1
|
Chen X, Wang YJ, Mu TW. Proteostasis regulation of GABA A receptors in neuronal function and disease. Biomed Pharmacother 2025; 186:117992. [PMID: 40112516 PMCID: PMC12068001 DOI: 10.1016/j.biopha.2025.117992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
The γ-aminobutyric acid type A receptors (GABAARs) are ligand-gated anion channels that mediate fast inhibitory neurotransmission in the mammalian central nervous system. GABAARs form heteropentameric assemblies comprising two α1, two β2, and one γ2 subunits as the most common subtype in mammalian brains. Proteostasis regulation of GABAARs involves subunit folding within the endoplasmic reticulum, assembling into heteropentamers, receptor trafficking to the cell surface, and degradation of terminally misfolded subunits. As GABAARs are surface proteins, their trafficking to the plasma membrane is critical for proper receptor function. Thus, variants in the genes encoding GABAARs that disrupt proteostasis result in various neurodevelopmental disorders, ranging from intellectual disability to idiopathic generalized epilepsy. This review summarizes recent progress about how the proteostasis network regulates protein folding, assembly, degradation, trafficking, and synaptic clustering of GABAARs. Additionally, emerging pharmacological approaches that restore proteostasis of pathogenic GABAAR variants are presented, providing a promising strategy to treat related neurological diseases.
Collapse
Affiliation(s)
- Xi Chen
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
2
|
Lützenkirchen FP, Zhu Y, Maric HM, Boeck DS, Gromova KV, Kneussel M. Neurobeachin regulates receptor downscaling at GABAergic inhibitory synapses in a protein kinase A-dependent manner. Commun Biol 2024; 7:1635. [PMID: 39668217 PMCID: PMC11638247 DOI: 10.1038/s42003-024-07294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
GABAergic synapses critically modulate neuronal excitability, and plastic changes in inhibitory synaptic strength require reversible interactions between GABAA receptors (GABAARs) and their postsynaptic anchor gephyrin. Inhibitory long-term potentiation (LTP) depends on the postsynaptic recruitment of gephyrin and GABAARs, whereas the neurotransmitter GABA can induce synaptic removal of GABAARs. However, the mechanisms and players underlying plastic adaptation of synaptic strength are incompletely understood. Here we show that neurobeachin (Nbea), a receptor trafficking protein, is a component of inhibitory synapses, interacts with gephyrin and regulates the downscaling of inhibitory synaptic transmission. We found that the recruitment of Nbea to GABAergic synapses is activity-dependent and that Nbea regulates GABAAR internalization in a protein kinase A (PKA)-dependent manner. In heterozygous neurons lacking one Nbea allele, re-expression of Nbea but not expression of a PKA binding-deficient Nbea mutant rescued the internalization of GABAARs. Our data suggest a mechanism by which Nbea mediates PKA anchoring at inhibitory postsynaptic sites to downregulate GABAergic transmission. They emphasize the importance of kinase positioning in the regulation of synaptic strength.
Collapse
Affiliation(s)
- Felix P Lützenkirchen
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yipeng Zhu
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans M Maric
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Dominik S Boeck
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kira V Gromova
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center of Neuroscience, HCNS, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Wu Y, Wang Y, Lu Y, Yan J, Zhao H, Yang R, Pan J. Research advances in huntingtin-associated protein 1 and its application prospects in diseases. Front Neurosci 2024; 18:1402996. [PMID: 38975245 PMCID: PMC11224548 DOI: 10.3389/fnins.2024.1402996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Huntingtin-associated protein 1 (HAP1) was the first protein discovered to interact with huntingtin. Besides brain, HAP1 is also expressed in the spinal cord, dorsal root ganglion, endocrine, and digestive systems. HAP1 has diverse functions involving in vesicular transport, receptor recycling, gene transcription, and signal transduction. HAP1 is strongly linked to several neurological diseases, including Huntington's disease, Alzheimer's disease, epilepsy, ischemic stroke, and depression. In addition, HAP1 has been proved to participate in cancers and diabetes mellitus. This article provides an overview of HAP1 regarding the tissue distribution, cell localization, functions, and offers fresh perspectives to investigate its role in diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
4
|
Burch AM, Garcia JD, O'Leary H, Haas A, Orfila JE, Tiemeier E, Chalmers N, Smith KR, Quillinan N, Herson PS. TRPM2 and CaMKII Signaling Drives Excessive GABAergic Synaptic Inhibition Following Ischemia. J Neurosci 2024; 44:e1762232024. [PMID: 38565288 PMCID: PMC11079974 DOI: 10.1523/jneurosci.1762-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Excitotoxicity and the concurrent loss of inhibition are well-defined mechanisms driving acute elevation in excitatory/inhibitory (E/I) balance and neuronal cell death following an ischemic insult to the brain. Despite the high prevalence of long-term disability in survivors of global cerebral ischemia (GCI) as a consequence of cardiac arrest, it remains unclear whether E/I imbalance persists beyond the acute phase and negatively affects functional recovery. We previously demonstrated sustained impairment of long-term potentiation (LTP) in hippocampal CA1 neurons correlating with deficits in learning and memory tasks in a murine model of cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Here, we use CA/CPR and an in vitro ischemia model to elucidate mechanisms by which E/I imbalance contributes to ongoing hippocampal dysfunction in male mice. We reveal increased postsynaptic GABAA receptor (GABAAR) clustering and function in the CA1 region of the hippocampus that reduces the E/I ratio. Importantly, reduced GABAAR clustering observed in the first 24 h rebounds to an elevation of GABAergic clustering by 3 d postischemia. This increase in GABAergic inhibition required activation of the Ca2+-permeable ion channel transient receptor potential melastatin-2 (TRPM2), previously implicated in persistent LTP and memory deficits following CA/CPR. Furthermore, we find Ca2+-signaling, likely downstream of TRPM2 activation, upregulates Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, thereby driving the elevation of postsynaptic inhibitory function. Thus, we propose a novel mechanism by which inhibitory synaptic strength is upregulated in the context of ischemia and identify TRPM2 and CaMKII as potential pharmacological targets to restore perturbed synaptic plasticity and ameliorate cognitive function.
Collapse
Affiliation(s)
- Amelia M Burch
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Joshua D Garcia
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Heather O'Leary
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Ami Haas
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - James E Orfila
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Erika Tiemeier
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Nicholas Chalmers
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Nidia Quillinan
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Paco S Herson
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio 43210
| |
Collapse
|
5
|
Garcia JD, Wolfe SE, Stewart AR, Tiemeier E, Gookin SE, Guerrero MB, Quillinan N, Smith KR. Distinct mechanisms drive sequential internalization and degradation of GABA ARs during global ischemia and reperfusion injury. iScience 2023; 26:108061. [PMID: 37860758 PMCID: PMC10582478 DOI: 10.1016/j.isci.2023.108061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Synaptic inhibition is critical for controlling neuronal excitability and function. During global cerebral ischemia (GCI), inhibitory synapses are rapidly eliminated, causing hyper-excitability which contributes to cell-death and the pathophysiology of disease. Sequential disassembly of inhibitory synapses begins within minutes of ischemia onset: GABAARs are rapidly trafficked away from the synapse, the gephyrin scaffold is removed, followed by loss of the presynaptic terminal. GABAARs are endocytosed during GCI, but how this process accompanies synapse disassembly remains unclear. Here, we define the precise trafficking itinerary of GABAARs during the initial stages of GCI, placing them in the context of rapid synapse elimination. Ischemia-induced GABAAR internalization quickly follows their initial dispersal from the synapse, and is controlled by PP1α signaling. During reperfusion injury, GABAARs are then trafficked to lysosomes for degradation, leading to permanent removal of synaptic GABAARs and contributing to the profound reduction in synaptic inhibition observed hours following ischemia onset.
Collapse
Affiliation(s)
- Joshua D. Garcia
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Sarah E. Wolfe
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Amber R. Stewart
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Erika Tiemeier
- Department of Anesthesiology, Neuronal Injury Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Sara E. Gookin
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Mayra Bueno Guerrero
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Nidia Quillinan
- Department of Anesthesiology, Neuronal Injury Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Katharine R. Smith
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Pol E, Côme E, Merlaud Z, Gouhier J, Russeau M, Scotto-Lomassese S, Moutkine I, Marques X, Lévi S. NKCC1 and KCC2 Chloride Transporters Have Different Membrane Dynamics on the Surface of Hippocampal Neurons. Cells 2023; 12:2363. [PMID: 37830575 PMCID: PMC10571912 DOI: 10.3390/cells12192363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Na-K-2Cl cotransporter 1 (NKCC1) regulates chloride influx in neurons and thereby GABAA receptor activity in normal and pathological conditions. Here, we characterized in hippocampal neurons the membrane expression, distribution and dynamics of exogenous NKCC1a and NKCC1b isoforms and compared them to those of the chloride extruder K-Cl cotransporter 2 (KCC2). We found that NKCC1a and NKCC1b behave quite similarly. NKCC1a/1b but not KCC2 are present along the axon initial segment where they are confined. Moreover, NKCC1a/1b are detected in the somato-dendritic compartment at a lower level than KCC2, where they form fewer, smaller and less compact clusters at perisynaptic and extrasynaptic sites. Interestingly, ~60% of dendritic clusters of NKCC1a/1b are colocalized with KCC2. They are larger and brighter than those devoid of KCC2, suggesting a particular NKCC1a/1b-KCC2 relationship. In agreement with the reduced dendritic clustering of NKCC1a/1b compared with that of KCC2, NKCC1a/1b are more mobile on the dendrite than KCC2, suggesting weaker cytoskeletal interaction. NKCC1a/b are confined to endocytic zones, where they spend more time than KCC2. However, they spend less time in these compartments than at the synapses, suggesting that they can rapidly leave endocytic zones to increase the membrane pool, which can happen in pathological conditions. Thus, NKCC1a/b have different membrane dynamics and clustering from KCC2, which helps to explain their low level in the neuronal membrane, while allowing a rapid increase in the membrane pool under pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sabine Lévi
- Institut du Fer à Moulin, Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR-S 1270, Sorbonne Université, 75005 Paris, France; (E.P.); (E.C.); (Z.M.); (J.G.); (M.R.); (S.S.-L.); (I.M.); (X.M.)
| |
Collapse
|
7
|
Abstract
Infection with SARS-CoV-2, the causative agent of the COVID-19 pandemic, originated in China and quickly spread across the globe. Despite tremendous economic and healthcare devastation, research on this virus has contributed to a better understanding of numerous molecular pathways, including those involving γ-aminobutyric acid (GABA), that will positively impact medical science, including neuropsychiatry, in the post-pandemic era. SARS-CoV-2 primarily enters the host cells through the renin–angiotensin system’s component named angiotensin-converting enzyme-2 (ACE-2). Among its many functions, this protein upregulates GABA, protecting not only the central nervous system but also the endothelia, the pancreas, and the gut microbiota. SARS-CoV-2 binding to ACE-2 usurps the neuronal and non-neuronal GABAergic systems, contributing to the high comorbidity of neuropsychiatric illness with gut dysbiosis and endothelial and metabolic dysfunctions. In this perspective article, we take a closer look at the pathology emerging from the viral hijacking of non-neuronal GABA and summarize potential interventions for restoring these systems.
