a dexamethasone treatment 2 days post infection, when olfaction was already impacted, until 11 days post infection when it started to recover. We observed an improvement of olfactory capacities in the animals treated with corticoid compared to those treated with vehicle. This recovery was not related to differences in the remaining damage to the olfactory epithelium, which was similar in both groups. This improvement was however correlated with a reduced inflammation in the olfactory epithelium with a local increase of the mature olfactory neuron population. Surprisingly, at 11 days post infection, we observed an increased and disorganized presence of immature olfactory neurons, especially in persistent inflammatory zones of the epithelium. This unusual population of immature olfactory neurons coincided with a strong increase of olfactory epithelium proliferation in both groups. Our results indicate that persistent inflammation of the olfactory epithelium following SARS-CoV-2 infection may alter the extent and speed of regeneration of the olfactory neuron population, and that corticoid treatment is effective to limit inflammation and improve olfaction recovery following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Laetitia Merle-Nguyen
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ophélie Ando-Grard
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Clara Bourgon
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Audrey St Albin
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Juliette Jacquelin
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bernard Klonjkowski
- UMR 1161 Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94704 Paris, France
| | - Sophie Le Poder
- UMR 1161 Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94704 Paris, France
| | - Nicolas Meunier
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France.
| |
Collapse
|
8
|
Li P, Wang N, Kai L, Si J, Wang Z. Chronic intranasal corticosteroid treatment induces degeneration of olfactory sensory neurons in normal and allergic rhinitis mice. Int Forum Allergy Rhinol 2023; 13:1889-1905. [PMID: 36800514 DOI: 10.1002/alr.23142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Nasal eosinophilic inflammation is the therapeutic target for olfactory dysfunction in allergic rhinitis (AR). Intranasal corticosteroids are commonly considered to offer targetable benefit given their immunosuppressive property. However, experimental evidence suggests that continuous corticosteroid exposure may directly cause olfactory damage by disrupting the turnover of olfactory sensory neurons (OSNs). This potentially deleterious effect of corticosteroids calls into question their long-term topical use for treating olfactory loss related to AR. The aim of this study was to assess the impacts of chronic intranasal corticosteroid treatment on olfactory function and OSN population in mice under normal and pathological conditions. METHODS BALB/c mice were intranasally treated with fluticasone propionate (FP, 0.3 mg/kg) for up to 8 weeks. Additional mice were used to establish an ovalbumin-induced mouse model of AR, followed by nasal challenge with ovalbumin for 8 weeks in the presence or absence of intranasal FP treatment. The authors examined olfactory function, OSN existence, neuronal turnover, and nasal inflammation using behavioral test, histological analyses, Western blotting, and enzyme-linked immunosorbent assay. RESULTS Intranasal treatment with FP for 8 weeks (FP-wk8) reduced odor sensitivity in normal mice. This reduction was concomitant with loss of OSNs and the axons projecting to the olfactory bulb, primarily resulting from increased neuronal apoptosis. In FP-wk8 AR mice, intranasal FP treatment attenuated olfactory impairment and eosinophilic inflammation but failed to reconstitute OSN population and axonal projections. CONCLUSION These results suggest that chronic intranasal corticosteroid treatment contributes to OSN degeneration that may reduce the therapeutic effectiveness for AR-related olfactory loss.
