1
|
Park G, Jang WE, Kim S, Gonzales EL, Ji J, Choi S, Kim Y, Park JH, Mohammad HB, Bang G, Kang M, Kim S, Jeon SJ, Kim JY, Kim KP, Shin CY, An JY, Kim MS, Lee YS. Dysregulation of the Wnt/β-catenin signaling pathway via Rnf146 upregulation in a VPA-induced mouse model of autism spectrum disorder. Exp Mol Med 2023; 55:1783-1794. [PMID: 37524878 PMCID: PMC10474298 DOI: 10.1038/s12276-023-01065-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 08/02/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder associated with impaired social behavior and communication, repetitive behaviors, and restricted interests. In addition to genetic factors, environmental factors such as prenatal drug exposure contribute to the development of ASD. However, how those prenatal factors induce behavioral deficits in the adult stage is not clear. To elucidate ASD pathogenesis at the molecular level, we performed a high-resolution mass spectrometry-based quantitative proteomic analysis on the prefrontal cortex (PFC) of mice exposed to valproic acid (VPA) in utero, a widely used animal model of ASD. Differentially expressed proteins (DEPs) in VPA-exposed mice showed significant overlap with ASD risk genes, including differentially expressed genes from the postmortem cortex of ASD patients. Functional annotations of the DEPs revealed significant enrichment in the Wnt/β-catenin signaling pathway, which is dysregulated by the upregulation of Rnf146 in VPA-exposed mice. Consistently, overexpressing Rnf146 in the PFC impaired social behaviors and altered the Wnt signaling pathway in adult mice. Furthermore, Rnf146-overexpressing PFC neurons showed increased excitatory synaptic transmission, which may underlie impaired social behavior. These results demonstrate that Rnf146 is critical for social behavior and that dysregulation of Rnf146 underlies social deficits in VPA-exposed mice.
Collapse
Affiliation(s)
- Gaeun Park
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Wooyoung Eric Jang
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Seoyeon Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Edson Luck Gonzales
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jungeun Ji
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Seunghwan Choi
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Yujin Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hwan Park
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | | | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Minkyung Kang
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Soobin Kim
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, 17104, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea.
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea.
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea.
| | - Min-Sik Kim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
- New Biology Research Center, DGIST, Daegu, 42988, Republic of Korea.
- Center for Cell Fate Reprogramming and Control, DGIST, Daegu, 42988, Republic of Korea.
| | - Yong-Seok Lee
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea.
| |
Collapse
|
2
|
Sun L, Qiu Q, Ban C, Fan S, Xiao S, Li X. Decrease levels of bone morphogenetic protein 6 and noggin in chronic schizophrenia elderly. Cogn Neurodyn 2023; 17:695-701. [PMID: 37265647 PMCID: PMC10229485 DOI: 10.1007/s11571-022-09855-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/03/2022] Open
Abstract
Objective Bone morphogenetic protein 6 (BMP6) and noggin both have been implicated in the pathophysiology of chronic dementia, and chronic schizophrenia (SCZ) has high risk for progressing to dementia in later life. The current study investigated the relationship between blood BMP6/noggin levels and cognitive function in chronic SCZ elderly. Methods A total of 159 chronic SCZ elderly and 171 community normal controls (NC) were involved in the present study. Blood cytokines including BMP6 and its antagonist-noggin, and cognitive function were measured in all subjects, 157 subjects among them received apolipoprotein E (APOE) genotype test, and 208 subjects received cognitive assessment at 1-year follow-up. Results Chronic SCZ elderly had decreased levels of blood BMP6 and noggin compared to healthy controls, especially in the subgroup of chronic SCZ with dementia. Blood BMP6 combing with noggin could distinguish chronic SCZ from NC elderly. APOE ε4 carriers had lower levels of BMP6 than APOE non-ε4 carriers under chronic SCZ. Conclusions There was a significant relationship of blood BMP6/noggin with cognitive performance in chronic SCZ.
Collapse
Affiliation(s)
- Lin Sun
- Department of Geriatric Psychiatry, Alzheimer’s Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Xuhui Distinct, Shanghai, People’s Republic of China
| | - Qi Qiu
- Department of Geriatric Psychiatry, Alzheimer’s Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Xuhui Distinct, Shanghai, People’s Republic of China
| | - Chunxia Ban
- Department of Psychiatry, Jiading Mental Health Center, Shanghai, People’s Republic of China
| | - Sijia Fan
- Department of Psychiatry, Qingpu Mental Health Center, Shanghai, People’s Republic of China
| | - Shifu Xiao
- Department of Geriatric Psychiatry, Alzheimer’s Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Xuhui Distinct, Shanghai, People’s Republic of China
| | - Xia Li
- Department of Geriatric Psychiatry, Alzheimer’s Disease and Related Disorders Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 South Wanping Road, Xuhui Distinct, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Minaya MA, Mahali S, Iyer AK, Eteleeb AM, Martinez R, Huang G, Budde J, Temple S, Nana AL, Seeley WW, Spina S, Grinberg LT, Harari O, Karch CM. Conserved gene signatures shared among MAPT mutations reveal defects in calcium signaling. Front Mol Biosci 2023; 10:1051494. [PMID: 36845551 PMCID: PMC9948093 DOI: 10.3389/fmolb.2023.1051494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction: More than 50 mutations in the MAPT gene result in heterogeneous forms of frontotemporal lobar dementia with tau inclusions (FTLD-Tau). However, early pathogenic events that lead to disease and the degree to which they are common across MAPT mutations remain poorly understood. The goal of this study is to determine whether there is a common molecular signature of FTLD-Tau. Methods: We analyzed genes differentially expressed in induced pluripotent stem cell-derived neurons (iPSC-neurons) that represent the three major categories of MAPT mutations: splicing (IVS10 + 16), exon 10 (p.P301L), and C-terminal (p.R406W) compared with isogenic controls. The genes that were commonly differentially expressed in MAPT IVS10 + 16, p.P301L, and p.R406W neurons were enriched in trans-synaptic signaling, neuronal processes, and lysosomal function. Many of these pathways are sensitive to disruptions in calcium homeostasis. One gene, CALB1, was significantly reduced across the three MAPT mutant iPSC-neurons and in a mouse model of tau accumulation. We observed a significant reduction in calcium levels in MAPT mutant neurons compared with isogenic controls, pointing to a functional consequence of this disrupted gene expression. Finally, a subset of genes commonly differentially expressed across MAPT mutations were also dysregulated in brains from MAPT mutation carriers and to a lesser extent in brains from sporadic Alzheimer disease and progressive supranuclear palsy, suggesting that molecular signatures relevant to genetic and sporadic forms of tauopathy are captured in a dish. The results from this study demonstrate that iPSC-neurons capture molecular processes that occur in human brains and can be used to pinpoint common molecular pathways involving synaptic and lysosomal function and neuronal development, which may be regulated by disruptions in calcium homeostasis.
Collapse
Affiliation(s)
- Miguel A. Minaya
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Sidhartha Mahali
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Abhirami K. Iyer
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Abdallah M. Eteleeb
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Rita Martinez
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Guangming Huang
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - John Budde
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY, United States
| | - Alissa L. Nana
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - William W. Seeley
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Salvatore Spina
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Lea T. Grinberg
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Pathology, University of Sao Paulo, Sao Paulo, Brazil
| | - Oscar Harari
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, United States
- NeuroGenomics and Informatics Center, Washington University in St Louis, St Louis, MO, United States
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, United States
- NeuroGenomics and Informatics Center, Washington University in St Louis, St Louis, MO, United States
| |
Collapse
|
4
|
Lu K, Hong Y, Tao M, Shen L, Zheng Z, Fang K, Yuan F, Xu M, Wang C, Zhu D, Guo X, Liu Y. Depressive patient-derived GABA interneurons reveal abnormal neural activity associated with HTR2C. EMBO Mol Med 2022; 15:e16364. [PMID: 36373384 PMCID: PMC9832822 DOI: 10.15252/emmm.202216364] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Major depressive disorder with suicide behavior (sMDD) is a server mood disorder, bringing tremendous burden to family and society. Although reduced gamma amino butyric acid (GABA) level has been observed in postmortem tissues of sMDD patients, the molecular mechanism by which GABA levels are altered remains elusive. In this study, we generated induced pluripotent stem cells (iPSC) from five sMDD patients and differentiated the iPSCs to GABAergic interneurons (GINs) and ventral forebrain organoids. sMDD GINs exhibited altered neuronal morphology and increased neural firing, as well as weakened calcium signaling propagation, compared with controls. Transcriptomic sequencing revealed that a decreased expression of serotoninergic receptor 2C (5-HT2C) may cause the defected neuronal activity in sMDD. Furthermore, targeting 5-HT2C receptor, using a small molecule agonist or genetic approach, restored neuronal activity deficits in sMDD GINs. Our findings provide a human cellular model for studying the molecular mechanisms and drug discoveries for sMDD.
Collapse
Affiliation(s)
- Kaiqin Lu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Yuan Hong
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Mengdan Tao
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Luping Shen
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Zhilong Zheng
- Department of NeurobiologyKey Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| | - Kaiheng Fang
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Fang Yuan
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Min Xu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Dongya Zhu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Xing Guo
- Department of NeurobiologyKey Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina,Co‐innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| |
Collapse
|
5
|
Lindbohm JV, Mars N, Walker KA, Singh‐Manoux A, Livingston G, Brunner EJ, Sipilä PN, Saksela K, Ferrie JE, Lovering RC, Williams SA, Hingorani AD, Gottesman RF, Zetterberg H, Kivimäki M. Plasma proteins, cognitive decline, and 20-year risk of dementia in the Whitehall II and Atherosclerosis Risk in Communities studies. Alzheimers Dement 2022; 18:612-624. [PMID: 34338426 PMCID: PMC9292245 DOI: 10.1002/alz.12419] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/21/2021] [Accepted: 06/09/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Plasma proteins affect biological processes and are common drug targets but their role in the development of Alzheimer's disease and related dementias remains unclear. We examined associations between 4953 plasma proteins and cognitive decline and risk of dementia in two cohort studies with 20-year follow-ups. METHODS In the Whitehall II prospective cohort study proteins were measured using SOMAscan technology. Cognitive performance was tested five times over 20 years. Linkage to electronic health records identified incident dementia. The results were replicated in the Atherosclerosis Risk in Communities (ARIC) study. RESULTS Fifteen non-amyloid/non-tau-related proteins were associated with cognitive decline and dementia, were consistently identified in both cohorts, and were not explained by known dementia risk factors. Levels of six of the proteins are modifiable by currently approved medications for other conditions. DISCUSSION This study identified several plasma proteins in dementia-free people that are associated with long-term risk of cognitive decline and dementia.