Collapse
|
8
|
Thirouin ZS, Figueiredo M, Hleihil M, Gill R, Bosshard G, McKinney RA, Tyagarajan SK. Trophic factor BDNF inhibits GABAergic signaling by facilitating dendritic enrichment of SUMO E3 ligase PIAS3 and altering gephyrin scaffold. J Biol Chem 2022; 298:101840. [PMID: 35307349 PMCID: PMC9019257 DOI: 10.1016/j.jbc.2022.101840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Posttranslational addition of a small ubiquitin-like modifier (SUMO) moiety (SUMOylation) has been implicated in pathologies such as brain ischemia, diabetic peripheral neuropathy, and neurodegeneration. However, nuclear enrichment of SUMO pathway proteins has made it difficult to ascertain how ion channels, proteins that are typically localized to and function at the plasma membrane, and mitochondria are SUMOylated. Here, we report that the trophic factor, brain-derived neurotrophic factor (BDNF) regulates SUMO proteins both spatially and temporally in neurons. We show that BDNF signaling via the receptor tropomyosin-related kinase B facilitates nuclear exodus of SUMO proteins and subsequent enrichment within dendrites. Of the various SUMO E3 ligases, we found that PIAS-3 dendrite enrichment in response to BDNF signaling specifically modulates subsequent ERK1/2 kinase pathway signaling. In addition, we found the PIAS-3 RING and Ser/Thr domains, albeit in opposing manners, functionally inhibit GABA-mediated inhibition. Finally, using oxygen–glucose deprivation as an in vitro model for ischemia, we show that BDNF–tropomyosin-related kinase B signaling negatively impairs clustering of the main scaffolding protein at GABAergic postsynapse, gephyrin, whereby reducing GABAergic neurotransmission postischemia. SUMOylation-defective gephyrin K148R/K724R mutant transgene expression reversed these ischemia-induced changes in gephyrin cluster density. Taken together, these data suggest that BDNF signaling facilitates the temporal relocation of nuclear-enriched SUMO proteins to dendrites to influence postsynaptic protein SUMOylation.
Collapse
Affiliation(s)
- Zahra S Thirouin
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Marta Figueiredo
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Mohammad Hleihil
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Raminder Gill
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Giovanna Bosshard
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
9
|
Hines DJ, Contreras A, Garcia B, Barker JS, Boren AJ, Moufawad El Achkar C, Moss SJ, Hines RM. Human ARHGEF9 intellectual disability syndrome is phenocopied by a mutation that disrupts collybistin binding to the GABA A receptor α2 subunit. Mol Psychiatry 2022; 27:1729-1741. [PMID: 35169261 PMCID: PMC9095487 DOI: 10.1038/s41380-022-01468-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 11/20/2022]
Abstract
Intellectual disability (ID) is a common neurodevelopmental disorder that can arise from genetic mutations ranging from trisomy to single nucleotide polymorphism. Mutations in a growing number of single genes have been identified as causative in ID, including ARHGEF9. Evaluation of 41 ARHGEF9 patient reports shows ubiquitous inclusion of ID, along with other frequently reported symptoms of epilepsy, abnormal baseline EEG activity, behavioral symptoms, and sleep disturbances. ARHGEF9 codes for the Cdc42 Guanine Nucleotide Exchange Factor 9 collybistin (Cb), a known regulator of inhibitory synapse function via direct interaction with the adhesion molecule neuroligin-2 and the α2 subunit of GABAA receptors. We mutate the Cb binding motif within the large intracellular loop of α2 replacing it with the binding motif for gephyrin from the α1 subunit (Gabra2-1). The Gabra2-1 mutation causes a strong downregulation of Cb expression, particularly at cholecystokinin basket cell inhibitory synapses. Gabra2-1 mice have deficits in working and recognition memory, as well as hyperactivity, anxiety, and reduced social preference, recapitulating the frequently reported features of ARHGEF9 patients. Gabra2-1 mice also have spontaneous seizures during postnatal development which can lead to mortality, and baseline abnormalities in low-frequency wavelengths of the EEG. EEG abnormalities are vigilance state-specific and manifest as sleep disturbance including increased time in wake and a loss of free-running rhythmicity in the absence of light as zeitgeber. Gabra2-1 mice phenocopy multiple features of human ARHGEF9 mutation, and reveal α2 subunit-containing GABAA receptors as a druggable target for treatment of this complex ID syndrome.
Collapse
Affiliation(s)
- Dustin J Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - April Contreras
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Betsua Garcia
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Jeffrey S Barker
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Austin J Boren
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Rochelle M Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
10
|
Garcia JD, Gookin SE, Crosby KC, Schwartz SL, Tiemeier E, Kennedy MJ, Dell'Acqua ML, Herson PS, Quillinan N, Smith KR. Stepwise disassembly of GABAergic synapses during pathogenic excitotoxicity. Cell Rep 2021; 37:110142. [PMID: 34936876 PMCID: PMC8824488 DOI: 10.1016/j.celrep.2021.110142] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/17/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
GABAergic synaptic inhibition controls neuronal firing, excitability, and synaptic plasticity to regulate neuronal circuits. Following an acute excitotoxic insult, inhibitory synapses are eliminated, reducing synaptic inhibition, elevating circuit excitability, and contributing to the pathophysiology of brain injuries. However, mechanisms that drive inhibitory synapse disassembly and elimination are undefined. We find that inhibitory synapses are disassembled in a sequential manner following excitotoxicity: GABAARs undergo rapid nanoscale rearrangement and are dispersed from the synapse along with presynaptic active zone components, followed by the gradual removal of the gephyrin scaffold, prior to complete elimination of the presynaptic terminal. GABAAR nanoscale reorganization and synaptic declustering depends on calcineurin signaling, whereas disassembly of gephyrin relies on calpain activation, and blockade of both enzymes preserves inhibitory synapses after excitotoxic insult. Thus, inhibitory synapse disassembly occurs rapidly, with nanoscale precision, in a stepwise manner and most likely represents a critical step in the progression of hyperexcitability following excitotoxicity.
Collapse
Affiliation(s)
- Joshua D Garcia
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Sara E Gookin
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Kevin C Crosby
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Samantha L Schwartz
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Erika Tiemeier
- Department of Anesthesiology, Neuronal Injury Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Paco S Herson
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA; Department of Anesthesiology, Neuronal Injury Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Nidia Quillinan
- Department of Anesthesiology, Neuronal Injury Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
11
|
Camblor-Perujo S, Kononenko NL. Brain-specific functions of the endocytic machinery. FEBS J 2021; 289:2219-2246. [PMID: 33896112 DOI: 10.1111/febs.15897] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Endocytosis is an essential cellular process required for multiple physiological functions, including communication with the extracellular environment, nutrient uptake, and signaling by the cell surface receptors. In a broad sense, endocytosis is accomplished through either constitutive or ligand-induced invagination of the plasma membrane, which results in the formation of the plasma membrane-retrieved endocytic vesicles, which can either be sent for degradation to the lysosomes or recycled back to the PM. This additional function of endocytosis in membrane retrieval has been adopted by excitable cells, such as neurons, for membrane equilibrium maintenance at synapses. The last two decades were especially productive with respect to the identification of brain-specific functions of the endocytic machinery, which additionally include but not limited to regulation of neuronal differentiation and migration, maintenance of neuron morphology and synaptic plasticity, and prevention of neurotoxic aggregates spreading. In this review, we highlight the current knowledge of brain-specific functions of endocytic machinery with a specific focus on three brain cell types, neuronal progenitor cells, neurons, and glial cells.
Collapse
Affiliation(s)
| | - Natalia L Kononenko
- CECAD Cluster of Excellence, University of Cologne, Germany.,Center for Physiology & Pathophysiology, Medical Faculty, University of Cologne, Germany
| |
Collapse
|
12
|
Schulte C, Maric HM. Expanding GABA AR pharmacology via receptor-associated proteins. Curr Opin Pharmacol 2021; 57:98-106. [PMID: 33684670 DOI: 10.1016/j.coph.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Drugs directly targeting γ-aminobutyric acid type A receptors (GABAARs), the major mediators of fast synaptic inhibition, contribute significantly to today's neuropharmacology. Emerging evidence establishes intracellularly GABAAR-associated proteins as the central players in determining cellular and subcellular GABAergic input sites, thereby providing pharmacological opportunities to affect distinct receptor populations and address discrete neuronal dysfunctions. Here, we report on recently studied GABAAR-associated proteins and highlight challenges and newly available methods for their functional and physical mapping. We anticipate these efforts to contribute to decipher the complexity of GABAergic signalling in the brain and eventually enable therapeutic avenues for, so far, untreatable neuronal disorders and diseases.
Collapse
Affiliation(s)
- Clemens Schulte
- Department of Biotechnology and Biophysics and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, D15, 97080, Würzburg, Germany
| | - Hans Michael Maric
- Department of Biotechnology and Biophysics and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, D15, 97080, Würzburg, Germany.
| |
Collapse
|
13
|
Josiah SS, Meor Azlan NF, Zhang J. Targeting the WNK-SPAK/OSR1 Pathway and Cation-Chloride Cotransporters for the Therapy of Stroke. Int J Mol Sci 2021; 22:1232. [PMID: 33513812 PMCID: PMC7865768 DOI: 10.3390/ijms22031232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/05/2023] Open
Abstract
Stroke is one of the major culprits responsible for morbidity and mortality worldwide, and the currently available pharmacological strategies to combat this global disease are scanty. Cation-chloride cotransporters (CCCs) are expressed in several tissues (including neurons) and extensively contribute to the maintenance of numerous physiological functions including chloride homeostasis. Previous studies have implicated two CCCs, the Na+-K+-Cl- and K+-Cl- cotransporters (NKCCs and KCCs) in stroke episodes along with their upstream regulators, the with-no-lysine kinase (WNKs) family and STE20/SPS1-related proline/alanine rich kinase (SPAK) or oxidative stress response kinase (OSR1) via a signaling pathway. As the WNK-SPAK/OSR1 pathway reciprocally regulates NKCC and KCC, a growing body of evidence implicates over-activation and altered expression of NKCC1 in stroke pathology whilst stimulation of KCC3 during and even after a stroke event is neuroprotective. Both inhibition of NKCC1 and activation of KCC3 exert neuroprotection through reduction in intracellular chloride levels and thus could be a novel therapeutic strategy. Hence, this review summarizes the current understanding of functional regulations of the CCCs implicated in stroke with particular focus on NKCC1, KCC3, and WNK-SPAK/OSR1 signaling and discusses the current and potential pharmacological treatments for stroke.