Collapse
Affiliation(s)
- Pu Li
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Na Wang
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Luo Kai
- Department of Otolaryngology-Head and Neck Surgery, Peking University Shougang Hospital, Beijing, China
| | - Jinyuan Si
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Zhenlin Wang
- Department of Otolaryngology-Head and Neck Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Ma Z, Li W, Zhuang L, Wen T, Wang P, Yu H, Liu Y, Yu Y. TMEM59 ablation leads to loss of olfactory sensory neurons and impairs olfactory functions via interaction with inflammation. Brain Behav Immun 2023; 111:151-168. [PMID: 37061103 DOI: 10.1016/j.bbi.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023] Open
Abstract
The olfactory epithelium undergoes constant neurogenesis throughout life in mammals. Several factors including key signaling pathways and inflammatory microenvironment regulate the maintenance and regeneration of the olfactory epithelium. In this study, we identify TMEM59 (also known as DCF1) as a critical regulator to the epithelial maintenance and regeneration. Single-cell RNA-Seq data show downregulation of TMEM59 in multiple epithelial cell lineages with aging. Ablation of TMEM59 leads to apparent alteration at the transcriptional level, including genes associated with olfactory transduction and inflammatory/immune response. These differentially expressed genes are key components belonging to several signaling pathways, such as NF-κB, chemokine, etc. TMEM59 deletion impairs olfactory functions, attenuates proliferation, causes loss of both mature and immature olfactory sensory neurons, and promotes infiltration of inflammatory cells, macrophages, microglia cells and neutrophils into the olfactory epithelium and lamina propria. TMEM59 deletion deteriorates regeneration of the olfactory epithelium after injury, with significant reduction in the number of proliferative cells, immature and mature sensory neurons, accompanied by the increasing number of inflammatory cells and macrophages. Anti-inflammation by dexamethasone recovers neuronal generation and olfactory functions in the TMEM59-KO animals, suggesting the correlation between TMEM59 and inflammation in regulating the epithelial maintenance. Collectively, TMEM59 regulates olfactory functions, as well as neuronal generation in the olfactory epithelium via interaction with inflammation, suggesting a potential role in therapy against olfactory dysfunction associated with inflamm-aging.
Collapse
Affiliation(s)
- Zhenjie Ma
- School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| | - Weihao Li
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People's Republic of China; Ear, Nose & Throat Institute, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People's Republic of China; Clinical and Research Center for Olfactory Disorders, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People's Republic of China
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Tieqiao Wen
- School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; The MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310027, China.
| | - Hongmeng Yu
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People's Republic of China; Ear, Nose & Throat Institute, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People's Republic of China; Clinical and Research Center for Olfactory Disorders, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Yongliang Liu
- Department of Otolaryngology, Zibo Central Hospital, Zibo 255036, China.
| | - Yiqun Yu
- Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People's Republic of China; Ear, Nose & Throat Institute, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People's Republic of China; Clinical and Research Center for Olfactory Disorders, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
10
|
Louie JD, Bromberg BH, Zunitch MJ, Schwob JE. Horizontal basal cells self-govern their neurogenic potential during injury-induced regeneration of the olfactory epithelium. Development 2023; 150:dev201552. [PMID: 37260223 PMCID: PMC10323233 DOI: 10.1242/dev.201552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Horizontal basal cells (HBCs) residing within severely damaged olfactory epithelium (OE) mediate OE regeneration by differentiating into odorant-detecting olfactory sensory neurons (OSNs) and other tissue supporting non-neuronal cell types. Depending on both tissue type and integrity, the Notch signaling pathway can either positively or negatively regulate resident stem cell activity. Although Notch1 specifies HBC dormancy in the uninjured OE, little is known about how HBCs are influenced by the Notch pathway following OE injury. Here, we show that HBCs depend on a functional inversion of the Notch pathway to appropriately mediate OE regeneration. At 24 h post-injury, HBCs enhance Notch1-mediated signaling. Moreover, at 3 days post-injury when the regenerating OE is composed of multiple cell layers, HBCs enrich both Notch1 and the Notch ligand, Dll1. Notably, HBC-specific Notch1 knockout increases HBC quiescence and impairs HBC differentiation into neuronal progenitors and OSNs. Interestingly, complete HBC knockout of Dll1 only decreases differentiation of HBC-derived OSNs. These data underscore the context-dependent nature of Notch signaling. Furthermore, they reveal that HBCs regulate their own neurogenic potential after OE injury.
