1
|
Lin Y, Zheng L, Xu Y, Wang X, Li J, Zheng L, Liang G, Chen L. Interleukin-1 Receptor-Associated Kinase 4 (IRAK4) Degraders for Treating Inflammatory Diseases: Advances and Prospects. J Med Chem 2025; 68:902-914. [PMID: 39762193 DOI: 10.1021/acs.jmedchem.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) is involved in various inflammation-related diseases. Both the kinase and scaffolding functions of IRAK4 initiate pro-inflammatory factor transcription and expression. The scaffolding function of IRAK4 is essential for Myddosome assembly and NF-κB activation. Conventional small-molecule inhibitors effectively inhibit the kinase function of IRAK4 but do not block its scaffolding function. Recently, various IRAK4 degraders have shown promising therapeutic potential in inflammatory diseases. The most advanced IRAK4-selective degrader, KT-474 (SAR444656), significantly reduced inflammatory biomarker levels in patients and demonstrated high safety and tolerability. This perspective introduces and discusses the physiological biology of IRAK4, its associated diseases, and the current development of IRAK4 degraders, thereby offering insights into future research directions.
Collapse
Affiliation(s)
- Yaoxiang Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, China
- School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Lulu Zheng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310000, China
| | - Ying Xu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, China
| | - Xinyan Wang
- School of Medicine, Zhejiang University City College, Huzhou Road, Hangzhou 310015, China
| | - Jie Li
- School of Medicine, Zhejiang University City College, Huzhou Road, Hangzhou 310015, China
| | - Lei Zheng
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, China
| | - Guang Liang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, China
| | - Lingfeng Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
2
|
Zhang W, Young JI, Gomez L, Schmidt MA, Lukacsovich D, Kunkle BW, Chen X, Martin ER, Wang L. Blood DNA Methylation Signature for Incident Dementia: Evidence from Longitudinal Cohorts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.03.24316667. [PMID: 39649611 PMCID: PMC11623760 DOI: 10.1101/2024.11.03.24316667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
INTRODUCTION Distinguishing between molecular changes that precede dementia onset and those resulting from the disease is challenging with cross-sectional studies. METHODS We studied blood DNA methylation (DNAm) differences and incident dementia in two large longitudinal cohorts: the Offspring cohort of the Framingham Heart Study (FHS) and the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. We analyzed blood DNAm samples from over 1,000 cognitively unimpaired subjects. RESULTS Meta-analysis identified 44 CpGs and 44 differentially methylated regions consistently associated with time to dementia in both cohorts. Our integrative analysis identified early processes in dementia, such as immune responses and metabolic dysfunction. Furthermore, we developed a Methylation-based Risk Score, which successfully predicted future cognitive decline in an independent validation set, even after accounting for age, sex, APOE ε4, years of education, baseline diagnosis, and baseline MMSE score. DISCUSSION DNA methylation offers a promising source of biomarker for early detection of dementia.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Juan I. Young
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael A. Schmidt
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David Lukacsovich
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Brian W. Kunkle
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xi Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Eden R. Martin
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
3
|
Toledano A, Rodríguez-Casado A, Älvarez MI, Toledano-Díaz A. Alzheimer's Disease, Obesity, and Type 2 Diabetes: Focus on Common Neuroglial Dysfunctions (Critical Review and New Data on Human Brain and Models). Brain Sci 2024; 14:1101. [PMID: 39595866 PMCID: PMC11591712 DOI: 10.3390/brainsci14111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity, type 2 diabetes (T2D), and Alzheimer's disease (AD) are pathologies that affect millions of people worldwide. They have no effective therapy and are difficult to prevent and control when they develop. It has been known for many years that these diseases have many pathogenic aspects in common. We highlight in this review that neuroglial cells (astroglia, oligodendroglia, and microglia) play a vital role in the origin, clinical-pathological development, and course of brain neurodegeneration. Moreover, we include the new results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we are investigating. METHODS Critical bibliographic revision and biochemical neuropathological study of neuroglia in a T2D-AD model. RESULTS T2D and AD are not only "connected" by producing complex pathologies in the same individual (obesity, T2D, and AD), but they also have many common pathogenic mechanisms. These include insulin resistance, hyperinsulinemia, hyperglycemia, oxidative stress, mitochondrial dysfunction, and inflammation (both peripheral and central-or neuroinflammation). Cognitive impairment and AD are the maximum exponents of brain neurodegeneration in these pathological processes. both due to the dysfunctions induced by metabolic changes in peripheral tissues and inadequate neurotoxic responses to changes in the brain. In this review, we first analyze the common pathogenic mechanisms of obesity, T2D, and AD (and/or cerebral vascular dementia) that induce transcendental changes and responses in neuroglia. The relationships between T2D and AD discussed mainly focus on neuroglial responses. Next, we present neuroglial changes within their neuropathological context in diverse scenarios: (a) aging involution and neurodegenerative disorders, (b) human obesity and diabetes and obesity/diabetes models, (c) human AD and in AD models, and (d) human AD-T2D and AD-T2D models. An important part of the data presented comes from our own studies on humans and experimental models over the past few years. In the T2D-AD section, we included the results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we investigated, which showed that neuroglial dysfunctions (astrocytosis and microgliosis) manifest before the appearance of amyloid neuropathology, and that the amyloid pathology is greater than that presented by mice fed a normal, non-high-caloric diet A broad review is finally included on pharmacological, cellular, genic, and non-pharmacological (especially diet and lifestyle) neuroglial-related treatments, as well as clinical trials in a comparative way between T2D and AD. These neuroglial treatments need to be included in the multimodal/integral treatments of T2D and AD to achieve greater therapeutic efficacy in many millions of patients. CONCLUSIONS Neuroglial alterations (especially in astroglia and microglia, cornerstones of neuroinflammation) are markedly defining brain neurodegeneration in T2D and A, although there are some not significant differences between each of the studied pathologies. Neuroglial therapies are a very important and p. promising tool that are being developed to prevent and/or treat brain dysfunction in T2D-AD. The need for further research in two very different directions is evident: (a) characterization of the phenotypic changes of astrocytes and microglial cells in each region of the brain and in each phase of development of each isolated and associated pathology (single-cell studies are mandatory) to better understand the pathologies and define new therapeutic targets; (b) studying new therapeutic avenues to normalize the function of neuroglial cells (preventing neurotoxic responses and/or reversing them) in these pathologies, as well as the phenotypic characteristics in each moment of the course and place of the neurodegenerative process.
Collapse
Affiliation(s)
- Adolfo Toledano
- Instituto Cajal, CSIC, 28002 Madrid, Spain; (A.R.-C.); (M.I.Ä.)
| | | | | | | |
Collapse
|
4
|
Ménoret A, Agliano F, Karginov TA, Hu X, Vella AT. IRAK4 is an immunological checkpoint in neuropsychiatric systemic lupus erythematosus. Sci Rep 2024; 14:16393. [PMID: 39014006 PMCID: PMC11252422 DOI: 10.1038/s41598-024-63567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/30/2024] [Indexed: 07/18/2024] Open
Abstract
The search for dementia treatments, including treatments for neuropsychiatric lupus (NPSLE), has not yet uncovered useful therapeutic targets that mitigate underlying inflammation. Currently, NPSLE's limited treatment options are often accompanied by severe toxicity. Blocking toll-like receptor (TLR) and IL-1 receptor signal transduction by inhibiting interleukin-1 receptor-associated kinase 4 (IRAK4) offers a new pathway for intervention. Using a pre-clinical NPSLE model, we compare lupus-like B6.MRL-Faslpr (MRL) mice with B6.MRL-Faslpr-IRAK4 kinase-dead (MRL-IRAK4-KD) mice, which are were less prone to 'general' lupus-like symptoms. We demonstrate that lupus-prone mice with a mutation in the kinase domain of IRAK4 no longer display typical lupus hallmarks such as splenomegaly, inflammation, production of hormones, and anti-double-stranded (ds)DNA antibody. water maze behavioral testing, which measures contextual associative learning, revealed that mice without functional IRAK4 displayed a recovery in memory acquisition deficits. RNA-seq approach revealed that cytokine and hormone signaling converge on the JAK/STAT pathways in the mouse hippocampus. Ultimately, the targets identified in this work may result in broad clinical value that can fill the significant scientific and therapeutic gaps precluding development of cures for dementia.
Collapse
Affiliation(s)
- Antoine Ménoret
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | - Federica Agliano
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Timofey A Karginov
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Xiangyou Hu
- Department of Neuroscience, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Anthony T Vella
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
5
|
Kim EH, Lee WS, Kwon DR. Microcurrent Therapy Mitigates Neuronal Damage and Cognitive Decline in an Alzheimer's Disease Mouse Model: Insights into Mechanisms and Therapeutic Potential. Int J Mol Sci 2024; 25:6088. [PMID: 38892278 PMCID: PMC11173257 DOI: 10.3390/ijms25116088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) presents a significant challenge due to its multifaceted nature, characterized by cognitive decline, memory loss, and neuroinflammation. Though AD is an extensively researched topic, effective pharmacological interventions remain elusive, prompting explorations into non-pharmacological approaches. Microcurrent (MC) therapy, which utilizes imperceptible currents, has emerged as a potent clinical protocol. While previous studies have focused on its therapeutic effects, this study investigates the impact of MC on neuronal damage and neuroinflammation in an AD mouse model, specifically addressing potential side effects. Utilizing 5xFAD transgenic mice, we examined the effects of MC therapy on neuronal integrity and inflammation. Our findings suggest that MC therapy attenuates memory impairment and reduces neurodegeneration, as evidenced by improved performance in memory tests and the preservation of the neuronal structure. Additionally, MC therapy significantly decreases amyloid-beta (Aβ) plaque deposition and inhibits apoptosis, indicating its potential to mitigate AD pathology. This study determined that glial activation is effectively reduced by using MC therapy to suppress the TLR4-MyD88-NFκB pathway, which consequently causes the levels of inflammatory factors TNF-α, IL-1β, and IL-6 to decrease, thus implicating TLR4 in neurodegenerative disease-related neuroinflammation. Furthermore, while our study did not observe significant adverse effects, a further clinical trial into potential side effects and neuroinflammatory responses associated with MC therapy is warranted.