Collapse
Affiliation(s)
- Joni V. Lindbohm
- Department of Epidemiology and Public HealthUniversity College LondonLondonUK
- Department of Public Health ClinicumUniversity of HelsinkiHelsinkiFinland
| | - Nina Mars
- Institute for Molecular Medicine Finland (FIMM) HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Keenan A. Walker
- Laboratory of Behavioral NeuroscienceIntramural Research ProgramNational Institute on AgingBaltimoreMarylandUSA
| | - Archana Singh‐Manoux
- Department of Epidemiology and Public HealthUniversity College LondonLondonUK
- Epidemiology of Ageing and Neurodegenerative diseasesUniversité de ParisParisFrance
| | - Gill Livingston
- Division of PsychiatryUniversity College LondonLondonUK
- Camden and Islington Foundation TrustLondonUK
| | - Eric J. Brunner
- Department of Epidemiology and Public HealthUniversity College LondonLondonUK
| | - Pyry N. Sipilä
- Department of Public Health ClinicumUniversity of HelsinkiHelsinkiFinland
| | - Kalle Saksela
- Department of VirologyUniversity of Helsinki and HUSLAB, Helsinki University HospitalHelsinkiFinland
| | - Jane E. Ferrie
- Department of Epidemiology and Public HealthUniversity College LondonLondonUK
- Bristol Medical School (PHS)University of BristolBristolUK
| | - Ruth C. Lovering
- Functional Gene AnnotationInstitute of Cardiovascular ScienceUniversity College LondonLondonUK
| | | | - Aroon D. Hingorani
- Institute of Cardiovascular ScienceUniversity College LondonLondonUK
- British Heart Foundation Research AcceleratorUniversity College LondonLondonUK
- Health Data ResearchLondonUK
| | | | - Henrik Zetterberg
- Department of Neurodegenerative Disease and UK Dementia Research InstituteUniversity College LondonLondonUK
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Mika Kivimäki
- Department of Epidemiology and Public HealthUniversity College LondonLondonUK
- Department of Public Health ClinicumUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
6
|
Ichinose M, Suzuki N, Wang T, Kobayashi H, Vrbanac L, Ng JQ, Wright JA, Lannagan TRM, Gieniec KA, Lewis M, Ando R, Enomoto A, Koblar S, Thomas P, Worthley DL, Woods SL. The BMP antagonist gremlin 1 contributes to the development of cortical excitatory neurons, motor balance and fear responses. Development 2021; 148:269258. [PMID: 34184027 PMCID: PMC8313862 DOI: 10.1242/dev.195883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
Bone morphogenetic protein (BMP) signaling is required for early forebrain development and cortical formation. How the endogenous modulators of BMP signaling regulate the structural and functional maturation of the developing brain remains unclear. Here, we show that expression of the BMP antagonist Grem1 marks committed layer V and VI glutamatergic neurons in the embryonic mouse brain. Lineage tracing of Grem1-expressing cells in the embryonic brain was examined by administration of tamoxifen to pregnant Grem1creERT; Rosa26LSLTdtomato mice at 13.5 days post coitum (dpc), followed by collection of embryos later in gestation. In addition, at 14.5 dpc, bulk mRNA-seq analysis of differentially expressed transcripts between FACS-sorted Grem1-positive and -negative cells was performed. We also generated Emx1-cre-mediated Grem1 conditional knockout mice (Emx1-Cre;Grem1flox/flox) in which the Grem1 gene was deleted specifically in the dorsal telencephalon. Grem1Emx1cKO animals had reduced cortical thickness, especially layers V and VI, and impaired motor balance and fear sensitivity compared with littermate controls. This study has revealed new roles for Grem1 in the structural and functional maturation of the developing cortex. Summary: The BMP antagonist Grem1 is expressed by committed deep-layer glutamatergic neurons in the embryonic mouse cortex. Grem1 conditional knockout mice display cortical and behavioral abnormalities.
Collapse
Affiliation(s)
- Mari Ichinose
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Nobumi Suzuki
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Tongtong Wang
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Hiroki Kobayashi
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia.,Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Laura Vrbanac
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Jia Q Ng
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Josephine A Wright
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Tamsin R M Lannagan
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Krystyna A Gieniec
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Martin Lewis
- Department of Psychiatry, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5001, Australia.,Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ryota Ando
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Simon Koblar
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Paul Thomas
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Daniel L Worthley
- Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Susan L Woods
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, SA 5000, Australia.,Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| |
Collapse
|
7
|
Curry RN, Glasgow SM. The Role of Neurodevelopmental Pathways in Brain Tumors. Front Cell Dev Biol 2021; 9:659055. [PMID: 34012965 PMCID: PMC8127784 DOI: 10.3389/fcell.2021.659055] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Disruptions to developmental cell signaling pathways and transcriptional cascades have been implicated in tumor initiation, maintenance and progression. Resurgence of aberrant neurodevelopmental programs in the context of brain tumors highlights the numerous parallels that exist between developmental and oncologic mechanisms. A deeper understanding of how dysregulated developmental factors contribute to brain tumor oncogenesis and disease progression will help to identify potential therapeutic targets for these malignancies. In this review, we summarize the current literature concerning developmental signaling cascades and neurodevelopmentally-regulated transcriptional programs. We also examine their respective contributions towards tumor initiation, maintenance, and progression in both pediatric and adult brain tumors and highlight relevant differentiation therapies and putative candidates for prospective treatments.
Collapse
Affiliation(s)
- Rachel N. Curry
- Department of Neuroscience, Baylor College of Medicine, Center for Cell and Gene Therapy, Houston, TX, United States
- Integrative Molecular and Biomedical Sciences, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Stacey M. Glasgow
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
- Neurosciences Graduate Program, University of California, San Diego, San Diego, CA, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
8
|
Hippocampal overexpression of chordin protects against the chronic social defeat stress-induced depressive-like effects in mice. Brain Res Bull 2020; 158:31-39. [PMID: 32105677 DOI: 10.1016/j.brainresbull.2020.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 01/18/2023]
Abstract
Depression is a serious and worldwide neuropsychiatric disesase, and developing novel antidepressant targets beyond the monoaminergic systems is now popular and necessary. Bone morphogenetic protein (BMP) signals modulate numerous developmental, physiological, and homeostatic processes. The functions of BMPs are also regulated by secreted extracellular antagonists such as chordin and noggin. Chordin has abundant expression in adult brain, and may play critical role in the central nervous system. In this study, the chronic social defeat stress (CSDS) model of depression, various behavioral tests, western blotting, quantitative real-time reverse transcription PCR, immunohistochemistry, recombinant mouse chordin protein and AAV-Chordin-EGFP were together used to explore the role of chordin in the pathogenesis of depression. It was found that CSDS significantly decreased the expression of chordin in the hippocampus but not other related brain regions. Moreover, both pharmacological and genetic overexpression of hippocampal chordin fully protected against the CSDS-induced depressive-like effects in mice. Collectively, hippocampal chordin could be a novel antidepressant target, and this study further highlights the importance of the hippocampal BMP system in the pathophysiology of depression.
Collapse
|
9
|
Vuilleumier R, Lian T, Flibotte S, Khan ZN, Fuchs A, Pyrowolakis G, Allan DW. Retrograde BMP signaling activates neuronal gene expression through widespread deployment of a conserved BMP-responsive cis-regulatory activation element. Nucleic Acids Res 2019; 47:679-699. [PMID: 30476189 PMCID: PMC6344883 DOI: 10.1093/nar/gky1135] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/25/2018] [Indexed: 12/29/2022] Open
Abstract
Retrograde Bone Morphogenetic Protein (BMP) signaling in neurons is essential for the differentiation and synaptic function of many neuronal subtypes. BMP signaling regulates these processes via Smad transcription factor activity, yet the scope and nature of Smad-dependent gene regulation in neurons are mostly unknown. Here, we applied a computational approach to predict Smad-binding cis-regulatory BMP-Activating Elements (BMP-AEs) in Drosophila, followed by transgenic in vivo reporter analysis to test their neuronal subtype enhancer activity in the larval central nervous system (CNS). We identified 34 BMP-AE-containing genomic fragments that are responsive to BMP signaling in neurons, and showed that the embedded BMP-AEs are required for this activity. RNA-seq analysis identified BMP-responsive genes in the CNS and revealed that BMP-AEs selectively enrich near BMP-activated genes. These data suggest that functional BMP-AEs control nearby BMP-activated genes, which we validated experimentally. Finally, we demonstrated that the BMP-AE motif mediates a conserved Smad-responsive function in the Drosophila and vertebrate CNS. Our results provide evidence that BMP signaling controls neuronal function by directly coordinating the expression of a battery of genes through widespread deployment of a conserved Smad-responsive cis-regulatory motif.
Collapse
Affiliation(s)
- Robin Vuilleumier
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tianshun Lian
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephane Flibotte
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zaynah N Khan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alisa Fuchs
- BIOSS, Centre for Biological Signaling Studies and Institute for Biology I, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - George Pyrowolakis
- BIOSS, Centre for Biological Signaling Studies and Institute for Biology I, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Douglas W Allan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Held A, Major P, Sahin A, Reenan RA, Lipscombe D, Wharton KA. Circuit Dysfunction in SOD1-ALS Model First Detected in Sensory Feedback Prior to Motor Neuron Degeneration Is Alleviated by BMP Signaling. J Neurosci 2019; 39:2347-2364. [PMID: 30659087 PMCID: PMC6433758 DOI: 10.1523/jneurosci.1771-18.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease for which the origin and underlying cellular defects are not fully understood. Although motor neuron degeneration is the signature feature of ALS, it is not clear whether motor neurons or other cells of the motor circuit are the site of disease initiation. To better understand the contribution of multiple cell types in ALS, we made use of a Drosophila Sod1G85R knock-in model, in which all cells harbor the disease allele. End-stage dSod1G85R animals of both sexes exhibit severe motor deficits with clear degeneration of motor neurons. Interestingly, earlier in dSod1G85R larvae, motor function is also compromised, but their motor neurons exhibit only subtle morphological and electrophysiological changes that are unlikely to cause the observed decrease in locomotion. We analyzed the intact motor circuit and identified a defect in sensory feedback that likely accounts for the altered motor activity of dSod1G85R We found cell-autonomous activation of bone morphogenetic protein signaling in proprioceptor sensory neurons which are critical for the relay of the contractile status of muscles back to the central nerve cord, completely rescues early-stage motor defects and partially rescue late-stage motor function to extend lifespan. Identification of a defect in sensory feedback as a potential initiating event in ALS motor dysfunction, coupled with the ability of modified proprioceptors to alleviate such motor deficits, underscores the critical role that nonmotor neurons play in disease progression and highlights their potential as a site to identify early-stage ALS biomarkers and for therapeutic intervention.SIGNIFICANCE STATEMENT At diagnosis, many cellular processes are already disrupted in the amyotrophic lateral sclerosis (ALS) patient. Identifying the initiating cellular events is critical for achieving an earlier diagnosis to slow or prevent disease progression. Our findings indicate that neurons relaying sensory information underlie early stage motor deficits in a Drosophila knock-in model of ALS that best replicates gene dosage in familial ALS (fALS). Importantly, studies on intact motor circuits revealed defects in sensory feedback before evidence of motor neuron degeneration. These findings strengthen our understanding of how neural circuit dysfunctions lead to neurodegeneration and, coupled with our demonstration that the activation of bone morphogenetic protein signaling in proprioceptors alleviates both early and late motor dysfunction, underscores the importance of considering nonmotor neurons as therapeutic targets.
