1
|
Pan M, Ye J, Yan Y, Chen A, Li X, Jiang X, Wang W, Meng X, Chen S, Gu Y, Shi X. Experience-dependent plasticity of multiple receptive field properties in lateral geniculate binocular neurons during the critical period. Front Cell Neurosci 2025; 19:1574505. [PMID: 40357170 PMCID: PMC12066550 DOI: 10.3389/fncel.2025.1574505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
The visual thalamus serves as a critical hub for feature preprocessing in visual processing pathways. Emerging evidence demonstrates that experience-dependent plasticity can be revealed by monocular deprivation (MD) in the dorsolateral geniculate nucleus (dLGN) of the thalamus. However, whether and how this thalamic plasticity induces changes in multiple receptive field properties and the potential mechanisms remain unclear. Using in vivo electrophysiology, here we show that binocular neurons in the dLGN of 4-day MD mice starting at P28 undergo a significant ocular dominance (OD) shift during the critical period. This OD plasticity could be attributed to the potentiation of ipsilateral eye responses but not to the depression of deprived eye responses, contrasting with conventional observations in the primary visual cortex (V1). The direction and orientation selectivity of ipsilateral eye responses, but not of contralateral eye responses in these neurons, were dramatically reduced. Developmental analysis revealed pre-critical and critical period-associated changes in densities of both GABA positive neurons and GABAA receptor α1 subunit (GABRA1) positive neurons. However, early compensatory inhibition from V1 feedback in P18 MD mice maintained network stability with no changes in OD and feature selectivity. Mechanistically, pharmacological activation of GABAA receptors rescued the MD-induced OD shifts and feature selectivity impairments in critical period MD mice, operating independently of the V1 feedback. Furthermore, under different contrast levels and spatial frequencies, these critical period-associated changes in receptive field properties still indicate alterations in ipsilateral eye responses alone. Together, these findings provide novel insights into the developmental mechanisms of thalamic sensory processing, highlighting the thalamus as an active participant in experience-dependent visual plasticity rather than merely a passive relay station. The identified GABA-mediated plasticity mechanisms offer potential therapeutic targets for visual system disorders.
Collapse
Affiliation(s)
- Meng Pan
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jingjing Ye
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yijing Yan
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Ailin Chen
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xinyu Li
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xin Jiang
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Wei Wang
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xin Meng
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Shujian Chen
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yu Gu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xuefeng Shi
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Bissen D, Cary BA, Zhang A, Sailor KA, Van Hooser SD, Turrigiano GG. Prey capture learning drives critical period-specific plasticity in mouse binocular visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635373. [PMID: 39975102 PMCID: PMC11838381 DOI: 10.1101/2025.01.28.635373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Critical periods are developmental windows of high experience-dependent plasticity essential for the correct refinement of neuronal circuitry and function. While the consequences for the visual system of sensory deprivation during the critical period have been well-characterized, far less is known about the effects of enhanced sensory experience. Here, we use prey capture learning to assess structural and functional plasticity mediating visual learning in the primary visual cortex of critical period mice. We show that prey capture learning improves temporal frequency discrimination and drives a profound remodeling of visual circuitry through an increase in excitatory connectivity and spine turnover. This global and persistent rewiring is not observed in adult hunters and is mediated by TNFα-dependent mechanisms. Our findings demonstrate that enhanced visual experience in a naturalistic paradigm during the critical period can drive structural plasticity to improve visual function, and promotes a long-lasting increase in spine dynamics that could enhance subsequent plasticity.
Collapse
Affiliation(s)
- Diane Bissen
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Brian A Cary
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Amanda Zhang
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Kurt A Sailor
- Institut Pasteur, CNRS UMR 3571, Perception and Action Unit, F-75015, Paris, France
| | | | - Gina G Turrigiano
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
- Lead Contact
| |
Collapse
|
3
|
Talei Franzesi G, Gupta I, Hu M, Piatkveich K, Yildirim M, Zhao JP, Eom M, Han S, Park D, Andaraarachchi H, Li Z, Greenhagen J, Islam AM, Vashishtha P, Yaqoob Z, Pak N, Wissner-Gross AD, Martin-Alarcon D, Veinot J, So PT, Kortshagen U, Yoon YG, Sur M, Boyden ES. In Vivo Optical Clearing of Mammalian Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611421. [PMID: 39282466 PMCID: PMC11398509 DOI: 10.1101/2024.09.05.611421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Established methods for imaging the living mammalian brain have, to date, taken optical properties of the tissue as fixed; we here demonstrate that it is possible to modify the optical properties of the brain itself to significantly enhance at-depth imaging while preserving native physiology. Using a small amount of any of several biocompatible materials to raise the refractive index of solutions superfusing the brain prior to imaging, we could increase several-fold the signals from the deepest cells normally visible and, under both one-photon and two-photon imaging, visualize cells previously too dim to see. The enhancement was observed for both anatomical and functional fluorescent reporters across a broad range of emission wavelengths. Importantly, visual tuning properties of cortical neurons in awake mice, and electrophysiological properties of neurons assessed ex vivo, were not altered by this procedure.