Collapse
Affiliation(s)
| | | | - Jinwei Zhang
- Hatherly Laboratories, Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX4 4PS, UK; (S.S.J.); (N.F.M.A.)
| |
Collapse
|
14
|
Andrews K, Josiah SS, Zhang J. The Therapeutic Potential of Neuronal K-Cl Co-Transporter KCC2 in Huntington's Disease and Its Comorbidities. Int J Mol Sci 2020; 21:9142. [PMID: 33266310 PMCID: PMC7730145 DOI: 10.3390/ijms21239142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/16/2020] [Accepted: 11/28/2020] [Indexed: 02/05/2023] Open
Abstract
Intracellular chloride levels in the brain are regulated primarily through the opposing effects of two cation-chloride co-transporters (CCCs), namely K+-Cl- co-transporter-2 (KCC2) and Na+-K+-Cl- co-transporter-1 (NKCC1). These CCCs are differentially expressed throughout the course of development, thereby determining the excitatory-to-inhibitory γ-aminobutyric acid (GABA) switch. GABAergic excitation (depolarisation) is important in controlling the healthy development of the nervous system; as the brain matures, GABAergic inhibition (hyperpolarisation) prevails. This developmental switch in excitability is important, as uncontrolled regulation of neuronal excitability can have implications for health. Huntington's disease (HD) is an example of a genetic disorder whereby the expression levels of KCC2 are abnormal due to mutant protein interactions. Although HD is primarily considered a motor disease, many other clinical manifestations exist; these often present in advance of any movement abnormalities. Cognitive change, in addition to sleep disorders, is prevalent in the HD population; the effect of uncontrolled KCC2 function on cognition and sleep has also been explored. Several mechanisms by which KCC2 expression is reduced have been proposed recently, thereby suggesting extensive investigation of KCC2 as a possible therapeutic target for the development of pharmacological compounds that can effectively treat HD co-morbidities. Hence, this review summarizes the role of KCC2 in the healthy and HD brain, and highlights recent advances that attest to KCC2 as a strong research and therapeutic target candidate.
Collapse
Affiliation(s)
| | | | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK; (K.A.); (S.S.J.)
| |
Collapse
|
15
|
SNX27-Mediated Recycling of Neuroligin-2 Regulates Inhibitory Signaling. Cell Rep 2020; 29:2599-2607.e6. [PMID: 31775031 PMCID: PMC6899438 DOI: 10.1016/j.celrep.2019.10.096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/22/2019] [Accepted: 10/24/2019] [Indexed: 01/11/2023] Open
Abstract
GABAA receptors mediate fast inhibitory transmission in the brain, and their number can be rapidly up- or downregulated to alter synaptic strength. Neuroligin-2 plays a critical role in the stabilization of synaptic GABAA receptors and the development and maintenance of inhibitory synapses. To date, little is known about how the amount of neuroligin-2 at the synapse is regulated and whether neuroligin-2 trafficking affects inhibitory signaling. Here, we show that neuroligin-2, when internalized to endosomes, co-localizes with SNX27, a brain-enriched cargo-adaptor protein that facilitates membrane protein recycling. Direct interaction between the PDZ domain of SNX27 and PDZ-binding motif in neuroligin-2 enables membrane retrieval of neuroligin-2, thus enhancing synaptic neuroligin-2 clusters. Furthermore, SNX27 knockdown has the opposite effect. SNX27-mediated up- and downregulation of neuroligin-2 surface levels affects inhibitory synapse composition and signaling strength. Taken together, we show a role for SNX27-mediated recycling of neuroligin-2 in maintenance and signaling of the GABAergic synapse.
Collapse
|
16
|
Liu H, Perumal N, Manicam C, Mercieca K, Prokosch V. Proteomics Reveals the Potential Protective Mechanism of Hydrogen Sulfide on Retinal Ganglion Cells in an Ischemia/Reperfusion Injury Animal Model. Pharmaceuticals (Basel) 2020; 13:ph13090213. [PMID: 32867129 PMCID: PMC7557839 DOI: 10.3390/ph13090213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness and is characterized by progressive retinal ganglion cell (RGC) degeneration. Hydrogen sulfide (H2S) is a potent neurotransmitter and has been proven to protect RGCs against glaucomatous injury in vitro and in vivo. This study is to provide an overall insight of H2S’s role in glaucoma pathophysiology. Ischemia-reperfusion injury (I/R) was induced in Sprague-Dawley rats (n = 12) by elevating intraocular pressure to 55 mmHg for 60 min. Six of the animals received intravitreal injection of H2S precursor prior to the procedure and the retina was harvested 24 h later. Contralateral eyes were assigned as control. RGCs were quantified and compared within the groups. Retinal proteins were analyzed via label-free mass spectrometry based quantitative proteomics approach. The pathways of the differentially expressed proteins were identified by ingenuity pathway analysis (IPA). H2S significantly improved RGC survival against I/R in vivo (p < 0.001). In total 1115 proteins were identified, 18 key proteins were significantly differentially expressed due to I/R and restored by H2S. Another 11 proteins were differentially expressed following H2S. IPA revealed a significant H2S-mediated activation of pathways related to mitochondrial function, iron homeostasis and vasodilation. This study provides first evidence of the complex role that H2S plays in protecting RGC against I/R.
Collapse
Affiliation(s)
- Hanhan Liu
- Experimental and Translational Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (H.L.); (N.P.); (C.M.)
| | - Natarajan Perumal
- Experimental and Translational Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (H.L.); (N.P.); (C.M.)
| | - Caroline Manicam
- Experimental and Translational Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (H.L.); (N.P.); (C.M.)
| | - Karl Mercieca
- Royal Eye Hospital, School of Medicine, University of Manchester, Manchester M13 9WH, UK;
| | - Verena Prokosch
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Correspondence: ; Tel.: +49-1703862250
| |
Collapse
|
17
|
Genome-wide DNA methylation alteration in prenatally stressed Brahman heifer calves with the advancement of age. Epigenetics 2020; 16:519-536. [PMID: 32815760 DOI: 10.1080/15592294.2020.1805694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Possible phenotypic impairments associated with maternal stress during gestation in beef cattle may be explained by epigenetic effects. This study examined the impact of prenatal transportation stress on DNA methylation of lymphocytes of Brahman cows over the first 5 years of life. Methylation analysis through reduced representation bisulphite sequencing was conducted on DNA from lymphocytes from 28 paired samples from 6 prenatally stressed (PNS) and 8 control (Control) females obtained initially when they were 28 days of age and 5 years of age. There were 14,386 CpG (C = cytosine; p = phosphate; G = guanine) sites differentially methylated (P < 0.01) in 5-yr-old Control cows compared to their lymphocyte DNA at 28 days of age, this number was slightly decreased in 5-yr-old PNS with 13,378 CpG sites. Only 2,749 age-related differentially methylated CpG sites were seen within PNS females. There were 2,637 CpG sites differentially methylated (P < 0.01) in PNS cows relative to Controls at 5 years of age. There were differentially methylated genes in 5-yr-old cows that contributed similarly to altered gene pathways in both treatment groups. Canonical pathways altered in PNS compared to Control cows at 5 years of age were mostly related to development and growth, nervous system development and function, and immune response. Prenatal stress appeared to alter the epigenome in Brahman cows compared to Control at 5 years of age, which implies a persistent intervention in DNA methylation in lymphocytes, and may confer long-lasting effects on gene expression, and consequently relevant phenotypic changes.
Collapse
|
18
|
López-Hernández T, Haucke V, Maritzen T. Endocytosis in the adaptation to cellular stress. Cell Stress 2020; 4:230-247. [PMID: 33024932 PMCID: PMC7520666 DOI: 10.15698/cst2020.10.232] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Cellular life is challenged by a multitude of stress conditions, triggered for example by alterations in osmolarity, oxygen or nutrient supply. Hence, cells have developed sophisticated stress responses to cope with these challenges. Some of these stress programs such as the heat shock response are understood in great detail, while other aspects remain largely elusive including potential stress-dependent adaptations of the plasma membrane proteome. The plasma membrane is not only the first point of encounter for many types of environmental stress, but given the diversity of receptor proteins and their associated molecules also represents the site at which many cellular signal cascades originate. Since these signaling pathways affect virtually all aspects of cellular life, changes in the plasma membrane proteome appear ideally suited to contribute to the cellular adaptation to stress. The most rapid means to alter the cell surface proteome in response to stress is by alterations in endocytosis. Changes in the overall endocytic flux or in the endocytic regulation of select proteins conceivably can help to counteract adverse environmental conditions. In this review we summarize recent data regarding stress-induced changes in endocytosis and discuss how these changes might contribute to the cellular adaptation to stress in different systems. Future studies will be needed to uncover the underlying mechanisms in detail and to arrive at a coherent picture.
Collapse
Affiliation(s)
- Tania López-Hernández
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
- Freie Universität Berlin, Faculty of Biology, Chemistry, Pharmacy, 14195 Berlin, Germany
| | - Tanja Maritzen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| |
Collapse
|
19
|
Norkett R, Lesept F, Kittler JT. DISC1 Regulates Mitochondrial Trafficking in a Miro1-GTP-Dependent Manner. Front Cell Dev Biol 2020; 8:449. [PMID: 32637409 PMCID: PMC7317294 DOI: 10.3389/fcell.2020.00449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/13/2020] [Indexed: 11/20/2022] Open
Abstract
The disrupted in schizophrenia 1 (DISC1) protein is implicated in major mental illnesses including schizophrenia and bipolar disorder. A key feature of psychiatric disease is aberrant synaptic communication. Correct synaptic transmission is dependent on spatiotemporally regulated energy provision and calcium buffering. This can be achieved by precise distribution of mitochondria throughout the elaborate architecture of the neuron. Central to this process is the calcium sensor and GTPase Miro1, which allows mitochondrial trafficking by molecular motors. While the role of Miro1-calcium binding in mitochondrial transport is well described, far less is known regarding the functions of the two GTPase domains. Here, we investigate the effects of a psychiatric disease-associated mutation in DISC1 on mitochondrial trafficking. We show that this DISC1 mutation impairs Miro1’s ability to transport mitochondria. We also demonstrate the necessity of the first Miro1 GTPase domain in determining direction of mitochondrial transport and the involvement of DISC1 in this process. Finally, we describe the effects of mutant DISC1 on positioning of mitochondria at synapses.
