1
|
Sapp C, Rich M, Hess K, Losco A, Zupancic A, Caldwell HK. Disruptions of the oxytocin system impair sociability and cognitive flexibility in a subchronic phencyclidine model of schizophrenia. Neuropharmacology 2025; 273:110442. [PMID: 40185363 DOI: 10.1016/j.neuropharm.2025.110442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Previous research suggests that the oxytocin (Oxt) system may play a role in the etiology of schizophrenia. To investigate, we used a subchronic phencyclidine (PCP) mouse model to test how disruption of Oxt or the Oxt receptor (Oxtr) affects schizophrenia-related behaviors. Specifically, we assessed how subchronic PCP impacted hyperlocomotion, sociability, and passive stress coping in male Oxt and Oxtr knockout (-/-) and wildtype (+/+) mice. Additionally, we evaluated immediate early gene activation in Oxtr -/- and +/+ mice to identify brain regions where the Oxt system might impact schizophrenia-associated behaviors. Lastly, we investigated cognitive flexibility in Oxtr -/- and +/+ mice. We found that subchronic PCP treatment decreased social interactions in Oxt -/- mice as compared to Oxt +/+ mice, with no genotypic differences in the Oxtr line of mice. Increased c-Fos expression was observed in Oxtr -/- mice relative to Oxtr +/+ controls in the medial amygdala and the paraventricular nucleus of the hypothalamus following a forced swim test. Finally, we found deficits in cognitive flexibility in Oxtr -/- mice treated with PCP, relative to Oxtr +/+ mice. These findings are consistent with the hypothesis that Oxt may buffer against some of the schizophrenia-associated symptoms induced by subchronic PCP treatment. Based on the data, we speculate that compensatory mechanisms may be able to accommodate the loss of the Oxt system, depending on the origin of the dysfunction and the behavioral endpoint in question. These findings also add support to data linking disruption of Oxt system signaling to schizophrenia.
Collapse
Affiliation(s)
- Coleman Sapp
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, and the Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.
| | - Megan Rich
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, and the Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA; School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Karla Hess
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, and the Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA; School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Allison Losco
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, and the Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA
| | - Abigail Zupancic
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, and the Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA
| | - Heather K Caldwell
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, and the Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA; School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
2
|
Chronic phencyclidine treatment impairs spatial working memory in rhesus monkeys. Psychopharmacology (Berl) 2019; 236:2223-2232. [PMID: 30911792 DOI: 10.1007/s00213-019-05214-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 03/01/2019] [Indexed: 12/17/2022]
Abstract
RATIONALE Phencyclidine (PCP) could induce schizophrenia (Sz) like behavior in both humans and animals, therefore, has been widely utilized to establish Sz animal models. It induced cognitive deficits, the core symptom of Sz, mainly through influencing frontal dopaminergic function. Nonhuman primate (NHP) studies demonstrated impaired object retrieval detour (ORD) and spatial delayed response (SDR) task performance by acute or chronic PCP treatment. However, NHP investigations, continually monitoring SDR performance before, during and after PCP treatment, are lacking. OBJECTIVES Present study investigated the long-term influence of chronic PCP treatment on SDR performance and the possible increase of SDR deficit severity and duration by the incremental dosing procedure in rhesus monkeys. METHODS SDR task was performed repeatedly up to eight weeks after constant dosing procedure (i.m., 0.3 mg/kg, day 12-25), during which drug effects on locomotor activity and blood cortisol concentration were assessed. Incremental dosing procedure (starting dose 0.3 mg/kg, day 6-19) began five months later. RESULTS Constant dosing procedure induced differential level of hyperactivity across testing days, without significant influence on blood cortisol concentration. It reduced SDR performance, until occurrence of the first and worst impairment on day 15 and 23 respectively. The impaired performance recovered to pretreatment level over one week after drug cessation. In contrast, incremental dosing procedure impaired SDR performance on the first treatment day, which recovered within treatment period. CONCLUSION Results suggested increase of SDR deficit severity by repeated PCP administrations, whereas the incremental dosing procedure did not increase SDR deficit severity and duration.
Collapse
|
3
|
Bertron JL, Seto M, Lindsley CW. DARK Classics in Chemical Neuroscience: Phencyclidine (PCP). ACS Chem Neurosci 2018; 9:2459-2474. [PMID: 29953199 DOI: 10.1021/acschemneuro.8b00266] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Phencyclidine (PCP, "angel dust", an arylcyclohexylamine) was the first non-natural, man-made illicit drug of abuse, and was coined 'the most dangerous drug in America" in the late 1970s (amidst sensational horror stories of the drug's effects); however, few other illicit drugs have had such a significant and broad impact on society-both good and bad. Originally developed as a new class of anesthetic, PCP-derived psychosis gave way to the PCP hypothesis of schizophrenia (later coined the NMDA receptor hypofunction hypothesis or the glutamate hypothesis of schizophrenia), which continues to drive therapeutic discovery for schizophrenia today. PCP also led to the discovery of ketamine (and a new paradigm for the treatment of major depression), as well as other illicit, designer drugs, such as methoxetamine (MXE) and a new wave of Internet commerce for illicit drugs (sold as research chemicals, or RCs). Furthermore, PCP is a significant contaminant/additive of many illegal drugs sold today, due to its ease of preparation by clandestine chemists. Here, we will review the history, importance, synthesis (both legal and clandestine), pharmacology, drug metabolism, and folklore of PCP, a true DARK classic in chemical neuroscience.
Collapse
Affiliation(s)
- Jeanette L. Bertron
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Mabel Seto
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
4
|
MK-801-induced deficits in social recognition in rats: reversal by aripiprazole, but not olanzapine, risperidone, or cannabidiol. Behav Pharmacol 2016; 26:748-65. [PMID: 26287433 DOI: 10.1097/fbp.0000000000000178] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Deficiencies in social activities are hallmarks of numerous brain disorders. With respect to schizophrenia, social withdrawal belongs to the category of negative symptoms and is associated with deficits in the cognitive domain. Here, we used the N-methyl-D-aspartate receptor antagonist dizocilpine (MK-801) for induction of social withdrawal in rats and assessed the efficacy of several atypical antipsychotics with different pharmacological profiles as putative treatment. In addition, we reasoned that the marijuana constituent cannabidiol (CBD) may provide benefit or could be proposed as an adjunct treatment in combination with antipsychotics. Hooded Lister rats were tested in the three-chamber version for social interaction, with an initial novelty phase, followed after 3 min by a short-term recognition memory phase. No drug treatment affected sociability. However, distinct effects on social recognition were revealed. MK-801 reduced social recognition memory at all doses (>0.03 mg/kg). Predosing with aripiprazole dose-dependently (2 or 10 mg/kg) prevented the memory decline, but doses of 0.1 mg/kg risperidone or 1 mg/kg olanzapine did not. Intriguingly, CBD impaired social recognition memory (12 and 30 mg/kg) but did not rescue the MK-801-induced deficits. When CBD was combined with protective doses of aripiprazole (CBD-aripiprazole at 12 : or 5 : 2 mg/kg) the benefit of the antipsychotic was lost. At the same time, activity-related changes in behaviour were excluded as underlying reasons for these pharmacological effects. Collectively, the combined activity of aripiprazole on dopamine D2 and serotonin 5HT1A receptors appears to provide a significant advantage over risperidone and olanzapine with respect to the rescue of cognitive deficits reminiscent of schizophrenia. The differential pharmacological properties of CBD, which are seemingly beneficial in human patients, did not back-translate and rescue the MK-801-induced social memory deficit.
Collapse
|
5
|
Abstract
Tryptophan-2, 3-dioxygenase (TDO) is a heme-containing protein catalyzing the first reaction in the kynurenine pathway, which incorporates oxygen into the indole moiety of tryptophan and catalyzes it into kynurenine (KYN). The activation of TDO results in the depletion of tryptophan and the accumulation of kynurenine and its metabolites. These metabolites can affect the function of neurons and inhibit the proliferation of T cells. Increasing evidence demonstrates that TDO is a potential therapeutic target in the treatment of brain diseases as well as in the antitumor and transplant fields. Despite its growing popularity, there are few reviews only focusing on TDO. Hence, we herein review TDO by providing a comprehensive overview of TDO, including its biological functions as well as the evolution, structure and catalytic process of TDO. Additionally, this review will focus on the role of TDO in the pathology of three groups of brain diseases: Schizophrenia, Alzheimer's disease (AD) and Glioma. Finally, we will also provide an opinion regarding the future developmental directions of TDO in brain diseases, especially whether TDO has a potential role in other brain diseases as well as the development and applications of TDO inhibitors as treatments.
Collapse
Affiliation(s)
- Cheng-Peng Yu
- The Second Clinic Medical College, School of Medicine, Nanchang University, Nanchang, China
| | - Ze-Zheng Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Da-Ya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China.
| |
Collapse
|
6
|
Janhunen SK, Svärd H, Talpos J, Kumar G, Steckler T, Plath N, Lerdrup L, Ruby T, Haman M, Wyler R, Ballard TM. The subchronic phencyclidine rat model: relevance for the assessment of novel therapeutics for cognitive impairment associated with schizophrenia. Psychopharmacology (Berl) 2015; 232:4059-83. [PMID: 26070547 DOI: 10.1007/s00213-015-3954-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/27/2015] [Indexed: 12/26/2022]
Abstract
RATIONALE Current treatments for schizophrenia have modest, if any, efficacy on cognitive dysfunction, creating a need for novel therapies. Their development requires predictive animal models. The N-methyl-D-aspartate (NMDA) hypothesis of schizophrenia indicates the use of NMDA antagonists, like subchronic phencyclidine (scPCP) to model cognitive dysfunction in adult animals. OBJECTIVES The objective of this study was to assess the scPCP model by (1) reviewing published findings of scPCP-induced neurochemical changes and effects on cognitive tasks in adult rats and (2) comparing findings from a multi-site study to determine scPCP effects on standard and touchscreen cognitive tasks. METHODS Across four research sites, the effects of scPCP (typically 5 mg/kg twice daily for 7 days, followed by at least 7-day washout) in adult male Lister Hooded rats were studied on novel object recognition (NOR) with 1-h delay, acquisition and reversal learning in Morris water maze and touchscreen-based visual discrimination. RESULTS Literature findings showed that scPCP impaired attentional set-shifting (ASST) and NOR in several labs and induced a variety of neurochemical changes across different labs. In the multi-site study, scPCP impaired NOR, but not acquisition or reversal learning in touchscreen or water maze. Yet, this treatment regimen induced locomotor hypersensitivity to acute PCP until 13-week post-cessation. CONCLUSIONS The multi-site study confirmed that scPCP impaired NOR and ASST only and demonstrated the reproducibility and usefulness of the touchscreen approach. Our recommendation, prior to testing novel therapeutics in the scPCP model, is to be aware that further work is required to understand the neurochemical changes and specificity of the cognitive deficits.