Collapse
|
4
|
Xin W, Kaneko M, Roth RH, Zhang A, Nocera S, Ding JB, Stryker MP, Chan JR. Oligodendrocytes and myelin limit neuronal plasticity in visual cortex. Nature 2024; 633:856-863. [PMID: 39169185 PMCID: PMC11424474 DOI: 10.1038/s41586-024-07853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/19/2024] [Indexed: 08/23/2024]
Abstract
Developmental myelination is a protracted process in the mammalian brain1. One theory for why oligodendrocytes mature so slowly posits that myelination may stabilize neuronal circuits and temper neuronal plasticity as animals age2-4. We tested this theory in the visual cortex, which has a well-defined critical period for experience-dependent neuronal plasticity5. During adolescence, visual experience modulated the rate of oligodendrocyte maturation in visual cortex. To determine whether oligodendrocyte maturation in turn regulates neuronal plasticity, we genetically blocked oligodendrocyte differentiation and myelination in adolescent mice. In adult mice lacking adolescent oligodendrogenesis, a brief period of monocular deprivation led to a significant decrease in visual cortex responses to the deprived eye, reminiscent of the plasticity normally restricted to adolescence. This enhanced functional plasticity was accompanied by a greater turnover of dendritic spines and coordinated reductions in spine size following deprivation. Furthermore, inhibitory synaptic transmission, which gates experience-dependent plasticity at the circuit level, was diminished in the absence of adolescent oligodendrogenesis. These results establish a critical role for oligodendrocytes in shaping the maturation and stabilization of cortical circuits and support the concept of developmental myelination acting as a functional brake on neuronal plasticity.
Collapse
Affiliation(s)
- Wendy Xin
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| | - Megumi Kaneko
- Department of Physiology, Kavli Institute for Fundamental Neuroscience and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Richard H Roth
- Departments of Neurosurgery and Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Albert Zhang
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Sonia Nocera
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jun B Ding
- Departments of Neurosurgery and Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michael P Stryker
- Department of Physiology, Kavli Institute for Fundamental Neuroscience and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jonah R Chan
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Brown TC, Crouse EC, Attaway CA, Oakes DK, Minton SW, Borghuis BG, McGee AW. Microglia are dispensable for experience-dependent refinement of mouse visual circuitry. Nat Neurosci 2024; 27:1462-1467. [PMID: 38977886 DOI: 10.1038/s41593-024-01706-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
To test the hypothesized crucial role of microglia in the developmental refinement of neural circuitry, we depleted microglia from mice of both sexes with PLX5622 and examined the experience-dependent maturation of visual circuitry and function. We assessed retinal function, receptive field tuning of visual cortex neurons, acuity and experience-dependent plasticity. None of these measurements detectibly differed in the absence of microglia, challenging the role of microglia in sculpting neural circuits.
Collapse
Affiliation(s)
- Thomas C Brown
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Emily C Crouse
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Cecilia A Attaway
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Dana K Oakes
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Sarah W Minton
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Aaron W McGee
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA.