Collapse
Affiliation(s)
- Jonathan D. Louie
- Medical Scientist Training Program, Tufts University School of Medicine, Boston, MA 02111, USA
- Neuroscience Graduate Program, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Benjamin H. Bromberg
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Matthew J. Zunitch
- Medical Scientist Training Program, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Cell, Molecular and Developmental Biology Graduate Program, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - James E. Schwob
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| |
Collapse
|
11
|
Dhondrup R, Tidwell T, Zhang X, Feng X, Lobsang D, Hua Q, Geri D, Suonan DC, Fan G, Samdrup G. Tibetan medicine Liuwei Muxiang pills (LWMX pills) effectively protects mice from chronic non-atrophic gastritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154826. [PMID: 37167846 DOI: 10.1016/j.phymed.2023.154826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Chronic non-atrophic gastritis (CNG) is the most common type of chronic gastritis. If not actively treated, it may induce gastric cancer (GC). Western medicine is effective in CNG, but there are more adverse reactions after long-term medication, and it is easy to relapse after treatment, which affects patients' health and life. Tibetan medicine Liuwei Muxiang Pills (LWMX pills) is a traditional Tibetan medicine compound, which has a unique curative effect in the treatment of gastric inflammation, especially chronic non-atrophic gastritis. However, the mechanisms of LWMX pills for treatment CNG still remain poor known. PURPOSE The aim of this study was to evaluate the therapeutic intervention potential of Tibetan medicine LWMX pills on CNG and explore its potential mechanisms in mice models. METHODS The mice models was established to evaluate the therapeutic effect of LWMX pills on CNG. The main components of LWMX pills were analyzed by GC-MS. HE staining, immunohistochemistry, proteomics and Western Blot were used to analyze the potential mechanism of LWMX pills for CNG treatment. RESULTS In the present study, LWMX pills containing costunolide, dehydrocostuslactone and antioxidants were found. IF results showed that the expression of ALDH1B1 in the control group was significantly lower than that in the model group in the gastric mucosa tissue, and the expression of ALDH1B1 was significantly lower in the 25 mg/ml LWMX Pills group (one month) and 25 mg/ml LWMX Pills group (two months) than in the model group. IHC revealed that model group samples expressed higher levels of Furin than 25 mg/ml LWMX Pills group samples, as evidenced by very strong staining of Furin in gastric mucosal cells. However, AMY2 staining in gastric mucosal cells did not differ significantly between the treated and control groups. the protein expression levels of these proteins were decreased in 25 mg/mL LWMX pills. Meanwhile, we found that the CAM1 protein expression in the in 25 mg/ml LWMX pills group (two mouths) was increased compared to the in 25 mg/ml LWMX pills group (one mouths).Western blotting showed that the protein expression levels of Furin, AMY2A, CPA3, ALDH1B1, Cam1, COXII, IL-6, IL-1β were decreased in 25 mg/mL LWMX pills. Meanwhile, that the CAM1 protein expression in the in 25 mg/ml LWMX pills group (two mouths) was increased compared to the in 25 mg/ml LWMX pills group (one mouths). CONCLUSION 25mg/ml LWMX pill treatment for one month had better therapeutic effect on mice CNG. Further proteomic results showed that LWMX pills maintain gastric function by inhibiting inflammation and oxidative stress, and we also found that LWMX pills regulate the expression of proteins associated with cancer development (Amy2, Furin).
Collapse
Affiliation(s)
- Rinchen Dhondrup
- Tibetan Medical College of Qinghai University, Xining 810016, Qinghai, People's Republic of China.
| | - Tawni Tidwell
- University of Wisconsin-Madison, Center for Healthy Minds, Madison, WI, 53703 United States
| | - XiaoKang Zhang
- Jingjie PTM Bio (Hangzhou) Co., Ltd., Hangzhou 310018, Zhejiang, People's Republic of China
| | - Xuemei Feng
- Qinghai Provincial Tibetan Hospital, Xining 810007, Qinghai, People's Republic of China
| | - Dhondrup Lobsang
- Tibetan Medical College of Qinghai University, Xining 810016, Qinghai, People's Republic of China
| | - Qincuo Hua
- Qinghai Provincial Tibetan Hospital, Xining 810007, Qinghai, People's Republic of China
| | - Duojie Geri
- Tibetan Medical College of Qinghai University, Xining 810016, Qinghai, People's Republic of China
| | - Duojie Caidan Suonan
- Tibetan Medical College of Qinghai University, Xining 810016, Qinghai, People's Republic of China
| | - Gang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, People's Republic of China
| | - Gyal Samdrup
- Tibetan Medical College of Qinghai University, Xining 810016, Qinghai, People's Republic of China
| |
Collapse
|
12
|
Saraswathula A, Liu MM, Kulaga H, Lane AP. Chronic interleukin-13 expression in mouse olfactory mucosa results in regional aneuronal epithelium. Int Forum Allergy Rhinol 2023; 13:230-241. [PMID: 35950767 PMCID: PMC9918612 DOI: 10.1002/alr.23073] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Olfactory dysfunction is highly associated with chronic rhinosinusitis with nasal polyps (CRSwNP), and the severity of loss has been linked with biomarkers of type 2 inflammation. The ability of dupilumab to rapidly improve the sense of smell prior to improvement in polyp size suggests a direct role of IL-4/IL-13 receptor signaling in the olfactory epithelium (OE). METHODS We created a transgenic mouse model in which IL-13 is inducibly expressed specifically within the OE. Gene expression analysis and immunohistology were utilized to characterize the effect of IL-13 on the structure of the OE. RESULTS After induction of olfactory IL-13 expression, there is a time-dependent loss of neurons from OE regions, accompanied by a modest inflammatory infiltrate. Horizontal basal cells undergo morphologic changes consistent with activation and demonstrate proliferation. Mucus production and increased expression of eotaxins is observed, with marked expression of Ym2 by sustentacular cells. DISCUSSION Chronic IL-13 exposure has several effects on the OE that are likely to affect function. The neuronal loss is in keeping with other models of allergic type 2 nasal inflammation. Future studies are needed to correlate cellular and molecular alterations in olfactory cell populations with findings in human CRSwNP, as well as to assess olfactory function in behavioral model systems.
