1
|
Zhou F, Engel P, Ruth P, Lukowski R, Schmidtko A, Lu R. Slack potassium channels in spinal dorsal horn neurons control neuropathic pain and acute itch. Pain 2025; 166:858-867. [PMID: 39382315 DOI: 10.1097/j.pain.0000000000003427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024]
Abstract
ABSTRACT The sodium-activated potassium channel Slack (K Na 1.1, Kcnt1) plays a critical role in tuning neuronal excitability. Previous studies have revealed that Slack is expressed in neurons of the superficial dorsal horn of the spinal cord. However, the precise role of Slack in spinal dorsal horn neurons is unclear. In this study, we used mice in which Slack is conditionally ablated in spinal dorsal horn neurons (Lbx1-Slack -/- mice) and analyzed their behaviors in various models of pain and itch. Lbx1-Slack -/- mice exhibited increased neuropathic pain behavior after peripheral nerve injury but normal responses in a model of inflammatory pain. Unexpectedly, Lbx1-Slack -/- mice demonstrated increased scratching after intradermal injection of chloroquine, LY344864, and histamine. Moreover, neuromedin B receptors are coexpressed with Slack in the dorsal horn, and scratching after intrathecal delivery of neuromedin B was increased in Lbx1-Slack -/- mice. Our study provides in vivo evidence that Slack expressed in spinal dorsal horn neurons inhibits nerve injury-induced allodynia and acute itch induced by various pruritogens.
Collapse
Affiliation(s)
- Fangyuan Zhou
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Patrick Engel
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ruirui Lu
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Jiang H, Cui H, Chen M, Li F, Shen X, Guo CJ, Hoekel GE, Zhu Y, Han L, Wu K, Holtzman MJ, Liu Q. Divergent sensory pathways of sneezing and coughing. Cell 2024; 187:5981-5997.e14. [PMID: 39243765 PMCID: PMC11622829 DOI: 10.1016/j.cell.2024.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 06/25/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024]
Abstract
Sneezing and coughing are primary symptoms of many respiratory viral infections and allergies. It is generally assumed that sneezing and coughing involve common sensory receptors and molecular neurotransmission mechanisms. Here, we show that the nasal mucosa is innervated by several discrete populations of sensory neurons, but only one population (MrgprC11+MrgprA3-) mediates sneezing responses to a multitude of nasal irritants, allergens, and viruses. Although this population also innervates the trachea, it does not mediate coughing, as revealed by our newly established cough model. Instead, a distinct sensory population (somatostatin [SST+]) mediates coughing but not sneezing, unraveling an unforeseen sensory difference between sneezing and coughing. At the circuit level, sneeze and cough signals are transmitted and modulated by divergent neuropathways. Together, our study reveals the difference in sensory receptors and neurotransmission/modulation mechanisms between sneezing and coughing, offering neuronal drug targets for symptom management in respiratory viral infections and allergies.
Collapse
Affiliation(s)
- Haowu Jiang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Huan Cui
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Mengyu Chen
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Fengxian Li
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Xiaolei Shen
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Changxiong J Guo
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - George E Hoekel
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Yuyan Zhu
- The School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Liang Han
- The School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Qin Liu
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Sheahan TD, Warwick CA, Cui AY, Baranger DAA, Perry VJ, Smith KM, Manalo AP, Nguyen EK, Koerber HR, Ross SE. Kappa opioids inhibit spinal output neurons to suppress itch. SCIENCE ADVANCES 2024; 10:eadp6038. [PMID: 39321286 PMCID: PMC11423883 DOI: 10.1126/sciadv.adp6038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
Itch is a protective sensation that drives scratching. Although specific cell types have been proposed to underlie itch, the neural basis for itch remains unclear. Here, we used two-photon Ca2+ imaging of the dorsal horn to visualize neuronal populations that are activated by itch-inducing agents. We identify a convergent population of spinal interneurons recruited by diverse itch-causing stimuli that represents a subset of neurons that express the gastrin-releasing peptide receptor (GRPR). Moreover, we find that itch is conveyed to the brain via GRPR-expressing spinal output neurons that target the lateral parabrachial nuclei. We then show that the kappa opioid receptor agonist nalfurafine relieves itch by selectively inhibiting GRPR spinoparabrachial neurons. These experiments provide a population-level view of the spinal neurons that respond to pruritic stimuli, pinpoint the output neurons that convey itch to the brain, and identify the cellular target of kappa opioid receptor agonists for the inhibition of itch.
Collapse
Affiliation(s)
- Tayler D Sheahan
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles A Warwick
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abby Y Cui
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A A Baranger
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Vijay J Perry
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelly M Smith
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allison P Manalo
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eileen K Nguyen
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - H Richard Koerber
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah E Ross
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Chen S, Chen J, Tang D, Yin W, Xu S, Gao P, Jiao Y, Yu W. Mechanical and chemical itch regulated by neuropeptide Y-Y 1 signaling. Mol Pain 2024; 20:17448069241242982. [PMID: 38485252 PMCID: PMC10981256 DOI: 10.1177/17448069241242982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/28/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Itch is a somatosensory sensation to remove potential harmful stimulation with a scratching desire, which could be divided into mechanical and chemical itch according to diverse stimuli, such as wool fiber and insect biting. It has been reported that neuropeptide Y (NPY) neurons, a population of spinal inhibitory interneurons, could gate the transmission of mechanical itch, with no effect on chemical itch. In our study, we verified that chemogenetic activation of NPY neurons could inhibit the mechanical itch as well as the chemical itch, which also attenuated the alloknesis phenomenon in the chronic dry skin model. Afterwards, intrathecal administration of NPY1R agonist, [Leu31, Pro34]-NPY (LP-NPY), showed the similar inhibition effect on mechanical itch, chemical itch and alloknesis as chemo-activation of NPY neurons. Whereas, intrathecal administration of NPY1R antagonist BIBO 3304 enhanced mechanical itch and reversed the alloknesis phenomenon inhibited by LP-NPY treatment. Moreover, selectively knocking down NPY1R by intrathecal injection of Npy1r siRNA enhanced mechanical and chemical itch behavior as well. These results indicate that NPY neurons in spinal cord regulate mechanical and chemical itch, and alloknesis in dry skin model through NPY1 receptors.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Junhui Chen
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Wen Yin
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Saihong Xu
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Po Gao
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yingfu Jiao
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| |
Collapse
|
5
|
Gao X, Yang Y, Zhu J, Zhang Y, Wang C, Wang Z, Mi W, Du L. Xanthotoxol relieves itch in mice via suppressing spinal GRP/GRPR signaling. Eur J Pharmacol 2023; 960:176147. [PMID: 37871763 DOI: 10.1016/j.ejphar.2023.176147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Although pruritus, commonly known as itch, is a common and debilitating symptom associated with various skin conditions, there is a lack of effective therapies available. Xanthotoxol (XAN), a biologically active linear furocoumarin, shows potential in the treatment of various neurological disorders. In this study, we discovered that administering XAN either through intraperitoneal or intrathecal injections effectively reduced scratching behavior induced by compound 48/80 or chloroquine. Importantly, XAN also substantially alleviates chronic itch in dry skin and allergic contact dermatitis mice. Substantial progress has highlighted the crucial role of gastrin-releasing peptide (GRP)-gastrin-releasing peptide receptor (GRPR) signaling in the dorsal spinal cord in transmitting various types of itch. Our behavior tests revealed that XAN significantly alleviated scratching behaviors induced by intrathecal administration of GRP or GRPR agonist bombesin. Furthermore, XAN reduced the activation of neurons in the spinal cord caused by intrathecal administration of GRP in mice. Moreover, XAN attenuates the activation of spinal GRPR-positive neurons in itchy mice. These findings suggest that XAN mitigates itch in mice by suppressing spinal GRP/GRPR signaling, thereby establishing XAN as a promising therapeutic option for treating pruritus.
Collapse
Affiliation(s)
- Xinyi Gao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yayue Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jianyu Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuxin Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chenghao Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhifei Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Lixia Du
- Department of Biochemistry, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
6
|
Takanami K, Kuroiwa M, Ishikawa R, Imai Y, Oishi A, Hashino M, Shimoda Y, Sakamoto H, Koide T. Function of gastrin-releasing peptide receptors in ocular itch transmission in the mouse trigeminal sensory system. Front Mol Neurosci 2023; 16:1280024. [PMID: 38098939 PMCID: PMC10719851 DOI: 10.3389/fnmol.2023.1280024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/03/2023] [Indexed: 12/17/2023] Open
Abstract
The prevalence of allergic conjunctivitis in itchy eyes has increased constantly worldwide owing to environmental pollution. Currently, anti-allergic and antihistaminic eye drops are used; however, there are many unknown aspects about the neural circuits that transmit itchy eyes. We focused on the gastrin-releasing peptide (GRP) and GRP receptor (GRPR), which are reportedly involved in itch transmission in the spinal somatosensory system, to determine whether the GRP system is involved in itch neurotransmission of the eyes in the trigeminal sensory system. First, the instillation of itch mediators, such as histamine (His) and non-histaminergic itch mediator chloroquine (CQ), exhibited concentration-dependent high levels of eye scratching behavior, with a significant sex differences observed in the case of His. Histological analysis revealed that His and CQ significantly increased the neural activity of GRPR-expressing neurons in the caudal part of the spinal trigeminal nucleus of the medulla oblongata in GRPR transgenic mice. We administered a GRPR antagonist or bombesin-saporin to ablate GRPR-expressing neurons, followed by His or CQ instillation, and observed a decrease in CQ-induced eye-scratching behavior in the toxin experiments. Intracisternal administration of neuromedin C (NMC), a GRPR agonist, resulted in dose-dependent excessive facial scratching behavior, despite the absence of an itch stimulus on the face. To our knowledge, this is the first study to demonstrate that non-histaminergic itchy eyes were transmitted centrally via GRPR-expressing neurons in the trigeminal sensory system, and that NMC in the medulla oblongata evoked facial itching.