Collapse
Affiliation(s)
- Aaron Held
- Department of Molecular Biology, Cell Biology and Biochemistry
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Paxton Major
- Department of Molecular Biology, Cell Biology and Biochemistry
| | - Asli Sahin
- Department of Molecular Biology, Cell Biology and Biochemistry
| | - Robert A Reenan
- Department of Molecular Biology, Cell Biology and Biochemistry
| | - Diane Lipscombe
- Department of Neuroscience, and
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology and Biochemistry,
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
11
|
Harris G, Wu T, Linfield G, Choi MK, Liu H, Zhang Y. Molecular and cellular modulators for multisensory integration in C. elegans. PLoS Genet 2019; 15:e1007706. [PMID: 30849079 PMCID: PMC6426271 DOI: 10.1371/journal.pgen.1007706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/20/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
In the natural environment, animals often encounter multiple sensory cues that are simultaneously present. The nervous system integrates the relevant sensory information to generate behavioral responses that have adaptive values. However, the neuronal basis and the modulators that regulate integrated behavioral response to multiple sensory cues are not well defined. Here, we address this question using a behavioral decision in C. elegans when the animal is presented with an attractive food source together with a repulsive odorant. We identify specific sensory neurons, interneurons and neuromodulators that orchestrate the decision-making process, suggesting that various states and contexts may modulate the multisensory integration. Among these modulators, we characterize a new function of a conserved TGF-β pathway that regulates the integrated decision by inhibiting the signaling from a set of central neurons. Interestingly, we find that a common set of modulators, including the TGF-β pathway, regulate the integrated response to the pairing of different foods and repellents. Together, our results provide mechanistic insights into the modulatory signals regulating multisensory integration. The present study characterizes the modulation of a behavioral decision in C. elegans when the worm is presented with a food lawn that is paired with a repulsive smell. We show that multiple specific sensory neurons and interneurons play roles in making the decision. We also identify several modulatory molecules that are essential for the integrated decision when the animal faces a choice between the cues of opposing valence. We further show that many of these factors, which often represent different states and contexts, are common for behavioral decisions that integrate sensory information from different types of foods and repellents. Overall, our results reveal the molecular and cellular basis for integration of simultaneously present attractive and repulsive cues to fine-tune decision-making.
Collapse
Affiliation(s)
- Gareth Harris
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
- * E-mail: (GH); (YZ)
| | - Taihong Wu
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - Gaia Linfield
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - Myung-Kyu Choi
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - He Liu
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
- * E-mail: (GH); (YZ)
| |
Collapse
|
12
|
Choi MR, Chun JW, Kwak SM, Bang SH, Jin YB, Lee Y, Kim HN, Chang KT, Chai YG, Lee SR, Kim DJ. Effects of acute and chronic methamphetamine administration on cynomolgus monkey hippocampus structure and cellular transcriptome. Toxicol Appl Pharmacol 2018; 355:68-79. [DOI: 10.1016/j.taap.2018.05.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/13/2022]
|
13
|
Hurst K, Badgley C, Ellsworth T, Bell S, Friend L, Prince B, Welch J, Cowan Z, Williamson R, Lyon C, Anderson B, Poole B, Christensen M, McNeil M, Call J, Edwards JG. A putative lysophosphatidylinositol receptor GPR55 modulates hippocampal synaptic plasticity. Hippocampus 2017; 27:985-998. [PMID: 28653801 DOI: 10.1002/hipo.22747] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 11/08/2022]
Abstract
GPR55, an orphan G-protein coupled receptor, is activated by lysophosphatidylinositol (LPI) and the endocannabinoid anandamide, as well as by other compounds including THC. LPI is a potent endogenous ligand of GPR55 and neither GPR55 nor LPIs' functions in the brain are well understood. While endocannabinoids are well known to modulate brain synaptic plasticity, the potential role LPI could have on brain plasticity has never been demonstrated. Therefore, we examined not only GPR55 expression, but also the role its endogenous ligand could play in long-term potentiation, a common form of synaptic plasticity. Using quantitative RT-PCR, electrophysiology, and behavioral assays, we examined hippocampal GPR55 expression and function. qRT-PCR results indicate that GPR55 is expressed in hippocampi of both rats and mice. Immunohistochemistry and single cell PCR demonstrates GPR55 protein in pyramidal cells of CA1 and CA3 layers in the hippocampus. Application of the GPR55 endogenous agonist LPI to hippocampal slices of GPR55+/+ mice significantly enhanced CA1 LTP. This effect was absent in GPR55-/- mice, and blocked by the GPR55 antagonist CID 16020046. We also examined paired-pulse ratios of GPR55-/- and GPR55+/+ mice with or without LPI and noted significant enhancement in paired-pulse ratios by LPI in GPR55+/+ mice. Behaviorally, GPR55-/- and GPR55+/+ mice did not differ in memory tasks including novel object recognition, radial arm maze, or Morris water maze. However, performance on radial arm maze and elevated plus maze task suggests GPR55-/- mice have a higher frequency of immobile behavior. This is the first demonstration of LPI involvement in hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Katrina Hurst
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602
| | - Corinne Badgley
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602
| | - Tanner Ellsworth
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602
| | - Spencer Bell
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602.,Neuroscience Center, Brigham Young University, Provo, Utah, 84602
| | - Lindsey Friend
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602.,Neuroscience Center, Brigham Young University, Provo, Utah, 84602
| | - Brad Prince
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602
| | - Jacob Welch
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602
| | - Zack Cowan
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602
| | - Ryan Williamson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602.,Neuroscience Center, Brigham Young University, Provo, Utah, 84602
| | - Chris Lyon
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602
| | - Brandon Anderson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602
| | - Brian Poole
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602.,Neuroscience Center, Brigham Young University, Provo, Utah, 84602
| | - Michael Christensen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602.,Neuroscience Center, Brigham Young University, Provo, Utah, 84602
| | - Michael McNeil
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602
| | - Jarrod Call
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602
| | - Jeffrey G Edwards
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602.,Neuroscience Center, Brigham Young University, Provo, Utah, 84602
| |
Collapse
|
14
|
Li Q, Vo HT, Wang J, Fox-Quick S, Dobrunz LE, King GD. Klotho regulates CA1 hippocampal synaptic plasticity. Neuroscience 2017; 347:123-133. [PMID: 28215989 PMCID: PMC5392240 DOI: 10.1016/j.neuroscience.2017.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 01/07/2023]
Abstract
Global klotho overexpression extends lifespan while global klotho-deficiency shortens it. As well, klotho protein manipulations inversely regulate cognitive function. Mice without klotho develop rapid onset cognitive impairment before they are 2months old. Meanwhile, adult mice overexpressing klotho show enhanced cognitive function, particularly in hippocampal-dependent tasks. The cognitive enhancing effects of klotho extend to humans with a klotho polymorphism that increases circulating klotho and executive function. To affect cognitive function, klotho could act in or on the synapse to modulate synaptic transmission or plasticity. However, it is not yet known if klotho is located at synapses, and little is known about its effects on synaptic function. To test this, we fractionated hippocampi and detected klotho expression in both pre and post-synaptic compartments. We find that loss of klotho enhances both pre and post-synaptic measures of CA1 hippocampal synaptic plasticity at 5weeks of age. However, a rapid loss of synaptic enhancement occurs such that by 7weeks, when mice are cognitively impaired, there is no difference from wild-type controls. Klotho overexpressing mice show no early life effects on synaptic plasticity, but decreased CA1 hippocampal long-term potentiation was measured at 6months of age. Together these data suggest that klotho affects cognition, at least in part, by regulating hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Qin Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hai T Vo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jing Wang
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephanie Fox-Quick
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lynn E Dobrunz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gwendalyn D King
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
15
|
Lee SH, Kim YJ, Choi SY. BMP signaling modulates the probability of neurotransmitter release and readily releasable pools in Drosophila neuromuscular junction synapses. Biochem Biophys Res Commun 2016; 479:440-446. [DOI: 10.1016/j.bbrc.2016.09.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022]
|
16
|
Huang L, Yang XJ, Huang Y, Sun EY, Sun M. Ketamine Protects Gamma Oscillations by Inhibiting Hippocampal LTD. PLoS One 2016; 11:e0159192. [PMID: 27467732 PMCID: PMC4965035 DOI: 10.1371/journal.pone.0159192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/28/2016] [Indexed: 12/02/2022] Open
Abstract
NMDA receptors have been widely reported to be involved in the regulation of synaptic plasticity through effects on long-term potentiation (LTP) and long-term depression (LTD). LTP and LTD have been implicated in learning and memory processes. Besides synaptic plasticity, it is known that the phenomenon of gamma oscillations is critical in cognitive functions. Synaptic plasticity has been widely studied, however it is still not clear, to what degree synaptic plasticity regulates the oscillations of neuronal networks. Two NMDA receptor antagonists, ketamine and memantine, have been shown to regulate LTP and LTD, to promote cognitive functions, and have even been reported to bring therapeutic effects in major depression and Alzheimer’s disease respectively. These compounds allow us to investigate the putative interrelationship between network oscillations and synaptic plasticity and to learn more about the mechanisms of their therapeutic effects. In the present study, we have identified that ketamine and memantine could inhibit LTD, without impairing LTP in the CA1 region of mouse hippocampus, which may underlie the mechanism of these drugs’ therapeutic effects. Our results suggest that NMDA-induced LTD caused a marked loss in the gamma power, and pretreatment with 10 μM ketamine prevented the oscillatory loss via its inhibitory effect on LTD. Our study provides a new understanding of the role of NMDA receptors on hippocampal plasticity and oscillations.