Collapse
Affiliation(s)
- Anirudh Saraswathula
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melissa M Liu
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heather Kulaga
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew P Lane
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Rong HM, Zhang C, Rong GS, Li T, Qian XJ, Wang D, Tong ZH. Analysis of lncRNA and mRNA Repertoires in Lung From BAFF-R-Deficient Pneumocystis-Infected Mice. Front Immunol 2022; 13:898660. [PMID: 35774783 PMCID: PMC9238325 DOI: 10.3389/fimmu.2022.898660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPneumocystis pneumonia (PCP) is a common medical issue in immunosuppressive patients. Increasing evidence supports that B cells may play an essential role in PCP individuals. The present study aims to integrate lncRNA and mRNA expression profiles and further investigate the molecular function of mature B cells in PCP.MethodsThe lung tissue of wild-type (WT) mice and B-cell-activating factor receptor–deficient (mature B-cell deficiency, BAFF-R–/–) mice were harvested at 3 weeks after being infected with pneumocystis. After total RNAs were extracted, transcriptome profiling was performed following the Illumina HiSeq 3000 protocol. lncRNA-targeted miRNA pairs were predicted using the online databases. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment pathways were analyzed to functionally annotate these differentially expressed genes. Additionally, the immune-related lncRNA–miRNA–mRNA–ceRNA network was subsequently performed. The quantitative real-time PCR (RT-PCR) analysis was conducted to evaluate the lncRNA and mRNA expression profiles in WT-PCP mice and BAFF-R–/– PCP mice.ResultsCompared with the control group, 166 mRNAs were observed to be aberrantly expressed (fold change value ≥2; P <0.05) in the BAFF-R–/– PCP group, including 39 upregulated and 127 downregulated genes, while there were 69 lncRNAs differently expressed in the BAFF-R–/– PCP group, including 15 upregulated and 54 downregulated genes. In addition, GO and KEGG pathway analyses showed that BAFF-R deficiency played an important role in the primary and adaptive immune responses in PCP. Furthermore, the lncRNA and mRNA co-expression network was established. We noted that the core network of lncRNA-TF (transcription factor) pairs could be classified into the categories including infection and immunity pathways.ConclusionIn summary, in this study, we further explored the role of mature B cells in the pathogenesis and progression of PCP and the data demonstrated that BAFF-R deficiency could play a significant role in immune regulation in the PCP population.