Collapse
Affiliation(s)
- Keiko Takanami
- Mouse Genomics Resource Laboratory, National Institute of Genetics (NIG), Mishima, Japan
- Genetics, Research Organization of Information and Systems, Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
- Department of Environmental Health, Faculty of Human Life and Environmental Sciences, Nara Women’s University, Nara, Japan
| | - Masaya Kuroiwa
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Ren Ishikawa
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yuji Imai
- Mouse Genomics Resource Laboratory, National Institute of Genetics (NIG), Mishima, Japan
- Technical Section, National Institute of Genetics, Mishima, Japan
| | - Akane Oishi
- Mouse Genomics Resource Laboratory, National Institute of Genetics (NIG), Mishima, Japan
- Technical Section, National Institute of Genetics, Mishima, Japan
| | - Midori Hashino
- Department of Environmental Health, Faculty of Human Life and Environmental Sciences, Nara Women’s University, Nara, Japan
| | - Yasushi Shimoda
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Hirotaka Sakamoto
- Faculty of Environmental, Life, Natural Science and Technology, Ushimado Marine Institute (UMI), Okayama University, Okayama, Japan
- Department of Biology, Faculty of Environmental, Life, Natural Science, and Technology, Okayama University, Okayama, Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics (NIG), Mishima, Japan
- Genetics, Research Organization of Information and Systems, Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| |
Collapse
|
7
|
Guo C, Jiang H, Huang CC, Li F, Olson W, Yang W, Fleming M, Yu G, Hoekel G, Luo W, Liu Q. Pain and itch coding mechanisms of polymodal sensory neurons. Cell Rep 2023; 42:113316. [PMID: 37889748 PMCID: PMC10729537 DOI: 10.1016/j.celrep.2023.113316] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 09/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Pain and itch coding mechanisms in polymodal sensory neurons remain elusive. MrgprD+ neurons represent a major polymodal population and mediate both mechanical pain and nonhistaminergic itch. Here, we show that chemogenetic activation of MrgprD+ neurons elicited both pain- and itch-related behavior in a dose-dependent manner, revealing an unanticipated compatibility between pain and itch in polymodal neurons. While VGlut2-dependent glutamate release is required for both pain and itch transmission from MrgprD+ neurons, the neuropeptide neuromedin B (NMB) is selectively required for itch signaling. Electrophysiological recordings further demonstrated that glutamate synergizes with NMB to excite NMB-sensitive postsynaptic neurons. Ablation of these spinal neurons selectively abolished itch signals from MrgprD+ neurons, without affecting pain signals, suggesting a dedicated itch-processing central circuit. These findings reveal distinct neurotransmitters and neural circuit requirements for pain and itch signaling from MrgprD+ polymodal sensory neurons, providing new insights on coding and processing of pain and itch.
Collapse
Affiliation(s)
- Changxiong Guo
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Haowu Jiang
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Cheng-Chiu Huang
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Fengxian Li
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - William Olson
- Department of Neuroscience, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Weishan Yang
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Michael Fleming
- Department of Neuroscience, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Guang Yu
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - George Hoekel
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Wenqin Luo
- Department of Neuroscience, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Qin Liu
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Sheahan TD, Warwick CA, Cui AY, Baranger DA, Perry VJ, Smith KM, Manalo AP, Nguyen EK, Koerber HR, Ross SE. Identification of a convergent spinal neuron population that encodes itch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560205. [PMID: 37873278 PMCID: PMC10592866 DOI: 10.1101/2023.09.29.560205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Itch is a protective sensation that drives scratching. Although specific cell types have been proposed to underlie itch, the neural circuit basis for itch remains unclear. Here, we used two-photon Ca2+ imaging of the dorsal horn to visualize the neuronal populations that are activated by itch-inducing agents. We identify a convergent population of spinal neurons that is defined by the expression of GRPR. Moreover, we discover that itch is conveyed to the brain via GRPR-expressing spinal output neurons that target the lateral parabrachial nucleus. Further, we show that nalfurafine, a clinically effective kappa opioid receptor agonist, relieves itch by inhibiting GRPR spinoparabrachial neurons. Finally, we demonstrate that a subset of GRPR spinal neurons show persistent, cell-intrinsic Ca2+ oscillations. These experiments provide the first population-level view of the spinal neurons that respond to pruritic stimuli, pinpoint the output neurons that convey itch to the brain, and identify the cellular target of kappa opioid receptor agonists for the inhibition of itch.
Collapse
Affiliation(s)
- Tayler D. Sheahan
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Co-first authors
| | - Charles A. Warwick
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Co-first authors
| | - Abby Y. Cui
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David A.A. Baranger
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis Missouri, USA
| | - Vijay J. Perry
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kelly M. Smith
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Current Address: Biohaven Pharmaceuticals, LTD, Pittsburgh, Pennsylvania, USA
| | - Allison P. Manalo
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eileen K. Nguyen
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Current Address: Department of Anesthesiology and Perioperative Care, University of California, Los Angeles, Los Angeles, California, USA
| | - H. Richard Koerber
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah E. Ross
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Lead contact
| |
Collapse
|
9
|
Zhang Z, Shao H, Liu C, Song H, Wu X, Cao D, Zhu M, Fu Y, Wang J, Gao Y. Descending dopaminergic pathway facilitates itch signal processing via activating spinal GRPR + neurons. EMBO Rep 2023; 24:e56098. [PMID: 37522391 PMCID: PMC10561366 DOI: 10.15252/embr.202256098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
A11 dopaminergic neurons regulate somatosensory transduction by projecting from the diencephalon to the spinal cord, but the function of this descending projection in itch remained elusive. Here, we report that dopaminergic projection neurons from the A11 nucleus to the spinal dorsal horn (dopaminergicA11-SDH ) are activated by pruritogens. Inhibition of these neurons alleviates itch-induced scratching behaviors. Furthermore, chemogenetic inhibition of spinal dopamine receptor D1-expressing (DRD1+ ) neurons decreases acute or chronic itch-induced scratching. Mechanistically, spinal DRD1+ neurons are excitatory and mostly co-localize with gastrin-releasing peptide (GRP), an endogenous neuropeptide for itch. In addition, DRD1+ neurons form synapses with GRP receptor-expressing (GRPR+ ) neurons and activate these neurons via AMPA receptor (AMPAR). Finally, spontaneous itch and enhanced acute itch induced by activating spinal DRD1+ neurons are relieved by antagonists against AMPAR and GRPR. Thus, the descending dopaminergic pathway facilitates spinal itch transmission via activating DRD1+ neurons and releasing glutamate and GRP, which directly augments GRPR signaling. Interruption of this descending pathway may be used to treat chronic itch.
Collapse
Affiliation(s)
- Zhi‐Jun Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Han‐Yu Shao
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Chuan Liu
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Hao‐Lin Song
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Xiao‐Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| | - De‐Li Cao
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| | - Meixuan Zhu
- University of North Carolina at Chapel HillChapel HillNCUSA
| | - Yuan‐Yuan Fu
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| | - Juan Wang
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Yong‐Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| |
Collapse
|
10
|
Tang Y, Li N, Ye L, Yang F, Huang S, Peng Z, Xie J, Wan L. Nalbuphine attenuates morphine‐induced scratching by inhibiting
PKCβ
‐dependent microglial activation and p38 phosphorylation in male mice. J Neurosci Res 2023. [DOI: 10.1002/jnr.25189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/28/2023]
|
11
|
Katayama Y, Miura A, Sakamoto T, Takanami K, Sakamoto H. Footedness for scratching itchy eyes in rodents. Proc Biol Sci 2022; 289:20221126. [PMID: 36259204 PMCID: PMC9579771 DOI: 10.1098/rspb.2022.1126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/21/2022] [Indexed: 11/12/2022] Open
Abstract
The neural bases of itchy eye transmission remain unclear compared with those involved in body itch. Here, we show in rodents that the gastrin-releasing peptide receptor (GRPR) of the trigeminal sensory system is involved in the transmission of itchy eyes. Interestingly, we further demonstrate a difference in scratching behaviour between the left and right hindfeet in rodents; histamine instillation into the conjunctival sac of both eyes revealed right-foot biased laterality in the scratching movements. Unilateral histamine instillation specifically induced neural activation in the ipsilateral sensory pathway, with no significant difference between the activations following left- and right-eye instillations. Thus, the behavioural laterality is presumably due to right-foot preference in rodents. Genetically modified rats with specific depletion of Grpr-expressing neurons in the trigeminal sensory nucleus caudalis of the medulla oblongata exhibited fewer and shorter histamine-induced scratching movements than controls and eliminated the footedness. These results taken together indicate that the Grpr-expressing neurons are required for the transmission of itch sensation from the eyes, but that foot preference is generated centrally. These findings could open up a new field of research on the mechanisms of the laterality in vertebrates and also offer new potential therapeutic approaches to refractory pruritic eye disorders.
Collapse
Affiliation(s)
- Yukitoshi Katayama
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Ayane Miura
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
- Department of Biology, Faculty of Science, Okayama University, 3-1-1 Kita-ku, Tsushimanaka, Okayama 700-8530, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Keiko Takanami
- Mouse Genomics Resources Laboratory, National Institute of Genetics, Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Environmental Health, Faculty of Human Life and Environmental Sciences, Nara Women's University, Kitauoya Nishimachi, Nara 630-8506, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| |
Collapse
|
12
|
Jiang S, Wang YS, Zheng XX, Zhao SL, Wang Y, Sun L, Chen PH, Zhou Y, Tin C, Li HL, Sui JF, Wu GY. Itch-specific neurons in the ventrolateral orbital cortex selectively modulate the itch processing. SCIENCE ADVANCES 2022; 8:eabn4408. [PMID: 35905177 PMCID: PMC9337765 DOI: 10.1126/sciadv.abn4408] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/16/2022] [Indexed: 05/31/2023]
Abstract
Itch is a cutaneous sensation that is critical in driving scratching behavior. The long-standing question of whether there are specific neurons for itch modulation inside the brain remains unanswered. Here, we report a subpopulation of itch-specific neurons in the ventrolateral orbital cortex (VLO) that is distinct from the pain-related neurons. Using a Tet-Off cellular labeling system, we showed that local inhibition or activation of these itch-specific neurons in the VLO significantly suppressed or enhanced itch-induced scratching, respectively, whereas the intervention did not significantly affect pain. Conversely, suppression or activation of pain-specific neurons in the VLO significantly affected pain but not itch. Moreover, fiber photometry and immunofluorescence verified that these itch- and pain-specific neurons are distinct in their functional activity and histological location. In addition, the downstream targets of itch- and pain-specific neurons were different. Together, the present study uncovers an important subpopulation of neurons in the VLO that specifically modulates itch processing.