Collapse
Affiliation(s)
- Lanting Huang
- Neurodegeneration Discovery Performance Unit, GSK, R&D Shanghai, Building 1, 917 Halei Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| | - Xiu-Juan Yang
- Neurodegeneration Discovery Performance Unit, GSK, R&D Shanghai, Building 1, 917 Halei Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, China
| | - Ying Huang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Eve Y. Sun
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| | - Mu Sun
- Neurodegeneration Discovery Performance Unit, GSK, R&D Shanghai, Building 1, 917 Halei Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, China
- * E-mail:
| |
Collapse
|
17
|
Sulkowski MJ, Han TH, Ott C, Wang Q, Verheyen EM, Lippincott-Schwartz J, Serpe M. A Novel, Noncanonical BMP Pathway Modulates Synapse Maturation at the Drosophila Neuromuscular Junction. PLoS Genet 2016; 12:e1005810. [PMID: 26815659 PMCID: PMC4729469 DOI: 10.1371/journal.pgen.1005810] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
At the Drosophila NMJ, BMP signaling is critical for synapse growth and homeostasis. Signaling by the BMP7 homolog, Gbb, in motor neurons triggers a canonical pathway—which modulates transcription of BMP target genes, and a noncanonical pathway—which connects local BMP/BMP receptor complexes with the cytoskeleton. Here we describe a novel noncanonical BMP pathway characterized by the accumulation of the pathway effector, the phosphorylated Smad (pMad), at synaptic sites. Using genetic epistasis, histology, super resolution microscopy, and electrophysiology approaches we demonstrate that this novel pathway is genetically distinguishable from all other known BMP signaling cascades. This novel pathway does not require Gbb, but depends on presynaptic BMP receptors and specific postsynaptic glutamate receptor subtypes, the type-A receptors. Synaptic pMad is coordinated to BMP’s role in the transcriptional control of target genes by shared pathway components, but it has no role in the regulation of NMJ growth. Instead, selective disruption of presynaptic pMad accumulation reduces the postsynaptic levels of type-A receptors, revealing a positive feedback loop which appears to function to stabilize active type-A receptors at synaptic sites. Thus, BMP pathway may monitor synapse activity then function to adjust synapse growth and maturation during development. Synaptic activity and synapse development are intimately linked, but our understanding of the coupling mechanisms remains limited. Anterograde and retrograde signals together with trans-synaptic complexes enable intercellular communications. How synapse activity status is monitored and relayed across the synaptic cleft remains poorly understood. The Drosophila NMJ is a very powerful genetic system to study synapse development. BMP signaling modulates NMJ growth via a canonical, Smad-dependent pathway, but also synapse stability, via a noncanonical, Smad-independent pathway. Here we describe a novel, noncanonical BMP pathway, which is genetically distinguishable from all other known BMP pathways. This pathway does not contribute to NMJ growth and instead influences synapse formation and maturation in an activity-dependent manner. Specifically, phosphorylated Smad (pMad in flies) accumulates at active zone in response to active postsynaptic type-A glutamate receptors, a specific receptor subtype. In turn, synaptic pMad functions to promote the recruitment of type-A receptors at synaptic sites. This positive feedback loop provides a molecular switch controlling which flavor of glutamate receptors will be stabilized at synaptic locations as a function of synapse status. Since BMP signaling also controls NMJ growth and stability, BMP pathway offers an exquisite means to monitor the status of synapse activity and coordinate NMJ growth with synapse maturation and stabilization.
Collapse
Affiliation(s)
- Mikolaj J. Sulkowski
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Tae Hee Han
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Carolyn Ott
- Cellular Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Qi Wang
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Esther M. Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jennifer Lippincott-Schwartz
- Cellular Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Mihaela Serpe
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
18
|
Fly LMBR1/LIMR-type protein Lilipod promotes germ-line stem cell self-renewal by enhancing BMP signaling. Proc Natl Acad Sci U S A 2015; 112:13928-33. [PMID: 26512105 DOI: 10.1073/pnas.1509856112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Limb development membrane protein-1 (LMBR1)/lipocalin-interacting membrane receptor (LIMR)-type proteins are putative nine-transmembrane receptors that are evolutionarily conserved across metazoans. However, their biological function is unknown. Here, we show that the fly family member Lilipod (Lili) is required for germ-line stem cell (GSC) self-renewal in the Drosophila ovary where it enhances bone morphogenetic protein (BMP) signaling. lili mutant GSCs are lost through differentiation, and display reduced levels of the Dpp transducer pMad and precocious activation of the master differentiation factor bam. Conversely, overexpressed Lili induces supernumerary pMad-positive bamP-GFP-negative GSCs. Interestingly, differentiation of lili mutant GSCs is bam-dependent; however, its effect on pMad is not. Thus, although it promotes stem cell self-renewal by repressing a bam-dependent process, Lilipod enhances transduction of the Dpp signal independently of its suppression of differentiation. In addition, because Lili is still required by a ligand-independent BMP receptor, its function likely occurs between receptor activation and pMad phosphorylation within the signaling cascade. This first, to our knowledge, in vivo characterization of a LMBR1/LIMR-type protein in a genetic model reveals an important role in modulating BMP signaling during the asymmetric division of an adult stem cell population and in other BMP signaling contexts.
Collapse
|
19
|
Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration. PLoS One 2015; 10:e0139860. [PMID: 26444546 PMCID: PMC4596878 DOI: 10.1371/journal.pone.0139860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/16/2015] [Indexed: 12/14/2022] Open
Abstract
To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.
Collapse
|
20
|
Kiyota T, Morrison CM, Tu G, Dyavarshetty B, Weir RA, Zhang G, Xiong H, Gendelman HE. Presenilin-1 familial Alzheimer's disease mutation alters hippocampal neurogenesis and memory function in CCL2 null mice. Brain Behav Immun 2015; 49:311-21. [PMID: 26112421 PMCID: PMC4567522 DOI: 10.1016/j.bbi.2015.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/07/2015] [Accepted: 06/18/2015] [Indexed: 01/15/2023] Open
Abstract
Aberrations in hippocampal neurogenesis are associated with learning and memory, synaptic plasticity and neurodegeneration in Alzheimer's disease (AD). However, the linkage between them, β-amyloidosis and neuroinflammation is not well understood. To this end, we generated a mouse overexpressing familial AD (FAD) mutant human presenilin-1 (PS1) crossed with a knockout (KO) of the CC-chemokine ligand 2 (CCL2) gene. The PS1/CCL2KO mice developed robust age-dependent deficits in hippocampal neurogenesis associated with impairments in learning and memory, synaptic plasticity and long-term potentiation. Neurogliogenesis gene profiling supported β-amyloid independent pathways for FAD-associated deficits in hippocampal neurogenesis. We conclude that these PS1/CCL2KO mice are suitable for studies linking host genetics, immunity and hippocampal function.
Collapse
Affiliation(s)
- Tomomi Kiyota
- Center for Neurodegenerative Disorders, Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Christine M Morrison
- Center for Neurodegenerative Disorders, Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Guihua Tu
- Center for Neurodegenerative Disorders, Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bhagyalaxmi Dyavarshetty
- Center for Neurodegenerative Disorders, Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Robert A Weir
- Center for Neurodegenerative Disorders, Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gang Zhang
- Center for Neurodegenerative Disorders, Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Huangui Xiong
- Center for Neurodegenerative Disorders, Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Howard E Gendelman
- Center for Neurodegenerative Disorders, Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
21
|
McGehee AM, Moss BJ, Juo P. The DAF-7/TGF-β signaling pathway regulates abundance of the Caenorhabditis elegans glutamate receptor GLR-1. Mol Cell Neurosci 2015; 67:66-74. [PMID: 26054666 DOI: 10.1016/j.mcn.2015.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/03/2015] [Indexed: 11/24/2022] Open
Abstract
Transforming growth factor-β (TGF-β) family signaling pathways have roles in both neuronal development and the regulation of synaptic function. Here we identify a novel role for the Caenorhabditis elegans DAF-7/TGF-β signaling pathway in the regulation of the AMPA-type glutamate receptor GLR-1. We found that the abundance of GLR-1 increases at synapses in the ventral nerve cord (VNC) of animals with loss-of-function mutations in multiple DAF-7/TGF-β pathway components including the TGF-β ligand DAF-7, the type I receptor DAF-1, and the Smads DAF-8 and DAF-14. The GLR-1 defect can be rescued by expression of daf-8 specifically in glr-1-expressing interneurons. The effect on GLR-1 was specific for the DAF-7 pathway because mutations in the DBL-1/TGF-β family pathway did not increase GLR-1 levels in the VNC. Immunoblot analysis indicates that total levels of GLR-1 protein are increased in neurons of DAF-7/TGF-β pathway mutants. The increased abundance of GLR-1 in the VNC of daf-7 pathway mutants is dependent on the transcriptional regulator DAF-3/Smad suggesting that DAF-3-dependent transcription controls GLR-1 levels. Furthermore, we found that glr-1 transcription is increased in daf-7 mutants based on a glr-1 transcriptional reporter. Together these results suggest that the DAF-7/TGF-β signaling pathway functions in neurons and negatively regulates the abundance of GLR-1, in part, by controlling transcription of the receptor itself. Finally, DAF-7/TGF-β pathway mutants exhibit changes in spontaneous locomotion that are dependent on endogenous GLR-1 and consistent with increased glutamatergic signaling. These results reveal a novel mechanism by which TGF-β signaling functions in the nervous system to regulate behavior.
Collapse
Affiliation(s)
- Annette M McGehee
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Department of Biology, Suffolk University, Boston, MA 02114, USA.
| | - Benjamin J Moss
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Peter Juo
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
22
|
Novel Mechanisms of Spinal Cord Plasticity in a Mouse Model of Motoneuron Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:654637. [PMID: 26064939 PMCID: PMC4433663 DOI: 10.1155/2015/654637] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/16/2014] [Indexed: 12/15/2022]
Abstract
A hopeful spinal cord repairing strategy involves the activation of neural precursor cells. Unfortunately, their ability to generate neurons after injury appears limited. Another process promoting functional recovery is synaptic plasticity. We have previously studied some mechanisms of spinal plasticity involving BDNF, Shh, Notch-1, Numb, and Noggin, by using a mouse model of motoneuron depletion induced by cholera toxin-B saporin. TDP-43 is a nuclear RNA/DNA binding protein involved in amyotrophic lateral sclerosis. Interestingly, TDP-43 could be localized at the synapse and affect synaptic strength. Here, we would like to deepen the investigation of this model of spinal plasticity. After lesion, we observed a glial reaction and an activity-dependent modification of Shh, Noggin, and Numb proteins. By using multivariate regression models, we found that Shh and Noggin could affect motor performance and that these proteins could be associated with both TDP-43 and Numb. Our data suggest that TDP-43 is likely an important regulator of synaptic plasticity, probably in collaboration with other proteins involved in both neurogenesis and synaptic plasticity. Moreover, given the rapidly increasing knowledge about spinal cord plasticity, we believe that further efforts to achieve spinal cord repair by stimulating the intrinsic potential of spinal cord will produce interesting results.