Collapse
Affiliation(s)
- Eun Ho Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Nam-gu, Daegu 42472, Republic of Korea; (E.H.K.); (W.S.L.)
| | - Won Seok Lee
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Nam-gu, Daegu 42472, Republic of Korea; (E.H.K.); (W.S.L.)
| | - Dong Rak Kwon
- Department of Rehabilitation Medicine, School of Medicine, Daegu Catholic University, Nam-gu, Daegu 42472, Republic of Korea
| |
Collapse
|
6
|
Bolduc PN, Pfaffenbach M, Evans R, Xin Z, Henry KL, Gao F, Fang T, Silbereis J, Vera Rebollar J, Li P, Chodaparambil JV, Metrick C, Peterson EA. A Tiny Pocket Packs a Punch: Leveraging Pyridones for the Discovery of CNS-Penetrant Aza-indazole IRAK4 Inhibitors. ACS Med Chem Lett 2024; 15:714-721. [PMID: 38746903 PMCID: PMC11089553 DOI: 10.1021/acsmedchemlett.4c00102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/11/2025] Open
Abstract
We herein report the discovery, synthesis, and evolution of a series of indazoles and azaindazoles as CNS-penetrant IRAK4 inhibitors. Described is the use of structure-based and property-based drug design strategically leveraged to guide the property profile of a key series into a favorable property space while maintaining potency and selectivity. Our rationale that led toward functionalities with potency improvements, CNS-penetration, solubility, and favorable drug-like properties is portrayed. In vivo evaluation of an advanced analogue showed significant, dose-dependent modulation of inflammatory cytokines in a mouse model. In pursuit of incorporating a highly engineered bridged ether that was crucial to metabolic stability in this series, significant synthetic challenges were overcome to enable the preparation of the analogues.
Collapse
Affiliation(s)
- Philippe N. Bolduc
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Magnus Pfaffenbach
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ryan Evans
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Zhili Xin
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kate L. Henry
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Fang Gao
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Terry Fang
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - John Silbereis
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jorge Vera Rebollar
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Pei Li
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jayanth V Chodaparambil
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Claire Metrick
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Emily A. Peterson
- Department
of Medicinal Chemistry;Department of Multiple Sclerosis and Immunology;Drug Metabolism and
Pharmacokinetics;Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
7
|
Chang JS, Vinogradov AA, Zhang Y, Goto Y, Suga H. Deep Learning-Driven Library Design for the De Novo Discovery of Bioactive Thiopeptides. ACS CENTRAL SCIENCE 2023; 9:2150-2160. [PMID: 38033794 PMCID: PMC10683472 DOI: 10.1021/acscentsci.3c00957] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
Broad substrate tolerance of ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic enzymes has allowed numerous strategies for RiPP engineering. However, despite relaxed specificities, exact substrate preferences of RiPP enzymes are often difficult to pinpoint. Thus, when designing combinatorial libraries of RiPP precursors, balancing the compound diversity with the substrate fitness can be challenging. Here, we employed a deep learning model to streamline the design of mRNA display libraries. Using an in vitro reconstituted thiopeptide biosynthesis platform, we performed mRNA display-based profiling of substrate fitness for the biosynthetic pathway involving five enzymes to train an accurate deep learning model. We then utilized the model to design optimal mRNA libraries and demonstrated their utility in affinity selections against IRAK4 kinase and the TLR10 cell surface receptor. The selections led to the discovery of potent thiopeptide ligands against both target proteins (KD up to 1.3 nM for the best compound against IRAK4 and 300 nM for TLR10). The IRAK4-targeting compounds also inhibited the kinase at single-digit μM concentrations in vitro, exhibited efficient internalization into HEK293H cells, and suppressed NF-kB-mediated signaling in cells. Altogether, the developed approach streamlines the discovery of pseudonatural RiPPs with de novo designed biological activities and favorable pharmacological properties.
Collapse
Affiliation(s)
- Jun Shi Chang
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Alexander A. Vinogradov
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yue Zhang
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Goto
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Yadav H, Shirumalla RK. Emerging trends in IRAK-4 kinase research. Mol Biol Rep 2023; 50:7825-7837. [PMID: 37490192 DOI: 10.1007/s11033-023-08438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 04/06/2023] [Indexed: 07/26/2023]
Abstract
The IRAK-4 kinase lies at a critical signaling node that drives cancer cell survival through multiple mechanisms, activation, and translocation of NF-κB mediated inflammatory responses and innate immune signaling through regulation of interferon-α/β receptor (IFNα/β). Inhibition, of IRAK-4, has consequently drawn a lot of attention in recent years to address indications ranging from oncology to autoimmune disorders to neurodegeneration, etc. However, the key stumbling block in targeting IRAK-4 is that despite the inhibition of the kinase activity using an inhibitor the target remains effective, reducing the potential of an inhibitor. This is due to the "scaffolding effect" because of which although regulation of downstream processes by IRAK-4 has been primarily linked with kinase function; however, still, various reports have suggested that IRAK-4 has a non-kinase function in a variety of cell types. This is attributed to the myddosome complex formed by IRAK-4 with myd88, IRAK-2, and IRAK-1 which by itself can cause the activation of downstream effector TRAF6 despite inhibition of the kinase domain of IRAK-4. With this challenge, several groups initiated the development of targeting protein degraders of IRAK-4 using Proteolysis-Targeting Chimeras (PROTACs) technology to completely remove the IRAK-4 from the cellular milieu. In this review, we will capture all these developments and the evolving science around this target.
Collapse
Affiliation(s)
- Himanshu Yadav
- SGT College of Pharmacy, SGT University, Budhera, Gurugram, Haryana, 122505, India
| | - Raj Kumar Shirumalla
- SGT College of Pharmacy, SGT University, Budhera, Gurugram, Haryana, 122505, India.
| |
Collapse
|
9
|
Inami H, Mizutani T, Watanabe J, Hayashida H, Ito T, Terasawa T, Kontani T, Yamagishi H, Usuda H, Aoyama N, Imamura E, Ishikawa T. Design, synthesis, and pharmacological evaluation of N-(3-carbamoyl-1H-pyrazol-4-yl)-1,3-oxazole-4-carboxamide derivatives as interleukin-1 receptor-associated kinase 4 inhibitors with reduced potential for cytochrome P450 1A2 induction. Bioorg Med Chem 2023; 87:117302. [PMID: 37201454 DOI: 10.1016/j.bmc.2023.117302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/20/2023]
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) is a critical molecule in Toll-like receptor/interleukin-1 receptor signaling and an attractive therapeutic target for a wide range of inflammatory and autoimmune diseases as well as cancers. In our search for novel IRAK4 inhibitors, we conducted structural modification of a thiazolecarboxamide derivative 1, a lead compound derived from high-throughput screening hits, to elucidate structure-activity relationship and improve drug metabolism and pharmacokinetic (DMPK) properties. First, conversion of the thiazole ring of 1 to an oxazole ring along with introduction of a methyl group at the 2-position of the pyridine ring aimed at reducing cytochrome P450 (CYP) inhibition were conducted to afford 16. Next, modification of the alkyl substituent at the 1-position of the pyrazole ring of 16 aimed at improving CYP1A2 induction properties revealed that branched alkyl and analogous substituents such as isobutyl (18) and (oxolan-3-yl)methyl (21), as well as six-membered saturated heterocyclic groups such as oxan-4-yl (2), piperidin-4-yl (24, 25), and dioxothian-4-y (26), are effective for reducing induction potential. Representative compound AS2444697 (2) exhibited potent IRAK4 inhibitory activity with an IC50 value of 20 nM and favorable DMPK properties such as low risk of drug-drug interactions mediated by CYPs as well as excellent metabolic stability and oral bioavailability.
Collapse
Affiliation(s)
- Hiroshi Inami
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan.
| | - Tsuyoshi Mizutani
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Junko Watanabe
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Hisashi Hayashida
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Tomonori Ito
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Takeshi Terasawa
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Toru Kontani
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Hiroaki Yamagishi
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Hiroyuki Usuda
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Naohiro Aoyama
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Emiko Imamura
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Takeshi Ishikawa
- Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| |
Collapse
|
10
|
Hao Y, Wang J, Ma J, Yu X, Li Z, Wu S, Tian S, Ma H, He S, Zhang X. Design, synthesis, evaluation and optimization of potent IRAK4 inhibitors alleviating production of inflammatory cytokines in LPS-induced SIRS model. Bioorg Chem 2023; 137:106584. [PMID: 37163814 DOI: 10.1016/j.bioorg.2023.106584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/16/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023]
Abstract
Interleukin-1 receptor associated kinase-4 (IRAK4) has emerged as a therapeutic target for inflammatory and autoimmune diseases. Through reversing the amide of CA-4948 and computer aided structure-activity relationship (SAR) studies, a series of IRAK4 inhibitors with oxazolo[4,5-b]pyridine scaffold were identified. Compound 32 showed improved potency (IC50 = 43 nM) compared to CA-4948 (IC50 = 115 nM), but suffered from hERG inhibition (IC50 = 5.7 μM). Further optimization led to compound 42 with reduced inhibition of hERG (IC50 > 30 μM) and 13-fold higher activity (IC50 = 8.9 nM) than CA-4948. Importantly, compound 42 had favorable in vitro ADME and in vivo pharmacokinetic properties. Furthermore, compound 42 significantly reduced LPS-induced production of serum TNF-α and IL-6 cytokines in the mouse model. The overall profiles of compound 42 support it as a lead for the development of IRAK4 inhibitors for the treatment of inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Yongjin Hao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Jin Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Jiawan Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaoliang Yu
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, 100005, P. R. China; Suzhou Institute of Systems Medicine, Suzhou, 215123 Jiangsu, P. R. China
| | - Zhanhui Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Shuwei Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Sheng Tian
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Haikuo Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Sudan He
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, 100005, P. R. China; Suzhou Institute of Systems Medicine, Suzhou, 215123 Jiangsu, P. R. China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P. R. China.