Collapse
Affiliation(s)
- Shan Jiang
- Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Yi-Song Wang
- Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Xiao-Xia Zheng
- Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Shan-Lan Zhao
- Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Yi Wang
- Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Lin Sun
- Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Peng-Hui Chen
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Yi Zhou
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Chung Tin
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, People’s Republic of China
| | - Hong-Li Li
- Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
| | - Jian-Feng Sui
- Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Guang-Yan Wu
- Experimental Center of Basic Medicine, Army Medical University, Chongqing 400038, China
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| |
Collapse
|
13
|
Zhang J, Zhou H, Li P, Shi H, Sui X, Wang Y, Shi J, Wang L. Hypothalamic response with PKA/CREB signaling is associated with direct cerebroventricular administration of bombesin-induced scratching. Brain Res 2022; 1789:147950. [PMID: 35618015 DOI: 10.1016/j.brainres.2022.147950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 11/28/2022]
Abstract
Bombesin (BN) is an itch-specific mediator that causes intense itch-scratching activity in mammals. Although most examinations of BN-induced itch processing have focused on the spinal cord, the involvement of central nervous system mechanisms remains unclear. Here, we investigated how relationships among hypothalamic regions regulate BN-mediated itch-scratch processes. We found that intracerebroventricular (i.c.v.) administration of BN (0.04-4 μg) elicited intense itch scratching in mice, whereas BN (0.4-400 μg) administered via intravenous tail injection failed to evoke a scratching response. Additionally, nalfurafine had no significant effects on BN-induced scratching behavior, indicating that central modulation of BN is distinct from histamine-mediated histaminergic itch and chloroquine-mediated non-histaminergic itch signaling pathways. We labeled BN with a fluorescent tag, 7-nitrobenz-2-oxa-1 (NBD), and traced its fluorescence in the hypothalamus for 30 min following i.c.v. NBD-BN administration. Accordingly, we confirmed that i.c.v. administration of BN enhanced c-Fos expression in the dorsal medial nucleus of the hypothalamus, where neuromedin B receptors and gastrin-releasing peptide receptors are highly expressed. Interestingly, in situ injection of BN into the hypothalamus immediately and robustly induced itch-scratching behavior. Moreover, gene transcripts and western blot assay revealed that BN receptor-dependent PKA/CREB signaling was upregulated in the hypothalamus after i.c.v. administration of BN. Consistently, pretreatment with a PKA inhibitor, Rp-cAMP, significantly reduced BN-induced scratching behavior. Our results indicate that the dorsal medial nucleus of the hypothalamus may be a key nucleus in mediating BN-mediated itch and hypothalamic PKA/CREB signaling is involved in regulating BN-mediated itch.
Collapse
Affiliation(s)
- Jingxin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; The Key Laboratory of Basic Pharmacology of the Educational Minister, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Hu Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Pengfei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Huaxiang Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Jingshan Shi
- The Key Laboratory of Basic Pharmacology of the Educational Minister, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Liyun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
14
|
Liu B, Qiao L, Liu K, Liu J, Piccinni-Ash TJ, Chen ZF. Molecular and neural basis of pleasant touch sensation. Science 2022; 376:483-491. [PMID: 35482870 DOI: 10.1126/science.abn2479] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pleasant touch provides emotional and psychological support that helps mitigate social isolation and stress. However, the underlying mechanisms remain poorly understood. Using a pleasant touch-conditioned place preference (PT-CPP) test, we show that genetic ablation of spinal excitatory interneurons expressing prokineticin receptor 2 (PROKR2), or its ligand PROK2 in sensory neurons, abolishes PT-CPP without impairing pain and itch behaviors in mice. Mutant mice display profound impairments in stress response and prosocial behaviors. Moreover, PROKR2 neurons respond most vigorously to gentle stroking and encode reward value. Collectively, we identify PROK2 as a long-sought neuropeptide that encodes and transmits pleasant touch to spinal PROKR2 neurons. These findings may have important implications for elucidating mechanisms by which pleasant touch deprivation contributes to social avoidance behavior and mental disorders.
Collapse
Affiliation(s)
- Benlong Liu
- Center for the Study of Itch and Sensory Disorders and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lina Qiao
- Center for the Study of Itch and Sensory Disorders and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kun Liu
- Center for the Study of Itch and Sensory Disorders and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Juan Liu
- Center for the Study of Itch and Sensory Disorders and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tyler J Piccinni-Ash
- Center for the Study of Itch and Sensory Disorders and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhou-Feng Chen
- Center for the Study of Itch and Sensory Disorders and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Departments of Medicine, Psychiatry, and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
15
|
Kiguchi N, Ding H, Park SH, Mabry KM, Kishioka S, Shiozawa Y, Alfonso Romero-Sandoval E, Peters CM, Ko MC. Functional roles of neuromedin B and gastrin-releasing peptide in regulating itch and pain in the spinal cord of non-human primates. Biochem Pharmacol 2022; 198:114972. [PMID: 35189108 PMCID: PMC10980179 DOI: 10.1016/j.bcp.2022.114972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/15/2022]
Abstract
Despite accumulating evidence in rodents, the functional role of neuromedin B (NMB) in regulating somatosensory systems in primate spinal cord is unknown. We aimed to compare the expression patterns of NMB and its receptor (NMBR) and the behavioral effects of intrathecal (i.t.) NMB with gastrin-releasing peptide (GRP) on itch or pain in non-human primates (NHPs). We used six adult rhesus monkeys. The mRNA or protein expressions of NMB, GRP, and their receptors were evaluated by quantitative reverse transcription polymerase chain reaction, immunohistochemistry, or in situ hybridization. We determined the behavioral effects of NMB or GRP via acute thermal nociception, capsaicin-induced thermal allodynia, and itch scratching response assays. NMB expression levels were greater than those of GRP in the dorsal root ganglia and spinal dorsal horn. Conversely, NMBR expression was significantly lower than GRP receptor (GRPR). I.t. NMB elicited only mild scratching responses, whereas GRP caused robust scratching responses. GRP- and NMB-elicited scratching responses were attenuated by GRPR (RC-3095) and NMBR (PD168368) antagonists, respectively. Moreover, i.t. NMB and GRP did not induce thermal hypersensitivity and GRPR and NMBR antagonists did not affect peripherally elicited thermal allodynia. Consistently, NMBR expression was low in both itch- and pain-responsive neurons in the spinal dorsal horn. Spinal NMB-NMBR system plays a minimal functional role in the neurotransmission of itch and pain in primates. Unlike the functional significance of the GRP-GRPR system in itch, drugs targeting the spinal NMB-NMBR system may not effectively alleviate non-NMBR-mediated itch.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama City, Wakayama 640-8156, Japan.
| | - Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Sun H Park
- Department of Cancer Biology and Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Kelsey M Mabry
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Shiroh Kishioka
- Faculty of Wakayama Health Care Sciences, Takarazuka University of Medical and Health Care, Wakayama City, Wakayama 640-8392, Japan
| | - Yusuke Shiozawa
- Department of Cancer Biology and Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | | | - Christopher M Peters
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
16
|
Timilsina M, Kernan DPM, Yang H, d'Aquin M. Synergy Between Embedding and Protein Functional Association Networks for Drug Label Prediction Using Harmonic Function. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1203-1213. [PMID: 33064647 DOI: 10.1109/tcbb.2020.3031696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Semi-Supervised Learning (SSL)is an approach to machine learning that makes use of unlabeled data for training with a small amount of labeled data. In the context of molecular biology and pharmacology, one can take advantage of unlabeled data. For instance, to identify drugs and targets where a few genes are known to be associated with a specific target for drugs and considered as labeled data. Labeling the genes requires laboratory verification and validation. This process is usually very time consuming and expensive. Thus, it is useful to estimate the functional role of drugs from unlabeled data using computational methods. To develop such a model, we used openly available data resources to create (i)drugs and genes, (ii)genes and disease, bipartite graphs. We constructed the genetic embedding graph from the two bipartite graphs using Tensor Factorization methods. We integrated the genetic embedding graph with the publicly available protein functional association network. Our results show the usefulness of the integration by effectively predicting drug labels.
Collapse
|
17
|
Meng QT, Liu XY, Liu XT, Liu J, Munanairi A, Barry DM, Liu B, Jin H, Sun Y, Yang Q, Gao F, Wan L, Peng J, Jin JH, Shen KF, Kim R, Yin J, Tao A, Chen ZF. BNP facilitates NMB-encoded histaminergic itch via NPRC-NMBR crosstalk. eLife 2021; 10:71689. [PMID: 34919054 PMCID: PMC8789279 DOI: 10.7554/elife.71689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Histamine-dependent and -independent itch is conveyed by parallel peripheral neural pathways that express gastrin-releasing peptide (GRP) and neuromedin B (NMB), respectively, to the spinal cord of mice. B-type natriuretic peptide (BNP) has been proposed to transmit both types of itch via its receptor NPRA encoded by Npr1. However, BNP also binds to its cognate receptor, NPRC encoded by Npr3 with equal potency. Moreover, natriuretic peptides (NP) signal through the Gi-couped inhibitory cGMP pathway that is supposed to inhibit neuronal activity, raising the question of how BNP may transmit itch information. Here, we report that Npr3 expression in laminae I-II of the dorsal horn partially overlaps with NMB receptor (NMBR) that transmits histaminergic itch via Gq-couped PLCβ-Ca2+ signaling pathway. Functional studies indicate that NPRC is required for itch evoked by histamine but not chloroquine (CQ), a nonhistaminergic pruritogen. Importantly, BNP significantly facilitates scratching behaviors mediated by NMB, but not GRP. Consistently, BNP evoked Ca2+ responses in NMBR/NPRC HEK 293 cells and NMBR/NPRC dorsal horn neurons. These results reveal a previously unknown mechanism by which BNP facilitates NMB-encoded itch through a novel NPRC-NMBR cross-signaling in mice. Our studies uncover distinct modes of action for neuropeptides in transmission and modulation of itch in mice. An itch is a common sensation that makes us want to scratch. Most short-term itches are caused by histamine, a chemical that is released by immune cells following an infection or in response to an allergic reaction. Chronic itching, on the other hand, is not usually triggered by histamine, and is typically the result of neurological or skin disorders, such as atopic dermatitis. The sensation of itching is generated by signals that travel from the skin to nerve cells in the spinal cord. Studies in mice have shown that the neuropeptides responsible for delivering these signals differ depending on whether or not the itch involves histamine: GRPs (short for gastrin-releasing proteins) convey histamine-independent itches, while NMBs (short for neuromedin B) convey histamine-dependent itches. It has been proposed that another neuropeptide called BNP (short for B-type natriuretic peptide) is able to transmit both types of itch signals to the spinal cord. But it remains unclear how this signaling molecule is able to do this. To investigate, Meng, Liu, Liu, Liu et al. carried out a combination of behavioral, molecular and pharmacological experiments in mice and nerve cells cultured in a laboratory. The experiments showed that BNP alone cannot transmit the sensation of itching, but it can boost itching signals that are triggered by histamine. It is widely believed that BNP activates a receptor protein called NPRA. However, Meng et al. found that the BNP actually binds to another protein which alters the function of the receptor activated by NMBs. These findings suggest that BNP modulates rather than initiates histamine-dependent itching by enhancing the interaction between NMBs and their receptor. Understanding how itch signals travel from the skin to neurons in the spinal cord is crucial for designing new treatments for chronic itching. The work by Meng et al. suggests that treatments targeting NPRA, which was thought to be a key itch receptor, may not be effective against chronic itching, and that other drug targets need to be explored.