Collapse
|
23
|
Kim MJ, O’Connor MB. Anterograde Activin signaling regulates postsynaptic membrane potential and GluRIIA/B abundance at the Drosophila neuromuscular junction. PLoS One 2014; 9:e107443. [PMID: 25255438 PMCID: PMC4177838 DOI: 10.1371/journal.pone.0107443] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/10/2014] [Indexed: 12/16/2022] Open
Abstract
Members of the TGF-β superfamily play numerous roles in nervous system development and function. In Drosophila, retrograde BMP signaling at the neuromuscular junction (NMJ) is required presynaptically for proper synapse growth and neurotransmitter release. In this study, we analyzed whether the Activin branch of the TGF-β superfamily also contributes to NMJ development and function. We find that elimination of the Activin/TGF-β type I receptor babo, or its downstream signal transducer smox, does not affect presynaptic NMJ growth or evoked excitatory junctional potentials (EJPs), but instead results in a number of postsynaptic defects including depolarized membrane potential, small size and frequency of miniature excitatory junction potentials (mEJPs), and decreased synaptic densities of the glutamate receptors GluRIIA and B. The majority of the defective smox synaptic phenotypes were rescued by muscle-specific expression of a smox transgene. Furthermore, a mutation in actβ, an Activin-like ligand that is strongly expressed in motor neurons, phenocopies babo and smox loss-of-function alleles. Our results demonstrate that anterograde Activin/TGF-β signaling at the Drosophila NMJ is crucial for achieving normal abundance and localization of several important postsynaptic signaling molecules and for regulating postsynaptic membrane physiology. Together with the well-established presynaptic role of the retrograde BMP signaling, our findings indicate that the two branches of the TGF-β superfamily are differentially deployed on each side of the Drosophila NMJ synapse to regulate distinct aspects of its development and function.
Collapse
Affiliation(s)
- Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
24
|
Mikawa S, Sato K. Chordin expression in the adult rat brain. Neuroscience 2013; 258:16-33. [PMID: 24231736 DOI: 10.1016/j.neuroscience.2013.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 10/11/2013] [Accepted: 11/03/2013] [Indexed: 11/25/2022]
Abstract
Bone morphogenetic proteins (BMPs) exert its biological functions by interacting with membrane bound receptors. However, functions of BMPs are also regulated in the extracellular space by secreted antagonistic regulators. Chordin is an extracellular BMP antagonist that binds BMP-2, 4, and 7 with high affinity and thus interferes with binding to BMP receptors. Although chordin expression has been well described in the early development of the CNS, little information is available for its expression in the adult CNS. We, thus, investigated chordin expression in the adult rat CNS using immunohistochemistry. Chordin was intensely expressed in most neurons, and their dendrites and axons. In addition, abundant chordin expression was also observed in the neuropil of the gray matters where high plasticity is reported, such as the molecular layer of the cerebellum and the superficial layer of the superior colliculus. Furthermore, we found that astrocytes and ependymal cells also express chordin protein. These data indicate that chordin is more widely expressed throughout the adult CNS than previously reported, and its continued abundant expression in the adult brain strongly supports the idea that chordin plays pivotal roles also in the adult brain.
Collapse
Affiliation(s)
- S Mikawa
- Department of Anatomy & Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka 431-3192, Japan
| | - K Sato
- Department of Anatomy & Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka 431-3192, Japan.
| |
Collapse
|
25
|
Poon VY, Choi S, Park M. Growth factors in synaptic function. Front Synaptic Neurosci 2013; 5:6. [PMID: 24065916 PMCID: PMC3776238 DOI: 10.3389/fnsyn.2013.00006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/29/2013] [Indexed: 12/15/2022] Open
Abstract
Synapses are increasingly recognized as key structures that malfunction in disorders like schizophrenia, mental retardation, and neurodegenerative diseases. The importance and complexity of the synapse has fuelled research into the molecular mechanisms underlying synaptogenesis, synaptic transmission, and plasticity. In this regard, neurotrophic factors such as netrin, Wnt, transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), and others have gained prominence for their ability to regulate synaptic function. Several of these factors were first implicated in neuroprotection, neuronal growth, and axon guidance. However, their roles in synaptic development and function have become increasingly clear, and the downstream signaling pathways employed by these factors have begun to be elucidated. In this review, we will address the role of these factors and their downstream effectors in synaptic function in vivo and in cultured neurons.
Collapse
Affiliation(s)
- Vivian Y Poon
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
| | | | | |
Collapse
|
26
|
Gulino R, Gulisano M. Noggin and Sonic hedgehog are involved in compensatory changes within the motoneuron-depleted mouse spinal cord. J Neurol Sci 2013; 332:102-9. [PMID: 23859181 DOI: 10.1016/j.jns.2013.06.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/22/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
Sonic hedgehog and Noggin are morphogenetic factors involved in neural induction and ventralization of the neural tube, but recent findings suggest that they could participate in regeneration and functional recovery after injury. Here, in order to verify if these mechanisms could occur in the spinal cord and involve synaptic plasticity, we measured the expression levels of Sonic hedgehog, Noggin, Choline Acetyltransferase, Synapsin-I and Glutamate receptor subunits (GluR1, GluR2, GluR4), in a motoneuron-depleted mouse spinal cord lesion model obtained by intramuscular injection of Cholera toxin-B saporin. The lesion caused differential expression changes of the analyzed proteins. Moreover, motor performance was found correlated with Sonic hedgehog and Noggin expression in lesioned animals. The results also suggest that Sonic hedgehog could collaborate in modulating synaptic plasticity. Together, these findings confirm that the injured mammalian spinal cord has intrinsic potential for repair and that some proteins classically involved in development, such as Sonic hedgehog and Noggin could have important roles in regeneration and functional restoration, by mechanisms including synaptic plasticity.
Collapse
Affiliation(s)
- Rosario Gulino
- Department of Bio-Medical Sciences, Section of Physiology, University of Catania, Viale Andrea Doria 6, Catania, Italy.
| | | |
Collapse
|
27
|
Duncan KA, Walters BJ, Saldanha CJ. Traumatized and inflamed--but resilient: glial aromatization and the avian brain. Horm Behav 2013; 63:208-15. [PMID: 22414444 PMCID: PMC9366899 DOI: 10.1016/j.yhbeh.2012.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/26/2012] [Accepted: 02/27/2012] [Indexed: 01/08/2023]
Abstract
Steroids like estrogens have potent effects on the vertebrate brain, and are provided to neural targets from peripheral and central sources. Estradiol synthesized within the vertebrate CNS modulates neural structure and function, including the pathways involved in neuroprotection, and perhaps, neural repair. Specifically, aromatase; the enzyme responsible for the conversion of testosterone to estradiol, is upregulated in the avian and mammalian brain following disruption of the neuropil by multiple forms of perturbation including mechanical injury, ischemia and excitotoxicity. This injury induced aromatase expression is somewhat unique in that it occurs in astroglia rather than neurons, and is stimulated in response to factors associated with brain damage. In this review, we focus on the induction, expression and consequences of glial aromatization in the songbird brain. We begin with a review of the anatomical consequences of glial estrogen provision followed by a discussion of the cellular mechanisms whereby glial aromatization may affect injury-induced neuroplasticity. We then present the current status of our understanding regarding the inductive role of inflammatory processes in the transcription and translation of astrocytic aromatase. We consider the functional aspects of glial aromatization before concluding with unanswered questions and suggestions for future studies. Birds have long informed us about fundamental questions in endocrinology, immunology, and neuroplasticity; and their unique anatomical and physiological characteristics continue to provide an excellent system in which to learn about brain trauma, inflammation, and neuroprotection.
Collapse
Affiliation(s)
- Kelli A. Duncan
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA
| | - Bradley J. Walters
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Colin J. Saldanha
- Department of Biology, American University, Washington DC, 20016, USA
- Department of Psychology, American University, Washington DC, 20016, USA
| |
Collapse
|
28
|
Diniz LP, Almeida JC, Tortelli V, Vargas Lopes C, Setti-Perdigão P, Stipursky J, Kahn SA, Romão LF, de Miranda J, Alves-Leon SV, de Souza JM, Castro NG, Panizzutti R, Gomes FCA. Astrocyte-induced synaptogenesis is mediated by transforming growth factor β signaling through modulation of D-serine levels in cerebral cortex neurons. J Biol Chem 2012; 287:41432-45. [PMID: 23055518 PMCID: PMC3510841 DOI: 10.1074/jbc.m112.380824] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Assembly of synapses requires proper coordination between pre- and postsynaptic elements. Identification of cellular and molecular events in synapse formation and maintenance is a key step to understand human perception, learning, memory, and cognition. A key role for astrocytes in synapse formation and function has been proposed. Here, we show that transforming growth factor β (TGF-β) signaling is a novel synaptogenic pathway for cortical neurons induced by murine and human astrocytes. By combining gain and loss of function approaches, we show that TGF-β1 induces the formation of functional synapses in mice. Further, TGF-β1-induced synaptogenesis involves neuronal activity and secretion of the co-agonist of the NMDA receptor, d-serine. Manipulation of d-serine signaling, by either genetic or pharmacological inhibition, prevented the TGF-β1 synaptogenic effect. Our data show a novel molecular mechanism that might impact synaptic function and emphasize the evolutionary aspect of the synaptogenic property of astrocytes, thus shedding light on new potential therapeutic targets for synaptic deficit diseases.
Collapse
Affiliation(s)
- Luan Pereira Diniz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
DBL-1, a TGF-β, is essential for Caenorhabditis elegans aversive olfactory learning. Proc Natl Acad Sci U S A 2012; 109:17081-6. [PMID: 23019581 DOI: 10.1073/pnas.1205982109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TGF-β superfamily is conserved throughout metazoan, and its members play essential roles in development and disease. TGF-β has also been implicated in adult neural plasticity. However, the underlying mechanisms are not well understood. Here we report that DBL-1, a Caenorhabditis elegans TGF-β homolog known to control body morphology and immunity, is essential for aversive olfactory learning of potentially harmful bacteria food. We show that DBL-1 generated by the AVA command interneurons, which are critical for sensorimotor responses, regulates aversive olfactory learning, and that the activity of the type I TGF-β receptor SMA-6 in the hypodermis is needed during adulthood to generate olfactory plasticity. These spatial and temporal mechanisms are critical for the DBL-1 signaling to achieve its diverse functions in development and adult neural plasticity. Interestingly, aversive training decreases AVA calcium response, leading to an increase in the DBL-1 signal secreted from AVA, revealing an experience-dependent change that can underlie the role of TGF-β signaling in mediating plasticity.