| | - Xiaohu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| |
Collapse
|
11
|
Toledano-Díaz A, Álvarez MI, Toledano A. The relationships between neuroglial alterations and neuronal changes in Alzheimer's disease, and the related controversies I: Gliopathogenesis and glioprotection. J Cent Nerv Syst Dis 2022; 14:11795735221128703. [PMID: 36238130 PMCID: PMC9551335 DOI: 10.1177/11795735221128703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Since Alois Alzheimer described the pathology of Alzheimer's disease in 1907, an increasing number of studies have attempted to discover its causes and possible ways to treat it. For decades, research has focused on neuronal degeneration and the disruption to the neural circuits that occurs during disease progression, undervaluing in some extent the alterations to glial cells even though these alterations were described in the very first studies of this disease. In recent years, it has been recognized that different families of neuroglia are not merely support cells for neurons but rather key and active elements in the physiology and pathology of the nervous system. Alterations to different types of neuroglia (especially astroglia and microglia but also mature oligodendroglia and oligodendroglial progenitors) have been identified in the initial neuropathological changes that lead to dementia, suggesting that they may represent therapeutic targets to prevent neurodegeneration. In this review, based on our own studies and on the relevant scientific literature, we argue that a careful and in-depth study of glial cells will be fundamental to understanding the origin and progression of Alzheimer's disease. In addition, we analyze the main issues regarding the neuroprotective and neurotoxic role of neuroglial changes, reactions and/or involutions in both humans with Alzheimer's disease and in experimental models of this condition.
Collapse
|
12
|
Wu R, Liu J, Vu J, Huang Y, Dietz DM, Li JX. Interleukin-1 receptor-associated kinase 4 (IRAK4) in the nucleus accumbens regulates opioid-seeking behavior in male rats. Brain Behav Immun 2022; 101:37-48. [PMID: 34958862 PMCID: PMC8885906 DOI: 10.1016/j.bbi.2021.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/09/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022] Open
Abstract
Opioid addiction remains a severe health problem. While substantial insights underlying opioid addiction have been yielded from neuron-centric studies, the contribution of non-neuronal mechanisms to opioid-related behavioral adaptations has begun to be recognized. Toll-like receptor 4 (TLR4), a pattern recognition receptor, has been widely suggested in opioid-related behaviors. Interleukin-1 receptor-associated kinase 4 (IRAK4) is a kinase essential for TLR4 responses, However, the potential role of IRAK4 in opioid-related responses has not been examined. Here, we explored the role of IRAK4 in cue-induced opioid-seeking behavior in male rats. We found that morphine self-administration increased the phosphorylation level of IRAK4 in the nucleus accumbens (NAc) in rats; the IRAK4 signaling remained activated after morphine extinction and cue-induced reinstatement test. Both systemic and local inhibition of IRAK4 in the NAc core attenuated cue-induced morphine-seeking behavior without affecting the locomotor activity and cue-induced sucrose-seeking. In addition, inhibition of IRAK4 also reduced the cue-induced reinstatement of fentanyl-seeking. Our findings suggest an important role of IRAK4 in opioid relapse-like behaviors and provide novel evidence in the association between innate immunity and drug addiction.
Collapse
Affiliation(s)
- Ruyan Wu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY,Medical College of Yangzhou University, Yangzhou, China
| | - Jianfeng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - Jimmy Vu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - Yufei Huang
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - David M. Dietz
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
13
|
TLR Signaling in Brain Immunity. Handb Exp Pharmacol 2021; 276:213-237. [PMID: 34761292 DOI: 10.1007/164_2021_542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Toll-like receptors (TLRs) comprise a group of transmembrane proteins with crucial roles in pathogen recognition, immune responses, and signal transduction. This family represented the first line of immune homeostasis in an evolutionarily conserved manner. Extensive researches in the past two decades had emphasized their structural and functional characteristics under both healthy and pathological conditions. In this review, we summarized the current understanding of TLR signaling in the central nervous system (CNS), which had been viewed as a previously "immune-privileged" but now "immune-specialized" area, with major implications for further investigation of pathological nature as well as potential therapeutic manipulation of TLR signaling in various neurological disorders.
Collapse
|
14
|
Ding J, Huang J, Yin D, Liu T, Ren Z, Hu S, Ye Y, Le C, Zhao N, Zhou H, Li Z, Qi X, Huang J. Trilobatin Alleviates Cognitive Deficits and Pathologies in an Alzheimer's Disease Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3298400. [PMID: 34777683 PMCID: PMC8589506 DOI: 10.1155/2021/3298400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease nowadays that causes memory impairments. It is characterized by extracellular aggregates of amyloid-beta (Aβ), intracellular aggregates of hyperphosphorylated Tau (p-Tau), and other pathological features. Trilobatin (TLB), a natural flavonoid compound isolated from Lithocarpuspolystachyus Rehd., has emerged as a neuroprotective agent. However, the effects and mechanisms of TLB on Alzheimer's disease (AD) remain unclear. In this research, different doses of TLB were orally introduced to 3×FAD AD model mice. The pathology, memory performance, and Toll-like receptor 4- (TLR4-) dependent inflammatory pathway protein level were assessed. Here, we show that TLB oral treatment protected 3×FAD AD model mice against the Aβ burden, neuroinflammation, Tau hyperphosphorylation, synaptic degeneration, hippocampal neuronal loss, and memory impairment. The TLR4, a pattern recognition immune receptor, has been implicated in neurodegenerative disease-related neuroinflammation. We found that TLB suppressed glial activation by inhibiting the TLR4-MYD88-NFκB pathway, which leads to the inflammatory factor TNF-α, IL-1β, and IL-6 reduction. Our study shows that TLR4 might be a key target of TLB in AD treatment and suggests a multifaceted target of TLB in halting AD. Taken together, our findings suggest a potential therapeutic effect of TLB in AD treatment.
Collapse
Affiliation(s)
- Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Jian Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dan Yin
- Laboratory of Electron Microscopy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang 550004, China
| | - Zheng Ren
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Shanshan Hu
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yuanliang Ye
- Department of Neurosurgery, Liuzhou People's Hospital, Liuzhou, China
| | - Cuiyun Le
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Na Zhao
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Hongmei Zhou
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Zhu Li
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Jiang Huang
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
15
|
Iloun P, Hooshmandi E, Gheibi S, Kashfi K, Ghasemi R, Ahmadiani A. Roles and Interaction of the MAPK Signaling Cascade in Aβ25-35-Induced Neurotoxicity Using an Isolated Primary Hippocampal Cell Culture System. Cell Mol Neurobiol 2021; 41:1497-1507. [PMID: 32601776 PMCID: PMC11448686 DOI: 10.1007/s10571-020-00912-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/22/2020] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is characterized with increased formation of amyloid-β (Aβ) in the brain. Aβ peptide toxicity is associated with disturbances of several intracellular signaling pathways such as mitogen activated protein kinases (MAPKs). The aim of this study was to investigate the role of MAPKs and their interactions in Aβ-induced neurotoxicity using isolated hippocampal neurons from the rat. Primary hippocampal cells were cultured in neurobasal medium for 4 days. Cells were treated with Aβ25-35 and/or MAPKs inhibitors for 24 h. Cell viability was determined by an MTT assay and phosphorylated levels of P38, JNK, and ERK were measured by Western blots. Aβ treatment (10-40 µM) significantly decreased hippocampal cell viability in a dose-dependent manner. Inhibition of P38 and ERK did not restore cell viability, while JNK inhibition potentiated the Aβ-induced neurotoxicity. Compared to the controls, Aβ treatment increased levels of phosphorylated JNK, ERK, and c-Jun, while it had no effect on levels of phosphorylated P38. In addition, P38 inhibition led to decreased expression levels of phosphorylated ERK; inhibition of JNK resulted in decreased expression of c-Jun; and inhibition of ERK, decreased phosphorylated levels of JNK. These results strongly suggest that P38, ERK, and JNK are not independently involved in Aβ-induced toxicity in the hippocampal cells. In AD, which is a multifactorial disease, inhibiting a single member of the MAPK signaling pathway, does not seem to be sufficient to mitigate Aβ-induced toxicity and thus their interactions with each other or potentially with different signaling pathways should be taken into account.