- Department of Translational Neuroscience, The University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
6
|
Takahata T. Development of ocular dominance columns across rodents and other species: revisiting the concept of critical period plasticity. Front Neural Circuits 2024; 18:1402700. [PMID: 39036421 PMCID: PMC11258045 DOI: 10.3389/fncir.2024.1402700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
The existence of cortical columns, regarded as computational units underlying both lower and higher-order information processing, has long been associated with highly evolved brains, and previous studies suggested their absence in rodents. However, recent discoveries have unveiled the presence of ocular dominance columns (ODCs) in the primary visual cortex (V1) of Long-Evans rats. These domains exhibit continuity from layer 2 through layer 6, confirming their identity as genuine ODCs. Notably, ODCs are also observed in Brown Norway rats, a strain closely related to wild rats, suggesting the physiological relevance of ODCs in natural survival contexts, although they are lacking in albino rats. This discovery has enabled researchers to explore the development and plasticity of cortical columns using a multidisciplinary approach, leveraging studies involving hundreds of individuals-an endeavor challenging in carnivore and primate species. Notably, developmental trajectories differ depending on the aspect under examination: while the distribution of geniculo-cortical afferent terminals indicates matured ODCs even before eye-opening, consistent with prevailing theories in carnivore/primate studies, examination of cortical neuron spiking activities reveals immature ODCs until postnatal day 35, suggesting delayed maturation of functional synapses which is dependent on visual experience. This developmental gap might be recognized as 'critical period' for ocular dominance plasticity in previous studies. In this article, I summarize cross-species differences in ODCs and geniculo-cortical network, followed by a discussion on the development, plasticity, and evolutionary significance of rat ODCs. I discuss classical and recent studies on critical period plasticity in the venue where critical period plasticity might be a component of experience-dependent development. Consequently, this series of studies prompts a paradigm shift in our understanding of species conservation of cortical columns and the nature of plasticity during the classical critical period.
Collapse
|
7
|
Deng K, Schwendeman PS, Guan Y. Predicting Single Neuron Responses of the Primary Visual Cortex with Deep Learning Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305626. [PMID: 38350735 PMCID: PMC11022733 DOI: 10.1002/advs.202305626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/03/2024] [Indexed: 02/15/2024]
Abstract
Modeling neuron responses to stimuli can shed light on next-generation technologies such as brain-chip interfaces. Furthermore, high-performing models can serve to help formulate hypotheses and reveal the mechanisms underlying neural responses. Here the state-of-the-art computational model is presented for predicting single neuron responses to natural stimuli in the primary visual cortex (V1) of mice. The algorithm incorporates object positions and assembles multiple models with different train-validation data, resulting in a 15%-30% improvement over the existing models in cross-subject predictions and ranking first in the SENSORIUM 2022 Challenge, which benchmarks methods for neuron-specific prediction based on thousands of images. Importantly, The model reveals evidence that the spatial organizations of V1 are conserved across mice. This model will serve as an important noninvasive tool for understanding and utilizing the response patterns of primary visual cortex neurons.
Collapse
Affiliation(s)
- Kaiwen Deng
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMI48105USA
| | | | - Yuanfang Guan
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMI48105USA
| |
Collapse
|
8
|
Sancho L, Boisvert MM, Dawoodtabar T, Burgado J, Wang E, Allen NJ. Astrocyte CCN1 stabilizes neural circuits in the adult brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585077. [PMID: 38559139 PMCID: PMC10979986 DOI: 10.1101/2024.03.14.585077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Neural circuits in many brain regions are refined by experience. Sensory circuits support higher plasticity at younger ages during critical periods - times of circuit refinement and maturation - and limit plasticity in adulthood for circuit stability. The mechanisms underlying these differing plasticity levels and how they serve to maintain and stabilize the properties of sensory circuits remain largely unclear. By combining a transcriptomic approach with ex vivo electrophysiology and in vivo imaging techniques, we identify that astrocytes release cellular communication network factor 1 (CCN1) to maintain synapse and circuit stability in the visual cortex. By overexpressing CCN1 in critical period astrocytes, we find that it promotes the maturation of inhibitory circuits and limits ocular dominance plasticity. Conversely, by knocking out astrocyte CCN1 in adults, binocular circuits are destabilized. These studies establish CCN1 as a novel astrocyte-secreted factor that stabilizes neuronal circuits. Moreover, they demonstrate that the composition and properties of sensory circuits require ongoing maintenance in adulthood, and that these maintenance cues are provided by astrocytes.