Collapse
Affiliation(s)
- Sanna K Janhunen
- CNS Research, Research and Development, Orion Pharma, Orion Corporation, Tengstrominkatu 8, P.O. Box 425, 20101, Turku, Finland.
| | - Heta Svärd
- CNS Research, Research and Development, Orion Pharma, Orion Corporation, Tengstrominkatu 8, P.O. Box 425, 20101, Turku, Finland
| | - John Talpos
- Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Gaurav Kumar
- Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Thomas Steckler
- Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Niels Plath
- Synaptic Transmission, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Linda Lerdrup
- Synaptic Transmission, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Trine Ruby
- Synaptic Transmission, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Marie Haman
- Neuroscience, Ophthalmology and Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Roger Wyler
- Neuroscience, Ophthalmology and Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Theresa M Ballard
- Neuroscience, Ophthalmology and Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
7
|
Wesseling H, Want EJ, Guest PC, Rahmoune H, Holmes E, Bahn S. Hippocampal Proteomic and Metabonomic Abnormalities in Neurotransmission, Oxidative Stress, and Apoptotic Pathways in a Chronic Phencyclidine Rat Model. J Proteome Res 2015; 14:3174-87. [PMID: 26043028 DOI: 10.1021/acs.jproteome.5b00105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Schizophrenia is a neuropsychiatric disorder affecting 1% of the world's population. Due to both a broad range of symptoms and disease heterogeneity, current therapeutic approaches to treat schizophrenia fail to address all symptomatic manifestations of the disease. Therefore, disease models that reproduce core pathological features of schizophrenia are needed for the elucidation of pathological disease mechanisms. Here, we employ a comprehensive global label-free liquid chromatography-mass spectrometry proteomic (LC-MS(E)) and metabonomic (LC-MS) profiling analysis combined with the targeted proteomics (selected reaction monitoring and multiplex immunoassay) of serum and brain tissues to investigate a chronic phencyclidine (PCP) rat model in which glutamatergic hypofunction is induced through noncompetitive NMDAR-receptor antagonism. Using a multiplex immunoassay, we identified alterations in the levels of several cytokines (IL-5, IL-2, and IL-1β) and fibroblast growth factor-2. Extensive proteomic and metabonomic brain tissue profiling revealed a more prominent effect of chronic PCP treatment on both the hippocampal proteome and metabonome compared to the effect on the frontal cortex. Bioinformatic pathway analysis confirmed prominent abnormalities in NMDA-receptor-associated pathways in both brain regions, as well as alterations in other neurotransmitter systems such as kainate, AMPA, and GABAergic signaling in the hippocampus and in proteins associated with neurodegeneration. We further identified abundance changes in the level of the superoxide dismutase enzyme (SODC) in both the frontal cortex and hippocampus, which indicates alterations in oxidative stress and substantiates the apoptotic pathway alterations. The present study could lead to an increased understanding of how perturbed glutamate receptor signaling affects other relevant biological pathways in schizophrenia and, therefore, support drug discovery efforts for the improved treatment of patients suffering from this debilitating psychiatric disorder.
Collapse
Affiliation(s)
- Hendrik Wesseling
- †Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1QT, U.K
| | - Elizabeth J Want
- ‡Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London SW7 2AZ, U.K
| | - Paul C Guest
- †Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1QT, U.K
| | - Hassan Rahmoune
- †Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1QT, U.K
| | - Elaine Holmes
- ‡Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London SW7 2AZ, U.K
| | - Sabine Bahn
- †Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1QT, U.K.,§Department of Neuroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
8
|
Abstract
Attentional set-shifting, as a measure of executive flexibility, has been a staple of investigations into human cognition for over six decades. Mediated by the frontal cortex in mammals, the cognitive processes involved in forming, maintaining and shifting an attentional set are vulnerable to dysfunction arising from a number of human neurodegenerative diseases (such as Alzheimer's, Parkinson's and Huntington's diseases) and other neurological disorders (such as schizophrenia, depression, and attention deficit/hyperactivity disorder). Our understanding of these diseases and disorders, and the cognitive impairments induced by them, continues to advance, in tandem with an increasing number of tools at our disposal. In this chapter, we review and compare commonly used attentional set-shifting tasks (the Wisconsin Card Sorting Task and Intradimensional/Extradimensional tasks) and their applicability across species. In addition to humans, attentional set-shifting has been observed in a number of other animals, with a substantial body of literature describing performance in monkeys and rodents. We consider the task designs used to investigate attentional set-shifting in these species and the methods used to model human diseases and disorders, and ultimately the comparisons and differences between species-specific tasks, and between performance across species.
Collapse
|
9
|
MicroRNAs in Schizophrenia: Implications for Synaptic Plasticity and Dopamine-Glutamate Interaction at the Postsynaptic Density. New Avenues for Antipsychotic Treatment Under a Theranostic Perspective. Mol Neurobiol 2014; 52:1771-1790. [PMID: 25394379 DOI: 10.1007/s12035-014-8962-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/23/2014] [Indexed: 12/17/2022]
Abstract
Despite dopamine-glutamate aberrant interaction that has long been considered a relevant landmark of psychosis pathophysiology, several aspects of these two neurotransmitters reciprocal interaction remain to be defined. The emerging role of postsynaptic density (PSD) proteins at glutamate synapse as a molecular "lego" making a functional hub where different signals converge may add a new piece of information to understand how dopamine-glutamate interaction may work with regard to schizophrenia pathophysiology and treatment. More recently, compelling evidence suggests a relevant role for microRNA (miRNA) as a new class of dopamine and glutamate modulators with regulatory functions in the reciprocal interaction of these two neurotransmitters. Here, we aimed at addressing the following issues: (i) Do miRNAs have a role in schizophrenia pathophysiology in the context of dopamine-glutamate aberrant interaction? (ii) If miRNAs are relevant for dopamine-glutamate interaction, at what level this modulation takes place? (iii) Finally, will this knowledge open the door to innovative diagnostic and therapeutic tools? The biogenesis of miRNAs and their role in synaptic plasticity with relevance to schizophrenia will be considered in the context of dopamine-glutamate interaction, with special focus on miRNA interaction with PSD elements. From this framework, implications both for biomarkers identification and potential innovative interventions will be considered.
Collapse
|
10
|
Comparison of automated home-cage monitoring systems: Emphasis on feeding behaviour, activity and spatial learning following pharmacological interventions. J Neurosci Methods 2014; 234:13-25. [DOI: 10.1016/j.jneumeth.2014.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 11/19/2022]
|
11
|
Chronic phencyclidine treatment induces long-lasting glutamatergic activation of VTA dopamine neurons. Neurosci Lett 2014; 564:72-7. [PMID: 24525246 DOI: 10.1016/j.neulet.2014.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 11/23/2022]
Abstract
Use of phencyclidine (PCP) can mimic some aspects of schizophrenia. However, the underlying mechanism is unclear. Administration of PCP is known to activate mesolimbic dopamine pathway. In this study, we focused on ventral tegmental area (VTA) of mesolimbic dopamine pathway as target of PCP for inducing schizophrenia-like symptoms. Single VTA neuron was isolated and its neural activity was monitored by measuring cytosolic Ca(2+) concentration ([Ca(2+)]i) followed by immunocytochemical identification of dopamine neurons. Administration of glutamate increased [Ca(2+)]i in dopamine neurons from control rats, and the [Ca(2+)]i increase was inhibited in the presence of PCP. In contrast, in VTA dopamine neurons from rats chronically treated with PCP for 7 days, administration of glutamate was able to induce [Ca(2+)]i increase in the presence of PCP. Furthermore, this glutamate-induced [Ca(2+)]i increase in the presence of PCP continued even after washout of glutamate and this effect lasted as long as PCP was present. This long-lasting glutamate-induced [Ca(2+)]i increase in the presence of PCP was not observed or significantly attenuated under Ca(2+) free condition and by N-type Ca(2+) channel blocker ω-conotoxin. The results indicate that chronic treatment with PCP reverses the acute PCP effect on VTA dopamine neurons from inhibitory to stimulatory tone, and consequently induces long-lasting activation of dopamine neurons by glutamate.
Collapse
|
12
|
NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron 2013; 77:736-49. [PMID: 23439125 DOI: 10.1016/j.neuron.2012.12.032] [Citation(s) in RCA: 344] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2012] [Indexed: 11/21/2022]
Abstract
Neurons in the primate dorsolateral prefrontal cortex (dlPFC) generate persistent firing in the absence of sensory stimulation, the foundation of mental representation. Persistent firing arises from recurrent excitation within a network of pyramidal Delay cells. Here, we examined glutamate receptor influences underlying persistent firing in primate dlPFC during a spatial working memory task. Computational models predicted dependence on NMDA receptor (NMDAR) NR2B stimulation, and Delay cell persistent firing was abolished by local NR2B NMDAR blockade or by systemic ketamine administration. AMPA receptors (AMPARs) contributed background depolarization to sustain network firing. In contrast, many Response cells were sensitive to AMPAR blockade and increased firing after systemic ketamine, indicating that models of ketamine actions should be refined to reflect neuronal heterogeneity. The reliance of Delay cells on NMDAR may explain why insults to NMDARs in schizophrenia or Alzheimer's disease profoundly impair cognition.
Collapse
|
13
|
Wallace TL, Bertrand D. Alpha7 neuronal nicotinic receptors as a drug target in schizophrenia. Expert Opin Ther Targets 2012; 17:139-55. [PMID: 23231385 DOI: 10.1517/14728222.2013.736498] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Schizophrenia is a profoundly debilitating disease that represents not only an individual, but a societal problem. Once characterized solely by the hyperactivity of the dopaminergic system, therapies directed to dampen dopaminergic neurotransmission were developed. However, these drugs do not address the significant impairments in cognition and the negative symptoms of the disease, and it is now apparent that disequilibrium of many neurotransmitter systems is involved. Despite enormous efforts, minimal progress has been made toward the development of safer, more effective therapies to date. AREAS COVERED The high preponderance of smoking in schizophrenics suggests that nicotine may provide symptomatic improvement, which has led to investigation for selective molecules targeted to individual nicotinic receptor (nAChR) subtypes. Of special interest is activation of the homomeric α7nAChR, which is widely distributed in the brain and has been implicated in the pathophysiology of schizophrenia through numerous approaches. EXPERT OPINION Preclinical and clinical data suggest that neuronal α7nAChRs play an important role in cognitive functions. Moreover, some, but not all, early clinical trials conducted with α7nAChR agonists show cognitive benefits in schizophrenics. These encouraging results suggest that development of compounds targeting α7nAChRs will represent a valuable tool to mitigate symptoms associated with schizophrenia, and open new strategies for better pharmacological treatment of these patients.