Collapse
Affiliation(s)
- Qing-Tao Meng
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Xian-Yu Liu
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Xue-Ting Liu
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Juan Liu
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Admire Munanairi
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Devin M Barry
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Benlong Liu
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Hua Jin
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Yu Sun
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Qianyi Yang
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Fang Gao
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Li Wan
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Jiahang Peng
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Jin-Hua Jin
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Kai-Feng Shen
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Ray Kim
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Jun Yin
- Center for the Study of Itch and Sensory Disorders, Washington University in St. Louis, St Louis, United States
| | - Ailin Tao
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhou-Feng Chen
- Department of Anesthesiology, Washington University in St. Louis, St Louis, United States
| |
Collapse
|
18
|
Abstract
Itch is one of the most primal sensations, being both ubiquitous and important for the well-being of animals. For more than a century, a desire to understand how itch is encoded by the nervous system has prompted the advancement of many theories. Within the past 15 years, our understanding of the molecular and neural mechanisms of itch has undergone a major transformation, and this remarkable progress continues today without any sign of abating. Here I describe accumulating evidence that indicates that itch is distinguished from pain through the actions of itch-specific neuropeptides that relay itch information to the spinal cord. According to this model, classical neurotransmitters transmit, inhibit and modulate itch information in a context-, space- and time-dependent manner but do not encode itch specificity. Gastrin-releasing peptide (GRP) is proposed to be a key itch-specific neuropeptide, with spinal neurons expressing GRP receptor (GRPR) functioning as a key part of a convergent circuit for the conveyance of peripheral itch information to the brain.
Collapse
|
19
|
Estrogens influence female itch sensitivity via the spinal gastrin-releasing peptide receptor neurons. Proc Natl Acad Sci U S A 2021; 118:2103536118. [PMID: 34312228 PMCID: PMC8346901 DOI: 10.1073/pnas.2103536118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many women exhibit a dramatic increase in itch during pregnancy, but the underlying mechanism is unknown. Here, we demonstrate that the female sex steroid hormone estradiol, but not progesterone, enhances itch-related scratching behavior in female rats elicited by histamine, the prototypical itch mediator in humans. This is associated with an enhancement in histamine-evoked activity of a subset of spinal dorsal horn neurons that express a neuropeptide receptor, gastrin-releasing peptide receptor (GRPR), that was previously shown to be involved in spinal cord processing of itch. These findings may account for why itch sensation varies with estrogen levels and provide a basis for treating histamine-related itch diseases in females by targeting GRPR. There are sex differences in somatosensory sensitivity. Circulating estrogens appear to have a pronociceptive effect that explains why females are reported to be more sensitive to pain than males. Although itch symptoms develop during pregnancy in many women, the underlying mechanism of female-specific pruritus is unknown. Here, we demonstrate that estradiol, but not progesterone, enhances histamine-evoked scratching behavior indicative of itch in female rats. Estradiol increased the expression of the spinal itch mediator, gastrin-releasing peptide (GRP), and increased the histamine-evoked activity of itch-processing neurons that express the GRP receptor (GRPR) in the spinal dorsal horn. The enhancement of itch behavior by estradiol was suppressed by intrathecal administration of a GRPR blocker. In vivo electrophysiological analysis showed that estradiol increased the histamine-evoked firing frequency and prolonged the response of spinal GRP-sensitive neurons in female rats. On the other hand, estradiol did not affect the threshold of noxious thermal pain and decreased touch sensitivity, indicating that estradiol separately affects itch, pain, and touch modalities. Thus, estrogens selectively enhance histamine-evoked itch in females via the spinal GRP/GRPR system. This may explain why itch sensation varies with estrogen levels and provides a basis for treating itch in females by targeting GRPR.
Collapse
|
20
|
Li F, Jiang H, Shen X, Yang W, Guo C, Wang Z, Xiao M, Cui L, Luo W, Kim BS, Chen Z, Huang AJW, Liu Q. Sneezing reflex is mediated by a peptidergic pathway from nose to brainstem. Cell 2021; 184:3762-3773.e10. [PMID: 34133943 PMCID: PMC8396370 DOI: 10.1016/j.cell.2021.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022]
Abstract
Sneezing is a vital respiratory reflex frequently associated with allergic rhinitis and viral respiratory infections. However, its neural circuit remains largely unknown. A sneeze-evoking region was discovered in both cat and human brainstems, corresponding anatomically to the central recipient zone of nasal sensory neurons. Therefore, we hypothesized that a neuronal population postsynaptic to nasal sensory neurons mediates sneezing in this region. By screening major presynaptic neurotransmitters/neuropeptides released by nasal sensory neurons, we found that neuromedin B (NMB) peptide is essential for signaling sneezing. Ablation of NMB-sensitive postsynaptic neurons in the sneeze-evoking region or deficiency in NMB receptor abolished the sneezing reflex. Remarkably, NMB-sensitive neurons further project to the caudal ventral respiratory group (cVRG). Chemical activation of NMB-sensitive neurons elicits action potentials in cVRG neurons and leads to sneezing behavior. Our study delineates a peptidergic pathway mediating sneezing, providing molecular insights into the sneezing reflex arc.
Collapse
Affiliation(s)
- Fengxian Li
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Haowu Jiang
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaolei Shen
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Weishan Yang
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Changxiong Guo
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhiyao Wang
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maolei Xiao
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lian Cui
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian S Kim
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhoufeng Chen
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew J W Huang
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Qin Liu
- Department of Anesthesiology, Center for the Study of Itch and Sensory Disorders, and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
21
|
Gatto G, Bourane S, Ren X, Di Costanzo S, Fenton PK, Halder P, Seal RP, Goulding MD. A Functional Topographic Map for Spinal Sensorimotor Reflexes. Neuron 2021; 109:91-104.e5. [PMID: 33181065 PMCID: PMC7790959 DOI: 10.1016/j.neuron.2020.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/17/2020] [Accepted: 09/30/2020] [Indexed: 01/02/2023]
Abstract
Cutaneous somatosensory modalities play pivotal roles in generating a wide range of sensorimotor behaviors, including protective and corrective reflexes that dynamically adapt ongoing movement and posture. How interneurons (INs) in the dorsal horn encode these modalities and transform them into stimulus-appropriate motor behaviors is not known. Here, we use an intersectional genetic approach to functionally assess the contribution that eight classes of dorsal excitatory INs make to sensorimotor reflex responses. We demonstrate that the dorsal horn is organized into spatially restricted excitatory modules composed of molecularly heterogeneous cell types. Laminae I/II INs drive chemical itch-induced scratching, laminae II/III INs generate paw withdrawal movements, and laminae III/IV INs modulate dynamic corrective reflexes. These data reveal a key principle in spinal somatosensory processing, namely, sensorimotor reflexes are driven by the differential spatial recruitment of excitatory neurons.
Collapse
Affiliation(s)
- Graziana Gatto
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Steeve Bourane
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Université de la Réunion, DéTROI, UMR 1188 INSERM, Sainte Clotilde, La Réunion 97490, France
| | - Xiangyu Ren
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biology Graduate Program, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stefania Di Costanzo
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biology Graduate Program, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Peter K Fenton
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Priyabrata Halder
- Departments of Neurobiology and Otolaryngology, Center for Neural Basis of Cognition, and Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Rebecca P Seal
- Departments of Neurobiology and Otolaryngology, Center for Neural Basis of Cognition, and Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Martyn D Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
22
|
Itch: A Paradigm of Neuroimmune Crosstalk. Immunity 2020; 52:753-766. [PMID: 32433948 DOI: 10.1016/j.immuni.2020.04.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
Although the medical definition of itch has been in existence for 360 years, only in the last 20 years have we begun to understand the basic mechanisms that underlie this unique sensation. Therapeutics that specifically target chronic itch as a pathologic entity are currently still not available. Recent seminal advances in itch circuitry within the nervous system have intersected with discoveries in immunology in unexpected ways to rapidly inform emerging treatment strategies. The current review aims to introduce these basic concepts in itch biology and highlight how distinct immunologic pathways integrate with recently identified itch-sensory circuits in the nervous system to inform a major new paradigm of neuroimmunology and therapeutic development for chronic itch.