Collapse
Affiliation(s)
- Parisa Iloun
- Physiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Velenjak, Chamran Exp. Way, P.O. Box 19615-1178, Tehran, Iran
| | - Sevda Gheibi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA
| | - Rasoul Ghasemi
- Physiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Velenjak, Chamran Exp. Way, P.O. Box 19615-1178, Tehran, Iran.
| |
Collapse
|
16
|
Yuan Y, Chen J, Ge X, Deng J, Xu X, Zhao Y, Wang H. Activation of ERK-Drp1 signaling promotes hypoxia-induced Aβ accumulation by upregulating mitochondrial fission and BACE1 activity. FEBS Open Bio 2021; 11:2740-2755. [PMID: 34403210 PMCID: PMC8487051 DOI: 10.1002/2211-5463.13273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
Hypoxia is a risk factor for Alzheimer's disease (AD). Besides, mitochondrial fission is increased in response to hypoxia. In this study, we sought to investigate whether hypoxia‐induced mitochondrial fission plays a critical role in regulating amyloid‐β (Aβ) production. Hypoxia significantly activated extracellular signal‐regulated kinase (ERK), increased phosphorylation of dynamin‐related protein 1 (Drp1) at serine 616, and decreased phosphorylation of Drp1 at serine 637. Importantly, hypoxia triggered mitochondrial dysfunction, elevated β‐secretase 1 (BACE1) and γ‐secretase activities, and promoted Aβ accumulation in HEK293 cells transfected with β‐amyloid precursor protein (APP) plasmid harboring the Swedish and Indiana familial Alzheimer's disease mutations (APPSwe/Ind HEK293 cells). Then, we investigated whether the ERK inhibitor PD325901 and Drp1 inhibitor mitochondrial division inhibitor‐1 (Mdivi‐1) would attenuate hypoxia‐induced mitochondrial fission and Aβ generation in APPSwe/Ind HEK293 cells. PD325901 and Mdivi‐1 inhibited phosphorylation of Drp1 at serine 616, resulting in reduced mitochondrial fission under hypoxia. Furthermore, hypoxia‐induced mitochondrial dysfunction, BACE1 activation, and Aβ accumulation were downregulated by PD325901 and Mdivi‐1. Our data demonstrate that hypoxia induces mitochondrial fission, impairs mitochondrial function, and facilitates Aβ generation. The ERK–Drp1 signaling pathway is partly involved in the hypoxia‐induced Aβ generation by regulating mitochondrial fission and BACE1 activity. Therefore, inhibition of hypoxia‐induced mitochondrial fission may prevent or slow the progression of AD.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Jingjiong Chen
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Xuhua Ge
- Department of General Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiangshan Deng
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Xiaofeng Xu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | - Hongmei Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| |
Collapse
|
17
|
Gene Expression Profile in Different Age Groups and Its Association with Cognitive Function in Healthy Malay Adults in Malaysia. Cells 2021; 10:cells10071611. [PMID: 34199148 PMCID: PMC8304476 DOI: 10.3390/cells10071611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
The mechanism of cognitive aging at the molecular level is complex and not well understood. Growing evidence suggests that cognitive differences might also be caused by ethnicity. Thus, this study aims to determine the gene expression changes associated with age-related cognitive decline among Malay adults in Malaysia. A cross-sectional study was conducted on 160 healthy Malay subjects, aged between 28 and 79, and recruited around Selangor and Klang Valley, Malaysia. Gene expression analysis was performed using a HumanHT-12v4.0 Expression BeadChip microarray kit. The top 20 differentially expressed genes at p < 0.05 and fold change (FC) = 1.2 showed that PAFAH1B3, HIST1H1E, KCNA3, TM7SF2, RGS1, and TGFBRAP1 were regulated with increased age. The gene set analysis suggests that the Malay adult's susceptibility to developing age-related cognitive decline might be due to the changes in gene expression patterns associated with inflammation, signal transduction, and metabolic pathway in the genetic network. It may, perhaps, have important implications for finding a biomarker for cognitive decline and offer molecular targets to achieve successful aging, mainly in the Malay population in Malaysia.
Collapse
|
18
|
Targeting Common Signaling Pathways for the Treatment of Stroke and Alzheimer's: a Comprehensive Review. Neurotox Res 2021; 39:1589-1612. [PMID: 34169405 DOI: 10.1007/s12640-021-00381-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/11/2021] [Accepted: 05/24/2021] [Indexed: 12/30/2022]
Abstract
Neurodegenerative diseases such as stroke and Alzheimer's disease (AD) are two inter-related disorders that affect the neurons in the brain and central nervous system. Alzheimer's is a disease by undefined origin and causes. Stroke and its most common type, ischemic stroke (IS), occurs due to the blockade of cerebral blood vessels. As an important feature, both of disorders are associated with irreversible damages to the brain and nervous system. In this regard, finding common signaling pathways and the same molecular origin between these two diseases may be a promising way for their solution. On the basis of literature appraisal, the most common signaling cascades implicated in the pathogenesis of AD and stroke including notch, autophagy, inflammatory, and insulin signaling pathways were reviewed. Furthermore, current therapeutic strategies including natural and synthetic pharmaceuticals aiming modulation of respective signaling factors were scrutinized to ameliorate neural deficits in AD and stroke. Taken together, digging deeper in the common connections and signal targeting can be greatly helpful in understanding and unified treating of these disorders.
Collapse
|
19
|
An L, Shen Y, Chopp M, Zacharek A, Venkat P, Chen Z, Li W, Qian Y, Landschoot-Ward J, Chen J. Deficiency of Endothelial Nitric Oxide Synthase (eNOS) Exacerbates Brain Damage and Cognitive Deficit in A Mouse Model of Vascular Dementia. Aging Dis 2021; 12:732-746. [PMID: 34094639 PMCID: PMC8139201 DOI: 10.14336/ad.2020.0523] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022] Open
Abstract
Vascular Dementia (VaD) accounts for nearly 20% of all cases of dementia. eNOS plays an important role in neurovascular remodeling, anti-inflammation, and cognitive functional recovery after stroke. In this study, we investigated whether eNOS regulates brain damage, cognitive function in mouse model of bilateral common carotid artery stenosis (BCAS) induced VaD. Late-adult (6-8 months) C57BL/6J and eNOS knockout (eNOS-/-) mice were subjected to BCAS (n=12/group) or sham group (n=8/group). BCAS was performed by applying microcoils to both common carotid arteries. Cerebral blood flow (CBF) and blood pressure were measured. A battery of cognitive functional tests was performed, and mice were sacrificed 30 days after BCAS. Compared to corresponding sham mice, BCAS in wild-type (WT) and eNOS-/- mice significantly: 1) induces short term, long term memory loss, spatial learning and memory deficits; 2) decreases CBF, increases ischemic cell damage, including apoptosis, white matter (WM) and axonal damage; 3) increases blood brain barrier (BBB) leakage, decreases aquaporin-4 (AQP4) expression and vessel density; 4) increases microglial, astrocyte activation and oxidative stress in the brain; 5) increases inflammatory factor interleukin-1 receptor-associated kinase-1(IRAK-1) and amyloid beta (Aβ) expression in brain; 6) increases IL-6 and IRAK4 expression in brain. eNOS-/-sham mice exhibit increased blood pressure, decreased iNOS and nNOS in brain compared to WT-sham mice. Compared to WT-BCAS mice, eNOS-/-BCAS mice exhibit worse vascular and WM/axonal damage, increased BBB leakage and inflammatory response, increased cognitive deficit, decreased iNOS, nNOS in brain. eNOS deficit exacerbates BCAS induced brain damage and cognitive deficit.
Collapse
Affiliation(s)
- Lulu An
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Yi Shen
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA.,2Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China (Current address)
| | - Michael Chopp
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA.,3Department of Physics, Oakland University, Rochester, MI-48309, USA
| | - Alex Zacharek
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Poornima Venkat
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Zhili Chen
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Wei Li
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Yu Qian
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | | | - Jieli Chen
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| |
Collapse
|
20
|
Quan W, Luo Q, Hao W, Tomic I, Furihata T, Schulz-Schäffer W, Menger MD, Fassbender K, Liu Y. Haploinsufficiency of microglial MyD88 ameliorates Alzheimer's pathology and vascular disorders in APP/PS1-transgenic mice. Glia 2021; 69:1987-2005. [PMID: 33934399 DOI: 10.1002/glia.24007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/12/2022]
Abstract
Growing evidence indicates that innate immune molecules regulate microglial activation in Alzheimer's disease (AD); however, their effects on amyloid pathology and neurodegeneration remain inconclusive. Here, we conditionally deleted one allele of myd88 gene specifically in microglia in APP/PS1-transgenic mice by 6 months and analyzed AD-associated pathologies by 9 months. We observed that heterozygous deletion of myd88 gene in microglia decreased cerebral amyloid β (Aβ) load and improved cognitive function of AD mice, which was correlated with reduced number of microglia in the brain and inhibited transcription of inflammatory genes, for example, tnf-α and il-1β, in both brain tissues and individual microglia. To investigate mechanisms underlying the pathological improvement, we observed that haploinsufficiency of MyD88 increased microglial recruitment toward Aβ deposits, which might facilitate Aβ clearance. Microglia with haploinsufficient expression of MyD88 also increased vasculature in the brain of APP/PS1-transgenic mice, which was associated with up-regulated transcription of osteopontin and insulin-like growth factor genes in microglia. Moreover, MyD88-haploinsufficient microglia elevated protein levels of LRP1 in cerebral capillaries of APP/PS1-transgenic mice. Cell culture experiments further showed that treatments with interleukin-1β decreased LRP1 expression in pericytes. In summary, haploinsufficiency of MyD88 in microglia at a late disease stage attenuates pro-inflammatory activation and amyloid pathology, prevents the impairment of microvasculature and perhaps also protects LRP1-mediated Aβ clearance in the brain of APP/PS1-transgenic mice, all of which improves neuronal function of AD mice.