Collapse
|
9
|
Samonds JM, Szinte M, Barr C, Montagnini A, Masson GS, Priebe NJ. Mammals Achieve Common Neural Coverage of Visual Scenes Using Distinct Sampling Behaviors. eNeuro 2024; 11:ENEURO.0287-23.2023. [PMID: 38164577 PMCID: PMC10860624 DOI: 10.1523/eneuro.0287-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024] Open
Abstract
Most vertebrates use head and eye movements to quickly change gaze orientation and sample different portions of the environment with periods of stable fixation. Visual information must be integrated across fixations to construct a complete perspective of the visual environment. In concert with this sampling strategy, neurons adapt to unchanging input to conserve energy and ensure that only novel information from each fixation is processed. We demonstrate how adaptation recovery times and saccade properties interact and thus shape spatiotemporal tradeoffs observed in the motor and visual systems of mice, cats, marmosets, macaques, and humans. These tradeoffs predict that in order to achieve similar visual coverage over time, animals with smaller receptive field sizes require faster saccade rates. Indeed, we find comparable sampling of the visual environment by neuronal populations across mammals when integrating measurements of saccadic behavior with receptive field sizes and V1 neuronal density. We propose that these mammals share a common statistically driven strategy of maintaining coverage of their visual environment over time calibrated to their respective visual system characteristics.
Collapse
Affiliation(s)
- Jason M Samonds
- Center for Learning and Memory and the Institute for Neuroscience, The University of Texas at Austin, Austin 78712, Texas
| | - Martin Szinte
- Institut de Neurosciences de la Timone (UMR 7289), Centre National de la Recherche Scientifique and Aix-Marseille Université, 13385 Marseille, France
| | - Carrie Barr
- Center for Learning and Memory and the Institute for Neuroscience, The University of Texas at Austin, Austin 78712, Texas
| | - Anna Montagnini
- Institut de Neurosciences de la Timone (UMR 7289), Centre National de la Recherche Scientifique and Aix-Marseille Université, 13385 Marseille, France
| | - Guillaume S Masson
- Institut de Neurosciences de la Timone (UMR 7289), Centre National de la Recherche Scientifique and Aix-Marseille Université, 13385 Marseille, France
| | - Nicholas J Priebe
- Center for Learning and Memory and the Institute for Neuroscience, The University of Texas at Austin, Austin 78712, Texas
| |
Collapse
|
10
|
Brown TC, Crouse EC, Attaway CA, Oakes DK, Minton SW, Borghuis BG, McGee AW. Microglia are dispensable for experience-dependent refinement of visual circuitry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562708. [PMID: 37905138 PMCID: PMC10614920 DOI: 10.1101/2023.10.17.562708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Microglia are proposed to be critical for the refinement of developing neural circuitry. However, evidence identifying specific roles for microglia has been limited and often indirect. Here we examined whether microglia are required for the experience-dependent refinement of visual circuitry and visual function during development. We ablated microglia by administering the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622, and then examined the consequences for retinal function, receptive field tuning of neurons in primary visual cortex (V1), visual acuity, and experience-dependent plasticity in visual circuitry. Eradicating microglia by treating mice with PLX5622 beginning at postnatal day (P) 14 did not alter visual response properties of retinal ganglion cells examined three or more weeks later. Mice treated with PLX5622 from P14 lacked more than 95% of microglia in V1 by P18, prior to the opening of the critical period. Despite the absence of microglia, the receptive field tuning properties of neurons in V1 were normal at P32. Similarly, eradicating microglia did not affect the maturation of visual acuity. Mice treated with PLX5622 displayed typical ocular dominance plasticity in response to brief monocular deprivation. Thus, none of these principal measurements of visual circuit development and function detectibly differed in the absence of microglia. We conclude that microglia are dispensable for experience-dependent refinement of visual circuitry. These findings challenge the proposed critical role of microglia in refining neural circuitry.
Collapse
Affiliation(s)
- Thomas C. Brown
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Emily C. Crouse
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Cecilia A. Attaway
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Dana K. Oakes
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Sarah W. Minton
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Bart G. Borghuis
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Aaron W. McGee
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| |
Collapse
|
11
|
Samonds JM, Szinte M, Barr C, Montagnini A, Masson GS, Priebe NJ. Mammals achieve common neural coverage of visual scenes using distinct sampling behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533210. [PMID: 36993477 PMCID: PMC10055212 DOI: 10.1101/2023.03.20.533210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Most vertebrates use head and eye movements to quickly change gaze orientation and sample different portions of the environment with periods of stable fixation. Visual information must be integrated across several fixations to construct a more complete perspective of the visual environment. In concert with this sampling strategy, neurons adapt to unchanging input to conserve energy and ensure that only novel information from each fixation is processed. We demonstrate how adaptation recovery times and saccade properties interact, and thus shape spatiotemporal tradeoffs observed in the motor and visual systems of different species. These tradeoffs predict that in order to achieve similar visual coverage over time, animals with smaller receptive field sizes require faster saccade rates. Indeed, we find comparable sampling of the visual environment by neuronal populations across mammals when integrating measurements of saccadic behavior with receptive field sizes and V1 neuronal density. We propose that these mammals share a common statistically driven strategy of maintaining coverage of their visual environment over time calibrated to their respective visual system characteristics.