Collapse
Affiliation(s)
- Tanya L Wallace
- SRI International, 333 Ravenswood Avenue, Menlo Park, CA, USA
| | | |
Collapse
|
14
|
Panther P, Nullmeier S, Dobrowolny H, Schwegler H, Wolf R. CPB-K mice a mouse model of schizophrenia? Differences in dopaminergic, serotonergic and behavioral markers compared to BALB/cJ mice. Behav Brain Res 2012; 230:215-28. [PMID: 22454846 DOI: 10.1016/j.bbr.2012.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Schizophrenia is characterized by disturbances in social behavior, sensorimotor gating and cognitive function, that are discussed to be caused by a termination of different transmitter systems. Beside morphological alterations in cortical and subcortical areas reduced AMPA- NMDA-, 5-HT2-receptor densities and increased 5-HT1-receptor densities are found in the hippocampus.The two inbred mouse strains CPB-K and BALB/cJ are known to display considerable differences in cognitive function and prepulse inhibition, a stable marker of sensorimotor gating. Furthermore, CPB-K mice exhibit lower NMDA-, AMPA- and increased 5-HT-receptor densities in the hippocampus as compared to BALB/cJ mice. We investigated both mouse strains in social interaction test for differences in social behavior and with immuncytochemical approaches for alterations of dopaminergic and serotonergic parameters. Our results can be summarized as follows: compared to BALB/cJ, CPB-K mice showed:(1) significantly reduced traveling distance and number of contacts in social interaction test, (2) differences in the number of serotonin transporter-immunoreactive neurons and volume of raphe nuclei and a lower serotonergic fiber density in the ventral and dorsal hippocampal subfields CA1 and CA3, (3) no alterations of dopaminergic markers like neuron number, neuron density and volume in subregions of substantia nigra and ventral tegmental area, but a significantly higher dopaminergic fiber density in the dorsal hippocampus, the ventral hippocampus of CA1 and gyrus dentatus, (4) no significant differences in serotonergic and dopaminergic fiber densities in the amygdala.Based on our results and previous studies, CPB-K mice compared to BALB/cJ may serve as an important model to understand the interaction of the serotonergic and dopaminergic system and their impact on sensorimotor gating and cognitive function as related to neuropsychiatric disorders like schizophrenia.
Collapse
Affiliation(s)
- P Panther
- Institute of Anatomy, University of Magdeburg, Haus 43, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
15
|
Carty NC, Xu J, Kurup P, Brouillette J, Goebel-Goody SM, Austin DR, Yuan P, Chen G, Correa PR, Haroutunian V, Pittenger C, Lombroso PJ. The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications. Transl Psychiatry 2012; 2:e137. [PMID: 22781170 PMCID: PMC3410627 DOI: 10.1038/tp.2012.63] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Glutamatergic signaling through N-methyl-D-aspartate receptors (NMDARs) is required for synaptic plasticity. Disruptions in glutamatergic signaling are proposed to contribute to the behavioral and cognitive deficits observed in schizophrenia (SZ). One possible source of compromised glutamatergic function in SZ is decreased surface expression of GluN2B-containing NMDARs. STEP(61) is a brain-enriched protein tyrosine phosphatase that dephosphorylates a regulatory tyrosine on GluN2B, thereby promoting its internalization. Here, we report that STEP(61) levels are significantly higher in the postmortem anterior cingulate cortex and dorsolateral prefrontal cortex of SZ patients, as well as in mice treated with the psychotomimetics MK-801 and phencyclidine (PCP). Accumulation of STEP(61) after MK-801 treatment is due to a disruption in the ubiquitin proteasome system that normally degrades STEP(61). STEP knockout mice are less sensitive to both the locomotor and cognitive effects of acute and chronic administration of PCP, supporting the functional relevance of increased STEP(61) levels in SZ. In addition, chronic treatment of mice with both typical and atypical antipsychotic medications results in a protein kinase A-mediated phosphorylation and inactivation of STEP(61) and, consequently, increased surface expression of GluN1/GluN2B receptors. Taken together, our findings suggest that STEP(61) accumulation may contribute to the pathophysiology of SZ. Moreover, we show a mechanistic link between neuroleptic treatment, STEP(61) inactivation and increased surface expression of NMDARs, consistent with the glutamate hypothesis of SZ.
Collapse
Affiliation(s)
- N C Carty
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - J Xu
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - P Kurup
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - J Brouillette
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - S M Goebel-Goody
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - D R Austin
- Laboratory of Molecular Pathophysiology, Mood and Anxiety Disorders Research Program, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - P Yuan
- Laboratory of Molecular Pathophysiology, Mood and Anxiety Disorders Research Program, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - G Chen
- Laboratory of Molecular Pathophysiology, Mood and Anxiety Disorders Research Program, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - P R Correa
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - V Haroutunian
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, USA
| | - C Pittenger
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Psychology, Yale University School of Medicine, New Haven, CT, USA
| | - P J Lombroso
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA,Child Study Center, Yale University School of Medicine, P.O. Box 207900, New Haven, CT 06520-7900, USA. E-mail:
| |
Collapse
|
16
|
Prolonged exposure to NMDAR antagonist induces cell-type specific changes of glutamatergic receptors in rat prefrontal cortex. Neuropharmacology 2011; 62:1808-22. [PMID: 22182778 DOI: 10.1016/j.neuropharm.2011.11.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 01/01/2023]
Abstract
N-methyl-d-aspartic acid (NMDA) receptors are critical for both normal brain functions and the pathogenesis of schizophrenia. We investigated the functional changes of glutamatergic receptors in the pyramidal cells and fast-spiking (FS) interneurons in the adolescent rat prefrontal cortex in MK-801 model of schizophrenia. We found that although both pyramidal cells and FS interneurons were affected by in vivo subchronic blockade of NMDA receptors, MK-801 induced distinct changes in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA receptors in the FS interneurons compared with pyramidal cells. Specifically, the amplitude, but not the frequency, of AMPA-mediated miniature excitatory postsynaptic currents (mEPSCs) in FS interneurons was significantly decreased whereas both the frequency and amplitude in pyramidal neurons were increased. In addition, MK-801-induced new presynaptic NMDA receptors were detected in the glutamatergic terminals targeting pyramidal neurons but not FS interneurons. MK-801 also induced distinct alterations in FS interneurons but not in pyramidal neurons, including significantly decreased rectification index and increased calcium permeability. These data suggest a distinct cell-type specific and homeostatic synaptic scaling and redistribution of AMPA and NMDA receptors in response to the subchronic blockade of NMDA receptors and thus provide a direct mechanistic explanation for the NMDA hypofunction hypothesis that have long been proposed for the schizophrenia pathophysiology.
Collapse
|
17
|
Dalton VS, Zavitsanou K. Rapid changes in d1 and d2 dopamine receptor binding in striatal subregions after a single dose of phencyclidine. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2011; 9:67-72. [PMID: 23429383 PMCID: PMC3569081 DOI: 10.9758/cpn.2011.9.2.67] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/12/2011] [Accepted: 03/26/2011] [Indexed: 11/18/2022]
Abstract
OBJECTIVE In humans, a single exposure to phencyclidine (PCP) can induce a schizophrenia-like psychosis which can persist for up to two weeks. In rats, an acute dose of PCP increases dopaminergic activity and causes changes in dopamine related behaviours some of which are sexually dimorphic. To better understand the effects of PCP on dopamine receptor adaptations in the short term we examined dopamine D1-like receptors (D1R) and D2-like receptors (D2R) in the mesolimbic and nigrostriatal dopamine pathways, 4 hours after exposure to PCP in female rats. METHODS Animals received a single dose of 40 mg/kg PCP and were sacrificed 4 hours later. In vitro autoradiography was carried out using [(3)H] SCH 23390 and [(3)H] raclopride that target D1R and D2R respectively, in cryostat brain sections. RESULTS Two way analysis of variance (ANOVA), revealed an overall effect of PCP treatment (F [1,63]=9.065; p=0.004) on D1R binding with an 18% decrease (p<0.01) in binding in the medial caudate putamen. PCP treatment also had an overall effect on D2R binding (F [1,47]=5.450; p=0.024) and a trend for an increase in D2R binding across all the brain regions examined. CONCLUSION These results suggest opposing D1R and D2R adaptations in striatal subregions of female rats following acute exposure to PCP that may occur through indirect mechanisms.
Collapse
Affiliation(s)
- Victoria S Dalton
- Schizophrenia Research Institute, Australian Nuclear Science and Technology Organisation, Sydney, Australia. ; ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation, Sydney, Australia
| | | |
Collapse
|
18
|
Elsworth JD, Groman SM, Jentsch JD, Valles R, Shahid M, Wong E, Marston H, Roth RH. Asenapine effects on cognitive and monoamine dysfunction elicited by subchronic phencyclidine administration. Neuropharmacology 2011; 62:1442-52. [PMID: 21875607 DOI: 10.1016/j.neuropharm.2011.08.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 08/15/2011] [Accepted: 08/16/2011] [Indexed: 12/22/2022]
Abstract
PURPOSE Repeated, intermittent administration of the psychotropic NMDA antagonist phencyclidine (PCP) to laboratory animals causes impairment in cognitive and executive functions, modeling important sequelae of schizophrenia; these effects are thought to be due to a dysregulation of neurotransmission within the prefrontal cortex. Atypical antipsychotic drugs have been reported to have measurable, if incomplete, effects on cognitive dysfunction in this model, and these effects may be due to their ability to normalize a subset of the physiological deficits occurring within the prefrontal cortex. Asenapine is an atypical antipsychotic approved in the US for the treatment of schizophrenia and for the treatment, as monotherapy or adjunctive therapy to lithium or valproate, of acute manic or mixed episodes associated bipolar I disorder. To understand its cognitive and neurochemical actions more fully, we explored the effects of short- and long-term dosing with asenapine on measures of cognitive and motor function in normal monkeys and in those previously exposed for 2 weeks to PCP; we further studied the impact of treatment with asenapine on dopamine and serotonin turnover in discrete brain regions from the same cohort. METHODS Monkeys were trained to perform reversal learning and object retrieval procedures before twice daily administration of PCP (0.3 mg/kg intra-muscular) or saline for 14 days. Tests confirmed cognitive deficits in PCP-exposed animals before beginning twice daily administration of saline (control) or asenapine (50, 100, or 150 μg/kg, intra-muscular). Dopamine and serotonin turnover were assessed in 15 specific brain regions by high-pressure liquid chromatography measures of the ratio of parent amine to its major metabolite. RESULTS On average, PCP-treated monkeys made twice as many errors in the reversal task as did control monkeys. Asenapine facilitated reversal learning performance in PCP-exposed monkeys, with improvements at trend level after 1 week of administration and reaching significance after 2-4 weeks of dosing. In week 4, the improvement with asenapine 150 μg/kg (p = 0.01) rendered the performance of PCP-exposed monkeys indistinguishable from that of normal monkeys without compromising fine motor function. Asenapine administration (150 μg/kg twice daily) produced an increase in dopamine and serotonin turnover in most brain regions of control monkeys and asenapine (50-150 μg/kg) increased dopamine and serotonin turnover in several brain regions of subchronic PCP-treated monkeys. No significant changes in the steady-state levels of dopamine or serotonin were observed in any brain region except for the central amygdala, in which a significant depletion of dopamine was observed in PCP-treated control monkeys; asenapine treatment reversed this dopamine depletion. A significant decrease in serotonin utilization was observed in the orbitofrontal cortex and nucleus accumbens in PCP monkeys, which may underlie poor reversal learning. In the same brain regions, dopamine utilization was not affected. Asenapine ameliorated this serotonin deficit in a dose-related manner that matched its efficacy for reversing the cognitive deficit. CONCLUSIONS In this model of cognitive dysfunction, asenapine produced substantial gains in executive functions that were maintained with long-term administration. The cognition-enhancing effects of asenapine and the neurochemical changes in serotonin and dopamine turnover seen in this study are hypothesized to be primarily related to its potent serotonergic and noradrenergic receptor binding properties, and support the potential for asenapine to reduce cognitive dysfunction in patients with schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- John D Elsworth
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Klamer D, Svensson L, Fejgin K, Pålsson E. Prefrontal NMDA receptor antagonism reduces impairments in pre-attentive information processing. Eur Neuropsychopharmacol 2011; 21:248-53. [PMID: 21111580 DOI: 10.1016/j.euroneuro.2010.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
A well established theory proposes that glutamate signalling via the NMDA receptor is compromised in patients with schizophrenia. Deficits related to NMDA receptor signalling can be observed in several brain regions including the prefrontal cortex (PFC), an area extensively linked to the cognitive dysfunction in this disease and notably affected by NMDA receptor antagonists such as phencyclidine (PCP). In addition, a number of studies suggest that normalizing of PFC function could constitute a treatment rationale for schizophrenia. To further study the role of PFC function we investigated the effect of local PFC NMDA receptor blockade on impaired prepulse inhibition (PPI) induced by systemic administration of PCP. Mice received prefrontal injections of PCP (0.01, 0.1 or 1mM) before PCP treatment (5mg/kg) and were thereafter tested for PPI. PCP induced deficits in PPI were ameliorated by prefrontal PCP (0.1mM) treatment whereas PPI was not affected by prefrontal cortex PCP administration per se at any of the doses tested. Taken together, inhibition of NMDA receptors in the PFC does not seem to be enough to impair PPI per se but NMDA receptor mediated signalling in the PFC may be a key factor for the PPI-disruptive effects of global NMDA receptor inhibition. This indicates that targeting PFC NMDA receptor signalling may have potential as a treatment target for schizophrenia although further studies are needed to understand pharmacology and pathophysiological role of PFC NMDA receptors.