Collapse
|
30
|
Zhu G, Huang Y, Chen Y, Zhuang Y, Behnisch T. MPTP modulates hippocampal synaptic transmission and activity-dependent synaptic plasticity via dopamine receptors. J Neurochem 2012; 122:582-93. [PMID: 22651101 DOI: 10.1111/j.1471-4159.2012.07815.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD)-like symptoms and cognitive deficits are inducible by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Since cognitive abilities, including memory formations rely also on hippocampus, we set out to clarify the effects of MPTP on hippocampal physiology. We show that bath-application of MPTP (25 μM) to acute hippocampal slices enhanced AMPA receptor-mediated field excitatory postsynaptic potentials (AMPAr-fEPSPs) transiently, whereas N-methyl-D-aspartate (NMDA) receptor-mediated fEPSPs (NMDAr-fEPSPs) were facilitated persistently. The MPTP-mediated transient AMPAr-fEPSP facilitation was antagonized by the dopamine D2-like receptor antagonists, eticlopride (1 μM) and sulpiride (1 and 40 μM). In contrast, the persistent enhancement of NMDAr-fEPSPs was prevented by the dopamine D1-like receptor antagonist SCH23390 (10 μM). In addition, we show that MPTP decreased paired-pulse facilitation of fEPSPs and mEPSCs frequency. Regarding activity-dependent synaptic plasticity, 25 μM MPTP transformed short-term potentiation (STP) into a long-term potentiation (LTP) and caused a slow onset potentiation of a non-tetanized synaptic input after induction of LTP in a second synaptic input. This heterosynaptic slow onset potentiation required activation of dopamine D1-like and NMDA-receptors. We conclude that acute MPTP application affects basal synaptic transmission by modulation of presynaptic vesicle release and facilitates NMDAr-fEPSPs as well as activity-dependent homo- and heterosynaptic plasticity under participation of dopamine receptors.
Collapse
Affiliation(s)
- Guoqi Zhu
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
31
|
Webb TR, Matarin M, Gardner JC, Kelberman D, Hassan H, Ang W, Michaelides M, Ruddle JB, Pennell CE, Yazar S, Khor CC, Aung T, Yogarajah M, Robson AG, Holder GE, Cheetham ME, Traboulsi EI, Moore AT, Sowden JC, Sisodiya SM, Mackey DA, Tuft SJ, Hardcastle AJ. X-linked megalocornea caused by mutations in CHRDL1 identifies an essential role for ventroptin in anterior segment development. Am J Hum Genet 2012; 90:247-59. [PMID: 22284829 DOI: 10.1016/j.ajhg.2011.12.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/07/2011] [Accepted: 12/26/2011] [Indexed: 01/30/2023] Open
Abstract
X-linked megalocornea (MGC1) is an ocular anterior segment disorder characterized by an increased cornea diameter and deep anterior chamber evident at birth and later onset of mosaic corneal degeneration (shagreen), arcus juvenilis, and presenile cataracts. We identified copy-number variation, frameshift, missense, splice-site and nonsense mutations in the Chordin-like 1 gene (CHRDL1) on Xq23 as the cause of the condition in seven MGC1 families. CHRDL1 encodes ventroptin, a bone morphogenic protein antagonist with a proposed role in specification of topographic retinotectal projections. Electrophysiological evaluation revealed mild generalized cone system dysfunction and, in one patient, an interhemispheric asymmetry in visual evoked potentials. We show that CHRDL1 is expressed in the developing human cornea and anterior segment in addition to the retina. We explored the impact of loss of ventroptin function on brain function and morphology in vivo. CHRDL1 is differentially expressed in the human fetal brain, and there is high expression in cerebellum and neocortex. We show that MGC1 patients have a superior cognitive ability despite a striking focal loss of myelination of white matter. Our findings reveal an unexpected requirement for ventroptin during anterior segment development and the consequences of a lack of function in the retina and brain.
Collapse
Affiliation(s)
- Tom R Webb
- Institute of Ophthalmology, University College London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Stranahan AM, Martin B, Chadwick W, Park SS, Wang L, Becker KG, WoodIII WH, Zhang Y, Maudsley S. Metabolic context regulates distinct hypothalamic transcriptional responses to antiaging interventions. Int J Endocrinol 2012; 2012:732975. [PMID: 22934110 PMCID: PMC3427989 DOI: 10.1155/2012/732975] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/09/2012] [Indexed: 01/19/2023] Open
Abstract
The hypothalamus is an essential relay in the neural circuitry underlying energy metabolism that needs to continually adapt to changes in the energetic environment. The neuroendocrine control of food intake and energy expenditure is associated with, and likely dependent upon, hypothalamic plasticity. Severe disturbances in energy metabolism, such as those that occur in obesity, are therefore likely to be associated with disruption of hypothalamic transcriptomic plasticity. In this paper, we investigated the effects of two well-characterized antiaging interventions, caloric restriction and voluntary wheel running, in two distinct physiological paradigms, that is, diabetic (db/db) and nondiabetic wild-type (C57/Bl/6) animals to investigate the contextual sensitivity of hypothalamic transcriptomic responses. We found that, both quantitatively and qualitatively, caloric restriction and physical exercise were associated with distinct transcriptional signatures that differed significantly between diabetic and non-diabetic mice. This suggests that challenges to metabolic homeostasis regulate distinct hypothalamic gene sets in diabetic and non-diabetic animals. A greater understanding of how genetic background contributes to hypothalamic response mechanisms could pave the way for the development of more nuanced therapeutics for the treatment of metabolic disorders that occur in diverse physiological backgrounds.
Collapse
Affiliation(s)
- Alexis M. Stranahan
- Physiology Department, Georgia Health Sciences University, Augusta, GA 30912, USA
- *Alexis M. Stranahan:
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| | - Wayne Chadwick
- Receptor Pharmacology Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| | - Sung-Soo Park
- Receptor Pharmacology Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| | - Liyun Wang
- Receptor Pharmacology Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| | - William H. WoodIII
- Gene Expression and Genomics Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging Intramural Research Program, Baltimore, MD 21224-6825, USA
| |
Collapse
|
33
|
Loos M, Staal J, Pattij T, Smit AB, Spijker S. Independent genetic loci for sensorimotor gating and attentional performance in BXD recombinant inbred strains. GENES BRAIN AND BEHAVIOR 2011; 11:147-56. [DOI: 10.1111/j.1601-183x.2011.00754.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Krieglstein K, Zheng F, Unsicker K, Alzheimer C. More than being protective: functional roles for TGF-β/activin signaling pathways at central synapses. Trends Neurosci 2011; 34:421-9. [PMID: 21742388 DOI: 10.1016/j.tins.2011.06.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/30/2011] [Accepted: 06/01/2011] [Indexed: 12/14/2022]
Abstract
It is becoming increasingly clear that members of the transforming growth factor-β (TGF-β) family have roles in the central nervous system that extend beyond their well-established roles as neurotrophic and neuroprotective factors. Recent findings have indicated that the TGF-β signaling pathways are involved in the modulation of both excitatory and inhibitory synaptic transmission in the adult mammalian brain. In this review, we discuss how TGF-β, bone morphogenetic protein and activin signaling at central synapses modulate synaptic plasticity, cognition and affective behavior. We also discuss the implications of these findings for the molecular understanding and potential treatment of neuropsychiatric diseases, such as anxiety, depression and other neurological disorders.
Collapse
Affiliation(s)
- Kerstin Krieglstein
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
35
|
Mikawa S, Sato K. Noggin expression in the adult rat brain. Neuroscience 2011; 184:38-53. [DOI: 10.1016/j.neuroscience.2011.03.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/18/2011] [Accepted: 03/19/2011] [Indexed: 11/30/2022]
|
36
|
Yuge K, Kataoka A, Yoshida AC, Itoh D, Aggarwal M, Mori S, Blackshaw S, Shimogori T. Region-specific gene expression in early postnatal mouse thalamus. J Comp Neurol 2011; 519:544-61. [PMID: 21192083 DOI: 10.1002/cne.22532] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies in the developing mouse thalamus have demonstrated that regional identity is established during early stages of development (Suzuki-Hirano et al. J. Comp. Neurol. 2011;519:528-543). However, the developing thalamus often shows little resemblance to the anatomical organization of the postnatal thalamus, making it difficult to identify genes that might mediate the organization of thalamic nuclei. We therefore analyzed the expression pattern of genes that we have identified as showing regional expression in embryonic thalamus on postnatal days (P) 6-8 by using in situ hybridization. We also identified several genes expressed only in the postnatal thalamus with restricted expression in specific nuclei. We first demonstrated the selective expression of neurotransmitter-related genes (vGlut2, vGAT, D2R, and HTR2C), identifying the neurotransmitter subtypes of cells in this region, and we also demonstrated selective expression of additional genes in the thalamus (Steel, Slitrk6, and AI852580). In addition, we demonstrated expression of genes specific to somatosensory thalamic nuclei, the ventrobasal posterior nuclei (VP); a visual thalamic nucleus, the dorsal lateral geniculate nucleus (dLGN); and an auditory thalamic nucleus, the medial geniculate body (MGB) (p57Kip, Nr1d1, and GFRα1). We also identified genes that are selectively expressed in multiple different nuclei (Foxp2, Chst2, and EphA8). Finally, we demonstrated that several bone morphogenetic proteins (BMPs) and their inhibitors are expressed in the postnatal thalamus in a nucleus-specific fashion, suggesting that BMPs play roles in the postnatal thalamus unrelated to their known role in developmental patterning. Our findings provide important information for understanding the mechanisms of nuclear specification and connectivity during development, as well as their maintenance in adult thalamus.