Collapse
Affiliation(s)
- Rosalind Norkett
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Flavie Lesept
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
20
|
Bera S, Camblor‐Perujo S, Calleja Barca E, Negrete‐Hurtado A, Racho J, De Bruyckere E, Wittich C, Ellrich N, Martins S, Adjaye J, Kononenko NL. AP-2 reduces amyloidogenesis by promoting BACE1 trafficking and degradation in neurons. EMBO Rep 2020; 21:e47954. [PMID: 32323475 PMCID: PMC7271323 DOI: 10.15252/embr.201947954] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cleavage of amyloid precursor protein (APP) by BACE-1 (β-site APP cleaving enzyme 1) is the rate-limiting step in amyloid-β (Aβ) production and a neuropathological hallmark of Alzheimer's disease (AD). Despite decades of research, mechanisms of amyloidogenic APP processing remain highly controversial. Here, we show that in neurons, APP processing and Aβ production are controlled by the protein complex-2 (AP-2), an endocytic adaptor known to be required for APP endocytosis. Now, we find that AP-2 prevents amyloidogenesis by additionally functioning downstream of BACE1 endocytosis, regulating BACE1 endosomal trafficking and its delivery to lysosomes. AP-2 is decreased in iPSC-derived neurons from patients with late-onset AD, while conditional AP-2 knockout (KO) mice exhibit increased Aβ production, resulting from accumulation of BACE1 within late endosomes and autophagosomes. Deletion of BACE1 decreases amyloidogenesis and mitigates synapse loss in neurons lacking AP-2. Taken together, these data suggest a mechanism for BACE1 intracellular trafficking and degradation via an endocytosis-independent function of AP-2 and reveal a novel role for endocytic proteins in AD.
Collapse
Affiliation(s)
- Sujoy Bera
- CECAD Research CenterUniversity of CologneCologneGermany
- Present address:
Centre for Neuroscience and Regenerative MedicineFaculty of ScienceUniversity of Technology SydneySydneyNSWAustralia
| | | | | | | | - Julia Racho
- CECAD Research CenterUniversity of CologneCologneGermany
| | | | | | - Nina Ellrich
- CECAD Research CenterUniversity of CologneCologneGermany
| | - Soraia Martins
- Institute for Stem Cell Research and Regenerative MedicineMedical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative MedicineMedical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | | |
Collapse
|
21
|
Wu H, Huang Y, Tian X, Zhang Z, Zhang Y, Mao Y, Wang C, Yang S, Liu Y, Zhang W, Ma Z. Preoperative anxiety-induced glucocorticoid signaling reduces GABAergic markers in spinal cord and promotes postoperative hyperalgesia by affecting neuronal PAS domain protein 4. Mol Pain 2020; 15:1744806919850383. [PMID: 31041873 PMCID: PMC6537253 DOI: 10.1177/1744806919850383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Preoperative anxiety is common in patients undergoing elective surgery and is
closely related to postoperative hyperalgesia. In this study, a single prolonged
stress model was used to induce preoperative anxiety-like behavior in rats 24 h
before the surgery. We found that single prolonged stress exacerbated the
postoperative pain and elevated the level of serum corticosterone. Previous
studies have shown that glucocorticoid is associated with synaptic plasticity,
and decreased spinal GABAergic activity can cause hyperalgesia in rodents. Here,
single prolonged stress rats’ lumbar spinal cord showed reduced glutamic acid
decarboxylase-65, glutamic acid decarboxylase-67, GABA type A receptor alpha 1
subunit, and GABA type A receptor gamma 2 subunit, indicating an impairment of
GABAergic system. Furthermore, neuronal PAS domain protein 4 was also reduced in
rats after single prolonged stress stimulation, which has been reported to
promote GABAergic synapse development. Then, intraperitoneal injection of RU486
(a glucocorticoid receptor antagonist) rather than spironolactone (a
mineralocorticoid receptor antagonist) was found to relieve single prolonged
stress-induced hyperalgesia and reverse neuronal PAS domain protein 4 reduction
and the impairment of GABAergic system. Furthermore, overexpressing neuronal PAS
domain protein 4 could also restore the damage of GABAergic system caused by
single prolonged stress while interfering with neuronal PAS domain protein 4
caused an opposite effect. Finally, after stimulation of rat primary spinal cord
neurons with exogenous corticosterone in vitro, neuronal PAS domain protein 4
and GABAergic markers were also downregulated, and RU486 reversed that.
Together, our results demonstrated that preoperative anxiety led to GABAergic
system impairment in spinal cord and thus caused hyperalgesia due to
glucocorticoid-induced downregulation of neuronal PAS domain protein 4.
Collapse
Affiliation(s)
- Hao Wu
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Yulin Huang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Xinyu Tian
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Zuoxia Zhang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Ying Zhang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Yanting Mao
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Chenchen Wang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Shuai Yang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Yue Liu
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Wei Zhang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Zhengliang Ma
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Neuronal Transmembrane Chloride Transport Has a Time-Dependent Influence on Survival of Hippocampal Cultures to Oxygen-Glucose Deprivation. Brain Sci 2019; 9:brainsci9120360. [PMID: 31817665 PMCID: PMC6955658 DOI: 10.3390/brainsci9120360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
Neuronal ischemia results in chloride gradient alterations which impact the excitatory–inhibitory balance, volume regulation, and neuronal survival. Thus, the Na+/K+/Cl− co-transporter (NKCC1), the K+/ Cl− co-transporter (KCC2), and the gamma-aminobutyric acid A (GABAA) receptor may represent therapeutic targets in stroke, but a time-dependent effect on neuronal viability could influence the outcome. We, therefore, successively blocked NKCC1, KCC2, and GABAA (with bumetanide, DIOA, and gabazine, respectively) or activated GABAA (with isoguvacine) either during or after oxygen-glucose deprivation (OGD). Primary hippocampal cultures were exposed to a 2-h OGD or sham normoxia treatment, and viability was determined using the resazurin assay. Neuronal viability was significantly reduced after OGD, and was further decreased by DIOA treatment applied during OGD (p < 0.01) and by gabazine applied after OGD (p < 0.05). Bumetanide treatment during OGD increased viability (p < 0.05), while isoguvacine applied either during or after OGD did not influence viability. Our data suggests that NKCC1 and KCC2 function has an important impact on neuronal viability during the acute ischemic episode, while the GABAA receptor plays a role during the subsequent recovery period. These findings suggest that pharmacological modulation of transmembrane chloride transport could be a promising approach during stroke and highlight the importance of the timing of treatment application in relation to ischemia-reoxygenation.
Collapse
|
23
|
Shi YW, Zhang Q, Cai K, Poliquin S, Shen W, Winters N, Yi YH, Wang J, Hu N, Macdonald RL, Liao WP, Kang JQ. Synaptic clustering differences due to different GABRB3 mutations cause variable epilepsy syndromes. Brain 2019; 142:3028-3044. [PMID: 31435640 PMCID: PMC6776116 DOI: 10.1093/brain/awz250] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 11/13/2022] Open
Abstract
GABRB3 is highly expressed early in the developing brain, and its encoded β3 subunit is critical for GABAA receptor assembly and trafficking as well as stem cell differentiation in embryonic brain. To date, over 400 mutations or variants have been identified in GABRB3. Mutations in GABRB3 have been increasingly recognized as a major cause for severe paediatric epilepsy syndromes such as Lennox-Gastaut syndrome, Dravet syndrome and infantile spasms with intellectual disability as well as relatively mild epilepsy syndromes such as childhood absence epilepsy. There is no plausible molecular pathology for disease phenotypic heterogeneity. Here we used a very high-throughput flow cytometry assay to evaluate the impact of multiple human mutations in GABRB3 on receptor trafficking. In this study we found that surface expression of mutant β3 subunits is variable. However, it was consistent that surface expression of partnering γ2 subunits was lower when co-expressed with mutant than with wild-type subunits. Because γ2 subunits are critical for synaptic GABAA receptor clustering, this provides an important clue for understanding the pathophysiology of GABRB3 mutations. To validate our findings further, we obtained an in-depth comparison of two novel mutations [GABRB3 (N328D) and GABRB3 (E357K)] associated with epilepsy with different severities of epilepsy phenotype. GABRB3 (N328D) is associated with the relatively severe Lennox-Gastaut syndrome, and GABRB3 (E357K) is associated with the relatively mild juvenile absence epilepsy syndrome. With functional characterizations in both heterologous cells and rodent cortical neurons by patch-clamp recordings, confocal microscopy and immunoblotting, we found that both the GABRB3 (N328D) and GABRB3 (E357K) mutations reduced total subunit expression in neurons but not in HEK293T cells. Both mutant subunits, however, were reduced on the cell surface and in synapses, but the Lennox-Gastaut syndrome mutant β3 (N328D) subunit was more reduced than the juvenile absence epilepsy mutant β3 (E357K) subunit. Interestingly, both mutant β3 subunits impaired postsynaptic clustering of wild-type GABAA receptor γ2 subunits and prevented γ2 subunits from incorporating into GABAA receptors at synapses, although by different cellular mechanisms. Importantly, wild-type γ2 subunits were reduced and less clustered at inhibitory synapses in Gabrb3+/- knockout mice. This suggests that impaired receptor localization to synapses is a common pathophysiological mechanism for GABRB3 mutations, although the extent of impairment may be different among mutant subunits. The study thus identifies the novel mechanism of impaired targeting of receptors containing mutant β3 subunits and provides critical insights into understanding how GABRB3 mutations produce severe epilepsy syndromes and epilepsy phenotypic heterogeneity.