Collapse
Affiliation(s)
- Daniel Klamer
- Department of Pharmacology, The Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg,Gothenburg, Sweden
| | | | | | | |
Collapse
|
20
|
Dazzi L, Matzeu A, Biggio G. Role of ionotropic glutamate receptors in the regulation of hippocampal norepinephrine output in vivo. Brain Res 2011; 1386:41-9. [PMID: 21362410 DOI: 10.1016/j.brainres.2011.02.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 02/18/2011] [Accepted: 02/20/2011] [Indexed: 11/18/2022]
Abstract
In vitro evidence indicates that norepinephrine release in the mammalian hippocampus is modulated by glutamate receptors. With the use of microdialysis, we have now evaluated the role of ionotropic glutamate receptors in the regulation of hippocampal norepinephrine output in vivo. Stimulation of N-methyl-D-aspartate (NMDA)-sensitive glutamate receptors by local administration of NMDA (1-100μM) resulted in a concentration-dependent decrease in the extracellular concentration of norepinephrine in the hippocampus of freely moving rats, whereas the blockade of these receptors with MK801 (1-100μM) induced a concentration-dependent increase in norepinephrine output. Activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-sensitive glutamate receptors with AMPA (1-100μM) resulted in a biphasic effect on the extracellular norepinephrine concentration, with a decrease in this parameter apparent at 10μM and an increase at 100μM. The AMPA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione had no effect on norepinephrine output. The GABA(A) receptor antagonist bicuculline (10μM) prevented the decrease in hippocampal norepinephrine output induced by either NMDA or 10μM AMPA. Our results thus implicate ionotropic glutamate receptors as key regulators of norepinephrine release in the hippocampus and may therefore provide a basis for the development of new drugs for stress-related disorders.
Collapse
Affiliation(s)
- Laura Dazzi
- Department of Experimental Biology, University of Cagliari, Cagliari, Italy.
| | | | | |
Collapse
|
21
|
|
22
|
Information processing deficits and nitric oxide signalling in the phencyclidine model of schizophrenia. Psychopharmacology (Berl) 2010; 212:643-51. [PMID: 20802999 DOI: 10.1007/s00213-010-1992-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/04/2010] [Indexed: 12/22/2022]
Abstract
RATIONALE Schizophrenia-like cognitive deficits induced by phencyclidine (PCP), a drug commonly used to model schizophrenia in experimental animals, are attenuated by nitric oxide (NO) synthase inhibitors. Furthermore, PCP increases NO levels and sGC/cGMP signalling in the prefrontal cortex in rodents. Hence, a cortical NO/sGC/cGMP signalling pathway may constitute a target for novel pharmacological therapies in schizophrenia. OBJECTIVES The objective of this study was to further investigate the role of NO signalling for a PCP-induced deficit in pre-attentive information processing. MATERIALS AND METHODS Male Sprague-Dawley rats were surgically implanted with NO-selective amperometric microsensors aimed at the prefrontal cortex, ventral hippocampus or nucleus accumbens, and NO levels and prepulse inhibition (PPI) were simultaneously assessed. RESULTS PCP treatment increased NO levels in the prefrontal cortex and ventral hippocampus, but not in the nucleus accumbens. The increase in NO levels was not temporally correlated to the deficit in PPI induced by PCP. Furthermore, pretreatment with the neuronal NO synthase inhibitor N-propyl-L-arginine dose-dependently attenuated both the increase in prefrontal cortex NO levels and the deficit in PPI. CONCLUSIONS These findings support a demonstrated role of NO in the behavioural and neurochemical effects of PCP. Furthermore, this effect is brain region-specific and mainly involves the neuronal isoform of NOS. However, a temporal correlation between a PCP-induced disruption of PPI and an increase in prefrontal cortex NO levels was not demonstrated, suggesting that the interaction between PCP and the NO system is more complex than previously thought.
Collapse
|
23
|
Li Z, Boules M, Williams K, Gordillo A, Li S, Richelson E. Similarities in the behavior and molecular deficits in the frontal cortex between the neurotensin receptor subtype 1 knockout mice and chronic phencyclidine-treated mice: relevance to schizophrenia. Neurobiol Dis 2010; 40:467-77. [PMID: 20659557 DOI: 10.1016/j.nbd.2010.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/20/2010] [Indexed: 12/27/2022] Open
Abstract
Much evidence suggests that targeting the neurotensin (NT) system may provide a novel and promising treatment for schizophrenia. Our recent work shows that: NTS1 knockout (NTS1(-/-)) mice may provide a potential animal model for studying schizophrenia by investigating the effect of deletion NTS1 receptor on amphetamine-induced hyperactivity and neurochemical changes. The data indicate a hyper-dopaminergic state similar to the excessive striatal DA activity reported in schizophrenia. The present study was done to determine if NTS1(-/-) mice also have similar changes in behavior, in prefrontal neurotransmitters, and in protein expression, as observed in wild type (WT) mice treated with the psychotomimetic phencylclidine (PCP), an animal model for schizophrenia. Our results showed many similarities between untreated NTS1(-/-) mice and WT mice chronically treated with PCP (as compared with untreated WT mice): 1) lower PCP-induced locomotor activity; 2) similar avolition-like behavior in forced-swim test and tail suspension test; 3) lower prefrontal glutamate levels; 4) less PCP-induced dopamine release in medial prefrontal cortex (mPFC); and 5) down-regulation of mRNA and protein for DA D(1), DA D(2), and NMDAR2A in mPFC. Therefore, these data strengthen the hypothesis that the NTS1(-/-) mouse is an animal model of schizophrenia, particularly for the dysfunction of the prefrontal cortex. In addition, after chronic PCP administration, the DA D(1) receptor was up-regulated in NTS1(-/-) mice, results which suggest a possible interaction of NTS1/DA D(1) in mPFC contributing to chronic PCP-induced schizophrenia-like signs.
Collapse
Affiliation(s)
- Zhimin Li
- Department of Neuropsychopharmacology, Mayo Foundation for Medical Education and Research, Mayo Clinic, Jacksonville, FL 32224, USA.
| | | | | | | | | | | |
Collapse
|
24
|
The novel neurotensin analog NT69L blocks phencyclidine (PCP)-induced increases in locomotor activity and PCP-induced increases in monoamine and amino acids levels in the medial prefrontal cortex. Brain Res 2009; 1311:28-36. [PMID: 19948149 DOI: 10.1016/j.brainres.2009.11.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 11/21/2022]
Abstract
Schizophrenia is a life-long, severe, and disabling brain disorder that requires chronic pharmacotherapy. Because current antipsychotic drugs do not provide optimal therapy, we have been developing novel treatments that focus on receptors for the neuropeptide neurotensin (NT). NT69L, an analog of neurotensin(8-13), acts like an atypical antipsychotic drug in several dopamine-based animal models used to study schizophrenia. Another current animal model utilizes non-competitive antagonists of the NMDA/glutamate receptor, such as the psychotomimetic phencyclidine (PCP). In the present study, we investigated the effects of NT69L on PCP-induced behavioral and biochemical changes in the rat. The top of an activity chamber was modified to allow us to perform microdialysis in rat brain, while simultaneously recording the locomotor activity of a rat. PCP injection significantly increased activity as well as the extracellular concentration of norepinephrine (NE), 5-HT, dopamine (DA), and glutamate in the medial prefrontal cortex (mPFC). Pretreating with NT69L blocked the PCP-induced hyperactivity as well as the increase of DA, 5-HT, NE, and glutamate in mPFC. Interestingly and unexpectedly, NT69L markedly increased glycine levels, while PCP was without effect on glycine levels. Thus, NT69L showed antipsychotic-like effects in this glutamate-based animal model for studying schizophrenia. Previous work from our group suggests that NT69L also has antipsychotic-like effects in dopaminergic and serotonergic rodent models. Taken together, these data suggest that NT69L in particular and NT receptor agonists in general, will be useful as broad-spectrum antipsychotic drugs.
Collapse
|
25
|
Jentsch JD, Sanchez D, Elsworth JD, Roth RH. Clonidine and guanfacine attenuate phencyclidine-induced dopamine overflow in rat prefrontal cortex: mediating influence of the alpha-2A adrenoceptor subtype. Brain Res 2008; 1246:41-6. [PMID: 18977208 DOI: 10.1016/j.brainres.2008.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 10/03/2008] [Accepted: 10/07/2008] [Indexed: 02/04/2023]
Abstract
N-methyl-D-aspartic acid/glutamate receptor antagonists induce psychotomimetic effects in humans and animals, and much research has focused on the neurochemical and network-level effects that mediate those behavioral changes. For example, a reduction in NMDA-dependent glutamatergic transmission triggers increased release of the monoamine transmitters, and some of these changes are implicated in the cognitive, behavioral and neuroanatomical effects of phencyclidine (PCP). Alpha-2 adrenoceptor agonists (e.g., clonidine) are effective at preventing many of the behavioral, neurochemical and anatomical effects of NMDA antagonists. Evidence has indicated that a key mechanism of the clonidine-induced reversal of the effects of NMDA antagonists is an attenuation of enhanced dopamine release. We have pursued these findings by investigating the effects of alpha-2 agonists on PCP-evoked dopamine efflux in the prefrontal cortex of freely moving rats. Clonidine (0.003-0.1 mg/kg, i.p.) dose-dependently attenuated the ability of PCP (2.5 mg/kg, i.p.) to increase cortical dopamine output. The effects of clonidine were prevented by the alpha-2A subtype selective antagonist BRL-44408 (1 mg/kg, i.p.). Guanfacine, which is an alpha-2 agonist with a higher affinity for the 2A, compared with 2B or 2C, subtypes, also blocked the ability of PCP to increase dopamine efflux in the prefrontal cortex. These data indicate that alpha-2A agonists are effective at counteracting the hyperdopaminergic state induced by PCP and may play a role in their neurobehavioral effects in this putative animal model for schizophrenia.