Collapse
|
23
|
Sheahan TD, Warwick CA, Fanien LG, Ross SE. The Neurokinin-1 Receptor is Expressed with Gastrin-Releasing Peptide Receptor in Spinal Interneurons and Modulates Itch. J Neurosci 2020; 40:8816-8830. [PMID: 33051347 PMCID: PMC7659450 DOI: 10.1523/jneurosci.1832-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
The neurokinin-1 receptor (NK1R; encoded by Tacr1) is expressed in spinal dorsal horn neurons and has been suggested to mediate itch in rodents. However, previous studies relied heavily on neurotoxic ablation of NK1R spinal neurons, which limited further dissection of their function in spinal itch circuitry. To address this limitation, we leveraged a newly developed Tacr1CreER mouse line to characterize the role of NK1R spinal neurons in itch. We show that pharmacological activation of spinal NK1R and chemogenetic activation of Tacr1CreER spinal neurons increases itch behavior in male and female mice, whereas pharmacological inhibition of spinal NK1R suppresses itch behavior. We use fluorescence in situ hybridization (FISH) to characterize the endogenous expression of Tacr1 throughout the superficial and deeper dorsal horn (DDH), as well as the lateral spinal nucleus (LSN), of mouse and human spinal cord. Retrograde labeling studies in mice from the parabrachial nucleus (PBN) show that less than 20% of superficial Tacr1CreER dorsal horn neurons are spinal projection neurons, and thus the majority of Tacr1CreER are local interneurons. We then use a combination of in situ hybridization and ex vivo two-photon Ca2+ imaging of the mouse spinal cord to establish that NK1R and the gastrin-releasing peptide receptor (GRPR) are coexpressed within a subpopulation of excitatory superficial dorsal horn (SDH) neurons. These findings are the first to suggest a role for NK1R interneurons in itch and extend our understanding of the complexities of spinal itch circuitry.SIGNIFICANCE STATEMENT The spinal cord is a critical hub for processing somatosensory input, yet which spinal neurons process itch input and how itch signals are encoded within the spinal cord is not fully understood. We demonstrate neurokinin-1 receptor (NK1R) spinal neurons mediate itch behavior in mice and that the majority of NK1R spinal neurons are local interneurons. These NK1R neurons comprise a subset of gastrin-releasing peptide receptor (GRPR) interneurons and are thus positioned at the center of spinal itch transmission. We show NK1R mRNA expression in human spinal cord, underscoring the translational relevance of our findings in mice. This work is the first to suggest a role for NK1R interneurons in itch and extends our understanding of the complexities of spinal itch circuitry.
Collapse
Affiliation(s)
- Tayler D Sheahan
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh 15213, Pennsylvania
| | - Charles A Warwick
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh 15213, Pennsylvania
| | - Louis G Fanien
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh 15213, Pennsylvania
| | - Sarah E Ross
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh 15213, Pennsylvania
| |
Collapse
|
24
|
GRPR/Extracellular Signal-Regulated Kinase and NPRA/Extracellular Signal-Regulated Kinase Signaling Pathways Play a Critical Role in Spinal Transmission of Chronic Itch. J Invest Dermatol 2020; 141:863-873. [PMID: 33039402 DOI: 10.1016/j.jid.2020.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
Intractable or recurrent chronic itch greatly reduces the patients' QOL and impairs their daily activities. In this study, we investigated whether there are certain key signaling molecules downstream of the recently identified peptides mediating itch in the spinal cord. RNA sequencing analysis of mouse spinal cord in chronic itch models induced by squaric acid dibutylester and imiquimod showed that extracellular signal-regulated kinase (ERK) 1/2 cascade is the most significantly upregulated gene cluster in both models. In four different mouse models of chronic itch, sustained ERK phosphorylation was detected mainly in spinal neurons, and MAPK/ERK kinase inhibitors significantly inhibited chronic itch in these models. Phosphorylated ERK was observed in the interneurons expressing the receptors of different neuropeptides for itch, including gastrin-releasing peptide receptor, natriuretic peptide receptor A, neuromedin B receptor, and sst2A. Blocking gastrin-releasing peptide receptor and natriuretic peptide receptor A by genetic approaches or toxins in mice significantly attenuated or ablated spinal phosphorylated ERK. When human embryonic kidney 293T cells transfected with these receptors were exposed to their respective agonists, ERK was the most significantly activated intracellular signaling molecule. Together, our work showed that phosphorylated ERK is a unique marker for itch signal transmission in the spinal cord and an attractive target for the treatment of chronic itch.
Collapse
|
25
|
A spinal neural circuitry for converting touch to itch sensation. Nat Commun 2020; 11:5074. [PMID: 33033265 PMCID: PMC7545208 DOI: 10.1038/s41467-020-18895-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Touch and itch sensations are crucial for evoking defensive and emotional responses, and light tactile touch may induce unpleasant itch sensations (mechanical itch or alloknesis). The neural substrate for touch-to-itch conversion in the spinal cord remains elusive. We report that spinal interneurons expressing Tachykinin 2-Cre (Tac2Cre) receive direct Aβ low threshold mechanoreceptor (LTMR) input and form monosynaptic connections with GRPR neurons. Ablation or inhibition markedly reduces mechanical but not acute chemical itch nor noxious touch information. Chemogenetic inhibition of Tac2Cre neurons also displays pronounced deficit in chronic dry skin itch, a type of chemical itch in mice. Consistently, ablation of gastrin-releasing peptide receptor (GRPR) neurons, which are essential for transmitting chemical itch, also abolishes mechanical itch. Together, these results suggest that innocuous touch and chemical itch information converge on GRPR neurons and thus map an exquisite spinal circuitry hard-wired for converting innocuous touch to irritating itch.
Collapse
|
26
|
Liu X, Wang D, Wen Y, Zeng L, Li Y, Tao T, Zhao Z, Tao A. Spinal GRPR and NPRA Contribute to Chronic Itch in a Murine Model of Allergic Contact Dermatitis. J Invest Dermatol 2020; 140:1856-1866.e7. [DOI: 10.1016/j.jid.2020.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 11/25/2022]
|
27
|
Barry DM, Liu XT, Liu B, Liu XY, Gao F, Zeng X, Liu J, Yang Q, Wilhelm S, Yin J, Tao A, Chen ZF. Exploration of sensory and spinal neurons expressing gastrin-releasing peptide in itch and pain related behaviors. Nat Commun 2020; 11:1397. [PMID: 32170060 PMCID: PMC7070094 DOI: 10.1038/s41467-020-15230-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrin-releasing peptide (GRP) functions as a neurotransmitter for non-histaminergic itch, but its site of action (sensory neurons vs spinal cord) remains controversial. To determine the role of GRP in sensory neurons, we generated a floxed Grp mouse line. We found that conditional knockout of Grp in sensory neurons results in attenuated non-histaminergic itch, without impairing histamine-induced itch. Using a Grp-Cre knock-in mouse line, we show that the upper epidermis of the skin is exclusively innervated by GRP fibers, whose activation via optogeneics and chemogenetics in the skin evokes itch- but not pain-related scratching or wiping behaviors. In contrast, intersectional genetic ablation of spinal Grp neurons does not affect itch nor pain transmission, demonstrating that spinal Grp neurons are dispensable for itch transmission. These data indicate that GRP is a neuropeptide in sensory neurons for non-histaminergic itch, and GRP sensory neurons are dedicated to itch transmission.
Collapse
Affiliation(s)
- Devin M Barry
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xue-Ting Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Center for Immunology, Inflammation, Immune-mediated disease, Guangzhou Medical University, 510260, Guangzhou, Guangdong, P.R. China
| | - Benlong Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xian-Yu Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fang Gao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiansi Zeng
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- College of Life Sciences, Xinyang Normal University, 237 Nanhu Road, 464000, Xinyang, P. R. China
| | - Juan Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Qianyi Yang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Steven Wilhelm
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jun Yin
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ailin Tao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Center for Immunology, Inflammation, Immune-mediated disease, Guangzhou Medical University, 510260, Guangzhou, Guangdong, P.R. China
| | - Zhou-Feng Chen
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
28
|
Kiguchi N, Uta D, Ding H, Uchida H, Saika F, Matsuzaki S, Fukazawa Y, Abe M, Sakimura K, Ko MC, Kishioka S. GRP receptor and AMPA receptor cooperatively regulate itch-responsive neurons in the spinal dorsal horn. Neuropharmacology 2020; 170:108025. [PMID: 32142790 DOI: 10.1016/j.neuropharm.2020.108025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 01/19/2023]
Abstract
Gastrin-releasing peptide (GRP) receptor-expressing (GRPR)+ neurons have a central role in the spinal transmission of itch. Because their fundamental regulatory mechanisms are not yet understood, it is important to determine how such neurons are excited and integrate itch sensation. In this study, we investigated the mechanisms for the activation of itch-responsive GRPR+ neurons in the spinal dorsal horn (SDH). GRPR+ neurons expressed the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) containing the GluR2 subunit. In mice, peripherally elicited histaminergic and non-histaminergic itch was prevented by intrathecal (i.t.) administration of the AMPAR antagonist NBQX, which was consistent with the fact that firing of GRPR+ neurons in SDH under histaminergic and non-histaminergic itch was completely blocked by NBQX, but not by the GRPR antagonist RC-3095. Because GRP+ neurons in SDH contain glutamate, we investigated the role of GRP+ (GRP+/Glu+) neurons in regulating itch. Chemogenetic inhibition of GRP+ neurons suppressed both histaminergic and non-histaminergic itch without affecting the mechanical pain threshold. In nonhuman primates, i.t. administration of NBQX also attenuated peripherally elicited itch without affecting the thermal pain threshold. In a mouse model of diphenylcyclopropenone (DCP)-induced contact dermatitis, GRP, GRPR, and AMPAR subunits were upregulated in SDH. DCP-induced itch was prevented by either silencing GRP+ neurons or ablation of GRPR+ neurons. Altogether, these findings demonstrate that GRP and glutamate cooperatively regulate GRPR+ AMPAR+ neurons in SDH, mediating itch sensation. GRP-GRPR and the glutamate-AMPAR system may play pivotal roles in the spinal transmission of itch in rodents and nonhuman primates.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama City, Wakayama, 641-0012, Japan.