Collapse
Affiliation(s)
- Yi-Wu Shi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Qi Zhang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Department of Neurology, Nantong University, 19 Qixiu Road, Nantong, JS, China
| | - Kefu Cai
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Nantong University, 19 QiXiu Road, Nantong, JS, China
| | - Sarah Poliquin
- Neuroscience Graduate Program, Vanderbilt Brain Institute, Nashville, TN, USA
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nathan Winters
- Neuroscience Graduate Program, Vanderbilt Brain Institute, Nashville, TN, USA
| | - Yong-Hong Yi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jie Wang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Ningning Hu
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert L Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei-Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jing-Qiong Kang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
24
|
Khayenko V, Maric HM. Targeting GABA AR-Associated Proteins: New Modulators, Labels and Concepts. Front Mol Neurosci 2019; 12:162. [PMID: 31293385 PMCID: PMC6606717 DOI: 10.3389/fnmol.2019.00162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022] Open
Abstract
γ-aminobutyric acid type A receptors (GABAARs) are the major mediators of synaptic inhibition in the brain. Aberrant GABAAR activity or regulation is observed in various neurodevelopmental disorders, neurodegenerative diseases and mental illnesses, including epilepsy, Alzheimer’s and schizophrenia. Benzodiazepines, anesthetics and other pharmaceutics targeting these receptors find broad clinical use, but their inherent lack of receptor subtype specificity causes unavoidable side effects, raising a need for new or adjuvant medications. In this review article, we introduce a new strategy to modulate GABAeric signaling: targeting the intracellular protein interactors of GABAARs. Of special interest are scaffolding, anchoring and supporting proteins that display high GABAAR subtype specificity. Recent efforts to target gephyrin, the major intracellular integrator of GABAergic signaling, confirm that GABAAR-associated proteins can be successfully targeted through diverse molecules, including recombinant proteins, intrabodies, peptide-based probes and small molecules. Small-molecule artemisinins and peptides derived from endogenous interactors, that specifically target the universal receptor binding site of gephyrin, acutely affect synaptic GABAAR numbers and clustering, modifying neuronal transmission. Interference with GABAAR trafficking provides another way to modulate inhibitory signaling. Peptides blocking the binding site of GABAAR to AP2 increase the surface concentration of GABAAR clusters and enhance GABAergic signaling. Engineering of gephyrin binding peptides delivered superior means to interrogate neuronal structure and function. Fluorescent peptides, designed from gephyrin binders, enable live neuronal staining and visualization of gephyrin in the post synaptic sites with submicron resolution. We anticipate that in the future, novel fluorescent probes, with improved size and binding efficiency, may find wide application in super resolution microscopy studies, enlightening the nanoscale architecture of the inhibitory synapse. Broader studies on GABAAR accessory proteins and the identification of the exact molecular binding interfaces and affinities will advance the development of novel GABAAR modulators and following in vivo studies will reveal their clinical potential as adjuvant or stand-alone drugs.
Collapse
Affiliation(s)
- Vladimir Khayenko
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany.,Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Hans Michael Maric
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany.,Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
25
|
Mele M, Costa RO, Duarte CB. Alterations in GABA A-Receptor Trafficking and Synaptic Dysfunction in Brain Disorders. Front Cell Neurosci 2019; 13:77. [PMID: 30899215 PMCID: PMC6416223 DOI: 10.3389/fncel.2019.00077] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022] Open
Abstract
GABAA receptors (GABAAR) are the major players in fast inhibitory neurotransmission in the central nervous system (CNS). Regulation of GABAAR trafficking and the control of their surface expression play important roles in the modulation of the strength of synaptic inhibition. Different pieces of evidence show that alterations in the surface distribution of GABAAR and dysregulation of their turnover impair the activity of inhibitory synapses. A diminished efficacy of inhibitory neurotransmission affects the excitatory/inhibitory balance and is a common feature of various disorders of the CNS characterized by an increased excitability of neuronal networks. The synaptic pool of GABAAR is mainly controlled through regulation of internalization, recycling and lateral diffusion of the receptors. Under physiological condition these mechanisms are finely coordinated to define the strength of GABAergic synapses. In this review article, we focus on the alteration in GABAAR trafficking with an impact on the function of inhibitory synapses in various disorders of the CNS. In particular we discuss how similar molecular mechanisms affecting the synaptic distribution of GABAAR and consequently the excitatory/inhibitory balance may be associated with a wide diversity of pathologies of the CNS, from psychiatric disorders to acute alterations leading to neuronal death. A better understanding of the cellular and molecular mechanisms that contribute to the impairment of GABAergic neurotransmission in these disorders, in particular the alterations in GABAAR trafficking and surface distribution, may lead to the identification of new pharmacological targets and to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Miranda Mele
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Rui O Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
26
|
Lorenz-Guertin JM, Bambino MJ, Jacob TC. γ2 GABA AR Trafficking and the Consequences of Human Genetic Variation. Front Cell Neurosci 2018; 12:265. [PMID: 30190672 PMCID: PMC6116786 DOI: 10.3389/fncel.2018.00265] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/02/2018] [Indexed: 11/13/2022] Open
Abstract
GABA type A receptors (GABAARs) mediate the majority of fast inhibitory neurotransmission in the central nervous system (CNS). Most prevalent as heteropentamers composed of two α, two β, and a γ2 subunit, these ligand-gated ionotropic chloride channels are capable of extensive genetic diversity (α1-6, β1-3, γ1-3, δ, 𝜀, 𝜃, π, ρ1-3). Part of this selective GABAAR assembly arises from the critical role for γ2 in maintaining synaptic receptor localization and function. Accordingly, mutations in this subunit account for over half of the known epilepsy-associated genetic anomalies identified in GABAARs. Fundamental structure-function studies and cellular pathology investigations have revealed dynamic GABAAR trafficking and synaptic scaffolding as critical regulators of GABAergic inhibition. Here, we introduce in vitro and in vivo findings regarding the specific role of the γ2 subunit in receptor trafficking. We then examine γ2 subunit human genetic variation and assess disease related phenotypes and the potential role of altered GABAAR trafficking. Finally, we discuss new-age imaging techniques and their potential to provide novel insight into critical regulatory mechanisms of GABAAR function.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew J Bambino
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
27
|
Modi S, Higgs NF, Sheehan D, Griffin LD, Kittler JT. Quantum dot conjugated nanobodies for multiplex imaging of protein dynamics at synapses. NANOSCALE 2018; 10:10241-10249. [PMID: 29790493 PMCID: PMC5977936 DOI: 10.1039/c7nr09130c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
Neurons communicate with each other through synapses, which show enrichment for specialized receptors. Although many studies have explored spatial enrichment and diffusion of these receptors in dissociated neurons using single particle tracking, much less is known about their dynamic properties at synapses in complex tissue like brain slices. Here we report the use of smaller and highly specific quantum dots conjugated with a recombinant single domain antibody fragment (VHH fragment) against green fluorescent protein to provide information on diffusion of adhesion molecules at the growth cone and neurotransmitter receptors at synapses. Our data reveals that QD-nanobodies can measure neurotransmitter receptor dynamics at both excitatory and inhibitory synapses in primary neuronal cultures as well as in ex vivo rat brain slices. We also demonstrate that this approach can be applied to tagging multiple proteins to simultaneously monitor their behavior. Thus, we provide a strategy for multiplex imaging of tagged membrane proteins to study their clustering, diffusion and transport both in vitro as well as in native tissue environments such as brain slices.
Collapse
Affiliation(s)
- Souvik Modi
- Neuroscience
, Physiology and Pharmacology
, University College London. Gower Street
,
London
, WC1E 6BT
, UK
.
- Tata Institute of Fundamental Research
,
Homi Bhabha Road
, Mumbai
, 400005
, India
| | - Nathalie F. Higgs
- Neuroscience
, Physiology and Pharmacology
, University College London. Gower Street
,
London
, WC1E 6BT
, UK
.
| | - David Sheehan
- Neuroscience
, Physiology and Pharmacology
, University College London. Gower Street
,
London
, WC1E 6BT
, UK
.
| | | | - Josef T. Kittler
- Neuroscience
, Physiology and Pharmacology
, University College London. Gower Street
,
London
, WC1E 6BT
, UK
.
| |
Collapse
|
28
|
Olesen CW, Vogensen J, Axholm I, Severin M, Schnipper J, Pedersen IS, von Stemann JH, Schrøder JM, Christensen DP, Pedersen SF. Trafficking, localization and degradation of the Na +,HCO 3- co-transporter NBCn1 in kidney and breast epithelial cells. Sci Rep 2018; 8:7435. [PMID: 29743600 PMCID: PMC5943355 DOI: 10.1038/s41598-018-25059-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 04/13/2018] [Indexed: 01/28/2023] Open
Abstract
The Na+;HCO3− co-transporter NBCn1 (SLC4A7) is a major regulator of intracellular pH yet its trafficking and turnover are essentially unstudied. Here, we used MDCK-II and MCF-7 cells to investigate these processes in epithelial cells. GFP-NBCn1 membrane localization was abolished by truncation of the full NBCn1 C-terminal tail (C-tail) yet did not require the C-terminal PDZ-binding motif (ETSL). Glutathione-S-Transferase-pulldown of the C-tail followed by mass spectrometry analysis revealed putative interactions with multiple sorting-, degradation- and retention factors, including the scaffolding protein RACK1. Pulldown of FLAG-tagged deletion constructs mapped the RACK1 interaction to the proximal NBCn1 C-tail. Proximity Ligation Assay and co-immunoprecipitation confirmed that native NBCn1 interacts with RACK1 in a cellular context. Consistent with a functional role of this complex, RACK1 knockdown reduced NBCn1 membrane localization without affecting total NBCn1 expression. Notably, only non-confluent cells exhibited detectable NBCn1-RACK1 plasma membrane co-localization, suggesting that RACK1 regulates the trafficking of NBCn1 to the membrane. Whereas total NBCn1 degradation was slow, with a half-life of more than 24 h, one-third of surface NBCn1 was constitutively endocytosed from the basolateral membrane within 60 min. This suggests that a fraction of NBCn1 exhibits recycling between the basolateral membrane and intracellular compartment(s). Our findings have important implications for understanding NBCn1 regulation as well as its dysregulation in disease.
Collapse
Affiliation(s)
- Christina Wilkens Olesen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Jens Vogensen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Ida Axholm
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Marc Severin
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Julie Schnipper
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Isabella Skandorff Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Jakob Hjorth von Stemann
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Jacob Morville Schrøder
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Dan Ploug Christensen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.
| |
Collapse
|
29
|
Lorenz-Guertin JM, Jacob TC. GABA type a receptor trafficking and the architecture of synaptic inhibition. Dev Neurobiol 2018; 78:238-270. [PMID: 28901728 PMCID: PMC6589839 DOI: 10.1002/dneu.22536] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
Abstract
Ubiquitous expression of GABA type A receptors (GABAA R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABAA Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABAA R function. Here we review the current understanding of how GABAA Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABAA R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABAA R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 238-270, 2018.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
30
|
Activity-Dependent Inhibitory Synapse Scaling Is Determined by Gephyrin Phosphorylation and Subsequent Regulation of GABA A Receptor Diffusion. eNeuro 2018; 5:eN-NWR-0203-17. [PMID: 29379879 PMCID: PMC5780843 DOI: 10.1523/eneuro.0203-17.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/14/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
Synaptic plasticity relies on the rapid changes in neurotransmitter receptor number at postsynaptic sites. Using superresolution photoactivatable localization microscopy imaging and quantum dot-based single-particle tracking in rat hippocampal cultured neurons, we investigated whether the phosphorylation status of the main scaffolding protein gephyrin influenced the organization of the gephyrin scaffold and GABAA receptor (GABAAR) membrane dynamics. We found that gephyrin phosphorylation regulates gephyrin microdomain compaction. Extracellular signal-regulated kinase 1/2 and glycogen synthase kinase 3β (GSK3β) signaling alter the gephyrin scaffold mesh differentially. Differences in scaffold organization similarly affected the diffusion of synaptic GABAARs, suggesting reduced gephyrin receptor-binding properties. In the context of synaptic scaling, our results identify a novel role of the GSK3β signaling pathway in the activity-dependent regulation of extrasynaptic receptor surface trafficking and GSK3β, protein kinase A, and calcium/calmodulin-dependent protein kinase IIα pathways in facilitating adaptations of synaptic receptors.