Collapse
Affiliation(s)
- J David Jentsch
- Department of Psychiatry Yale University School of Medicine New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
26
|
Beraki S, Kuzmin A, Tai F, Ogren SO. Repeated low dose of phencyclidine administration impairs spatial learning in mice: blockade by clozapine but not by haloperidol. Eur Neuropsychopharmacol 2008; 18:486-97. [PMID: 18242064 DOI: 10.1016/j.euroneuro.2007.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 10/26/2007] [Accepted: 12/12/2007] [Indexed: 12/01/2022]
Abstract
The effect of phencyclidine (PCP), a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, was examined in the water maze, a spatial learning and memory task dependent on hippocampal functions. Male adult C57Bl/6J mice received daily (s.c.) injections of either saline or PCP (0.25-4.0 mg/kg) for 12 days. During the last 5 days, the injections were followed by water maze training. Repeated PCP treatments disrupted spatial learning and memory in the 0.5-4.0 mg/kg dose range. Severe sensorimotor disturbances, observed at the 2.0 and 4.0 mg/kg doses of PCP, precluded further swim maze testing. The 0.5 mg/kg but not the 1.0 mg/kg dose of PCP impaired spatial learning and memory without any apparent sensorimotor deficits. PCP, at 1.0 mg/kg, produced impairment in non-spatial learning in the swim maze task and motor disturbances in the rotarod test. Repeated daily treatment with either the "atypical" antipsychotic drug clozapine (0.5 mg/kg i.p.) or the "typical" antipsychotic drug haloperidol (0.05 mg/kg i.p.) failed to influence spatial performances. The spatial impairment caused by the 0.5 mg/kg dose of PCP was blocked by concomitant treatment with clozapine (0.5 mg/kg), but not with haloperidol (0.05 mg/kg). The results suggest that it is possible, at low doses of PCP, to dissociate the spatial learning impairment in the water maze from the adverse behavioral effects of NMDA receptor blockade. This model may provide a basis for the analysis of the mechanisms underlying declarative memory disturbances in schizophrenia and the differences in mechanisms between typical and atypical antipsychotic drugs.
Collapse
Affiliation(s)
- Simret Beraki
- Department of Neuroscience, Division of Behavioral Neuroscience, Retziusvag 8, B3:5, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
27
|
Elsworth JD, Jentsch JD, Morrow BA, Redmond DE, Roth RH. Clozapine normalizes prefrontal cortex dopamine transmission in monkeys subchronically exposed to phencyclidine. Neuropsychopharmacology 2008; 33:491-6. [PMID: 17507917 DOI: 10.1038/sj.npp.1301448] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The mechanism responsible for the therapeutic effects of the prototypical atypical antipsychotic drug, clozapine, is still not understood; however, there is persuasive evidence from in vivo studies in normal rodents and primates that the ability to elevate dopamine neurotransmission preferentially in the prefrontal cortex is a key component to the beneficial effects of clozapine in schizophrenia. Theoretically, such an effect of clozapine would counteract the deficient dopaminergic innervation of the prefrontal cortex that appears to be part of the pathophysiology of schizophrenia. We have previously shown that following repeated, intermittent administrations of phencyclidine to monkeys there is lowered prefrontal cortical dopamine transmission and impairment of cognitive performance that is dependent on the prefrontal cortex; these biochemical and behavioral changes therefore model certain aspects of schizophrenia. We now investigate the effects of clozapine on the dopamine projections to prefrontal cortex, nucleus accumbens, and striatum in control monkeys and in those withdrawn from repeated phencyclidine treatment, using a dose regimen of clozapine that ameliorates the cognitive deficits described in the primate phencyclidine (PCP) model. In normal monkeys, clozapine elevated dopamine turnover in all prefrontal cortical, but not subcortical, regions analyzed. In the primate PCP model, clozapine normalized dopamine (DA) turnover in the dorsolateral prefrontal cortex, prelimbic cortex, and cingulate cortex. Thus, the present data support the hypothesis that the therapeutic effects of clozapine in this primate model and perhaps in schizophrenia may be related at least in part to the restoration of DA tone in the prefrontal cortex.
Collapse
Affiliation(s)
- John D Elsworth
- Neuropsychopharmacology Research Unit, Departments of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA.
| | | | | | | | | |
Collapse
|
28
|
Barbon A, Fumagalli F, La Via L, Caracciolo L, Racagni G, Riva MA, Barlati S. Chronic phencyclidine administration reduces the expression and editing of specific glutamate receptors in rat prefrontal cortex. Exp Neurol 2007; 208:54-62. [PMID: 17706642 DOI: 10.1016/j.expneurol.2007.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 06/13/2007] [Accepted: 07/12/2007] [Indexed: 11/24/2022]
Abstract
Phencyclidine (PCP) induces a form of psychosis that mimics naturally occurring schizophrenia in the most relevant domains of the psychopathology. In this report, we investigated the effect of chronic treatment with PCP on expression and RNA editing of alpha-amino-propionic acid (AMPA) and kainate (KA) glutamate receptor (GluR), in the rat prefrontal cortex and the hippocampus. We found that chronic, but not acute, PCP treatment decreased GluRs expression in the rat prefrontal cortex but not in the hippocampus. In particular, the mRNA coding for GluR2 and GluR3 subunits were reduced by 50%, whereas those coding for KA GluR5 and GluR6 were decreased by 30%. In addition, we observed a decrease of the editing levels of the R/G site in the flop form of both GluR2 and GluR3 and a significant increase in the editing level of GluR6 Q/R site. The variation in the editing level of the R/G sites suggests that chronic PCP treatment induced the formation of glutamate receptor subunits with slower resensitization kinetics and, with respect to kainate receptors, an increase in the Q/R editing level might generate receptor channels with a lower permeability to cations. Combining all the data, it can be inferred that the PCP treatment induced a specific and site-selective reduction of glutamatergic neurotransmission in the prefrontal cortex but not in the hippocampus.
Collapse
Affiliation(s)
- Alessandro Barbon
- Division of Biology and Genetics, Department of Biomedical Sciences and Biotechnologies, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Dunn MJ, Killcross S. Medial prefrontal cortex infusion of alpha-flupenthixol attenuates systemic d-amphetamine-induced disruption of conditional discrimination performance in rats. Psychopharmacology (Berl) 2007; 192:347-55. [PMID: 17287939 DOI: 10.1007/s00213-007-0714-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 01/16/2007] [Indexed: 11/28/2022]
Abstract
RATIONALE It has been argued that tasks that necessitate the use of context in the service of goal-directed behaviour are disrupted in both schizophrenic patients and in animal analogues by dopamine (DA) manipulation with the prefrontal cortex being implicated. OBJECTIVES To determine the effects on conditional discrimination performance of direct infusion of the DA D(1)/D(2) receptor antagonist alpha-flupenthixol into the medial prefrontal cortex (mPFC) and of its reversal potential on d-amphetamine-induced task disruption. MATERIALS AND METHODS Conditional discrimination performance in which rats learn to respond on an appropriate lever, conditional upon specific auditory stimuli, was acquired and later tested under the above drug treatment protocol in extinction. RESULTS Conditional discrimination performance was unaffected by bilateral intra-mPFC alpha-flupenthixol at doses of 12, 24 or 36 microg/microl. A dose of D-amphetamine (1.5 mg/kg) shown previously to disrupt conditional discrimination performance was attenuated by direct PFC infusion of alpha-flupenthixol at doses of 24 and 36 but not 12 microg/microl per site. CONCLUSIONS These results show that conditional discrimination performance is at least in part mediated by prefrontal DA as local PFC DA antagonism attenuates task performance disruption by the indirect DA agonist d-amphetamine further implicating the role of dysfunctional forebrain DA in cognitive deficits evident in schizophrenia.
Collapse
Affiliation(s)
- Michael J Dunn
- Department of Health and Social Sciences (Psychology), University of Wales Institute Cardiff, Llandaff Campus, Western Avenue, Cardiff, CF5 2SG, UK
| | | |
Collapse
|
30
|
Dunn MJ, Killcross S. Clozapine, SCH 23390 and alpha-flupenthixol but not haloperidol attenuate acute phencyclidine-induced disruption of conditional discrimination performance. Psychopharmacology (Berl) 2007; 190:403-14. [PMID: 17237918 DOI: 10.1007/s00213-006-0605-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 10/01/2006] [Indexed: 01/14/2023]
Abstract
RATIONALE Forebrain dopamine (DA) manipulation has recently been shown to selectively disrupt a conditional discrimination task whose design parameters approximate tasks repeatedly shown to be impaired in schizophrenia. OBJECTIVE To investigate the reversal potential of the D(1)/D(2) receptor antagonist alpha-flupenthixol, the selective D(1) antagonist SCH 23390, the typical antipsychotic haloperidol and the atypical antipsychotic clozapine on acute phencyclidine (PCP)-induced disruption of a conditional discrimination task dependent on the ability to use task-setting cues that inform goal-directed performance. MATERIALS AND METHODS Rats learned a conditional discrimination task where reinforcement was contingent on an appropriate lever press during a specific auditory stimulus. RESULTS PCP disrupted task performance at 1.5 mg/kg, attenuated correct lever pressing at 2.5 mg/kg and abolished overall responding at 5 mg/kg (experiment 1). Pavlovian-instrumental transfer task results (experiment 2) showed that 1.5 and 2.5 mg/kg PCP had no disruptive effects on basic sensory, motor or motivational processes; however, such deficits were evident in 5-mg/kg-treated animals. PCP (1.5 mg/kg) disruption of conditional discrimination was attenuated by acute pretreatment with clozapine, SCH 23390 and alpha-flupenthixol; however, pretreatment with haloperidol did not attenuate task disruption. CONCLUSION The predictive validity of the conditional discrimination model is enhanced as the selective task disruption by the preeminent psychotomimetic PCP is reversed by clozapine (known to ameliorate cognitive deficits in schizophrenia) and the role of DA D(1) receptors as mediators of tasks that require conditional relationships is discussed.