Collapse
Affiliation(s)
- Wenqiang Quan
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany.,Department of Clinical Laboratory, Tongji Hospital, Tongji University Medical School, Shanghai, China
| | - Qinghua Luo
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany
| | - Wenlin Hao
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany
| | - Inge Tomic
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany
| | - Tomomi Furihata
- Department of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | | | - Michael D Menger
- Department of Experimental Surgery, Saarland University, Homburg, Germany
| | - Klaus Fassbender
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany
| | - Yang Liu
- Department of Neurology, Saarland University, Homburg, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg, Germany
| |
Collapse
|
21
|
Canet-Pons J, Sen NE, Arsović A, Almaguer-Mederos LE, Halbach MV, Key J, Döring C, Kerksiek A, Picchiarelli G, Cassel R, René F, Dieterlé S, Fuchs NV, König R, Dupuis L, Lütjohann D, Gispert S, Auburger G. Atxn2-CAG100-KnockIn mouse spinal cord shows progressive TDP43 pathology associated with cholesterol biosynthesis suppression. Neurobiol Dis 2021; 152:105289. [PMID: 33577922 DOI: 10.1016/j.nbd.2021.105289] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Large polyglutamine expansions in Ataxin-2 (ATXN2) cause multi-system nervous atrophy in Spinocerebellar Ataxia type 2 (SCA2). Intermediate size expansions carry a risk for selective motor neuron degeneration, known as Amyotrophic Lateral Sclerosis (ALS). Conversely, the depletion of ATXN2 prevents disease progression in ALS. Although ATXN2 interacts directly with RNA, and in ALS pathogenesis there is a crucial role of RNA toxicity, the affected functional pathways remain ill defined. Here, we examined an authentic SCA2 mouse model with Atxn2-CAG100-KnockIn for a first definition of molecular mechanisms in spinal cord pathology. Neurophysiology of lower limbs detected sensory neuropathy rather than motor denervation. Triple immunofluorescence demonstrated cytosolic ATXN2 aggregates sequestrating TDP43 and TIA1 from the nucleus. In immunoblots, this was accompanied by elevated CASP3, RIPK1 and PQBP1 abundance. RT-qPCR showed increase of Grn, Tlr7 and Rnaset2 mRNA versus Eif5a2, Dcp2, Uhmk1 and Kif5a decrease. These SCA2 findings overlap well with known ALS features. Similar to other ataxias and dystonias, decreased mRNA levels for Unc80, Tacr1, Gnal, Ano3, Kcna2, Elovl5 and Cdr1 contrasted with Gpnmb increase. Preterminal stage tissue showed strongly activated microglia containing ATXN2 aggregates, with parallel astrogliosis. Global transcriptome profiles from stages of incipient motor deficit versus preterminal age identified molecules with progressive downregulation, where a cluster of cholesterol biosynthesis enzymes including Dhcr24, Msmo1, Idi1 and Hmgcs1 was prominent. Gas chromatography demonstrated a massive loss of crucial cholesterol precursor metabolites. Overall, the ATXN2 protein aggregation process affects diverse subcellular compartments, in particular stress granules, endoplasmic reticulum and receptor tyrosine kinase signaling. These findings identify new targets and potential biomarkers for neuroprotective therapies.
Collapse
Affiliation(s)
- Júlia Canet-Pons
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Nesli-Ece Sen
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Faculty of Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Aleksandar Arsović
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Luis-Enrique Almaguer-Mederos
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Center for Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - Melanie V Halbach
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Jana Key
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Faculty of Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Nordrhein-Westfalen, Germany
| | - Gina Picchiarelli
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Raphaelle Cassel
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Frédérique René
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Stéphane Dieterlé
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Nina V Fuchs
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Luc Dupuis
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Nordrhein-Westfalen, Germany
| | - Suzana Gispert
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
22
|
Liang X, Wu H, Colt M, Guo X, Pluimer B, Zeng J, Dong S, Zhao Z. Microglia and its Genetics in Alzheimer's Disease. Curr Alzheimer Res 2021; 18:676-688. [PMID: 34749609 PMCID: PMC9790807 DOI: 10.2174/1567205018666211105140732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/27/2022]
Abstract
Alzheimer's Disease (AD) is the most prevalent form of dementia across the world. While its discovery and pathological manifestations are centered on protein aggregations of amyloid- beta (Aβ) and hyperphosphorylated tau protein, neuroinflammation has emerged in the last decade as a main component of the disease in terms of both pathogenesis and progression. As the main innate immune cell type in the central nervous system (CNS), microglia play a very important role in regulating neuroinflammation, which occurs commonly in neurodegenerative conditions, including AD. Under inflammatory response, microglia undergo morphological changes and status transition from homeostatic to activated forms. Different microglia subtypes displaying distinct genetic profiles have been identified in AD, and these signatures often link to AD risk genes identified from the genome-wide association studies (GWAS), such as APOE and TREM2. Furthermore, many AD risk genes are highly enriched in microglia and specifically influence the functions of microglia in pathogenesis, e.g. releasing inflammatory cytokines and clearing Aβ. Therefore, building up a landscape of these risk genes in microglia, based on current preclinical studies and in the context of their pathogenic or protective effects, would largely help us to understand the complex etiology of AD and provide new insight into the unmet need for effective treatment.
Collapse
Affiliation(s)
- Xinyan Liang
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, USA
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, USA
| | - Haijian Wu
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, USA
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Mark Colt
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, USA
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, USA
| | - Xinying Guo
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, USA
| | - Brock Pluimer
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, USA
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, USA
| | - Jianxiong Zeng
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, USA
| | - Shupeng Dong
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, USA
- Shanghai Institute of Immunology; Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhen Zhao
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, USA
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, USA
| |
Collapse
|
23
|
Tsatsanis A, McCorkindale AN, Wong BX, Patrick E, Ryan TM, Evans RW, Bush AI, Sutherland GT, Sivaprasadarao A, Guennewig B, Duce JA. The acute phase protein lactoferrin is a key feature of Alzheimer's disease and predictor of Aβ burden through induction of APP amyloidogenic processing. Mol Psychiatry 2021; 26:5516-5531. [PMID: 34400772 PMCID: PMC8758478 DOI: 10.1038/s41380-021-01248-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
Amyloidogenic processing of the amyloid precursor protein (APP) forms the amyloid-β peptide (Aβ) component of pathognomonic extracellular plaques of AD. Additional early cortical changes in AD include neuroinflammation and elevated iron levels. Activation of the innate immune system in the brain is a neuroprotective response to infection; however, persistent neuroinflammation is linked to AD neuropathology by uncertain mechanisms. Non-parametric machine learning analysis on transcriptomic data from a large neuropathologically characterised patient cohort revealed the acute phase protein lactoferrin (Lf) as the key predictor of amyloid pathology. In vitro studies showed that an interaction between APP and the iron-bound form of Lf secreted from activated microglia diverted neuronal APP endocytosis from the canonical clathrin-dependent pathway to one requiring ADP ribosylation factor 6 trafficking. By rerouting APP recycling to the Rab11-positive compartment for amyloidogenic processing, Lf dramatically increased neuronal Aβ production. Lf emerges as a novel pharmacological target for AD that not only modulates APP processing but provides a link between Aβ production, neuroinflammation and iron dysregulation.
Collapse
Affiliation(s)
- Andrew Tsatsanis
- grid.5335.00000000121885934The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.9909.90000 0004 1936 8403Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire UK
| | - Andrew N. McCorkindale
- grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, Charles Perkins Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW Australia
| | - Bruce X. Wong
- grid.5335.00000000121885934The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.9909.90000 0004 1936 8403Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire UK ,grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| | - Ellis Patrick
- grid.1013.30000 0004 1936 834XFaculty of Science, School of Mathematics and Statistics, University of Sydney, Camperdown, NSW Australia
| | - Tim M. Ryan
- grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| | - Robert W. Evans
- grid.7728.a0000 0001 0724 6933School of Engineering and Design, Brunel University, London, UK
| | - Ashley I. Bush
- grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| | - Greg T. Sutherland
- grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, Charles Perkins Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW Australia
| | - Asipu Sivaprasadarao
- grid.9909.90000 0004 1936 8403Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire UK
| | - Boris Guennewig
- grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, NSW Australia
| | - James A. Duce
- grid.5335.00000000121885934The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.9909.90000 0004 1936 8403Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire UK ,grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
24
|
Abstract
Despite recent advances in the treatment of autoimmune and inflammatory diseases, unmet medical needs in some areas still exist. One of the main therapeutic approaches to alleviate dysregulated inflammation has been to target the activity of kinases that regulate production of inflammatory mediators. Small-molecule kinase inhibitors have the potential for broad efficacy, convenience and tissue penetrance, and thus often offer important advantages over biologics. However, designing kinase inhibitors with target selectivity and minimal off-target effects can be challenging. Nevertheless, immense progress has been made in advancing kinase inhibitors with desirable drug-like properties into the clinic, including inhibitors of JAKs, IRAK4, RIPKs, BTK, SYK and TPL2. This Review will address the latest discoveries around kinase inhibitors with an emphasis on clinically validated autoimmunity and inflammatory pathways.
Collapse
Affiliation(s)
- Ali A Zarrin
- Discovery Department, TRex Bio, South San Francisco, CA, USA.
| | - Katherine Bao
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| | | | - Domagoj Vucic
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| |
Collapse
|
25
|
El Bitar F, Al Sudairy N, Qadi N, Al Rajeh S, Alghamdi F, Al Amari H, Al Dawsari G, Alsubaie S, Al Sudairi M, Abdulaziz S, Al Tassan N. A Comprehensive Analysis of Unique and Recurrent Copy Number Variations in Alzheimer's Disease and its Related Disorders. Curr Alzheimer Res 2020; 17:926-938. [PMID: 33256577 DOI: 10.2174/1567205017666201130111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/20/2020] [Accepted: 10/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Copy number variations (CNVs) play an important role in the genetic etiology of various neurological disorders, including Alzheimer's disease (AD). Type 2 diabetes mellitus (T2DM) and major depressive disorder (MDD) were shown to have share mechanisms and signaling pathways with AD. OBJECTIVE We aimed to assess CNVs regions that may harbor genes contributing to AD, T2DM, and MDD in 67 Saudi familial and sporadic AD patients, with no alterations in the known genes of AD and genotyped previously for APOE. METHODS DNA was analyzed using the CytoScan-HD array. Two layers of filtering criteria were applied. All the identified CNVs were checked in the Database of Genomic Variants (DGV). RESULTS A total of 1086 CNVs (565 gains and 521 losses) were identified in our study. We found 73 CNVs harboring genes that may be associated with AD, T2DM or MDD. Nineteen CNVs were novel. Most importantly, 42 CNVs were unique in our studied cohort existing only in one patient. Two large gains on chromosomes 1 and 13 harbored genes implicated in the studied disorders. We identified CNVs in genes that encode proteins involved in the metabolism of amyloid-β peptide (AGRN, APBA2, CR1, CR2, IGF2R, KIAA0125, MBP, RER1, RTN4R, VDR and WISPI) or Tau proteins (CACNAIC, CELF2, DUSP22, HTRA1 and SLC2A14). CONCLUSION The present work provided information on the presence of CNVs related to AD, T2DM, and MDD in Saudi Alzheimer's patients.