Collapse
|
31
|
Al Awabdh S, Gupta-Agarwal S, Sheehan DF, Muir J, Norkett R, Twelvetrees AE, Griffin LD, Kittler JT. Neuronal activity mediated regulation of glutamate transporter GLT-1 surface diffusion in rat astrocytes in dissociated and slice cultures. Glia 2018; 64:1252-64. [PMID: 27189737 PMCID: PMC4915597 DOI: 10.1002/glia.22997] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 04/03/2016] [Accepted: 04/13/2016] [Indexed: 11/17/2022]
Abstract
The astrocytic GLT‐1 (or EAAT2) is the major glutamate transporter for clearing synaptic glutamate. While the diffusion dynamics of neurotransmitter receptors at the neuronal surface are well understood, far less is known regarding the surface trafficking of transporters in subcellular domains of the astrocyte membrane. Here, we have used live‐cell imaging to study the mechanisms regulating GLT‐1 surface diffusion in astrocytes in dissociated and brain slice cultures. Using GFP‐time lapse imaging, we show that GLT‐1 forms stable clusters that are dispersed rapidly and reversibly upon glutamate treatment in a transporter activity‐dependent manner. Fluorescence recovery after photobleaching and single particle tracking using quantum dots revealed that clustered GLT‐1 is more stable than diffuse GLT‐1 and that glutamate increases GLT‐1 surface diffusion in the astrocyte membrane. Interestingly, the two main GLT‐1 isoforms expressed in the brain, GLT‐1a and GLT‐1b, are both found to be stabilized opposed to synapses under basal conditions, with GLT‐1b more so. GLT‐1 surface mobility is increased in proximity to activated synapses and alterations of neuronal activity can bidirectionally modulate the dynamics of both GLT‐1 isoforms. Altogether, these data reveal that astrocytic GLT‐1 surface mobility, via its transport activity, is modulated during neuronal firing, which may be a key process for shaping glutamate clearance and glutamatergic synaptic transmission. GLIA 2016;64:1252–1264
Collapse
Affiliation(s)
- Sana Al Awabdh
- Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom
| | - Swati Gupta-Agarwal
- Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom
| | - David F Sheehan
- Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom
| | - James Muir
- Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom
| | - Rosalind Norkett
- Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom
| | - Alison E Twelvetrees
- Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom
| | - Lewis D Griffin
- Department of Computer Science, University College London, United Kingdom
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom
| |
Collapse
|
32
|
Mele M, Leal G, Duarte CB. Role of GABAAR trafficking in the plasticity of inhibitory synapses. J Neurochem 2016; 139:997-1018. [DOI: 10.1111/jnc.13742] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Miranda Mele
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Graciano Leal
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Carlos B. Duarte
- Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Department of Life Sciences; University of Coimbra; Coimbra Portugal
| |
Collapse
|
33
|
Curcio M, Salazar IL, Mele M, Canzoniero LMT, Duarte CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol 2016; 143:1-35. [PMID: 27283248 DOI: 10.1016/j.pneurobio.2016.06.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.
Collapse
Affiliation(s)
- Michele Curcio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ivan L Salazar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Miranda Mele
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
34
|
Nakamura Y, Morrow DH, Modgil A, Huyghe D, Deeb TZ, Lumb MJ, Davies PA, Moss SJ. Proteomic Characterization of Inhibitory Synapses Using a Novel pHluorin-tagged γ-Aminobutyric Acid Receptor, Type A (GABAA), α2 Subunit Knock-in Mouse. J Biol Chem 2016; 291:12394-407. [PMID: 27044742 DOI: 10.1074/jbc.m116.724443] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 11/06/2022] Open
Abstract
The accumulation of γ-aminobutyric acid receptors (GABAARs) at the appropriate postsynaptic sites is critical for determining the efficacy of fast inhibitory neurotransmission. Although we know that the majority of synaptic GABAAR subtypes are assembled from α1-3, β, and γ2 subunits, our understanding of how neurons facilitate their targeting to and stabilization at inhibitory synapses is rudimentary. To address these issues, we have created knock-in mice in which the pH-sensitive green fluorescent protein (GFP) and the Myc epitope were introduced to the extracellular domain of the mature receptor α2 subunit (pHα2). Using immunoaffinity purification and mass spectroscopy, we identified a stable complex of 174 proteins that were associated with pHα2, including other GABAAR subunits, and previously identified receptor-associated proteins such as gephyrin and collybistin. 149 of these proteins were novel GABAAR binding partners and included G-protein-coupled receptors and ion channel subunits, proteins that regulate trafficking and degradation, regulators of protein phosphorylation, GTPases, and a number of proteins that regulate their activity. Notably, members of the postsynaptic density family of proteins that are critical components of excitatory synapses were not associated with GABAARs. Crucially, we demonstrated for a subset of these novel proteins (including cullin1, ephexin, potassium channel tetramerization domain containing protein 12, mitofusin2, metabotropic glutamate receptor 5, p21-activated kinase 7, and Ras-related protein 5A) bind directly to the intracellular domains of GABAARs, validating our proteomic analysis. Thus, our experiments illustrate the complexity of the GABAAR proteome and enhance our understanding of the mechanisms neurons use to construct inhibitory synapses.
Collapse
Affiliation(s)
- Yasuko Nakamura
- From the Department of Neuroscience, Tufts University School of Medicine, Boston Massachusetts 02111 and
| | - Danielle H Morrow
- From the Department of Neuroscience, Tufts University School of Medicine, Boston Massachusetts 02111 and
| | - Amit Modgil
- From the Department of Neuroscience, Tufts University School of Medicine, Boston Massachusetts 02111 and
| | - Deborah Huyghe
- From the Department of Neuroscience, Tufts University School of Medicine, Boston Massachusetts 02111 and
| | - Tarek Z Deeb
- From the Department of Neuroscience, Tufts University School of Medicine, Boston Massachusetts 02111 and
| | - Michael J Lumb
- the Department of Neuroscience, Physiology and Pharmacology, University College, London WC1E 6BT, United Kingdom
| | - Paul A Davies
- From the Department of Neuroscience, Tufts University School of Medicine, Boston Massachusetts 02111 and
| | - Stephen J Moss
- From the Department of Neuroscience, Tufts University School of Medicine, Boston Massachusetts 02111 and the Department of Neuroscience, Physiology and Pharmacology, University College, London WC1E 6BT, United Kingdom
| |
Collapse
|
35
|
Mele M, Aspromonte MC, Duarte CB. Downregulation of GABA A Receptor Recycling Mediated by HAP1 Contributes to Neuronal Death in In Vitro Brain Ischemia. Mol Neurobiol 2016; 54:45-57. [PMID: 26732589 DOI: 10.1007/s12035-015-9661-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/17/2015] [Indexed: 01/17/2023]
Abstract
Downregulation of GABAergic synaptic transmission contributes to the increase in overall excitatory activity in the ischemic brain. A reduction of GABAA receptor (GABAAR) surface expression partly accounts for this decrease in inhibitory activity, but the mechanisms involved are not fully elucidated. In this work, we investigated the alterations in GABAAR trafficking in cultured rat hippocampal neurons subjected to oxygen/glucose deprivation (OGD), an in vitro model of global brain ischemia, and their impact in neuronal death. The traffic of GABAAR was evaluated after transfection of hippocampal neurons with myc-tagged GABAAR β3 subunits. OGD decreased the rate of GABAAR β3 subunit recycling and reduced the interaction of the receptors with HAP1, a protein involved in the recycling of the receptors. Furthermore, OGD induced a calpain-mediated cleavage of HAP1. Transfection of hippocampal neurons with HAP1A or HAP1B isoforms reduced the OGD-induced decrease in surface expression of GABAAR β3 subunits, and HAP1A maintained the rate of receptor recycling. Furthermore, transfection of hippocampal neurons with HAP1 significantly decreased OGD-induced cell death. These results show a key role for HAP1 protein in the downmodulation of GABAergic neurotransmission during cerebral ischemia, which contributes to neuronal demise.
Collapse
Affiliation(s)
- Miranda Mele
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine (Polo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, 3030-789, Portugal
| | - Maria Cristina Aspromonte
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine (Polo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,Department of Science and Technology, University of Sannio, Benevento, 82100, Italy
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine (Polo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra, Coimbra, 3001-401, Portugal.
| |
Collapse
|
36
|
Compromising the phosphodependent regulation of the GABAAR β3 subunit reproduces the core phenotypes of autism spectrum disorders. Proc Natl Acad Sci U S A 2015; 112:14805-10. [PMID: 26627235 DOI: 10.1073/pnas.1514657112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Alterations in the efficacy of neuronal inhibition mediated by GABAA receptors (GABAARs) containing β3 subunits are continually implicated in autism spectrum disorders (ASDs). In vitro, the plasma membrane stability of GABAARs is potentiated via phosphorylation of serine residues 408 and 409 (S408/9) in the β3 subunit, an effect that is mimicked by their mutation to alanines. To assess if modifications in β3 subunit expression contribute to ASDs, we have created a mouse in which S408/9 have been mutated to alanines (S408/9A). S408/9A homozygotes exhibited increased phasic, but decreased tonic, inhibition, events that correlated with alterations in the membrane stability and synaptic accumulation of the receptor subtypes that mediate these distinct forms of inhibition. S408/9A mice exhibited alterations in dendritic spine structure, increased repetitive behavior, and decreased social interaction, hallmarks of ASDs. ASDs are frequently comorbid with epilepsy, and consistent with this comorbidity, S408/9A mice exhibited a marked increase in sensitivity to seizures induced by the convulsant kainic acid. To assess the relevance of our studies using S408/9A mice for the pathophysiology of ASDs, we measured S408/9 phosphorylation in Fmr1 KO mice, a model of fragile X syndrome, the most common monogenetic cause of ASDs. Phosphorylation of S408/9 was selectively and significantly enhanced in Fmr1 KO mice. Collectively, our results suggest that alterations in phosphorylation and/or activity of β3-containing GABAARs may directly contribute to the pathophysiology of ASDs.