Collapse
|
12
|
Brown TC, McGee AW. Monocular deprivation during the critical period alters neuronal tuning and the composition of visual circuitry. PLoS Biol 2023; 21:e3002096. [PMID: 37083549 PMCID: PMC10155990 DOI: 10.1371/journal.pbio.3002096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/03/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023] Open
Abstract
Abnormal visual experience during a developmental critical period degrades cortical responsiveness. Yet how experience-dependent plasticity alters the response properties of individual neurons and composition of visual circuitry is unclear. Here, we measured with calcium imaging in alert mice how monocular deprivation (MD) during the developmental critical period affects tuning for binocularity, orientation, and spatial frequency for neurons in primary visual cortex. MD of the contralateral eye did not uniformly shift ocular dominance (OD) of neurons towards the fellow ipsilateral eye but reduced the number of monocular contralateral neurons and increased the number of monocular ipsilateral neurons. MD also impaired matching of preferred orientation for binocular neurons and reduced the percentage of neurons responsive at most spatial frequencies for the deprived contralateral eye. Tracking the tuning properties for several hundred neurons before and after MD revealed that the shift in OD is complex and dynamic, with many previously monocular neurons becoming binocular and binocular neurons becoming monocular. Binocular neurons that became monocular were more likely to lose responsiveness to the deprived contralateral eye if they were better matched for orientation prior to deprivation. In addition, the composition of visual circuitry changed as population of neurons more responsive to the deprived eye were exchanged for neurons with tuning properties more similar to the network of responsive neurons altered by MD. Thus, plasticity during the critical period adapts to recent experience by both altering the tuning of responsive neurons and recruiting neurons with matching tuning properties.
Collapse
Affiliation(s)
- Thomas C. Brown
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, Kentucky, United States of America
| | - Aaron W. McGee
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
13
|
Experience-dependent functional plasticity and visual response selectivity of surviving subplate neurons in the mouse visual cortex. Proc Natl Acad Sci U S A 2023; 120:e2217011120. [PMID: 36812195 PMCID: PMC9992851 DOI: 10.1073/pnas.2217011120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Subplate neurons are early-born cortical neurons that transiently form neural circuits during perinatal development and guide cortical maturation. Thereafter, most subplate neurons undergo cell death, while some survive and renew their target areas for synaptic connections. However, the functional properties of the surviving subplate neurons remain largely unknown. This study aimed to characterize the visual responses and experience-dependent functional plasticity of layer 6b (L6b) neurons, the remnants of subplate neurons, in the primary visual cortex (V1). Two-photon Ca2+ imaging was performed in V1 of awake juvenile mice. L6b neurons showed broader tunings for orientation, direction, and spatial frequency than did layer 2/3 (L2/3) and L6a neurons. In addition, L6b neurons showed lower matching of preferred orientation between the left and right eyes compared with other layers. Post hoc 3D immunohistochemistry confirmed that the majority of recorded L6b neurons expressed connective tissue growth factor (CTGF), a subplate neuron marker. Moreover, chronic two-photon imaging showed that L6b neurons exhibited ocular dominance (OD) plasticity by monocular deprivation during critical periods. The OD shift to the open eye depended on the response strength to the stimulation of the eye to be deprived before starting monocular deprivation. There were no significant differences in visual response selectivity prior to monocular deprivation between the OD changed and unchanged neuron groups, suggesting that OD plasticity can occur in L6b neurons showing any response features. In conclusion, our results provide strong evidence that surviving subplate neurons exhibit sensory responses and experience-dependent plasticity at a relatively late stage of cortical development.