Collapse
Affiliation(s)
- Kazuya Yuge
- RIKEN Brain Science Institute, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kim NC, Marqués G. Identification of downstream targets of the bone morphogenetic protein pathway in the Drosophila nervous system. Dev Dyn 2011; 239:2413-25. [PMID: 20652954 DOI: 10.1002/dvdy.22368] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bone Morphogenetic Protein (BMP) signaling mediated by the receptor Wishful thinking (Wit) is essential for nervous system development in Drosophila. Mutants lacking wit function show defects in neuromuscular junction development and function, specification of neurosecretory phenotypes, and eclosion behavior that result in lethality. The ligand is Glass bottom boat, the Drosophila ortholog of mammalian BMP-7, which acts as a retrograde signal through the Wit receptor. In order to identify transcriptional targets of the BMP pathway in the Drosophila nervous system, we have analyzed the gene expression profile of wit mutant larval central nervous system. Genes differentially expressed identified by microarray analysis have been verified by quantitative PCR and studied by in situ hybridization. Among the genes thus identified, we find solute transporters, neuropeptides, mitochondrial proteins, and novel genes. In addition, several genes are regulated by wit in an isoform-specific manner that suggest regulation of alternative splicing by BMP signaling.
Collapse
Affiliation(s)
- Nam Chul Kim
- Department of Cell Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
38
|
Bernstein BW, Maloney MT, Bamburg JR. Actin and Diseases of the Nervous System. ADVANCES IN NEUROBIOLOGY 2011; 5:201-234. [PMID: 35547659 PMCID: PMC9088176 DOI: 10.1007/978-1-4419-7368-9_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abnormal regulation of the actin cytoskeleton results in several pathological conditions affecting primarily the nervous system. Those of genetic origin arise during development, but others manifest later in life. Actin regulation is also affected profoundly by environmental factors that can have sustained consequences for the nervous system. Those consequences follow from the fact that the actin cytoskeleton is essential for a multitude of cell biological functions ranging from neuronal migration in cortical development and dendritic spine formation to NMDA receptor activity in learning and alcoholism. Improper regulation of actin, causing aggregation, can contribute to the neurodegeneration of amyloidopathies, such as Down's syndrome and Alzheimer's disease. Much progress has been made in understanding the molecular basis of these diseases.
Collapse
Affiliation(s)
- Barbara W Bernstein
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Michael T Maloney
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
39
|
Crews L, Adame A, Patrick C, DeLaney A, Pham E, Rockenstein E, Hansen L, Masliah E. Increased BMP6 levels in the brains of Alzheimer's disease patients and APP transgenic mice are accompanied by impaired neurogenesis. J Neurosci 2010; 30:12252-62. [PMID: 20844121 PMCID: PMC2978735 DOI: 10.1523/jneurosci.1305-10.2010] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/25/2010] [Accepted: 06/16/2010] [Indexed: 11/21/2022] Open
Abstract
During aging and in the progression of Alzheimer's disease (AD), synaptic plasticity and neuronal integrity are disturbed. In addition to the alterations in plasticity in mature neurons, the neurodegenerative process in AD has been shown to be accompanied by alterations in neurogenesis. Members of the bone morphogenetic protein (BMP) family of growth factors have been implicated as important regulators of neurogenesis and neuronal cell fate determination during development; however, their role in adult neurogenesis and in AD is less clear. We show here by qRT-PCR analysis that BMP6 mRNA levels were significantly increased in the hippocampus of human patients with AD and in APP transgenic mice compared to controls. Immunoblot and immunohistochemical analyses confirmed that BMP6 protein levels were increased in human AD brains and APP transgenic mouse brains compared to controls and accumulated around hippocampal plaques. The increased levels of BMP6 were accompanied by defects in hippocampal neurogenesis in AD patients and APP transgenic mice. In support of a role for BMP6 in defective neurogenesis in AD, we show in an in vitro model of adult neurogenesis that treatment with amyloid-β(1-42) protein (Aβ) resulted in increased expression of BMP6, and that exposure to recombinant BMP6 resulted in reduced proliferation with no toxic effects. Together, these results suggest that Aβ-associated increases in BMP6 expression in AD may have deleterious effects on neurogenesis in the hippocampus, and therapeutic approaches could focus on normalization of BMP6 levels to protect against AD-related neurogenic deficits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lawrence Hansen
- Departments of Neurosciences and
- Pathology, University of California, San Diego, La Jolla, California 92093-0624
| | - Eliezer Masliah
- Departments of Neurosciences and
- Pathology, University of California, San Diego, La Jolla, California 92093-0624
| |
Collapse
|
40
|
Sun M, Forsman C, Sergi C, Gopalakrishnan R, O’Connor MB, Petryk A. The expression of twisted gastrulation in postnatal mouse brain and functional implications. Neuroscience 2010; 169:920-31. [PMID: 20493240 PMCID: PMC2971674 DOI: 10.1016/j.neuroscience.2010.05.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 12/28/2022]
Abstract
Twisted gastrulation (TWSG1), an extracellular regulator of bone morphogenetic protein (BMP) signaling, is critical for embryonic brain development. Mice deficient in TWSG1 have abnormal forebrain development manifesting as holoprosencephaly. The expression and potential roles of TWSG1 in postnatal brain development are less well understood. We show that Twsg1 is expressed in the adult mouse brain in the choroid plexus (CP), hippocampus, and other regions, with the strongest expression observed in CP. TWSG1 was also detected in a human fetal brain at mid-gestation, with highest levels in the epithelium of CP. Bmp1, Bmp2, Bmp4-Bmp7 as well as BmprIA and BmprII, but not BmprIB, were expressed in CP. BMP antagonists Chordin (Chrd) and Noggin were not detected in CP, however Chrd-like 1 and brain-specific Chrd-like (Brorin) were expressed. Electrophysiological study of synaptic plasticity revealed normal paired-pulse facilitation and long-term potentiation in the CA1 region of hippocampus in Twsg1(-/-) mice. Among the homozygous mutants that survive beyond the first 2 weeks, the prevalence of hydrocephalus was 4.3%, compared to 1.5% in a wild type colony (P=0.0133) between 3 and 10 weeks of life. We detected a high level of BMP signaling in CP in wild type adult mice that was 17-fold higher than in the hippocampus (P=0.005). In contrast, transforming growth factor beta (TGFbeta) signaling was predominant in the hippocampus. Both BMP signaling and the expression of BMP downstream targets Msx1 and Msx2 were reduced in CP in Twsg1(-/-) mice. In summary, we show that Twsg1 is expressed in the adult mouse and human fetal CP. We also show that BMP is a branch of TGFbeta superfamily that is dominant in CP. This presents an interesting avenue for future research in light of the novel roles of CP in neural progenitor differentiation and neuronal repair, especially since TWSG1 appears to be the main regulator of BMP present in CP.
Collapse
Affiliation(s)
- Mu Sun
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455-0356, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455-0356, USA
| | - Cynthia Forsman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455-0356, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455-0356, USA
| | - Consolato Sergi
- Department of Laboratory Medicine & Pathology, University of Alberta, Alberta, Canada T6G 2B7
- Institute of Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Rajaram Gopalakrishnan
- Diagnostic/Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455-0356, USA
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455-0356, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455-0356, USA
| | - Anna Petryk
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455-0356, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455-0356, USA
| |
Collapse
|
41
|
Abstract
In flies, retrograde BMP signaling is an important mechanism by which postsynaptic cells regulate the structure and function of presynaptic terminals, ostensibly through changes in gene expression. Transcriptional targets, however, have remained mysterious. In this issue of Neuron, Haghighi and colleagues begin to unravel this puzzle by identifying the cytoskeletal regulator Trio.
Collapse
Affiliation(s)
- Yuly Fuentes-Medel
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Vivian Budnik
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
42
|
Canonical TGF-beta signaling is required for the balance of excitatory/inhibitory transmission within the hippocampus and prepulse inhibition of acoustic startle. J Neurosci 2010; 30:6025-35. [PMID: 20427661 DOI: 10.1523/jneurosci.0789-10.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Smad4 is a unique nuclear transducer for all TGF-beta signaling pathways and regulates gene transcription during development and tissue homeostasis. To elucidate the postnatal role of TGF-beta signaling in the mammalian brain, we generated forebrain-specific Smad4 knock-out mice. Surprisingly, the mutants showed no alteration in long-term potentiation and water maze, suggesting that Smad4 is not required for spatial learning and memory. However, these mutant mice did show enhancement of paired-pulse facilitation in excitatory synaptic transmission and stronger paired-pulse depression of GABA(A) currents in the hippocampus. The alteration of hippocampal electrophysiology correlated with mouse hyperactivity in homecage and open field tests. Mutant mice also showed overgrooming as well as deficits of prepulse inhibition, a widely used endophenotype of schizophrenia. With a specific real-time PCR array focused on TGF-beta signaling pathway, we identified a novel regulation mechanism of the pathway in the hippocampal neurons, in which Smad4-mediated signaling suppresses the level of extracellular antagonism of TGF-beta ligands through transcriptional regulation of follistatin, a selective inhibitor to activin/TGF-beta signaling in the hippocampus. In summary, we suggest that the canonical TGF-beta signaling pathway is critical for use-dependent modulation of GABA(A) synaptic transmission and dendritic homeostasis; furthermore, a disruption in the balance of the excitatory and inhibitory hippocampal network can result in psychiatric-like behavior.
Collapse
|
43
|
Haerry TE. The interaction between two TGF-beta type I receptors plays important roles in ligand binding, SMAD activation, and gradient formation. Mech Dev 2010; 127:358-70. [PMID: 20381612 DOI: 10.1016/j.mod.2010.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 04/01/2010] [Accepted: 04/02/2010] [Indexed: 11/27/2022]
Abstract
The goal of this report is to elucidate the contributions of the Drosophila TGF-beta type I receptors TKV and SAX to the activity gradient formed by the two BMP family members DPP and GBB that play important roles in growth and patterning of imaginal discs. Binding studies display preferential interactions of DPP and GBB with homodimers of TKV or SAX, respectively, but also low affinities of both ligands to heterodimers. Inside the cell, constitutively activated forms of both TKV and SAX can ectopically phosphorylate the SMAD transcription factor MAD. However, MAD phosphorylated by homodimers of activated SAX or certain mutant forms of TKV localizes to the nucleus without changing the expression of downstream genes. Differences in signaling between SAX and TKV can be localized to amino acid residues within an area that has been shown to influence complexes formation between type I and type II receptors. The finding that the type II receptor PUT but not activated forms of SAX can enhance signaling of a pseudo-activated MAD-SDVD, which cannot be phosphorylated at the C-terminus, suggests a model, where activation of SMADs requires the presence of type II receptors and a second activation step in addition to C-terminal phosphorylation. Complete activation of MAD can only occur in tetrameric complexes of type II receptors in combination with SAX-TKV heterodimers or TKV homodimers but not SAX homodimers. Since TKV is not distributed equally in wing discs, heterodimers of SAX and TKV play an important role in extending the BMP activity gradient by facilitating DPP diffusion and assisting GBB signaling through functional complexes with type II receptors.