Collapse
Affiliation(s)
- Fadia El Bitar
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nourah Al Sudairy
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Najeeb Qadi
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Fatimah Alghamdi
- Institute of Biology and Environmental Research, National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hala Al Amari
- Institute of Biology and Environmental Research, National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Ghadeer Al Dawsari
- Institute of Biology and Environmental Research, National Center for Genomics Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sahar Alsubaie
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mishael Al Sudairi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sara Abdulaziz
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nada Al Tassan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Nho K, Nudelman K, Allen M, Hodges A, Kim S, Risacher SL, Apostolova LG, Lin K, Lunnon K, Wang X, Burgess JD, Ertekin-Taner N, Petersen RC, Wang L, Qi Z, He A, Neuhaus I, Patel V, Foroud T, Faber KM, Lovestone S, Simmons A, Weiner MW, Saykin AJ. Genome-wide transcriptome analysis identifies novel dysregulated genes implicated in Alzheimer's pathology. Alzheimers Dement 2020; 16:1213-1223. [PMID: 32755048 DOI: 10.1002/alz.12092] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/23/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Abnormal gene expression patterns may contribute to the onset and progression of late-onset Alzheimer's disease (LOAD). METHODS We performed transcriptome-wide meta-analysis (N = 1440) of blood-based microarray gene expression profiles as well as neuroimaging and cerebrospinal fluid (CSF) endophenotype analysis. RESULTS We identified and replicated five genes (CREB5, CD46, TMBIM6, IRAK3, and RPAIN) as significantly dysregulated in LOAD. The most significantly altered gene, CREB5, was also associated with brain atrophy and increased amyloid beta (Aβ) accumulation, especially in the entorhinal cortex region. cis-expression quantitative trait loci mapping analysis of CREB5 detected five significant associations (P < 5 × 10-8 ), where rs56388170 (most significant) was also significantly associated with global cortical Aβ deposition measured by [18 F]Florbetapir positron emission tomography and CSF Aβ1-42 . DISCUSSION RNA from peripheral blood indicated a differential gene expression pattern in LOAD. Genes identified have been implicated in biological processes relevant to Alzheimer's disease. CREB, in particular, plays a key role in nervous system development, cell survival, plasticity, and learning and memory.
Collapse
Affiliation(s)
- Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kelly Nudelman
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University, Indiana
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida
| | - Angela Hodges
- Psychology & Neuroscience, Institute of Psychiatry, King's college London, London, UK
| | - Sungeun Kim
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Electrical and Computer Engineering, State University of New York, Oswego, New York
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Liana G Apostolova
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kuang Lin
- Psychology & Neuroscience, Institute of Psychiatry, King's college London, London, UK
| | | | - Xue Wang
- Department of Health Sciences Research, Mayo Clinic Florida, Jacksonville, Florida
| | - Jeremy D Burgess
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida.,Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic Minnesota, Rochester, Minnesota
| | - Lisu Wang
- Bristol-Meyers Squibb, Wallingford, Connecticut
| | - Zhenhao Qi
- Bristol-Meyers Squibb, Wallingford, Connecticut
| | - Aiqing He
- Bristol-Meyers Squibb, Wallingford, Connecticut
| | | | | | - Tatiana Foroud
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University, Indiana
| | - Kelley M Faber
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University, Indiana
| | | | - Andrew Simmons
- Psychology & Neuroscience, Institute of Psychiatry, King's college London, London, UK
| | - Michael W Weiner
- Departments of Radiology, Medicine, and Psychiatry, University of California-San Francisco, San Francisco, California.,Department of Veterans Affairs Medical Center, San Francisco, California
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | | |
Collapse
|
27
|
Paasila PJ, Davies DS, Sutherland GT, Goldsbury C. Clustering of activated microglia occurs before the formation of dystrophic neurites in the evolution of Aβ plaques in Alzheimer's disease. FREE NEUROPATHOLOGY 2020; 1:20. [PMID: 34396367 PMCID: PMC8360389 DOI: 10.17879/freeneuropathology-2020-2845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/29/2020] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a late-onset disease that has proved difficult to model. Microglia are implicated in AD, but reports vary on precisely when and how in the sequence of pathological changes they become involved. Here, post-mortem human tissue from two differentially affected regions of the AD brain and from non-demented individuals with a high load of AD-type pathology (high pathology controls) was used to model the disease time course in order to determine how microglial activation relates temporally to the deposition of hallmark amyloid-β (Aβ) and hyperphosphorylated microtubule associated protein tau pathology. Immunofluorescence against the pan-microglial marker, ionised calcium-binding adapter molecule 1 (IBA1), Aβ and tau, was performed in the primary motor cortex (PMC), a region relatively spared of AD pathological changes, and compared to the severely affected inferior temporal cortex (ITC) in the same cases. Unlike the ITC, the PMC in the AD cases was spared of any degenerative changes in cortical thickness and the density of Betz cells and total neurons. The clustering of activated microglia was greatest in the PMC of AD cases and high pathology controls compared to the ITC. This suggests microglial activation is most prominent in the early phases of AD pathophysiology. Nascent tau inclusions were found in neuritic plaques in the PMC but were more numerous in the ITC of the same case. This shows that tau positive neuritic plaques begin early in AD which is likely of pathogenic importance, however major tau deposition follows the accumulation of Aβ and clustering of activated microglia. Importantly, findings presented here demonstrate that different states of microglial activation, corresponding to regional accumulations of Aβ and tau, are present simultaneously in the same individual; an important factor for consideration if targeting these cells for therapeutic intervention.
Collapse
Affiliation(s)
- Patrick Jarmo Paasila
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Danielle Suzanne Davies
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Greg Trevor Sutherland
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Claire Goldsbury
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
28
|
Casali BT, MacPherson KP, Reed-Geaghan EG, Landreth GE. Microglia depletion rapidly and reversibly alters amyloid pathology by modification of plaque compaction and morphologies. Neurobiol Dis 2020; 142:104956. [PMID: 32479996 DOI: 10.1016/j.nbd.2020.104956] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a prominent neurodegenerative disorder characterized by deposition of β-amyloid (Aβ)-containing extracellular plaques, accompanied by a microglial-mediated inflammatory response, that leads to cognitive decline. Microglia perform many disease-modifying functions such as phagocytosis of plaques, plaque compaction, and modulation of inflammation through the secretion of cytokines. Microglia are reliant upon colony-stimulating factor receptor-1 (CSF1R) activation for survival. In AD mouse models, chronic targeted depletion of microglia via CSF1R antagonism attenuates plaque formation in early disease but fails to alter plaque burden in late disease. It is unclear if acute depletion of microglia during the peak period of plaque deposition will alter disease pathogenesis, and if so, whether these effects are reversible upon microglial repopulation. To test this, we administered the CSF1R antagonist PLX5622 to the 5XFAD mouse model of AD at four months of age for approximately one month. In a subset of mice, the drug treatment was discontinued, and the mice were fed a control diet for an additional month. We evaluated plaque burden and composition, microgliosis, inflammatory marker expression, and neuritic dystrophy. In 5XFAD animals, CSF1R blockade for 28 days depleted microglia across brain regions by over 50%, suppressed microgliosis, and reduced plaque burden. In microglial-depleted AD animals, neuritic dystrophy was enhanced, and increased diffuse-like plaques and fewer compact-like plaques were observed. Removal of PLX5622 elicited microglial repopulation and subsequent plaque remodeling, resulting in more compact plaques predominating microglia-repopulated regions. We found that microglia limit diffuse plaques by maintaining compact-like plaque properties, thereby blocking the progression of neuritic dystrophy. Microglial repopulation reverses these effects. Collectively, we show that microglia are neuroprotective through maintenance of plaque compaction and morphologies during peak disease progression.