Collapse
Affiliation(s)
- Michael J Dunn
- Department of Health and Social Sciences (Psychology), University of Wales Institute Cardiff (UWIC), Llandaff Campus, Western Avenue, Cardiff, CF5 2SG, UK.
| | | |
Collapse
|
31
|
Dunn MJ, Killcross S. Clozapine but not haloperidol treatment reverses sub-chronic phencyclidine-induced disruption of conditional discrimination performance. Behav Brain Res 2006; 175:271-7. [PMID: 17027093 DOI: 10.1016/j.bbr.2006.08.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 08/17/2006] [Accepted: 08/25/2006] [Indexed: 01/30/2023]
Abstract
Abusers of phencyclidine (PCP) often present with a symptom profile similar to that exhibited by schizophrenic patients. Animal models utilising such psychotomimetics are currently informing research into the condition. Accumulating evidence suggests that a central cognitive deficit in schizophrenia is the inability to use task-setting cues to guide goal directed behaviour and that this ability is mediated by prefrontal dopamine (DA). The current study used the non-competitive NMDA antagonist phencyclidine (PCP) and Haloperidol (typical antipsychotic) and Clozapine (atypical antipsychotic) in order to further investigate the influence of DAergic manipulation on a task that requires the use of conditional information to inform goal-directed performance. An instrumental conditional discrimination task was employed in which rats learn to respond appropriately according to the presence of specific auditory conditional stimuli. Probe test 1 showed impaired conditional discrimination performance following sub-chronic PCP administration (seven twice-daily injection protocol) compared to control which was reversed by acute treatment with clozapine (5 mg/kg) but not haloperidol (0.1 mg/kg) both administered 60 min pre-test. Probe test 2 (8 days post-treatment) showed enduring deficits to conditional discrimination performance that were again reversed by clozapine but not haloperidol (injection procedures as above). These results show that tasks dependent upon conditional relationships are particularly sensitive to manipulation of DAergic systems as prolonged treatment with PCP has been shown to selectively reduce prefrontal cortex (PFC) DA activity and treatment with clozapine (known to ameliorate cognitive deficits) but not haloperidol has been shown to selectively restore PFC DA levels.
Collapse
Affiliation(s)
- Michael J Dunn
- Department of Health and Social Sciences (Psychology), University of Wales Institute Cardiff , Llandaff Campus, Western Avenue, Cardiff CF5 2SG, United Kingdom.
| | | |
Collapse
|
32
|
Tsukada H, Nishiyama S, Fukumoto D, Sato K, Kakiuchi T, Domino EF. Chronic NMDA antagonism impairs working memory, decreases extracellular dopamine, and increases D1 receptor binding in prefrontal cortex of conscious monkeys. Neuropsychopharmacology 2005; 30:1861-9. [PMID: 15841110 DOI: 10.1038/sj.npp.1300732] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study demonstrates that dizocilpine (MK-801), a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, impairs working memory of conscious behaving monkeys. In addition, acute and chronic MK-801 produces different effects on D(1) and D(2) receptor binding in prefrontal cortex (PFC). Extrastriatal neocortical receptor D(1) (D(1)R) and D(2) (D(2)R) binding were assayed by [(11)C]NNC112 and [(11)C]FLB457, respectively, using high-specific radioactivity and a specially designed monkey positron emission tomograph (PET). Acute single dose (0.03, 0.1, and 0.3 mg/kg) i.v. administration of MK-801 resulted in dose-related impairment of working memory performance of an oculomotor delayed response (ODR) task. There was no impairment of performance of a visually guided saccade (VGS) task with low doses of 0.03 and 0.1, but it was depressed with 0.3 mg/kg. Chronic daily MK-801 (0.03 mg/kg, i.m., b.i.d. for 13 days) induced impaired ODR task performance with no effect on the VGS task. Although acute single doses of MK-801 caused no significant changes in [(11)C]NNC112 binding to PFC D(1)R, chronic daily treatment increased binding about 14% (P<.05). Acute MK-801 dose-dependently decreased [(11)C]FLB457 binding about 35% (P<.01) to PFC D(2)R; chronic treatment had no significant effect. Microdialysis analyses demonstrated that acute single doses of MK-801 (0.03 and 0.1 mg/kg) increased extracellular glutamate and dopamine (DA) levels in PFC. Chronic MK-801 gradually lowered glutamate and DA levels in PFC. The results demonstrate in conscious, unanesthetized primates that MK-801 induces impairment of PFC function, as measured by working memory performance. Furthermore, in response to lowered levels of DA in PFC, D(1)R binding is increased, whereas D(2)R binding is not.
Collapse
Affiliation(s)
- Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics K.K., Shizuoka, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Wang X, Gu Z, Zhong P, Chen G, Feng J, Yan Z. Aberrant regulation of NMDA receptors by dopamine D4 signaling in rats after phencyclidine exposure. Mol Cell Neurosci 2005; 31:15-25. [PMID: 16198123 DOI: 10.1016/j.mcn.2005.08.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 08/18/2005] [Accepted: 08/29/2005] [Indexed: 11/18/2022] Open
Abstract
Dopaminergic dysfunction in the prefrontal cortex (PFC) has been implicated in the pathophysiology of schizophrenia. On the other hand, administration of the NMDAR antagonist phencyclidine (PCP) impairs PFC functions and induces a broad range of schizophrenic-like symptoms, thus has been widely used as an animal model for schizophrenia. This study sought to determine the mechanism by which PCP may alter the dopaminergic functions in PFC. In control rats, activation of dopamine D4 receptors produced a significant suppression of NMDA receptor transmission in PFC pyramidal neurons, which was dependent on the inhibition of active CaMKII. However, in PCP-treated rats, the D4 modulation of NMDA receptors was significantly impaired, with the concomitant loss of D4 regulation of CaMKII activity. In contrast, the D4 modulation of voltage-dependent Ca2+ channels was intact following PCP administration. Furthermore, treatment with the antipsychotic drug clozapine restored the D4 regulation of NMDA receptors in PCP-treated rats. These findings suggest that the selective disruption of the interaction between D4 and NMDA receptors in the PCP model, which is attributable to the impaired D4-mediated downstream signaling, may contribute to the aberrant PFC neuronal activity in schizophrenia.
Collapse
Affiliation(s)
- Xun Wang
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, 124 Sherman Hall, Buffalo, NY 14214, USA
| | | | | | | | | | | |
Collapse
|
34
|
Marrs W, Kuperman J, Avedian T, Roth RH, Jentsch JD. Alpha-2 adrenoceptor activation inhibits phencyclidine-induced deficits of spatial working memory in rats. Neuropsychopharmacology 2005; 30:1500-10. [PMID: 15714223 DOI: 10.1038/sj.npp.1300700] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
N-methyl-D-aspartate (NMDA)/glutamate receptor antagonists, such as phencyclidine (PCP), induce behavioral abnormalities (locomotor hyperactivity, sensorimotor gating deficits, impairments of cognition) in animals that are thought to model aspects of schizophrenia. The administration of PCP increases noradrenaline transmission in the rat prefrontal cortex, a brain structure required for normal cognitive processes. Noradrenaline, in turn, works through a set of receptors that have themselves been implicated directly in NMDA antagonist-induced deficits; we recently reported that the alpha-2 agonist, clonidine, is effective at preventing PCP-induced deficits of working memory and visual attention in rats. Here, we further investigated the role for alpha-2 adrenoreceptors in the effects of PCP on spatial working memory performance. The alpha-2 agonist clonidine (0.001-0.01 mg/kg, subcutaneously (s.c.)) produced a significant amelioration of PCP-induced working memory deficits; the effects of PCP (1.0 mg/kg, s.c.), but not clonidine, were reduced in noradrenaline-depleted rats. In addition, the alpha-2A-preferring agonist guanfacine (0.05-1.0 mg/kg, s.c.) dose-dependently prevented the deficits of spatial working memory performance produced by PCP. Although the highly selective alpha-2 receptor antagonist, atipamezole (ATI), failed to affect spatial working memory on its own, at the doses studied (0.1-0.5 mg/kg, s.c.), it dramatically enhanced the working memory deficit produced by PCP. These data indicate that alpha-2 adrenoreceptors tonically inhibit PCP-induced deficits of spatial working memory, suggesting an important role for these receptors in cognitive deficits associated with NMDA receptor hypofunction.
Collapse
Affiliation(s)
- William Marrs
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA 90095-1563, USA
| | | | | | | | | |
Collapse
|
35
|
Tenn CC, Kapur S, Fletcher PJ. Sensitization to amphetamine, but not phencyclidine, disrupts prepulse inhibition and latent inhibition. Psychopharmacology (Berl) 2005; 180:366-76. [PMID: 15856186 DOI: 10.1007/s00213-005-2253-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 12/16/2004] [Indexed: 12/19/2022]
Abstract
RATIONALE Schizophrenia has been linked to dysregulation of dopamine and glutamate transmitter systems. Attempts to model aspects of schizophrenia in animals have made use of treatments that primarily affect dopaminergic (e.g., amphetamine, Amp) and glutamatergic (e.g., phencyclidine, PCP) function. In addition to exerting short-term acute effects, these agents also induce long-term effects, as seen, for example, in neurochemical and behavioural sensitization. OBJECTIVES The goal of this work was to compare Amp- and PCP-sensitized states on two measures of information processing that are impaired in schizophrenia, prepulse inhibition (PPI) of the acoustic startle reflex and latent inhibition (LI). METHODS Rats received injections of Amp, PCP or saline 3 days per week for 3 weeks. The Amp dose increased from 1 to 3 mg/kg, at the rate of 1 mg/kg each week. The PCP dose was 3 mg/kg throughout. After various periods of withdrawal rats were tested for PPI and LI. RESULTS Repeated intermittent treatment with Amp or PCP resulted in augmented locomotor responses to challenge with each drug, providing an operational index that sensitization had occurred. Rats sensitized to Amp showed disrupted PPI when tested drug free at 3, 21 and 60 days of withdrawal. Amp-sensitized rats also showed abolition of the LI effect. Rats sensitized to PCP did not show deficits in any of these behaviours when tested drug free. CONCLUSIONS Because disrupted PPI and LI have both been reported in schizophrenic patients, these results suggest that the Amp-sensitized state may represent a useful model for investigating the neural bases of information processing deficits in schizophrenia.
Collapse
Affiliation(s)
- Catherine C Tenn
- Schizophrenia/PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | | |
Collapse
|
36
|
Spielewoy C, Markou A. Withdrawal from chronic phencyclidine treatment induces long-lasting depression in brain reward function. Neuropsychopharmacology 2003; 28:1106-16. [PMID: 12700700 DOI: 10.1038/sj.npp.1300124] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phencyclidine (PCP) is a drug of abuse that has rewarding and dysphoric effects in humans. The complex actions of PCP, and PCP withdrawal in particular, on brain reward function remain unclear. The purpose of the present study was to characterize the effects of withdrawal from acute and chronic PCP treatment on brain reward function in rats. A brain stimulation reward procedure was used to evaluate the effects of acute PCP injection (0, 5, or 10 mg/kg) or chronic PCP treatment (0, 10, 15, or 20 mg/kg/day for 14 days delivered via subcutaneous osmotic minipumps) on brain reward function. Withdrawal from acute administration of 5 and 10 mg/kg PCP produced a decrease in brain reward function as indicated by a sustained elevation in brain reward thresholds. When administered chronically, 10, 15, or 20 mg/kg/day PCP induced a progressive dose-dependent potentiation of brain stimulation reward, while cessation of the treatment resulted in significant elevations in reward thresholds reflecting diminished reward. Specifically, withdrawal from 15 or 20 mg/kg/day PCP induced a depression in brain reward function that lasted for the entire month of observation. These results indicate that prolonged continuous administration of high PCP doses facilitates brain stimulation reward, while withdrawal from acute high PCP doses or chronic PCP treatment results in a protracted depression of brain reward function that may be analogous to the dysphoric and anhedonic symptoms observed in PCP dependence, depression, and schizophrenia.