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama City, Toyama, 930-0194, Japan
| | - Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Hitoshi Uchida
- Department of Cellular Neuropathology, Brain Research Institute Niigata University, Niigata City, Niigata, 951-8585, Japan
| | - Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, Wakayama City, Wakayama, 641-0012, Japan
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Wakayama City, Wakayama, 641-0012, Japan
| | - Yohji Fukazawa
- Department of Anatomy, Kansai University of Health Sciences, Sennan-gun, Osaka, 590-0482, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata City, Niigata, 951-8585, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata City, Niigata, 951-8585, Japan
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA; W.G. Hefner Veterans Affairs Medical Center, Salisbury, NC, 28144, USA
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama City, Wakayama, 641-0012, Japan
| |
Collapse
|
29
|
Li NQ, Tang Y, Huang ST, Liu XT, Zeng LP, Li H, Wan L. Modulation of NR1 receptor by CaMKIIα plays an important role in chronic itch development in mice. Brain Res Bull 2020; 158:66-76. [PMID: 32112850 DOI: 10.1016/j.brainresbull.2020.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
Intractable scratching is the characteristic of chronic itch, which represents a great challenge in clinical practice. However, the mechanism underlying chronic itch development is largely unknown. In the present study, we investigated the role of NMDA receptor in acute itch and in development of chronic itch. A mouse model was developed by painting DNFB to induce allergic contact dermatitis (ACD). We found that the expression of pNR1, which is a subunit of NMDA receptor, was significantly increased in the dorsal root ganglion in the DNFB model. The DNFB-evoked spontaneous scratching was blocked by the NMDA antagonist D-AP-5, the calcium-calmodulin-dependent protein kinase (CaMK) inhibitor KN-93, a CaMKIIα siRNA and the PKC inhibitor LY317615. Moreover, activation of PKC did not reverse the CaMKIIα knockdown-induced decrease in scratching, suggesting that PKC functions upstream of CaMKIIα. Thus, our study indicates that modulation of NR1 receptor by CaMKIIα plays an important role in the development of chronic itch.
Collapse
Affiliation(s)
- Nan-Qi Li
- Department of Pain Management, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P.R. China
| | - Yang Tang
- Department of Pain Management, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P.R. China
| | - Si-Ting Huang
- Department of Pain Management, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P.R. China
| | - Xue-Ting Liu
- Guangdong Provincial Key Laboratory of Allergy & Clinic Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P.R. China
| | - Li-Ping Zeng
- Guangdong Provincial Key Laboratory of Allergy & Clinic Immunology, Sino-French Hoffmann Institute, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P.R. China
| | - Hui Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Li Wan
- Department of Pain Management, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P.R. China.
| |
Collapse
|
30
|
Pain Inhibits GRPR Neurons via GABAergic Signaling in the Spinal Cord. Sci Rep 2019; 9:15804. [PMID: 31676846 PMCID: PMC6825123 DOI: 10.1038/s41598-019-52316-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/11/2019] [Indexed: 11/30/2022] Open
Abstract
It has been known that algogens and cooling could inhibit itch sensation; however, the underlying molecular and neural mechanisms remain poorly understood. Here, we show that the spinal neurons expressing gastrin releasing peptide receptor (GRPR) primarily comprise excitatory interneurons that receive direct and indirect inputs from C and Aδ fibers and form contacts with projection neurons expressing the neurokinin 1 receptor (NK1R). Importantly, we show that noxious or cooling agents inhibit the activity of GRPR neurons via GABAergic signaling. By contrast, capsaicin, which evokes a mix of itch and pain sensations, enhances both excitatory and inhibitory spontaneous synaptic transmission onto GRPR neurons. These data strengthen the role of GRPR neurons as a key circuit for itch transmission and illustrate a spinal mechanism whereby pain inhibits itch by suppressing the function of GRPR neurons.
Collapse
|
31
|
EHLING S, FUKUYAMA T, KO MC, OLIVRY T, BÄUMER W. Neuromedin B Induces Acute Itch in Mice via the Activation of Peripheral Sensory Neurons. Acta Derm Venereol 2019; 99:587-893. [PMID: 30734045 PMCID: PMC9083373 DOI: 10.2340/00015555-3143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neuromedin B is expressed in nociceptive and itch-sensitive dorsal root ganglia neurons, but its peripheral pruritogenic potential is not well described. The potential of neuromedin B as a pruritogen and pro-inflammatory peptide in the skin was tested in vivo in an acute model in mice and monkeys as well as an allergic dermatitis model in mice. To identify the underlying mechanisms in vitro real time PCR analysis for neuromedin B and its receptor expression in murine mast cells and dorsal root ganglia as well as functional calcium imaging in the ganglia was applied. Neuromedin B induces itch when injected intradermally, and the peripheral signal is likely transmitted through the activation of dorsal root ganglia. Thus, neuromedin B could be an interesting new therapeutic target for peripheral processing of itch at the level of sensory neurons.
Collapse
Affiliation(s)
- Sarah EHLING
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, North Carolina, USA,,Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Tomoki FUKUYAMA
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, North Carolina, USA
| | - Mei-Chuan KO
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Thierry OLIVRY
- Department of Clinical Sciences, College of Veterinary Medicine,,Comparative Medicine Institute, North Carolina State University, North Carolina, USA
| | - Wolfgang BÄUMER
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, North Carolina, USA,,Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Freie Universität Berlin, Germany
| |
Collapse
|
32
|
Anatomical and functional dichotomy of ocular itch and pain. Nat Med 2018; 24:1268-1276. [PMID: 29988128 PMCID: PMC6093777 DOI: 10.1038/s41591-018-0083-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
Itch and pain are refractory symptoms of many ocular conditions. Ocular itch is generated mainly in the conjunctiva, and is absent from the cornea. In contrast, most ocular pain arises from the cornea. However, the underlying mechanisms remain unknown. Using genetic axonal tracing approaches, we discovered distinct sensory innervation patterns between the conjunctiva and cornea. Further genetic and functional analyses in rodent models demonstrate that a subset of conjunctival-selective sensory fibers marked by MrgprA3 expression, rather than corneal sensory fibers, mediates ocular itch. Importantly, the actions of both histamine and non-histamine pruritogens converge onto this unique subset of conjunctiva sensory fibers, and enable them to play a key role in mediating itch associated with allergic conjunctivitis. This is distinct from skin itch in which discrete populations of sensory neurons co-operate to carry itch. Finally, we provide a proof-of-concept that selective silencing of conjunctiva itch-sensing fibers by pruritogen-mediated entry of sodium channel blocker QX-314 is a feasible therapeutic strategy to treat ocular itch in mice. Itch-sensing fibers also innervate the human conjunctiva,and allow pharmacological silence using QX-314.Our results cast new light on the neural mechanisms of ocular itch and open a new avenue for developing therapeutic strategies.
Collapse
|
33
|
Munanairi A, Liu XY, Barry DM, Yang Q, Yin JB, Jin H, Li H, Meng QT, Peng JH, Wu ZY, Yin J, Zhou XY, Wan L, Mo P, Kim S, Huo FQ, Jeffry J, Li YQ, Bardoni R, Bruchas MR, Chen ZF. Non-canonical Opioid Signaling Inhibits Itch Transmission in the Spinal Cord of Mice. Cell Rep 2018; 23:866-877. [PMID: 29669290 PMCID: PMC5937707 DOI: 10.1016/j.celrep.2018.03.087] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/28/2018] [Accepted: 03/20/2018] [Indexed: 01/20/2023] Open
Abstract
Chronic itch or pruritus is a debilitating disorder that is refractory to conventional anti-histamine treatment. Kappa opioid receptor (KOR) agonists have been used to treat chronic itch, but the underlying mechanism remains elusive. Here, we find that KOR and gastrin-releasing peptide receptor (GRPR) overlap in the spinal cord, and KOR activation attenuated GRPR-mediated histamine-independent acute and chronic itch in mice. Notably, canonical KOR-mediated Gαi signaling is not required for desensitizing GRPR function. In vivo and in vitro studies suggest that KOR activation results in the translocation of Ca2+-independent protein kinase C (PKC)δ from the cytosol to the plasma membrane, which in turn phosphorylates and inhibits GRPR activity. A blockade of phospholipase C (PLC) in HEK293 cells prevented KOR-agonist-induced PKCδ translocation and GRPR phosphorylation, suggesting a role of PLC signaling in KOR-mediated GRPR desensitization. These data suggest that a KOR-PLC-PKCδ-GRPR signaling pathway in the spinal cord may underlie KOR-agonists-induced anti-pruritus therapies.
Collapse
MESH Headings
- Animals
- Cell Membrane/metabolism
- Chloroquine/toxicity
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- HEK293 Cells
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphorylation
- Protein Kinase C-delta/antagonists & inhibitors
- Protein Kinase C-delta/genetics
- Protein Kinase C-delta/metabolism
- Pruritus/chemically induced
- Pruritus/pathology
- RNA Interference
- RNA, Small Interfering/metabolism
- Receptors, Bombesin/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/deficiency
- Receptors, Opioid, kappa/genetics
- Signal Transduction
- Spinal Cord/metabolism
- Type C Phospholipases/antagonists & inhibitors
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Admire Munanairi
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xian-Yu Liu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Devin M Barry
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Qianyi Yang
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jun-Bin Yin
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, 710032 Xi'an, PRC
| | - Hua Jin
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hui Li
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, 710032 Xi'an, PRC
| | - Qing-Tao Meng
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jia-Hang Peng
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhen-Yu Wu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, 710032 Xi'an, PRC
| | - Jun Yin
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xuan-Yi Zhou
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Li Wan
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, 710032 Xi'an, PRC
| | - Ping Mo
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, 710032 Xi'an, PRC
| | - Seungil Kim
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fu-Quan Huo
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph Jeffry
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yun-Qing Li
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, 710032 Xi'an, PRC; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PRC
| | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Michael R Bruchas
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhou-Feng Chen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
34
|
Wan L, Jin H, Liu XY, Jeffry J, Barry DM, Shen KF, Peng JH, Liu XT, Jin JH, Sun Y, Kim R, Meng QT, Mo P, Yin J, Tao A, Bardoni R, Chen ZF. Distinct roles of NMB and GRP in itch transmission. Sci Rep 2017; 7:15466. [PMID: 29133874 PMCID: PMC5684337 DOI: 10.1038/s41598-017-15756-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/01/2017] [Indexed: 01/12/2023] Open
Abstract
A key question in our understanding of itch coding mechanisms is whether itch is relayed by dedicated molecular and neuronal pathways. Previous studies suggested that gastrin-releasing peptide (GRP) is an itch-specific neurotransmitter. Neuromedin B (NMB) is a mammalian member of the bombesin family of peptides closely related to GRP, but its role in itch is unclear. Here, we show that itch deficits in mice lacking NMB or GRP are non-redundant and Nmb/Grp double KO (DKO) mice displayed additive deficits. Furthermore, both Nmb/Grp and Nmbr/Grpr DKO mice responded normally to a wide array of noxious stimuli. Ablation of NMBR neurons partially attenuated peripherally induced itch without compromising nociceptive processing. Importantly, electrophysiological studies suggested that GRPR neurons receive glutamatergic input from NMBR neurons. Thus, we propose that NMB and GRP may transmit discrete itch information and NMBR neurons are an integral part of neural circuits for itch in the spinal cord.