Collapse
Affiliation(s)
- Heng-Mo Rong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Guang-Sheng Rong
- Department of Respiratory Medicine, The Third People’s Hospital of Hefei, Hefei, China
| | - Ting Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiao-Jun Qian
- Department of Respiratory Medicine, The Third People’s Hospital of Hefei, Hefei, China
| | - Dong Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhao-Hui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhao-Hui Tong,
| |
Collapse
|
14
|
Landau AT, Park P, Wong-Campos JD, Tian H, Cohen AE, Sabatini BL. Dendritic branch structure compartmentalizes voltage-dependent calcium influx in cortical layer 2/3 pyramidal cells. eLife 2022; 11:76993. [PMID: 35319464 PMCID: PMC8979587 DOI: 10.7554/elife.76993] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Back-propagating action potentials (bAPs) regulate synaptic plasticity by evoking voltage-dependent calcium influx throughout dendrites. Attenuation of bAP amplitude in distal dendritic compartments alters plasticity in a location-specific manner by reducing bAP-dependent calcium influx. However, it is not known if neurons exhibit branch-specific variability in bAP-dependent calcium signals, independent of distance-dependent attenuation. Here, we reveal that bAPs fail to evoke calcium influx through voltage-gated calcium channels (VGCCs) in a specific population of dendritic branches in mouse cortical layer 2/3 pyramidal cells, despite evoking substantial VGCC-mediated calcium influx in sister branches. These branches contain VGCCs and successfully propagate bAPs in the absence of synaptic input; nevertheless, they fail to exhibit bAP-evoked calcium influx due to a branch-specific reduction in bAP amplitude. We demonstrate that these branches have more elaborate branch structure compared to sister branches, which causes a local reduction in electrotonic impedance and bAP amplitude. Finally, we show that bAPs still amplify synaptically-mediated calcium influx in these branches because of differences in the voltage-dependence and kinetics of VGCCs and NMDA-type glutamate receptors. Branch-specific compartmentalization of bAP-dependent calcium signals may provide a mechanism for neurons to diversify synaptic tuning across the dendritic tree.
Collapse
Affiliation(s)
- Andrew T Landau
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Pojeong Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - J David Wong-Campos
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - He Tian
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
15
|
Najafloo R, Majidi J, Asghari A, Aleemardani M, Kamrava SK, Simorgh S, Seifalian A, Bagher Z, Seifalian AM. Mechanism of Anosmia Caused by Symptoms of COVID-19 and Emerging Treatments. ACS Chem Neurosci 2021; 12:3795-3805. [PMID: 34609841 PMCID: PMC8507153 DOI: 10.1021/acschemneuro.1c00477] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 01/08/2023] Open
Abstract
The occurrence of anosmia, the loss or change in sense of smell, is one of the most common symptoms of COVID-19 experienced by almost 53% of those affected. Several hypotheses explain the mechanism of anosmia in patients suffering from COVID-19. This study aims to review the related mechanisms and answer the questions regarding COVID-19-related anosmia as well as propose a new strategy for treatment of long-term anosmia as a result of COVID-19 infection. This paper covers all of the studies investigating olfactory disorders following COVID-19 infection and explains the possible reasons for the correlated anosmia, including olfactory cleft syndrome, local inflammation in the nasal epithelium, early apoptosis of olfactory cells, changes in olfactory cilia and odor transmission, damage to microglial cells, effect on olfactory bulbs, epithelial olfactory injury, and impairment of olfactory neurons and stem cells. The key questions that arise in this field have been discussed, such as why prevalent anosmia is varied among the age categories and among sexes and the correlation of anosmia with mild or severe COVID-19 infection. The angiotensin-converting enzyme 2 receptor is a significant player in the mechanism of anosmia in COVID-19 patients. Based on current studies, a novel approach to treat long-COVID-19 with ongoing anosmia has been proposed. The fields of smart drug delivery, tissue engineering, and cell therapy provide a hypothesized strategy that can minimize the side effects of current treatments and support efficient recovery of the olfactory system.
Collapse
Affiliation(s)
- Raziyeh Najafloo
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran
| | - Jila Majidi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran
| | - Alimohamad Asghari
- Skull Base Research Center, Hazrat Rasoul Akram Hospital, The Five Senses Health Institute, Iran University of Medical Sciences (IUMS), Tehran 1445613131, Iran
| | - Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Seyed Kamran Kamrava
- ENT and Head and Neck Research Center and Department, Hazrat Rasoul Akram Hospital, The Five Senses Health Institute, Iran University of Medical Sciences (IUMS), Tehran 1445613131, Iran
| | - Sara Simorgh
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran
| | - Amelia Seifalian
- University College London Medical School (UCL), London WC1E 6BT, United Kingdom
- Watford General Hospital, Watford WD18 0HB, United Kingdom
| | - Zohreh Bagher
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran
- ENT and Head and Neck Research Center and Department, Hazrat Rasoul Akram Hospital, The Five Senses Health Institute, Iran University of Medical Sciences (IUMS), Tehran 1445613131, Iran
| | - Alexander M Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd.), London BioScience Innovation Centre, London NW1 0NH, United Kingdom
| |
Collapse
|