Collapse
|
37
|
Costa JT, Mele M, Baptista MS, Gomes JR, Ruscher K, Nobre RJ, de Almeida LP, Wieloch T, Duarte CB. Gephyrin Cleavage in In Vitro Brain Ischemia Decreases GABAA Receptor Clustering and Contributes to Neuronal Death. Mol Neurobiol 2015; 53:3513-3527. [PMID: 26093381 DOI: 10.1007/s12035-015-9283-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/02/2015] [Indexed: 02/01/2023]
Abstract
GABA (γ-aminobutyric acid) is the major inhibitory neurotransmitter in the central nervous system, and changes in GABAergic neurotransmission modulate the activity of neuronal networks. Gephyrin is a scaffold protein responsible for the traffic and synaptic anchoring of GABAA receptors (GABAAR); therefore, changes in gephyrin expression and oligomerization may affect the activity of GABAergic synapses. In this work, we investigated the changes in gephyrin protein levels during brain ischemia and in excitotoxic conditions, which may affect synaptic clustering of GABAAR. We found that gephyrin is cleaved by calpains following excitotoxic stimulation of hippocampal neurons with glutamate, as well as after intrahippocampal injection of kainate, giving rise to a stable cleavage product. Gephyrin cleavage was also observed in cultured hippocampal neurons subjected to transient oxygen-glucose deprivation (OGD), an in vitro model of brain ischemia, and after transient middle cerebral artery occlusion (MCAO) in mice, a model of focal brain ischemia. Furthermore, a truncated form of gephyrin decreased the synaptic clustering of the protein, reduced the synaptic pool of GABAAR containing γ2 subunits and upregulated OGD-induced cell death in hippocampal cultures. Our results show that excitotoxicity and brain ischemia downregulate full-length gephyrin with a concomitant generation of truncated products, which affect synaptic clustering of GABAAR and cell death.
Collapse
Affiliation(s)
- João T Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Miranda Mele
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, 3030-789, Portugal
| | - Márcio S Baptista
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - João R Gomes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, S-22184, Lund, Sweden
| | - Rui J Nobre
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, 3030-789, Portugal
| | - Luís Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Tadeusz Wieloch
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, S-22184, Lund, Sweden
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra, 3004-517, Coimbra, Portugal. .,Center for Neuroscience and Cell Biology, Faculty of Medicine, Polo I, Rua Larga, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
38
|
Linck L, Binder J, Haynl C, Enz R. Endocytosis of GABAC
receptors depends on subunit composition and is regulated by protein kinase C-ζ and protein phosphatase 1. J Neurochem 2015; 134:233-46. [DOI: 10.1111/jnc.13126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/01/2015] [Accepted: 04/09/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Lisa Linck
- Institut für Biochemie (Emil-Fischer-Zentrum); Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Jasmin Binder
- Institut für Biochemie (Emil-Fischer-Zentrum); Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Christian Haynl
- Institut für Biochemie (Emil-Fischer-Zentrum); Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Ralf Enz
- Institut für Biochemie (Emil-Fischer-Zentrum); Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| |
Collapse
|
39
|
Nakamura Y, Darnieder LM, Deeb TZ, Moss SJ. Regulation of GABAARs by phosphorylation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 72:97-146. [PMID: 25600368 PMCID: PMC5337123 DOI: 10.1016/bs.apha.2014.11.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
γ-Aminobutyric acid type A receptors (GABAARs) are the principal mediators of fast synaptic inhibition in the brain as well as the low persistent extrasynaptic inhibition, both of which are fundamental to proper brain function. Thus unsurprisingly, deficits in GABAARs are implicated in a number of neurological disorders and diseases. The complexity of GABAAR regulation is determined not only by the heterogeneity of these receptors but also by its posttranslational modifications, the foremost, and best characterized of which is phosphorylation. This review will explore the details of this dynamic process, our understanding of which has barely scratched the surface. GABAARs are regulated by a number of kinases and phosphatases, and its phosphorylation plays an important role in governing its trafficking, expression, and interaction partners. Here, we summarize the progress in understanding the role phosphorylation plays in the regulation of GABAARs. This includes how phosphorylation can affect the allosteric modulation of GABAARs, as well as signaling pathways that affect GABAAR phosphorylation. Finally, we discuss the dysregulation of GABAAR phosphorylation and its implication in disease processes.
Collapse
|
40
|
Gürol G, Demiralp DÖ, Yılmaz AK, Akman Ö, Ateş N, Karson A. Comparative proteomic approach in rat model of absence epilepsy. J Mol Neurosci 2014; 55:632-43. [PMID: 25323782 DOI: 10.1007/s12031-014-0402-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/11/2014] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate cellular proteins in the pathogenesis of the genetic rat model of absence epilepsy. Protein spots were identified with peptide mass fingerprinting analysis using matrix-assisted laser desorption ionization time of flight mass spectrometry. Data were gathered from the frontoparietal cortex and thalamus of Wistar Albino Glaxo/Rij (WAG/Rij) and Wistar by using two-dimensional gel electrophoresis (2D-PAGE). Six proteins (Clathrin light chain-A protein, Transmembrane EMP24 Domain-Containing Protein, Stathmin-4, Myosin Light Chain4, Rheb, phosphoserine phosphatase) were found to be differentially expressed in the frontoparietal cortex of WAG/Rij and Wistar rats in both age groups. Another set of six proteins (Protein FAM89A and Oasl1, Gemin2, NuDEL1, Pur-beta, 3-alpha HSD) were found to be differentially expressed in the thalamus of WAG/Rij and Wistar rats. Findings from the frontoparietal cortex suggest the presence of altered serine metabolism and increased vesicular trafficking in the frontoparietal cortex of WAG/Rij rats compared with Wistar rats. These differences in the protein levels might reflect the crucial role of these proteins and related pathways in the generation of absence seizures. In the thalamic specimens, age-dependent changes in protein expression were remarkable, suggesting that this phenomenon may be a precursor or a consequence of absence seizures. Our findings further highlight the potential role of the mTOR signaling pathway in absence epilepsy.
Collapse
Affiliation(s)
- Gönül Gürol
- Department of Physiology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | | | | | | | | | | |
Collapse
|
41
|
Smith KR, Davenport EC, Wei J, Li X, Pathania M, Vaccaro V, Yan Z, Kittler JT. GIT1 and βPIX are essential for GABA(A) receptor synaptic stability and inhibitory neurotransmission. Cell Rep 2014; 9:298-310. [PMID: 25284783 PMCID: PMC4536293 DOI: 10.1016/j.celrep.2014.08.061] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/28/2014] [Accepted: 08/23/2014] [Indexed: 12/18/2022] Open
Abstract
Effective inhibitory synaptic transmission requires efficient stabilization of GABAA receptors (GABAARs) at synapses, which is essential for maintaining the correct excitatory-inhibitory balance in the brain. However, the signaling mechanisms that locally regulate synaptic GABAAR membrane dynamics remain poorly understood. Using a combination of molecular, imaging, and electrophysiological approaches, we delineate a GIT1/βPIX/Rac1/PAK signaling pathway that modulates F-actin and is important for maintaining surface GABAAR levels, inhibitory synapse integrity, and synapse strength. We show that GIT1 and βPIX are required for synaptic GABAAR surface stability through the activity of the GTPase Rac1 and downstream effector PAK. Manipulating this pathway using RNAi, dominant-negative and pharmacological approaches leads to a disruption of GABAAR clustering and decrease in the strength of synaptic inhibition. Thus, the GIT1/βPIX/Rac1/PAK pathway plays a crucial role in regulating GABAAR synaptic stability and hence inhibitory synaptic transmission with important implications for inhibitory plasticity and information processing in the brain. GIT1 and βPIX are present at inhibitory synapses and complex with GABAARs GIT1 and βPIX are important for GABAAR clustering and inhibitory transmission Rac1 and PAK activity is required for stabilization of GABAARs at synapses A GIT1/βPIX/Rac1/PAK pathway is required for inhibitory synaptic transmission
Collapse
Affiliation(s)
- Katharine R Smith
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Elizabeth C Davenport
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jing Wei
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Xiangning Li
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Manavendra Pathania
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Victoria Vaccaro
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
42
|
Petrini EM, Barberis A. Diffusion dynamics of synaptic molecules during inhibitory postsynaptic plasticity. Front Cell Neurosci 2014; 8:300. [PMID: 25294987 PMCID: PMC4171989 DOI: 10.3389/fncel.2014.00300] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/05/2014] [Indexed: 12/24/2022] Open
Abstract
The plasticity of inhibitory transmission is expected to play a key role in the modulation of neuronal excitability and network function. Over the last two decades, the investigation of the determinants of inhibitory synaptic plasticity has allowed distinguishing presynaptic and postsynaptic mechanisms. While there has been a remarkable progress in the characterization of presynaptically-expressed plasticity of inhibition, the postsynaptic mechanisms of inhibitory long-term synaptic plasticity only begin to be unraveled. At postsynaptic level, the expression of inhibitory synaptic plasticity involves the rearrangement of the postsynaptic molecular components of the GABAergic synapse, including GABAA receptors, scaffold proteins and structural molecules. This implies a dynamic modulation of receptor intracellular trafficking and receptor surface lateral diffusion, along with regulation of the availability and distribution of scaffold proteins. This Review will focus on the mechanisms of the multifaceted molecular reorganization of the inhibitory synapse during postsynaptic plasticity, with special emphasis on the key role of protein dynamics to ensure prompt and reliable activity-dependent adjustments of synaptic strength.
Collapse
Affiliation(s)
- Enrica Maria Petrini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genoa, Italy
| | - Andrea Barberis
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genoa, Italy
| |
Collapse
|
43
|
Association analysis of GABRB3 promoter variants with heroin dependence. PLoS One 2014; 9:e102227. [PMID: 25025424 PMCID: PMC4098998 DOI: 10.1371/journal.pone.0102227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/16/2014] [Indexed: 11/19/2022] Open
Abstract
GABRB3 encoding the β3 subunit of GABAA receptor has been implicated in multiple neuropsychiatric disorders, including substance abuse. Previous studies reported that SNPs at the 5' regulatory region of GABRB3 could regulate GABRB3 gene expression and associated with childhood absence epilepsy (CAE). The study aimed to investigate whether SNPs at the 5' regulatory region of GABRB3 were associated with heroin dependence in our population. We first re-sequenced 1.5 kb of the 5'regulatory region of GABRB3 gene to examine the SNP profile in the genomic DNA of 365 control subjects. Then, we conducted a case-control association analysis between 576 subjects with heroin dependence (549 males, 27 females) and 886 controls (472 males, 414 females) by genotyping the rs4906902 as a tag SNP. We also conducted a reporter gene assay to assess the promoter activity of two major haplotypes derived from SNPs at this region. We detected 3 common SNPs (rs4906902, rs8179184 and rs20317) at this region that had strong pair-wise linkage disequilibrium. The C allele of rs4906902 was found to be associated with increased risk of heroin dependence (odds ratio:1.27, p = 0.002). Two major haplotypes (C-A-G and T-G-C) derived from these 3 SNPs accounted for 99% of this sample, and reporter gene activity assay showed that haplotype C-A-G that contained the C allele of the tag SNP rs4906902 had higher activity than haplotype T-G-C. Our data suggest that GABRB3 might be associated with heroin dependence, and increased expression of GABRB3 might contribute to the pathogenesis of heroin dependence.