Collapse
Affiliation(s)
- Li Wan
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pain Medicine, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangdong, 510260, P.R. China
| | - Hua Jin
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, The First Hospital of Yunnan Province, Kunming, Yunnan, 650031, P.R. China
| | - Xian-Yu Liu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joseph Jeffry
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Devin M Barry
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kai-Feng Shen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P.R. China
| | - Jia-Hang Peng
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xue-Ting Liu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China
| | - Jin-Hua Jin
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, P.R. China
| | - Yu Sun
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P.R. China
| | - Ray Kim
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Qing-Tao Meng
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Ping Mo
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, the Affiliated Nanhai Hospital of Southern Medical University, Foshan, Guangdong, 528000, P.R. China
| | - Jun Yin
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ailin Tao
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, P.R. China
| | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Zhou-Feng Chen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
35
|
Yu YQ, Barry DM, Hao Y, Liu XT, Chen ZF. Molecular and neural basis of contagious itch behavior in mice. Science 2017; 355:1072-1076. [PMID: 28280205 DOI: 10.1126/science.aak9748] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/10/2017] [Indexed: 12/27/2022]
Abstract
Socially contagious itch is ubiquitous in human society, but whether it exists in rodents is unclear. Using a behavioral paradigm that does not entail prior training or reward, we found that mice scratched after observing a conspecific scratching. Molecular mapping showed increased neuronal activity in the suprachiasmatic nucleus (SCN) of the hypothalamus of mice that displayed contagious scratching. Ablation of gastrin-releasing peptide receptor (GRPR) or GRPR neurons in the SCN abolished contagious scratching behavior, which was recapitulated by chemogenetic inhibition of SCN GRP neurons. Activation of SCN GRP/GRPR neurons evoked scratching behavior. These data demonstrate that GRP-GRPR signaling is necessary and sufficient for transmitting contagious itch information in the SCN. The findings may have implications for our understanding of neural circuits that control socially contagious behaviors.
Collapse
Affiliation(s)
- Yao-Qing Yu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Devin M Barry
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yan Hao
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xue-Ting Liu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhou-Feng Chen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. .,Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
36
|
Mu D, Deng J, Liu KF, Wu ZY, Shi YF, Guo WM, Mao QQ, Liu XJ, Li H, Sun YG. A central neural circuit for itch sensation. Science 2017; 357:695-699. [DOI: 10.1126/science.aaf4918] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 07/07/2017] [Indexed: 12/17/2022]
|
37
|
Spinal cord interneurons expressing the gastrin-releasing peptide receptor convey itch through VGLUT2-mediated signaling. Pain 2017; 158:945-961. [PMID: 28157737 PMCID: PMC5402714 DOI: 10.1097/j.pain.0000000000000861] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Supplemental Digital Content is Available in the Text. Gastrin-releasing peptide receptor–expressing cells are interneurons that use glutamate to transmit the perception of chemical itch to the next step in the labeled line of itch in the spinal cord. Itch is a sensation that promotes the desire to scratch, which can be evoked by mechanical and chemical stimuli. In the spinal cord, neurons expressing the gastrin-releasing peptide receptor (GRPR) have been identified as specific mediators of itch. However, our understanding of the GRPR population in the spinal cord, and thus how these neurons exercise their functions, is limited. For this purpose, we constructed a Cre line designed to target the GRPR population of neurons (Grpr-Cre). Our analysis revealed that Grpr-Cre cells in the spinal cord are predominantly excitatory interneurons that are found in the dorsal lamina, especially in laminae II-IV. Application of the specific agonist gastrin-releasing peptide induced spike responses in 43.3% of the patched Grpr-Cre neurons, where the majority of the cells displayed a tonic firing property. Additionally, our analysis showed that the Grpr-Cre population expresses Vglut2 mRNA, and mice ablated of Vglut2 in Grpr-Cre cells (Vglut2-lox;Grpr-Cre mice) displayed less spontaneous itch and attenuated responses to both histaminergic and nonhistaminergic agents. We could also show that application of the itch-inducing peptide, natriuretic polypeptide B, induces calcium influx in a subpopulation of Grpr-Cre neurons. To summarize, our data indicate that the Grpr-Cre spinal cord neural population is composed of interneurons that use VGLUT2-mediated signaling for transmitting chemical and spontaneous itch stimuli to the next, currently unknown, neurons in the labeled line of itch.
Collapse
|
38
|
Abstract
Peripheral itch stimuli are transmitted by sensory neurons to the spinal cord dorsal horn, which then transmits the information to the brain. The molecular and cellular mechanisms within the dorsal horn for itch transmission have only been investigated and identified during the past ten years. This review covers the progress that has been made in identifying the peptide families in sensory neurons and the receptor families in dorsal horn neurons as putative itch transmitters, with a focus on gastrin-releasing peptide (GRP)-GRP receptor signaling. Also discussed are the signaling mechanisms, including opioids, by which various types of itch are transmitted and modulated, as well as the many conflicting results arising from recent studies.
Collapse
|
39
|
SUMO-specific protease 1 protects neurons from apoptotic death during transient brain ischemia/reperfusion. Cell Death Dis 2016; 7:e2484. [PMID: 27882949 PMCID: PMC5260881 DOI: 10.1038/cddis.2016.290] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/10/2016] [Accepted: 08/17/2016] [Indexed: 01/06/2023]
Abstract
SUMO-specific protease 1 (SENP1) deconjugates SUMO from modified proteins. Although post-ischemic activation of SUMO conjugation was suggested to be neuroprotective against ischemia/reperfusion (I/R) injury, the function of SENP1 in this process remained unclear. Here we show that transient middle cerebral artery occlusion in mice followed by 6, 12 and 24 h reperfusion significantly enhanced SENP1 levels in the affected brain area, independent of transcription. Consistent with the increase in SENP1, the levels of SUMO1-conjugated proteins were decreased by I/R in cortical neurons of control littermate mice, but unchanged in that of animals with conditional ablation of SENP1 gene from adult principal neurons, the SENP1flox/flox:CamKIIα-Cre (SENP1 cKO) mice. The SENP1 cKO mice exhibited a significant increase in infarct volume in the cerebral cortex and more severe motor impairment in response to I/R as compared with the control littermates. Cortical neurons from I/R-injured SENP1 cKO mice became more apoptotic than that from control littermates, as indicated by both TUNEL staining and caspase-3 activation. Overexpression of SENP1 in somatosensory cortices of adult wild-type (WT) mice suppressed I/R-induced neuronal apoptosis. We conclude that SENP1 plays a neuroprotective role in I/R injury by inhibiting apoptosis through decreasing SUMO1 conjugation. These findings reveal a novel mechanism of neuroprotection by protein desumoylation, which may help develop new therapies for mitigating brain injury associated with ischemic stroke.
Collapse
|
40
|
Kim S, Barry DM, Liu XY, Yin S, Munanairi A, Meng QT, Cheng W, Mo P, Wan L, Liu SB, Ratnayake K, Zhao ZQ, Gautam N, Zheng J, Karunarathne WKA, Chen ZF. Facilitation of TRPV4 by TRPV1 is required for itch transmission in some sensory neuron populations. Sci Signal 2016; 9:ra71. [PMID: 27436359 DOI: 10.1126/scisignal.aaf1047] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The transient receptor potential channels (TRPs) respond to chemical irritants and temperature. TRPV1 responds to the itch-inducing endogenous signal histamine, and TRPA1 responds to the itch-inducing chemical chloroquine. We showed that, in sensory neurons, TRPV4 is important for both chloroquine- and histamine-induced itch and that TRPV1 has a role in chloroquine-induced itch. Chloroquine-induced scratching was reduced in mice in which TRPV1 was knocked down or pharmacologically inhibited. Both TRPV4 and TRPV1 were present in some sensory neurons. Pharmacological blockade of either TRPV4 or TRPV1 significantly attenuated the Ca(2+) response of sensory neurons exposed to histamine or chloroquine. Knockout of Trpv1 impaired Ca(2+) responses and reduced scratching behavior evoked by a TRPV4 agonist, whereas knockout of Trpv4 did not alter TRPV1-mediated capsaicin responses. Electrophysiological analysis of human embryonic kidney (HEK) 293 cells coexpressing TRPV4 and TRPV1 revealed that the presence of both channels enhanced the activation kinetics of TRPV4 but not of TRPV1. Biochemical and biophysical studies suggested a close proximity between TRPV4 and TRPV1 in dorsal root ganglion neurons and in cultured cells. Thus, our studies identified TRPV4 as a channel that contributes to both histamine- and chloroquine-induced itch and indicated that the function of TRPV4 in itch signaling involves TRPV1-mediated facilitation. TRP facilitation through the formation of heteromeric complexes could be a prevalent mechanism by which the vast array of somatosensory information is encoded in sensory neurons.