Collapse
Affiliation(s)
- Brad T Casali
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN 46202, USA.
| | - Kathryn P MacPherson
- Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN 46202, USA.
| | - Erin G Reed-Geaghan
- College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| | - Gary E Landreth
- Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
29
|
Maezawa I, Nguyen HM, Di Lucente J, Jenkins DP, Singh V, Hilt S, Kim K, Rangaraju S, Levey AI, Wulff H, Jin LW. Kv1.3 inhibition as a potential microglia-targeted therapy for Alzheimer's disease: preclinical proof of concept. Brain 2019; 141:596-612. [PMID: 29272333 DOI: 10.1093/brain/awx346] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022] Open
Abstract
Microglia significantly contribute to the pathophysiology of Alzheimer's disease but an effective microglia-targeted therapeutic approach is not yet available clinically. The potassium channels Kv1.3 and Kir2.1 play important roles in regulating immune cell functions and have been implicated by in vitro studies in the 'M1-like pro-inflammatory' or 'M2-like anti-inflammatory' state of microglia, respectively. We here found that amyloid-β oligomer-induced expression of Kv1.3 and Kir2.1 in cultured primary microglia. Likewise, ex vivo microglia acutely isolated from the Alzheimer's model 5xFAD mice co-expressed Kv1.3 and Kir2.1 as well as markers traditionally associated with M1 and M2 activation suggesting that amyloid-β oligomer induces a microglial activation state that is more complex than previously thought. Using the orally available, brain penetrant small molecule Kv1.3 blocker PAP-1 as a tool, we showed that pro-inflammatory and neurotoxic microglial responses induced by amyloid-β oligomer required Kv1.3 activity in vitro and in hippocampal slices. Since we further observed that Kv1.3 was highly expressed in microglia of transgenic Alzheimer's mouse models and human Alzheimer's disease brains, we hypothesized that pharmacological Kv1.3 inhibition could mitigate the pathology induced by amyloid-β aggregates. Indeed, treating APP/PS1 transgenic mice with a 5-month oral regimen of PAP-1, starting at 9 months of age, when the animals already manifest cognitive deficits and amyloid pathology, reduced neuroinflammation, decreased cerebral amyloid load, enhanced hippocampal neuronal plasticity, and improved behavioural deficits. The observed decrease in cerebral amyloid deposition was consistent with the in vitro finding that PAP-1 enhanced amyloid-β uptake by microglia. Collectively, these results provide proof-of-concept data to advance Kv1.3 blockers to Alzheimer's disease clinical trials.
Collapse
Affiliation(s)
- Izumi Maezawa
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, 2805 50th Street, Sacramento, CA 95817, USA
| | - Hai M Nguyen
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Jacopo Di Lucente
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, 2805 50th Street, Sacramento, CA 95817, USA
| | - David Paul Jenkins
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Vikrant Singh
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Silvia Hilt
- Department of Biochemistry and Molecular Medicine, University of California Davis, 2700 Stockton Blvd, Sacramento, CA 95817, USA
| | - Kyoungmi Kim
- Department of Public Health Sciences, University of California Davis, One Shields Avenue, Med Sci 1-C, Davis, CA 95616, USA
| | - Srikant Rangaraju
- Department of Neurology and Alzheimer's Disease Research Center, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA
| | - Allan I Levey
- Department of Neurology and Alzheimer's Disease Research Center, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA
| | - Heike Wulff
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, 2805 50th Street, Sacramento, CA 95817, USA.,Alzheimer's Disease Center, University of California Davis Medical Center, 4860 Y Street, Suite 3900, Sacramento, CA 95817, USA
| |
Collapse
|
30
|
Jin L, Lucente JD, Nguyen HM, Singh V, Singh L, Chavez M, Bushong T, Wulff H, Maezawa I. Repurposing the KCa3.1 inhibitor senicapoc for Alzheimer's disease. Ann Clin Transl Neurol 2019; 6:723-738. [PMID: 31019997 PMCID: PMC6469250 DOI: 10.1002/acn3.754] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Microglia play a pivotal role in the initiation and progression of Alzheimer's disease (AD). We here tested the therapeutic hypothesis that the Ca2+-activated potassium channel KCa3.1 constitutes a potential target for treating AD by reducing neuroinflammation. METHODS To determine if KCa3.1 is relevant to AD, we tested if treating cultured microglia or hippocampal slices with Aβ oligomer (AβO) activated KCa3.1 in microglia, and if microglial KCa3.1 was upregulated in 5xFAD mice and in human AD brains. The expression/activity of KCa3.1 was examined by qPCR, Western blotting, immunohistochemistry, and whole-cell patch-clamp. To investigate the role of KCa3.1 in AD pathology, we resynthesized senicapoc, a clinically tested KCa3.1 blocker, and determined its pharmacokinetic properties and its effect on microglial activation, Aβ deposition and hippocampal long-term potentiation (hLTP) in 5xFAD mice. RESULTS We found markedly enhanced microglial KCa3.1 expression/activity in brains of both 5xFAD mice and AD patients. In hippocampal slices, microglial KCa3.1 expression/activity was increased by AβO treatment, and its inhibition diminished the proinflammatory and hLTP-impairing activities of AβO. Senicapoc exhibited excellent brain penetrance and oral availability, and in 5xFAD mice, reduced neuroinflammation, decreased cerebral amyloid load, and enhanced hippocampal neuronal plasticity. INTERPRETATION Our results prompt us to propose repurposing senicapoc for AD clinical trials, as senicapoc has excellent pharmacological properties and was safe and well-tolerated in a prior phase-3 clinical trial for sickle cell anemia. Such repurposing has the potential to expedite the urgently needed new drug discovery for AD.
Collapse
Affiliation(s)
- Lee‐Way Jin
- Department of Pathology and Laboratory MedicineUniversity of California Davis Medical CenterSacramentoCalifornia
| | - Jacopo Di Lucente
- Department of Pathology and Laboratory MedicineUniversity of California Davis Medical CenterSacramentoCalifornia
| | - Hai M. Nguyen
- Department of PharmacologyUniversity of California DavisDavisCalifornia
| | - Vikrant Singh
- Department of PharmacologyUniversity of California DavisDavisCalifornia
| | - Latika Singh
- Department of PharmacologyUniversity of California DavisDavisCalifornia
| | - Monique Chavez
- Department of Pathology and Laboratory MedicineUniversity of California Davis Medical CenterSacramentoCalifornia
| | - Trevor Bushong
- Department of Pathology and Laboratory MedicineUniversity of California Davis Medical CenterSacramentoCalifornia
| | - Heike Wulff
- Department of PharmacologyUniversity of California DavisDavisCalifornia
| | - Izumi Maezawa
- Department of Pathology and Laboratory MedicineUniversity of California Davis Medical CenterSacramentoCalifornia
| |
Collapse
|
31
|
Paasila PJ, Davies DS, Kril JJ, Goldsbury C, Sutherland GT. The relationship between the morphological subtypes of microglia and Alzheimer's disease neuropathology. Brain Pathol 2019; 29:726-740. [PMID: 30803086 DOI: 10.1111/bpa.12717] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/18/2019] [Indexed: 12/13/2022] Open
Abstract
Microglial associations with both the major Alzheimer's disease (AD) pathognomonic entities, β-amyloid-positive plaques and tau-positive neurofibrillary tangles, have been noted in previous investigations of both human tissue and mouse models. However, the precise nature of their role in the pathogenesis of AD is debated; the major working hypothesis is that pro-inflammatory activities of activated microglia contribute to disease progression. In contrast, others have proposed that microglial dystrophy with a loss of physiological and neuroprotective activities promotes neurodegeneration. This immunohistochemical study sought to gain clarity in this area by quantifying the morphological subtypes of microglia in the mildly-affected primary visual cortex (PVC), the moderately affected superior frontal cortex (SFC) and the severely affected inferior temporal cortex (ITC) of 8 AD cases and 15 age and gender-matched, non-demented controls with ranging AD-type pathology. AD cases had increased β-amyloid and tau levels compared to controls in all regions. Neuronal loss was observed in the SFC and ITC, and was associated with atrophy in the latter. A major feature of the ITC in AD was a decrease in ramified (healthy) microglia with image analysis confirming reductions in arborized area and skeletal complexity. Activated microglia were not associated with AD but were increased in non-demented controls with greater AD-type pathology. Microglial clusters were occasionally associated with β-amyloid- and tau-positive plaques but represented less than 2% of the total microglial population. Dystrophic microglia were not associated with AD, but were inversely correlated with brain pH suggesting that agonal events were responsible for this morphological subtype. Overall these novel findings suggest that there is an early microglial reaction to AD-type pathology but a loss of healthy microglia is the prominent feature in severely affected regions of the AD brain.
Collapse
Affiliation(s)
- Patrick Jarmo Paasila
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | | | - Jillian June Kril
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | | | - Greg Trevor Sutherland
- Discipline of Pathology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
32
|
Wang L, Ferrao R, Li Q, Hatcher JM, Choi HG, Buhrlage SJ, Gray NS, Wu H. Conformational flexibility and inhibitor binding to unphosphorylated interleukin-1 receptor-associated kinase 4 (IRAK4). J Biol Chem 2019; 294:4511-4519. [PMID: 30679311 DOI: 10.1074/jbc.ra118.005428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/21/2019] [Indexed: 12/21/2022] Open
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) is a key player in innate immune and inflammatory responses, performing a critical role in signal transduction downstream of Toll-like receptors and interleukin-1 (IL-1) receptors. Upon ligand binding and via its N-terminal death domain, IRAK4 is recruited to an oligomeric receptor that is proximal to the Myddosome signaling complex, inducing IRAK4 kinase domain dimerization, autophosphorylation, and activation. To date, all known IRAK4 structures are in the active conformation, precluding a good understanding of IRAK4's conformational dynamics. To address this issue, here we first solved three crystal structures of the IRAK4 kinase domain (at ≤2.6 Å resolution), in its unphosphorylated, inactive state bound to either the ATP analog AMP-PNP or to one of the two small-molecule inhibitors JH-I-25 and JH-I-17. The structures disclosed that although the structure in complex with AMP-PNP is in an "αC-out" inactive conformation, those in complex with type I inhibitors assume an active "Asp-Phe-Gly (DFG)-in" and "αC-in" conformation. The ability of unphosphorylated IRAK4 to take on variable conformations prompted us to screen for small-molecule inhibitors that bind preferentially to unphosphorylated IRAK4, leading to the identification of ponatinib and HG-12-6. Solving the structures of unphosphorylated IRAK4 in complex with these two inhibitors, we found that they both bind as type II inhibitors with IRAK4 in a "DFG-out" conformation. Collectively, these structures reveal conformational flexibility of unphosphorylated IRAK4 and provide unexpected insights into the potential use of small molecules to modulate IRAK4 activity in cancer, autoimmunity, and inflammation.