Collapse
|
14
|
Slavi N, Balasubramanian R, Lee MA, Liapin M, Oaks-Leaf R, Peregrin J, Potenski A, Troy CM, Ross ME, Herrera E, Kosmidis S, John SWM, Mason CA. CyclinD2-mediated regulation of neurogenic output from the retinal ciliary margin is perturbed in albinism. Neuron 2023; 111:49-64.e5. [PMID: 36351424 PMCID: PMC9822872 DOI: 10.1016/j.neuron.2022.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
In albinism, aberrations in the ipsi-/contralateral retinal ganglion cell (RGC) ratio compromise the functional integrity of the binocular circuit. Here, we focus on the mouse ciliary margin zone (CMZ), a neurogenic niche at the embryonic peripheral retina, to investigate developmental processes regulating RGC neurogenesis and identity acquisition. We found that the mouse ventral CMZ generates predominantly ipsilaterally projecting RGCs, but this output is altered in the albino visual system because of CyclinD2 downregulation and disturbed timing of the cell cycle. Consequently, albino as well as CyclinD2-deficient pigmented mice exhibit diminished ipsilateral retinogeniculate projection and poor depth perception. In albino mice, pharmacological stimulation of calcium channels, known to upregulate CyclinD2 in other cell types, augmented CyclinD2-dependent neurogenesis of ipsilateral RGCs and improved stereopsis. Together, these results implicate CMZ neurogenesis and its regulators as critical for the formation and function of the mammalian binocular circuit.
Collapse
Affiliation(s)
- Nefeli Slavi
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Revathi Balasubramanian
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Melissa Ann Lee
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Michael Liapin
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Rachel Oaks-Leaf
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - John Peregrin
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Anna Potenski
- Department of Molecular Pharmacology and Therapeutics, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Carol Marie Troy
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Margaret Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain & Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Eloisa Herrera
- Instituto de Neurociencias (CSIC-UMH), Av. Ramón y Cajal s/n, San Juan de Alicante, Spain
| | - Stylianos Kosmidis
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Simon William Maxwell John
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Carol Ann Mason
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
15
|
Cang J, Fu J, Tanabe S. Neural circuits for binocular vision: Ocular dominance, interocular matching, and disparity selectivity. Front Neural Circuits 2023; 17:1084027. [PMID: 36874946 PMCID: PMC9975354 DOI: 10.3389/fncir.2023.1084027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
The brain creates a single visual percept of the world with inputs from two eyes. This means that downstream structures must integrate information from the two eyes coherently. Not only does the brain meet this challenge effortlessly, it also uses small differences between the two eyes' inputs, i.e., binocular disparity, to construct depth information in a perceptual process called stereopsis. Recent studies have advanced our understanding of the neural circuits underlying stereoscopic vision and its development. Here, we review these advances in the context of three binocular properties that have been most commonly studied for visual cortical neurons: ocular dominance of response magnitude, interocular matching of orientation preference, and response selectivity for binocular disparity. By focusing mostly on mouse studies, as well as recent studies using ferrets and tree shrews, we highlight unresolved controversies and significant knowledge gaps regarding the neural circuits underlying binocular vision. We note that in most ocular dominance studies, only monocular stimulations are used, which could lead to a mischaracterization of binocularity. On the other hand, much remains unknown regarding the circuit basis of interocular matching and disparity selectivity and its development. We conclude by outlining opportunities for future studies on the neural circuits and functional development of binocular integration in the early visual system.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Biology, University of Virginia, Charlottesville, VA, United States.,Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Jieming Fu
- Department of Biology, University of Virginia, Charlottesville, VA, United States.,Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, United States
| | - Seiji Tanabe
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
16
|
Allen K, Gonzalez-Olvera R, Kumar M, Feng T, Pieraut S, Hoy JL. A binocular perception deficit characterizes prey pursuit in developing mice. iScience 2022; 25:105368. [PMID: 36339264 PMCID: PMC9626674 DOI: 10.1016/j.isci.2022.105368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Accepted: 10/12/2022] [Indexed: 02/02/2023] Open
Abstract
Integration of binocular information at the cellular level has long been studied in the mouse model to uncover the fundamental developmental mechanisms underlying mammalian vision. However, we lack an understanding of the corresponding ontogeny of visual behavior in mice that relies on binocular integration. To address this major outstanding question, we quantified the natural visually guided behavior of postnatal day 21 (P21) and adult mice using a live prey capture assay and a computerized-spontaneous perception of objects task (C-SPOT). We found a robust and specific binocular visual field processing deficit in P21 mice as compared to adults that corresponded to a selective increase in c-Fos expression in the anterior superior colliculus (SC) of the juveniles after C-SPOT. These data link a specific binocular perception deficit in developing mice to activity changes in the SC.
Collapse
Affiliation(s)
- Kelsey Allen
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | | | - Milen Kumar
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Ting Feng
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Simon Pieraut
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Jennifer L. Hoy
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| |
Collapse
|