Collapse
Affiliation(s)
- Theodor E Haerry
- Florida Atlantic University, Center for Molecular Biology and Biotechnology, Boca Raton, FL 33431, USA.
| |
Collapse
|
44
|
BMP signaling mediates effects of exercise on hippocampal neurogenesis and cognition in mice. PLoS One 2009; 4:e7506. [PMID: 19841742 PMCID: PMC2759555 DOI: 10.1371/journal.pone.0007506] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 09/24/2009] [Indexed: 12/30/2022] Open
Abstract
Exposure to exercise or to environmental enrichment increases the generation of new neurons in the adult hippocampus and promotes certain kinds of learning and memory. While the precise role of neurogenesis in cognition has been debated intensely, comparatively few studies have addressed the mechanisms linking environmental exposures to cellular and behavioral outcomes. Here we show that bone morphogenetic protein (BMP) signaling mediates the effects of exercise on neurogenesis and cognition in the adult hippocampus. Elective exercise reduces levels of hippocampal BMP signaling before and during its promotion of neurogenesis and learning. Transgenic mice with decreased BMP signaling or wild type mice infused with a BMP inhibitor both exhibit remarkable gains in hippocampal cognitive performance and neurogenesis, mirroring the effects of exercise. Conversely, transgenic mice with increased BMP signaling have diminished hippocampal neurogenesis and impaired cognition. Exercise exposure does not rescue these deficits, suggesting that reduced BMP signaling is required for environmental effects on neurogenesis and learning. Together, these observations show that BMP signaling is a fundamental mechanism linking environmental exposure with changes in cognitive function and cellular properties in the hippocampus.
Collapse
|
45
|
Chen SY, Cheng HJ. Functions of axon guidance molecules in synapse formation. Curr Opin Neurobiol 2009; 19:471-8. [PMID: 19828311 DOI: 10.1016/j.conb.2009.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 09/23/2009] [Indexed: 11/18/2022]
Abstract
Axon guidance and synapse formation are important developmental events for establishing a functional neuronal circuitry. These two related cellular processes occur in a coordinated fashion but previous studies from multiple model organisms seemed to suggest that axon guidance and synapse formation are mediated by distinct molecular cues. Thus, axon guidance molecules are responsible for guiding the navigating axon toward its target area, while other adhesion or ligand-receptor molecules specify the synapse formation within the target area. However, accumulative evidence has shown that axon guidance molecules can regulate the localization and formation of pre-synaptic and post-synaptic components during synapse formation. These results demonstrate a role for axon guidance molecules in synapse formation and provide insight into how axon guidance and synapse formation are coordinated at the molecular level.
Collapse
Affiliation(s)
- Shih-Yu Chen
- Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, United States
| | | |
Collapse
|
46
|
Mukhopadhyay A, McGuire T, Peng CY, Kessler JA. Differential effects of BMP signaling on parvalbumin and somatostatin interneuron differentiation. Development 2009; 136:2633-42. [PMID: 19592576 PMCID: PMC2709069 DOI: 10.1242/dev.034439] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2009] [Indexed: 11/20/2022]
Abstract
Several different populations of interneurons in the murine cortex, including somatostatin (SST)- or parvalbumin (PV)-expressing cells, are born in the ventral ganglionic eminences during mid-gestation and then migrate tangentially to the cortex. SST is expressed by some interneuron progenitors in the cerebral cortex and in migrating populations in the ventrolateral cortex at birth. However, PV (also known as PVALB) is not expressed by interneurons until the second postnatal week after reaching the cortex, suggesting that molecular cues in the cerebral cortex might be involved in the differentiation process. BMP4 is expressed at high levels in the somatosensory cortex at the time when the PV(+) interneurons differentiate. Treatment of cortical cultures containing interneuron precursors is sufficient to generate PV(+) interneurons prematurely and inhibit SST differentiation. Furthermore, overexpression of BMP4 in vivo increases the number of interneurons expressing PV, with a reduction in the number of SST(+) interneurons. PV(+) interneurons in the cortex express BMP type I receptors and a subpopulation displays activated BMP signaling, assessed by downstream molecules including phosphorylated SMAD1/5/8. Conditional mutation of BMP type I receptors in interneuron precursors significantly reduces the number of cortical PV(+) interneurons in the adult brain. Thus, BMP4 signaling through type I receptors regulates the differentiation of two major medial ganglionic eminence-derived interneuron populations and defines their relative numbers in the cortex.
Collapse
Affiliation(s)
- Abhishek Mukhopadhyay
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
47
|
Merino C, Penney J, González M, Tsurudome K, Moujahidine M, O'Connor MB, Verheyen EM, Haghighi P. Nemo kinase interacts with Mad to coordinate synaptic growth at the Drosophila neuromuscular junction. ACTA ACUST UNITED AC 2009; 185:713-25. [PMID: 19451277 PMCID: PMC2711574 DOI: 10.1083/jcb.200809127] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bone morphogenic protein (BMP) signaling is essential for the coordinated assembly of the synapse, but we know little about how BMP signaling is modulated in neurons. Our findings indicate that the Nemo (Nmo) kinase modulates BMP signaling in motor neurons. nmo mutants show synaptic structural defects at the Drosophila melanogaster larval neuromuscular junction, and providing Nmo in motor neurons rescues these defects. We show that Nmo and the BMP transcription factor Mad can be coimmunoprecipitated and find a genetic interaction between nmo and Mad mutants. Moreover, we demonstrate that Nmo is required for normal distribution and accumulation of phosphorylated Mad in motor neurons. Finally, our results indicate that Nmo phosphorylation of Mad at its N terminus, distinct from the BMP phosphorylation site, is required for normal function of Mad. Based on our findings, we propose a model in which phosphorylation of Mad by Nmo ensures normal accumulation and distribution of Mad and thereby fine tunes BMP signaling in motor neurons.
Collapse
Affiliation(s)
- Carlos Merino
- Department of Physiology, McGill University, Montréal, Québec, Canada H3G 1Y6
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Neuronal phenotype in the mature nervous system is maintained by persistent retrograde bone morphogenetic protein signaling. J Neurosci 2009; 29:3852-64. [PMID: 19321782 DOI: 10.1523/jneurosci.0213-09.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The terminal differentiation of many developing neurons occurs after they innervate their target cells and is triggered by secreted target-derived signals that are transduced by presynaptic cognate receptors. Such retrograde signaling induces the expression of genes that are often distinctive markers of neuronal phenotype and function. However, whether long-term maintenance of neuronal phenotype requires persistent retrograde signaling remains poorly understood. Previously, we demonstrated that retrograde bone morphogenetic protein (BMP) signaling induces expression of a phenotypic marker of Drosophila Tv neurons, the neuropeptide FMRFamide (FMRFa). Here, we used a genetic technique that spatiotemporally targets transgene expression in Drosophila to test the role of persistent BMP signaling in the maintenance of Tv phenotype. We show that expression of dominant blockers of BMP signaling selectively in adult Tv neurons dramatically downregulated FMRFa expression. Moreover, adult-onset expression of mutant Glued, which blocks dynein/dynactin-mediated retrograde axonal transport, eliminated retrograde BMP signaling and dramatically downregulated FMRFa expression. Finally, we found that BMP deprivation did not affect Tv neuron survival and that FMRFa expression fully recovered to control levels after the termination of BMP blockade or Glued expression. Our results show that persistent retrograde BMP signaling is required to induce and to subsequently maintain the expression of a stably expressed phenotypic marker in a subset of mature Drosophila neurons. We postulate that retrograde maintenance of neuronal phenotype is conserved in vertebrates, and as a consequence, neuronal phenotype is likely vulnerable to neurodegenerative disease pathologies that disrupt neuronal connectivity or axonal transport.
Collapse
|
49
|
Loss of transforming growth factor-beta 2 leads to impairment of central synapse function. Neural Dev 2008; 3:25. [PMID: 18854036 PMCID: PMC2576228 DOI: 10.1186/1749-8104-3-25] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 10/14/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The formation of functional synapses is a crucial event in neuronal network formation, and with regard to regulation of breathing it is essential for life. Members of the transforming growth factor-beta (TGF-beta) superfamily act as intercellular signaling molecules during synaptogenesis of the neuromuscular junction of Drosophila and are involved in synaptic function of sensory neurons of Aplysia. RESULTS Here we show that while TGF-beta2 is not crucial for the morphology and function of the neuromuscular junction of the diaphragm muscle of mice, it is essential for proper synaptic function in the pre-Bötzinger complex, a central rhythm organizer located in the brainstem. Genetic deletion of TGF-beta2 in mice strongly impaired both GABA/glycinergic and glutamatergic synaptic transmission in the pre-Bötzinger complex area, while numbers and morphology of central synapses of knock-out animals were indistinguishable from their wild-type littermates at embryonic day 18.5. CONCLUSION The results demonstrate that TGF-beta2 influences synaptic function, rather than synaptogenesis, specifically at central synapses. The functional alterations in the respiratory center of the brain are probably the underlying cause of the perinatal death of the TGF-beta2 knock-out mice.
Collapse
|
50
|
Goold CP, Davis GW. The BMP ligand Gbb gates the expression of synaptic homeostasis independent of synaptic growth control. Neuron 2007; 56:109-23. [PMID: 17920019 PMCID: PMC2699048 DOI: 10.1016/j.neuron.2007.08.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/03/2007] [Accepted: 07/08/2007] [Indexed: 11/20/2022]
Abstract
Inhibition of postsynaptic glutamate receptors at the Drosophila NMJ initiates a compensatory increase in presynaptic release termed synaptic homeostasis. BMP signaling is necessary for normal synaptic growth and stability. It remains unknown whether BMPs have a specific role during synaptic homeostasis and, if so, whether BMP signaling functions as an instructive retrograde signal that directly modulates presynaptic transmitter release. Here, we demonstrate that the BMP receptor (Wit) and ligand (Gbb) are necessary for the rapid induction of synaptic homeostasis. We also provide evidence that both Wit and Gbb have functions during synaptic homeostasis that are separable from NMJ growth. However, further genetic experiments demonstrate that Gbb does not function as an instructive retrograde signal during synaptic homeostasis. Rather, our data indicate that Wit and Gbb function via the downstream transcription factor Mad and that Mad-mediated signaling is continuously required during development to confer competence of motoneurons to express synaptic homeostasis.
Collapse
Affiliation(s)
- Carleton P. Goold
- Department of Biochemistry and Biophysics, Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158-2822, Phone: 415-502-0529,
| | - Graeme W. Davis
- Department of Biochemistry and Biophysics, Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158-2822, Phone: 415-502-0529,
| |
Collapse
|