Collapse
|
44
|
Abstract
The neurotransmitters GABA and glycine mediate fast synaptic inhibition by activating ligand-gated chloride channels--namely, type A GABA (GABA(A)) and glycine receptors. Both types of receptors are anchored postsynaptically by gephyrin, which self-assembles into a scaffold and interacts with the cytoskeleton. Current research indicates that postsynaptic gephyrin clusters are dynamic assemblies that are held together and regulated by multiple protein-protein interactions. Moreover, post-translational modifications of gephyrin regulate the formation and plasticity of GABAergic synapses by altering the clustering properties of postsynaptic scaffolds and thereby the availability and function of receptors and other signalling molecules. Here, we discuss the formation and regulation of the gephyrin scaffold, its role in GABAergic and glycinergic synaptic function and the implications for the pathophysiology of brain disorders caused by abnormal inhibitory neurotransmission.
Collapse
|
45
|
Fritschy JM, Panzanelli P. GABAAreceptors and plasticity of inhibitory neurotransmission in the central nervous system. Eur J Neurosci 2014; 39:1845-65. [DOI: 10.1111/ejn.12534] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH; Zurich Switzerland
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini; University of Turin; Turin Italy
| |
Collapse
|
46
|
Mele M, Ribeiro L, Inácio AR, Wieloch T, Duarte CB. GABA(A) receptor dephosphorylation followed by internalization is coupled to neuronal death in in vitro ischemia. Neurobiol Dis 2014; 65:220-32. [PMID: 24513087 DOI: 10.1016/j.nbd.2014.01.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/08/2014] [Accepted: 01/30/2014] [Indexed: 12/22/2022] Open
Abstract
Cerebral ischemia is characterized by an early disruption of GABAergic neurotransmission contributing to an imbalance of the excitatory/inhibitory equilibrium and neuronal death, but the molecular mechanisms involved are not fully understood. Here we report a downregulation of GABA(A) receptor (GABA(A)R) expression, affecting both mRNA and protein levels of GABA(A)R subunits, in hippocampal neurons subjected to oxygen-glucose deprivation (OGD), an in vitro model of ischemia. Similar alterations in the abundance of GABA(A)R subunits were observed in in vivo brain ischemia. OGD reduced the interaction of surface GABA(A)R with the scaffold protein gephyrin, followed by clathrin-dependent receptor internalization. Internalization of GABA(A)R was dependent on glutamate receptor activation and mediated by dephosphorylation of the β3 subunit at serine 408/409. Expression of phospho-mimetic mutant GABA(A)R β3 subunits prevented receptor internalization and protected hippocampal neurons from ischemic cell death. The results show a key role for β3 GABA(A)R subunit dephosphorylation in the downregulation of GABAergic synaptic transmission in brain ischemia, contributing to neuronal death. GABA(A)R phosphorylation might be a therapeutic target to preserve synaptic inhibition in brain ischemia.
Collapse
Affiliation(s)
- Miranda Mele
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Luís Ribeiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Ana R Inácio
- Wallenberg Neuroscience Center, Lund University, 221 84 Lund, Sweden
| | - Tadeusz Wieloch
- Wallenberg Neuroscience Center, Lund University, 221 84 Lund, Sweden
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|
47
|
Garret M, Boué-Grabot E, Taly A. Long distance effect on ligand-gated ion channels extracellular domain may affect interactions with the intracellular machinery. Commun Integr Biol 2014; 7:e27984. [PMID: 25254078 PMCID: PMC4167410 DOI: 10.4161/cib.27984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 11/19/2022] Open
Abstract
Modulation of receptor trafficking is critical for controlling neurotransmission. A γ2(R43Q) point mutation on GABAA receptor subunit is linked to epilepsy in human. We recently analyzed the effect of this amino-acid substitution on GABAA receptor trafficking and showed that this mutation as well as agonist application, both affecting GABAA receptor extracellular domain, have an effect on receptor endocytosis. By comparing homology models based on ligand gated ion channels in their active and resting states, we reveal that the γ2R43 domain is located in a loop that is affected by motion resulting from receptor activation. Taken together, these results suggest that endocytosis of GABAA receptors is linked to agonist induced conformational changes. We propose that ligand or modulator binding is followed by a whole chain of interconnections, including the intracellular domain, that may influence ligand-gated channel trafficking.
Collapse
Affiliation(s)
- Maurice Garret
- Univ. Bordeaux; INCIA; UMR 5287; Bordeaux, France ; CNRS; INCIA; UMR 5287; Bordeaux, France
| | - Eric Boué-Grabot
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France ; CNRS; Institut des Maladies Neurodégénératives; UMR 5293; Bordeaux, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique (CNRS-Université Paris Diderot); Paris, France
| |
Collapse
|
48
|
TNF-α downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABA(A) receptors. J Neurosci 2013; 33:15879-93. [PMID: 24089494 DOI: 10.1523/jneurosci.0530-13.2013] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inflammation has been implicated in the progression of neurological disease, yet precisely how inflammation affects neuronal function remains unclear. Tumor necrosis factor-α (TNFα) is a proinflammatory cytokine that regulates synapse function by controlling neurotransmitter receptor trafficking and homeostatic synaptic plasticity. Here we characterize the mechanisms through which TNFα regulates inhibitory synapse function in mature rat and mouse hippocampal neurons. Acute application of TNFα induces a rapid and persistent decrease of inhibitory synaptic strength and downregulation of cell-surface levels of GABA(A)Rs containing α1, α2, β2/3, and γ2 subunits. We show that trafficking of GABA(A)Rs in response to TNFα is mediated by neuronally expressed TNF receptor 1 and requires activation of p38 MAPK, phosphatidylinositol 3-kinase, protein phosphatase 1 (PP1), and dynamin GTPase. Furthermore, TNFα enhances the association of PP1 with GABA(A)R β3 subunits and dephosphorylates a site on β3 known to regulate phospho-dependent interactions with the endocytic machinery. Conversely, we find that calcineurin and PP2A are not essential components of the signaling pathway and that clustering of the scaffolding protein gephyrin is only reduced after the initial receptor endocytosis. Together, these findings demonstrate a distinct mechanism of regulated GABA(A)R endocytosis that may contribute to the disruption of circuit homeostasis under neuroinflammatory conditions.
Collapse
|
49
|
Chaumont S, André C, Perrais D, Boué-Grabot E, Taly A, Garret M. Agonist-dependent endocytosis of γ-aminobutyric acid type A (GABAA) receptors revealed by a γ2(R43Q) epilepsy mutation. J Biol Chem 2013; 288:28254-65. [PMID: 23935098 DOI: 10.1074/jbc.m113.470807] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GABA-gated chloride channels (GABAARs) trafficking is involved in the regulation of fast inhibitory transmission. Here, we took advantage of a γ2(R43Q) subunit mutation linked to epilepsy in humans that considerably reduces the number of GABAARs on the cell surface to better understand the trafficking of GABAARs. Using recombinant expression in cultured rat hippocampal neurons and COS-7 cells, we showed that receptors containing γ2(R43Q) were addressed to the cell membrane but underwent clathrin-mediated dynamin-dependent endocytosis. The γ2(R43Q)-dependent endocytosis was reduced by GABAAR antagonists. These data, in addition to a new homology model, suggested that a conformational change in the extracellular domain of γ2(R43Q)-containing GABAARs increased their internalization. This led us to show that endogenous and recombinant wild-type GABAAR endocytosis in both cultured neurons and COS-7 cells can be amplified by their agonists. These findings revealed not only a direct relationship between endocytosis of GABAARs and a genetic neurological disorder but also that trafficking of these receptors can be modulated by their agonist.
Collapse
Affiliation(s)
- Severine Chaumont
- From the Université Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, F-33000 Bordeaux, France
| | | | | | | | | | | |
Collapse
|
50
|
Deeb TZ, Nakamura Y, Frost GD, Davies PA, Moss SJ. Disrupted Cl(-) homeostasis contributes to reductions in the inhibitory efficacy of diazepam during hyperexcited states. Eur J Neurosci 2013; 38:2453-67. [PMID: 23627375 PMCID: PMC3735799 DOI: 10.1111/ejn.12241] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 03/29/2013] [Accepted: 03/31/2013] [Indexed: 11/28/2022]
Abstract
The K(+) -Cl(-) cotransporter type 2 is the major Cl(-) extrusion mechanism in most adult neurons. This process in turn leads to Cl(-) influx upon activation of γ-aminobutyric acid type A (GABAA ) receptors and the canonical hyperpolarising inhibitory postsynaptic potential. Several neurological disorders are treated with drugs that target and enhance GABAA receptor signaling, including the commonly used benzodiazepine diazepam and the anesthetic propofol. Some of these disorders are also associated with deficits in GABAA signaling and become less sensitive to therapeutic drugs that target GABAA receptors. To date, it is unknown if alterations in the neuronal Cl(-) gradient affect the efficacies of diazepam and propofol. We therefore used the in vitro model of glutamate-induced hyperexcitability to test if alterations in the Cl(-) gradient affect the efficacy of GABAA modulators. We exclusively utilised the gramicidin perforated-patch-clamp configuration to preserve the endogenous Cl(-) gradient in rat neurons. Brief exposure to glutamate reduced the inhibitory efficacy of diazepam within 5 min, which was caused by the collapse of the Cl(-) gradient, and not due to reductions in GABAA receptor number. Unlike diazepam, propofol retained its efficacy by shunting the membrane conductance despite the glutamate-induced appearance of depolarising GABAA -mediated currents. Similarly, pharmacological inhibition of K(+) -Cl(-) cotransporter type 2 by furosemide disrupted Cl(-) homeostasis and reduced the efficacy of diazepam but not propofol. Collectively our results suggest that pathological hyperexcitable conditions could cause the rapid accumulation of intracellular Cl(-) and the appearance of depolarising GABAA -mediated currents that would decrease the efficacy of diazepam.
Collapse
Affiliation(s)
- Tarek Z Deeb
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | | | | | | | | |
Collapse
|