Collapse
Affiliation(s)
- Cecile Spielewoy
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
37
|
Breese GR, Knapp DJ, Moy SS. Integrative role for serotonergic and glutamatergic receptor mechanisms in the action of NMDA antagonists: potential relationships to antipsychotic drug actions on NMDA antagonist responsiveness. Neurosci Biobehav Rev 2002; 26:441-55. [PMID: 12204191 DOI: 10.1016/s0149-7634(02)00011-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
NMDA receptor antagonists worsen symptoms in schizophrenia and induce schizophrenic-like symptoms in normal individuals. In animals, NMDA antagonist-induced behavioral responses include increased activity, head weaving, deficits in paired pulse inhibition and social interaction, and increased forced swim immobility. Repeated exposure to NMDA antagonists in animals results in behavioral sensitization-a phenomenon accentuated in rats with dopaminergic neurons lesioned during development. In keeping with an involvement of serotonin and glutamate release in NMDA antagonist action, selected behaviors induced by NMDA antagonists are minimized by 5-HT(2A) receptor antagonists and mGLU2 receptor agonists. These observations provide promising new approaches for treating acute NMDA antagonist-induced psychosis. Further, acute atypical antipsychotic drugs also minimize NMDA antagonist actions to a greater degree than typical antipsychotics. However, because knowledge concerning acute versus chronic effectiveness of various antipsychotic drugs against NMDA antagonist neuropathology is limited, future studies to define more fully the basis of their differences in efficacy after chronic treatment could provide an understanding of their actions on neural mechanisms responsible for the core pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- George R Breese
- Department of Psychiatry, UNC School of Medicine, University of North Carolina, 3007 Thurston-Bowles Bldg, Chapel Hill, NC 27599-7178, USA.
| | | | | |
Collapse
|
38
|
Murray JB. Phencyclidine (PCP): a dangerous drug, but useful in schizophrenia research. THE JOURNAL OF PSYCHOLOGY 2002; 136:319-27. [PMID: 12206280 DOI: 10.1080/00223980209604159] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Phencyclidine (PCP) is a dangerous drug, and the federal government has placed it on Schedule II of the Controlled Substance Act (see http:// www .mninter.net/-publish/csa2.htm#Schedule%20III). Typically, users smoke PCP, and it is often mixed with parsley, marijuana, or cocaine. Most researchers have conducted experiments on animals rather than on people, and a few have been done on persons diagnosed with schizophrenia, so answers to questions about its addictive potential or development of tolerance are not clear. In healthy volunteers, PCP can induce symptoms that mimic those of schizophrenia, lasting from a few days to more than a week. The neurotransmitter glutamate and N-methyl-D-aspartate (NMDA) appear to play a role in the mechanism by which PCP induces positive and negative schizophrenic symptoms and cognitive defects (D. C. Javitt & S. R. Zukin, 1991; A. Lahti, B. Koffel, D. LaPorte, & C. A. Tamminga, 1995; T. W. Robbins, 1990). Because PCP can induce symptoms that are almost indistinguishable from those associated with schizophrenia, further research may lead to new medications that could be helpful to people who do not respond to neuroleptics that are currently available.
Collapse
Affiliation(s)
- John B Murray
- Psychology Department, St John's University, Jamaica, NY 11439, USA.
| |
Collapse
|
39
|
Vollenweider FX, Geyer MA. A systems model of altered consciousness: integrating natural and drug-induced psychoses. Brain Res Bull 2001; 56:495-507. [PMID: 11750795 DOI: 10.1016/s0361-9230(01)00646-3] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Increasing evidence from neuroimaging and behavioral studies suggests that functional disturbances within cortico-striato-thalamic pathways are critical to psychotic symptom formation in drug-induced and possibly also naturally occurring psychoses. Recent basic and clinical research with psychotomimetic drugs, such as the N-methyl-D-aspartate (NMDA) glutamate receptor antagonist, ketamine, and the serotonin-2A (5-HT(2A)) receptor agonist, psilocybin, suggest that the hallucinogenic effects of these drugs arise, at least in part, from their common capacity to disrupt thalamo-cortical gating of external and internal information to the cortex. Deficient gating of sensory and cognitive information is thought to result in an overloading inundation of information and subsequent cognitive fragmentation and psychosis. Cross-species studies of homologues gating functions, such as prepulse inhibition of the startle reflex, in animal and human models of psychosis corroborate this view and provide a translational testing mechanism for the exploration of novel pathophysiologic and therapeutic hypotheses relevant to psychotic disorders, such as the group of schizophrenias.
Collapse
|
40
|
Jentsch JD, Elsworth JD, Taylor JR, Redmond DE, Roth RH. Dysregulation of mesoprefrontal dopamine neurons induced by acute and repeated phencyclidine administration in the nonhuman primate: implications for schizophrenia. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 42:810-4. [PMID: 9328021 DOI: 10.1016/s1054-3589(08)60870-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J D Jentsch
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
41
|
Jardemark KE, Liang X, Arvanov V, Wang RY. Subchronic treatment with either clozapine, olanzapine or haloperidol produces a hyposensitive response of the rat cortical cells to N-methyl-D-aspartate. Neuroscience 2001; 100:1-9. [PMID: 10996453 DOI: 10.1016/s0306-4522(00)00253-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Using the technique of intracellular recording in in vitro brain slice preparations, we examined the effects produced by repeated administration of the antipsychotic drugs clozapine, olanzapine and haloperidol, on N-methyl-D-aspartic acid-induced responses in pyramidal cells of the rat medial prefrontal cortex. Rats were anesthetized and decapitated 24h after the conclusion of daily intraperitoneal injection with either clozapine (25mg/kg), olanzapine (1, 5 or 10mg/kg) or haloperidol (0.5mg/kg) for 21 days, and the slices from medial prefrontal cortex were used for electrophysiological recordings. The concentration-response curves for N-methyl-D-aspartic acid to activate cortical cells shifted markedly to the right in rats which received the subchronic antipsychotic drug treatment, compared with those obtained from rats which received repeated injections of vehicle (1ml/kg/day, i.p. for 21 days). In addition, repeated exposure to antipsychotic drugs caused a significant reduction in the ability of these antipsychotic drugs to augment the N-methyl-D-aspartic acid-induced inward current in pyramidal cells of the rat medial prefrontal cortex. Repeated administration of haloperidol, but not clozapine or olanzapine, significantly hyperpolarized the resting membrane potential and increased membrane resistance in pyramidal cells of the medial prefrontal cortex. Moreover, subchronic treatment with haloperidol, but not clozapine or olanzapine, depressed (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid-induced responses. The desensitized response of medial prefrontal cortex cells to N-methyl-D-aspartic acid could be the result of a compensatory response to the facilitating action of antipsychotic drugs on N-methyl-D-aspartic acid receptor-mediated transmission. The inhibitory action of haloperidol on (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid responses may also contribute to the rightward shift of the N-methyl-D-aspartic acid concentration-response curve.Thus, the present study suggests that the atypical antipsychotic drugs, clozapine and olanzapine, as well as the typical antipsychotic drug haloperidol strongly modulate glutamatergic transmission after prolonged treatment. This might be an important factor in the mechanisms by which these drugs alleviate symptoms in schizophrenic patients.
Collapse
Affiliation(s)
- K E Jardemark
- Department of Psychiatry and Behavioral Science, SUNY at Stony Brook, Putnam Hall, South Campus, Stony Brook, NY 11794-8790, USA.
| | | | | | | |
Collapse
|
42
|
Kegeles LS, Abi-Dargham A, Zea-Ponce Y, Rodenhiser-Hill J, Mann JJ, Van Heertum RL, Cooper TB, Carlsson A, Laruelle M. Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry 2000; 48:627-40. [PMID: 11032974 DOI: 10.1016/s0006-3223(00)00976-8] [Citation(s) in RCA: 289] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recent brain imaging studies have indicated that schizophrenia is associated with increased amphetamine-induced dopamine release in the striatum. It has long been hypothesized that dysregulation of subcortical dopamine systems in schizophrenia might result from a failure of the prefrontal cortex (PFC) to adequately control subcortical dopaminergic function. The activity of midbrain dopaminergic neurons is regulated, in part, by glutamatergic projections from the PFC acting via glutamatergic N-methyl-D-aspartate (NMDA) receptors. The goal of this study was to test the hypothesis that a pharmacologically induced disruption of NMDA transmission leads to an increase in amphetamine-induced dopamine release in humans. METHODS In eight healthy volunteers, we compared striatal amphetamine-induced (0.25 mg/kg) dopamine release under control conditions and under sustained disruption of NMDA transmission induced by infusion of the noncompetitive NMDA antagonist ketamine (0.2 mg/kg intravenous bolus followed by 0.4 mg/kg/hour intravenous infusion for 4 hours). Amphetamine-induced dopamine release was determined with single photon emission computed tomography, as the reduction in the binding potential (BP) of the radiolabeled D(2) receptor antagonist [(123)I]IBZM. RESULTS Ketamine significantly enhanced the amphetamine-induced decrease in [(123)I]IBZM BP, from -5.5% +/- 3.5% under control conditions to -12. 8% +/- 8.8% under ketamine pretreatment (repeated-measures analysis of variance, p =.023). CONCLUSIONS The increase in amphetamine-induced dopamine release induced by ketamine (greater than twofold) was comparable in magnitude to the exaggerated response seen in patients with schizophrenia. These data are consistent with the hypothesis that the alteration of dopamine release revealed by amphetamine challenge in schizophrenia results from a disruption of glutamatergic neuronal systems regulating dopaminergic cell activity.