Collapse
Affiliation(s)
- Seungil Kim
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Devin M Barry
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xian-Yu Liu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shijin Yin
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Admire Munanairi
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Qing-Tao Meng
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Cheng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, P.R. China
| | - Ping Mo
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Anesthesiology, Nanhai Hospital of Southern Medical University, Foshan 528000, P.R. China
| | - Li Wan
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shen-Bin Liu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kasun Ratnayake
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Zhong-Qiu Zhao
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Narasimhan Gautam
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jie Zheng
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA 95616, USA
| | | | - Zhou-Feng Chen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
41
|
Electrophysiological properties of brain-natriuretic peptide- and gastrin-releasing peptide-responsive dorsal horn neurons in spinal itch transmission. Neurosci Lett 2016; 627:51-60. [PMID: 27235577 DOI: 10.1016/j.neulet.2016.05.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/18/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
Spinal itch transmission has been reported to be mediated by at least two neuronal populations in spinal dorsal horn, neurons expressing brain-natriuretic peptide (BNP) receptor (Npra) and gastrin-releasing peptide (GRP) receptor (GRPR). Although Npra-expressing neurons were shown to be upstream of GRPR- expressing neurons in spinal itch transmission, the roles of BNP and GRP in the spinal neurotransmission of histamine-dependent and -independent itch remains unclear. Using in vivo electrophysiology and behavior analysis, this study examined the responses of chloroquine (histamine-independent pruritogen)-responsive and histamine-responsive dorsal horn neurons to spinal applications of BNP and GRP. Electrophysiologically, 9.5% of chloroquine-responsive neurons responded to BNP, 33.3% to GRP, and 4.8% to both, indicating that almost half of chloroquine-responsive neurons were unresponsive to both BNP and GRP. In contrast, histamine-responsive neurons did not respond to spinal BNP application, whereas 30% responded to spinal GRP application, indicating that 70% of histamine-responsive neurons were unresponsive to both BNP and GRP. Behavioral analyses showed differences in the time-course and frequency of scratching responses evoked by intrathecal BNP and GRP. These findings provide evidence that most BNP-Npra and GRP-GRPR signaling involve different pathways of spinal itch transmission, and that multiple neurotransmitters, in addition to BNP and GRP, are involved in spinal itch transmission. The electrophysiological results also suggest that spinal BNP contributes little to histaminergic itch directly.
Collapse
|
42
|
A central role for spinal dorsal horn neurons that express neurokinin-1 receptors in chronic itch. Pain 2016; 156:1240-1246. [PMID: 25830923 DOI: 10.1097/j.pain.0000000000000172] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated roles for spinal neurons expressing the neurokinin-1 receptor (NK1R) and/or gastrin-releasing peptide receptor (GRPR) in a mouse model of ovalbumin (OVA)-induced chronic atopic dermatitis. Mice receiving repeated topical application of OVA exhibited atopic-like skin lesions and behavioral signs of chronic itch including spontaneous scratching, touch-evoked scratching (alloknesis), and enhancement of chloroquine-evoked scratching (hyperknesis). Substance P-saporin (SP-SAP) and bombesin-saporin (BB-SAP) were intrathecally injected into OVA-sensitized mice to neurotoxically ablate NK1R- or GRPR-expressing spinal neurons, respectively. SP-SAP diminished the expression of NK1R in the superficial spinal dorsal horn and significantly attenuated all behavioral signs of chronic itch. BB-SAP reduced the spinal dorsal horn expression of GRPR and significantly attenuated hyperknesis, with no effect on spontaneous scratching or alloknesis. To investigate whether NK1R-expressing spinal neurons project in ascending somatosensory pathways, we performed a double-label study. The retrograde tracer, Fluorogold (FG), was injected into either the somatosensory thalamus or lateral parabrachial nucleus. In the upper cervical (C1-2) spinal cord, most neurons retrogradely labeled with FG were located in the dorsomedial aspect of the superficial dorsal horn. Of FG-labeled spinal neurons, 89% to 94% were double labeled for NK1R. These results indicate that NK1R-expressing spinal neurons play a major role in the expression of symptoms of chronic itch and give rise to ascending somatosensory projections. Gastrin-releasing peptide receptor-expressing spinal neurons contribute to hyperknesis but not to alloknesis or ongoing itch. NK1R-expressing spinal neurons represent a potential target to treat chronic itch.
Collapse
|
43
|
Barry DM, Li H, Liu XY, Shen KF, Liu XT, Wu ZY, Munanairi A, Chen XJ, Yin J, Sun YG, Li YQ, Chen ZF. Critical evaluation of the expression of gastrin-releasing peptide in dorsal root ganglia and spinal cord. Mol Pain 2016; 12:12/0/1744806916643724. [PMID: 27068287 PMCID: PMC4972254 DOI: 10.1177/1744806916643724] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/18/2016] [Indexed: 01/29/2023] Open
Abstract
There are substantial disagreements about the expression of gastrin-releasing peptide (GRP) in sensory neurons and whether GRP antibody cross-reacts with substance P (SP). These concerns necessitate a critical revaluation of GRP expression using additional approaches. Here, we show that a widely used GRP antibody specifically recognizes GRP but not SP. In the spinal cord of mice lacking SP (Tac1 KO), the expression of not only GRP but also other peptides, notably neuropeptide Y (NPY), is significantly diminished. We detected Grp mRNA in dorsal root ganglias using reverse transcription polymerase chain reaction, in situ hybridization and RNA-seq. We demonstrated that Grp mRNA and protein are upregulated in dorsal root ganglias, but not in the spinal cord, of mice with chronic itch. Few GRP+ immunostaining signals were detected in spinal sections following dorsal rhizotomy and GRP+ cell bodies were not detected in dissociated dorsal horn neurons. Ultrastructural analysis further shows that substantially more GRPergic fibers form synaptic contacts with gastrin releasing peptide receptor-positive (GRPR+) neurons than SPergic fibers. Our comprehensive study demonstrates that a majority of GRPergic fibers are of primary afferent origin. A number of factors such as low copy number of Grp transcripts, small percentage of cells expressing Grp, and the use of an eGFP GENSAT transgenic as a surrogate for GRP protein have contributed to the controversy. Optimization of experimental procedures facilitates the specific detection of GRP expression in dorsal root ganglia neurons.
Collapse
Affiliation(s)
- Devin M Barry
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA Departments of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hui Li
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA Department of Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, PR China
| | - Xian-Yu Liu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA Departments of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kai-Feng Shen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Xue-Ting Liu
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangdong, PR China
| | - Zhen-Yu Wu
- Department of Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, PR China
| | - Admire Munanairi
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA Departments of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiao-Jun Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Yin
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA Departments of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yan-Gang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yun-Qing Li
- Department of Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, PR China
| | - Zhou-Feng Chen
- Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA Departments of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA Departments of Psychiatry, Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA Departments of Developmental Biology, Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
44
|
Ramos-Álvarez I, Moreno P, Mantey SA, Nakamura T, Nuche-Berenguer B, Moody TW, Coy DH, Jensen RT. Insights into bombesin receptors and ligands: Highlighting recent advances. Peptides 2015; 72:128-144. [PMID: 25976083 PMCID: PMC4641779 DOI: 10.1016/j.peptides.2015.04.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/22/2022]
Abstract
This following article is written for Prof. Abba Kastin's Festschrift, to add to the tribute to his important role in the advancement of the role of peptides in physiological, as well as pathophysiological processes. There have been many advances during the 35 years of his prominent role in the Peptide field, not only as editor of the journal Peptides, but also as a scientific investigator and editor of two volumes of the Handbook of Biological Active Peptides [146,147]. Similar to the advances with many different peptides, during this 35 year period, there have been much progress made in the understanding of the pharmacology, cell biology and the role of (bombesin) Bn receptors and their ligands in various disease states, since the original isolation of bombesin from skin of the European frog Bombina bombina in 1970 [76]. This paper will briefly review some of these advances over the time period of Prof. Kastin 35 years in the peptide field concentrating on the advances since 2007 when many of the results from earlier studies were summarized [128,129]. It is appropriate to do this because there have been 280 articles published in Peptides during this time on bombesin-related peptides and it accounts for almost 5% of all publications. Furthermore, 22 Bn publications we have been involved in have been published in either Peptides [14,39,55,58,81,92,93,119,152,216,225,226,231,280,302,309,355,361,362] or in Prof. Kastin's Handbook of Biological Active Peptides [137,138,331].
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Paola Moreno
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Samuel A Mantey
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Taichi Nakamura
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Bernardo Nuche-Berenguer
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Terry W Moody
- Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - David H Coy
- Peptide Research Laboratory, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, United States
| | - Robert T Jensen
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States.
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW To highlight the most recent advances regarding gastrointestinal peptides and their relation to chronic itch, with focus on gastrin-releasing peptide (GRP), substance P, and their respective receptors. RECENT FINDINGS GRP and its high-affinity GRP receptor (GRPR) have been identified as key regulators in the spinal cord itch pathway and may be involved in the maintenance of chronic itch sensation. Several neuropeptides including GRP, neuromedin B, and substance P regulate itch signals in a cooperative or inhibitory manner on the spinal level. Small clinical studies show that neurokinin 1 receptor antagonists might be of benefit in the treatment of chronic itch. SUMMARY Chronic itch is a burdensome clinical problem, for which no specific treatment is available. Studies on the mechanisms of pruriceptive sensation and its signaling to the central nervous system (CNS) via the spinal cord have elucidated a number of peptides that are implicated in the regulation of itch-specific signaling pathways. Among those, GRP and its high-affinity GRP receptor have been proposed as key elements in the itch-specific neuronal pathways.
Collapse
Affiliation(s)
- H Christian Weber
- Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Descending control of itch transmission by the serotonergic system via 5-HT1A-facilitated GRP-GRPR signaling. Neuron 2014; 84:821-34. [PMID: 25453842 DOI: 10.1016/j.neuron.2014.10.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2014] [Indexed: 12/26/2022]
Abstract
UNLABELLED Central serotonin (5-hydroxytryptophan, 5-HT) modulates somatosensory transduction, but how it achieves sensory modality-specific modulation remains unclear. Here we report that enhancing serotonergic tone via administration of 5-HT potentiates itch sensation, whereas mice lacking 5-HT or serotonergic neurons in the brainstem exhibit markedly reduced scratching behavior. Through pharmacological and behavioral screening, we identified 5-HT1A as a key receptor in facilitating gastrin-releasing peptide (GRP)-dependent scratching behavior. Coactivation of 5-HT1A and GRP receptors (GRPR) greatly potentiates subthreshold, GRP-induced Ca(2+) transients, and action potential firing of GRPR(+) neurons. Immunostaining, biochemical, and biophysical studies suggest that 5-HT1A and GRPR may function as receptor heteromeric complexes. Furthermore, 5-HT1A blockade significantly attenuates, whereas its activation contributes to, long-lasting itch transmission. Thus, our studies demonstrate that the descending 5-HT system facilitates GRP-GRPR signaling via 5-HT1A to augment itch-specific outputs, and a disruption of crosstalk between 5-HT1A and GRPR may be a useful antipruritic strategy. VIDEO ABSTRACT
Collapse
|