Collapse
Affiliation(s)
- L S Kegeles
- Department of Psychiatry, Columbia University College of Physicians and Surgeons and New York State Psychiatric Institute, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Goff D. Glutamate Receptors in Schizophrenia and Antipsychotic Drugs. NEUROTRANSMITTER RECEPTORS IN ACTIONS OF ANTIPSYCHOTIC MEDICATIONS 2000. [DOI: 10.1201/9781420041774.ch8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
44
|
Milošević J, Veskov R, Vasilev V, Rakić L, Ruždijić S. Apoptosis induction by phencyclidine in the brains of rats of different ages. Addict Biol 2000; 5:157-65. [PMID: 20575830 DOI: 10.1080/13556210050003748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We examined whether acute administration of phencyclidine (PCP), an antagonist of the N-methyl-D-aspartate (NMDA) receptor-channel complex, can cause neuronal toxicity that is associated with apoptosis. Three- and 24-month-old rats were placed in locomotor activity chambers. PCP (50 mg/kg) or saline (0.15 M NaCl) were simultaneously administered to the treated and age-matched controls. After observing changes of locomotor activities, the animals were killed 24 h after treatment. The brains were processed for in situ analysis of apoptosis either by propidium iodide (PI) staining, or for the terminal dUTP nick-end labelling (TUNEL) method. The regional distribution of apoptotic nuclei was established using PI staining. Apoptosis was additionally confirmed and quantified by the TUNEL technique. PI and TUNEL staining revealed that PCP-mediated neurotoxicity in the prefrontal and enthorhinal cortices, the striatum and hippocampus was associated with a significant number of neurons exhibiting apoptotic morphology. We found that the total number of apoptotic cells was higher in the brains of 24-month-old rats. Compared to the respective controls the number of apoptotic cells was 3.8-fold greater in the cortex of old rats, followed by the striatum (three-fold), and hippocampus (1.4-fold). Accordingly, we concluded that ageing was accompanied by DNA-damage that was most pronounced in the prefrontal cortical neurones. The most prominent elevation in the degree of apoptosis in the young-treated compared to young-untreated rats was detected in the striatum. Comparison of the number of TUNEL-positive cells in treated-aged versus treated-young rats revealed that in all the examined regions of the brain PCP exerted a stronger apoptotic effect in younger animals.
Collapse
|
45
|
Nishizawa N, Nakao S, Nagata A, Hirose T, Masuzawa M, Shingu K. The effect of ketamine isomers on both mice behavioral responses and c-Fos expression in the posterior cingulate and retrosplenial cortices. Brain Res 2000; 857:188-92. [PMID: 10700567 DOI: 10.1016/s0006-8993(99)02426-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Ketamine, a non-competitive NMDA receptor antagonist, is a racemic mixture. S(+) ketamine is presumed to be more potent as an anesthetic than R(-) ketamine, and causes less postanesthetic stimulation of locomotor activity than R(-) ketamine in animals at equihypnotic doses. In the present study, we investigated the effect of S(+), R(-), and racemic ketamines on mice behavioral responses and c-Fos expression in the posterior cingulate and retrosplenial cortices (PC/RS), which are suggested to be the brain regions responsible for NMDA-receptor-antagonist-induced psychotomimetic activity. Ataxia and head weaving and c-Fos expression in the PC/RS were significantly more induced by both S(+) and racemic ketamines than by R(-) ketamine at the same dose. S(+) ketamine induced significantly more potent ataxia than racemic ketamine at the same dose. Ketamine-induced c-Fos expression in the PC/RS correlated well with the intensity of behavioral responses. These results imply that R(-) ketamine is weaker than both S(+) and racemic ketamines in a psychotomimetic effect. Also, S(+) ketamine is more potent than racemic ketamine in a psychotomimetic effect and possibly in an anesthetic effect. They also indicate that PC/RS is at least one of the specific brain regions responsible for ketamine-induced behavioral responses in animals and a psychotomimetic activity in humans.
Collapse
Affiliation(s)
- N Nishizawa
- Department of Anesthesiology, Kansai Medical University, 10-15 Fumizono-cho, Moriguchi, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Nakamura-Palacios EM, de Oliveira RW, Gomes CF. Effects of diazepam or haloperidol on convulsion and behavioral responses induced by bilateral electrical stimulation in the medial prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 1999; 23:1369-88. [PMID: 10631764 DOI: 10.1016/s0278-5846(99)00072-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
1. Effects of diazepam (DZP) or haloperidol (HAL) on convulsions and behavioral responses (locomotion, circling, spying and head shaking) induced by bilateral electrical stimulation in the medial prefrontal cortex (mPFC) were examined. 2. Male Wistar rats were electrically stimulated (ten 30-sec trains, 60 Hz, 80-100 microA) bilaterally in the mPFC and their behavior was simultaneously observed in an open field in daily session. 3. DZP and HAL dose-response curves (0, 0.5, 1.25, 2.5 and 5 mg/kg, i.p., 30 min before electrical stimulation session) were determined after a baseline of behavioral responses was established. 4. DZP dose-dependently decreased head shaking and convulsions, had no effect in circling and spying behaviors, and increased locomotion except at the highest dose. HAL reduced locomotion, circling and spying behaviors in a dose-dependent manner, but did not affect convulsions or head shaking. 5. These results demonstrated that convulsion and behavioral responses induced by electrical activation of the mPFC were modified by DZP or HAL. Therefore, the mPFC is involved in the mediation of neural and/or behavioral activity that may be implicated in some central effects of psychoactive drugs.
Collapse
Affiliation(s)
- E M Nakamura-Palacios
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | | | | |
Collapse
|
47
|
Jentsch JD, Taylor JR, Elsworth JD, Redmond DE, Roth RH. Altered frontal cortical dopaminergic transmission in monkeys after subchronic phencyclidine exposure: involvement in frontostriatal cognitive deficits. Neuroscience 1999; 90:823-32. [PMID: 10218783 DOI: 10.1016/s0306-4522(98)00481-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Long-term exposure to the psychotomimetic drug phencyclidine produces prefrontal cortical cognitive and dopaminergic dysfunction in rats and monkeys, effects possibly relevant to the frontal cortical impairments of schizophrenia. In the present study, the effects of subchronic phencyclidine administration (0.3 mg/kg twice-daily for 14 days) on monoamine systems in the monkey brain were examined and related to cognitive performance on an object retrieval/detour task, which has been linked with frontostriatal function. Long-term (14 days) administration of phencyclidine resulted in a marked and persistent reduction in dopamine utilization in the frontal cortex. Moreover, the degree of cognitive impairment in phencyclidine-treated monkeys correlated significantly with the magnitude of dopaminergic inhibition within the dorsolateral prefrontal cortex and prelimbic cortex. No specific correlation was measured for dopamine utilization in other cortical regions or for indices of serotonin transmission in any brain region. These data show that repeated exposure to phencyclidine reduces prefrontal cortical dopamine transmission, and this inhibition of dopaminergic function is associated with performance impairments on a task sensitive to frontostriatal cognitive dysfunction. Thus, the cognitive deficits of phencyclidine-treated monkeys, as in schizophrenia, appear to be mediated, in part, by reduced dopaminergic function in specific subregions of the frontal cortex.
Collapse
Affiliation(s)
- J D Jentsch
- Section of Neurobiology, Yale University of School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
48
|
Jentsch JD, Dazzi L, Chhatwal JP, Verrico CD, Roth RH. Reduced prefrontal cortical dopamine, but not acetylcholine, release in vivo after repeated, intermittent phencyclidine administration to rats. Neurosci Lett 1998; 258:175-8. [PMID: 9885959 DOI: 10.1016/s0304-3940(98)00879-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Subchronic administration of phencyclidine to rats or monkeys produces prefrontal cortical cognitive dysfunction, as well as reduced frontal cortical dopamine utilization. In the current study, the effects of subchronic exposure to phencyclidine on dopamine and acetylcholine release in the prefrontal cortex were assessed, using in vivo microdialysis in conscious rats. Subchronic exposure to phencyclidine (5 mg/kg twice daily for 7 days) reduced both basal extracellular concentrations of dopamine as well as the increase in dopamine release produced by an acute phencyclidine challenge. The increase in dopamine release induced by a high potassium concentration in the perfusate tended to be reduced after subchronic phencyclidine treatment, while basal and evoked acetylcholine release was unaffected. These data demonstrate that altered dopamine turnover in subjects after subchronic exposure to phencyclidine is directly reflective of reduced release, and as such, represents a functionally relevant phenomenon.
Collapse
Affiliation(s)
- J D Jentsch
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
49
|
Jentsch JD, Wise A, Katz Z, Roth RH. Alpha-noradrenergic receptor modulation of the phencyclidine- and delta9-tetrahydrocannabinol-induced increases in dopamine utilization in rat prefrontal cortex. Synapse 1998; 28:21-6. [PMID: 9414014 DOI: 10.1002/(sici)1098-2396(199801)28:1<21::aid-syn3>3.0.co;2-e] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The noncompetitive NMDA receptor antagonist phencyclidine (PCP) and the neuronal cannabinoid receptor agonist delta9-tetrahydrocannabinol (THC) are two agents shown to have psychotomimetic properties in humans. Both drugs increase dopamine release and utilization in the prefrontal cortex, a brain region thought to be dysfunctional in schizophrenia. In the present series of studies, the effects of drugs acting at alpha-noradrenergic receptors on PCP- and THC-induced increases in prefrontal cortical and nucleus accumbens dopamine utilization in the rat were examined. Clonidine, an alpha2 noradrenergic receptor agonist, completely blocked the activation of mesoprefrontal dopamine system by THC or PCP. In addition, the alpha1 noradrenergic receptor antagonist prazosin blocked the PCP-induced increase in prefrontal cortical dopamine utilization. These data may provide new insights concerning pharmacological therapies for acute drug-induced psychoses and behavioral abnormalities in human PCP and THC abusers.
Collapse
Affiliation(s)
- J D Jentsch
- Neuropsychopharmacology Research Unit, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA
| | | | | | | |
Collapse
|
50
|
Prince JA, Yassin MS, Oreland L. Normalization of cytochrome-c oxidase activity in the rat brain by neuroleptics after chronic treatment with PCP or methamphetamine. Neuropharmacology 1997; 36:1665-78. [PMID: 9517438 DOI: 10.1016/s0028-3908(97)00152-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies, primarily involving the use of positron emission tomography (PET), have contributed to the hypothesis that a state of hypometabolism may underlie schizophrenia. The chronic use of methamphetamine (MAP) or phencyclidine (PCP), both of which have been shown to enhance dopaminergic function in the brain, leads to a psychotic state in man which has prompted the suggestion that these compounds may have utility as models of schizophrenia. In the present study, regional alterations in energy metabolism were examined in the rat brain using cytochrome-c oxidase (COX) and succinate dehydrogenase (SDH) histochemistry following chronic treatment with PCP and MAP. PCP and MAP were administered alone or in the presence of fluphenazine or clozapine to animals for 28 days, after which mitochondrial enzyme activities were estimated. Both PCP and MAP produced profoundly similar decreases in COX activity in a broad spectrum of regions. Most prominent in this regard were the caudate-putamen, nucleus accumbens and septum. No changes were noted in sections stained for SDH activity, suggesting that results were dependent upon neither a generalized mitochondrial dysfunction nor mitochondrial loss. Cell counts and TUNEL histochemistry also failed to reveal any significant differences between control and treated animals, implying that reductions were not a result of cell loss. Both clozapine and fluphenazine offered varying degrees of protection from the effects of PCP and MAP. The results provide evidence which implicates dopaminergic hyperactivity in the finding of reduced energy metabolism in the brains of schizophrenics.
Collapse
Affiliation(s)
- J A Prince
- Department of Medical Pharmacology, Uppsala University, Sweden
| | | | | |
Collapse
|