Collapse
Affiliation(s)
- Li Wang
- From the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.,the Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, and
| | - Ryan Ferrao
- From the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.,the Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, and
| | - Qiubai Li
- From the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.,the Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, and
| | - John M Hatcher
- From the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Hwan Geun Choi
- From the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Sara J Buhrlage
- From the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Nathanael S Gray
- From the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Hao Wu
- From the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, .,the Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, and
| |
Collapse
|
33
|
Thei L, Imm J, Kaisis E, Dallas ML, Kerrigan TL. Microglia in Alzheimer's Disease: A Role for Ion Channels. Front Neurosci 2018; 12:676. [PMID: 30323735 PMCID: PMC6172337 DOI: 10.3389/fnins.2018.00676] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease is the most common form of dementia, it is estimated to affect over 40 million people worldwide. Classically, the disease has been characterized by the neuropathological hallmarks of aggregated extracellular amyloid-β and intracellular paired helical filaments of hyperphosphorylated tau. A wealth of evidence indicates a pivotal role for the innate immune system, such as microglia, and inflammation in the pathology of Alzheimer's disease. The over production and aggregation of Alzheimer's associated proteins results in chronic inflammation and disrupts microglial clearance of these depositions. Despite being non-excitable, microglia express a diverse array of ion channels which shape their physiological functions. In support of this, there is a growing body of evidence pointing to the involvement of microglial ion channels contributing to neurodegenerative diseases such as Alzheimer's disease. In this review, we discuss the evidence for an array of microglia ion channels and their importance in modulating microglial homeostasis and how this process could be disrupted in Alzheimer's disease. One promising avenue for assessing the role that microglia play in the initiation and progression of Alzheimer's disease is through using induced pluripotent stem cell derived microglia. Here, we examine what is already understood in terms of the molecular underpinnings of inflammation in Alzheimer's disease, and the utility that inducible pluripotent stem cell derived microglia may have to advance this knowledge. We outline the variability that occurs between the use of animal and human models with regards to the importance of microglial ion channels in generating a relevant functional model of brain inflammation. Overcoming these hurdles will be pivotal in order to develop new drug targets and progress our understanding of the pathological mechanisms involved in Alzheimer's disease.
Collapse
Affiliation(s)
- Laura Thei
- Reading School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Jennifer Imm
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Eleni Kaisis
- Reading School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Mark L Dallas
- Reading School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Talitha L Kerrigan
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
34
|
Casali BT, Reed-Geaghan EG, Landreth GE. Nuclear receptor agonist-driven modification of inflammation and amyloid pathology enhances and sustains cognitive improvements in a mouse model of Alzheimer's disease. J Neuroinflammation 2018; 15:43. [PMID: 29448961 PMCID: PMC5815248 DOI: 10.1186/s12974-018-1091-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a highly prevalent neurodegenerative disorder characterized by pathological hallmarks of beta-amyloid plaque deposits, tau pathology, inflammation, and cognitive decline. Treatment remains a clinical obstacle due to lack of effective therapeutics. Agonists targeting nuclear receptors, such as bexarotene, reversed cognitive deficits regardless of treatment duration and age in murine models of AD. While bexarotene demonstrated marked efficacy in decreasing plaque levels following short-term treatment, prolonged treatment did not modulate plaque burden. This suggested that plaques might reform in mice treated chronically with bexarotene and that cessation of bexarotene treatment before plaques reform might alter amyloid pathology, inflammation, and cognition in AD mice. METHODS We utilized one-year-old APP/PS1 mice that were divided into two groups. We treated one group of mice for 2 weeks with bexarotene. The other group of mice was treated for 2 weeks with bexarotene followed by withdrawal of drug treatment for an additional 2 weeks. Cognition was evaluated using the novel-object recognition test either at the end of bexarotene treatment or the end of the withdrawal period. We then analyzed amyloid pathology and microgliosis at the conclusion of the study in both groups. RESULTS Bexarotene treatment enhanced cognition in APP/PS1 mice similar to previous findings. Strikingly, we observed sustained cognitive improvements in mice in which bexarotene treatment was discontinued for 2 weeks. We observed a sustained reduction in microgliosis and plaque burden following drug withdrawal exclusively in the hippocampus. CONCLUSIONS Our findings demonstrate that bexarotene selectively modifies aspects of neuroinflammation in a region-specific manner to reverse hippocampal-dependent cognitive deficits in AD mice and may provide insight to inform future studies with nuclear receptor agonists.
Collapse
Affiliation(s)
- Brad T. Casali
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Erin G. Reed-Geaghan
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Gary E. Landreth
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| |
Collapse
|
35
|
Wang S, Zhang X, Zhai L, Sheng X, Zheng W, Chu H, Zhang G. Atorvastatin Attenuates Cognitive Deficits and Neuroinflammation Induced by Aβ 1-42 Involving Modulation of TLR4/TRAF6/NF-κB Pathway. J Mol Neurosci 2018; 64:363-373. [PMID: 29417448 DOI: 10.1007/s12031-018-1032-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/17/2018] [Indexed: 12/20/2022]
Abstract
Inflammatory damage aggravates the progression of Alzheimer's disease (AD) and the mechanism of inflammatory damage may provide a new therapeutic window for the treatment of AD. Toll-like receptor 4 (TLR4)-mediated signaling can regulate the inflammatory process. However, changes in TLR4 signaling pathway induced by beta-amyloid (Aβ) have not been well characterized in brain, especially in the hippocampus. In the present study, we explored the changes of TLR4 signaling pathway induced by Aβ in the hippocampus and the role of atorvastatin in modulating this signal pathway and neurotoxicity induced by Aβ. Experimental AD rats were induced by intrahippocampal injection of Aβ1-42, and the rats were treated with atorvastatin by oral gavage from 3 weeks before to 6 days after injections of Aβ1-42. To determine the spatial learning and memory ability of rats in the AD models, Morris water maze (MWM) was performed. The expression of the glial fibrillary acidic protein (GFAP), ionized calcium binding adapter molecule-1 (Iba-1), TLR4, tumor necrosis factor receptor-associated factor 6 (TRAF6), and nuclear transcription factor (NF)-κB (NF-κB) protein in the hippocampus was detected by immunohistochemistry and Western blot. Compared to the control group, increased expression of TLR4, TRAF6, and NF-κB was observed in the hippocampus at 7 days post-injection of Aβ (P < 0.01). Furthermore, atorvastatin treatment significantly ameliorated cognitive deficits of rats, attenuated microglia and astrocyte activation, inhibited apoptosis, and down-regulated the expression of TLR4, TRAF6, and NF-κB, both at the mRNA and protein levels (P < 0.01). TLR4 signaling pathway is thus actively involved in Aβ-induced neuroinflammation and atorvastatin treatment can exert the therapeutic benefits for AD via the TLR4 signaling pathway.
Collapse
Affiliation(s)
- Shan Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, China
| | - Xiaowei Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Liuyu Zhai
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, China
| | - Xiaona Sheng
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, China.
| | - Weina Zheng
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, China
| | - Hongshan Chu
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, China
| | - Guohua Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, China
| |
Collapse
|
36
|
Let's make microglia great again in neurodegenerative disorders. J Neural Transm (Vienna) 2017; 125:751-770. [PMID: 29027011 DOI: 10.1007/s00702-017-1792-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
All of the common neurodegenerative disorders-Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and prion diseases-are characterized by accumulation of misfolded proteins that trigger activation of microglia; brain-resident mononuclear phagocytes. This chronic form of neuroinflammation is earmarked by increased release of myriad cytokines and chemokines in patient brains and biofluids. Microglial phagocytosis is compromised early in the disease process, obfuscating clearance of abnormal proteins. This review identifies immune pathologies shared by the major neurodegenerative disorders. The overarching concept is that aberrant innate immune pathways can be targeted for return to homeostasis in hopes of coaxing microglia into clearing neurotoxic misfolded proteins.
Collapse
|
37
|
Lee KL, Ambler CM, Anderson DR, Boscoe BP, Bree AG, Brodfuehrer JI, Chang JS, Choi C, Chung S, Curran KJ, Day JE, Dehnhardt CM, Dower K, Drozda SE, Frisbie RK, Gavrin LK, Goldberg JA, Han S, Hegen M, Hepworth D, Hope HR, Kamtekar S, Kilty IC, Lee A, Lin LL, Lovering FE, Lowe MD, Mathias JP, Morgan HM, Murphy EA, Papaioannou N, Patny A, Pierce BS, Rao VR, Saiah E, Samardjiev IJ, Samas BM, Shen MWH, Shin JH, Soutter HH, Strohbach JW, Symanowicz PT, Thomason JR, Trzupek JD, Vargas R, Vincent F, Yan J, Zapf CW, Wright SW. Discovery of Clinical Candidate 1-{[(2S,3S,4S)-3-Ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy}-7-methoxyisoquinoline-6-carboxamide (PF-06650833), a Potent, Selective Inhibitor of Interleukin-1 Receptor Associated Kinase 4 (IRAK4), by Fragment-Based Drug Design. J Med Chem 2017; 60:5521-5542. [PMID: 28498658 DOI: 10.1021/acs.jmedchem.7b00231] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Through fragment-based drug design focused on engaging the active site of IRAK4 and leveraging three-dimensional topology in a ligand-efficient manner, a micromolar hit identified from a screen of a Pfizer fragment library was optimized to afford IRAK4 inhibitors with nanomolar potency in cellular assays. The medicinal chemistry effort featured the judicious placement of lipophilicity, informed by co-crystal structures with IRAK4 and optimization of ADME properties to deliver clinical candidate PF-06650833 (compound 40). This compound displays a 5-unit increase in lipophilic efficiency from the fragment hit, excellent kinase selectivity, and pharmacokinetic properties suitable for oral administration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Heidi M Morgan
- Worldwide Medicinal Chemistry, Pfizer Inc. , 1070 Science Center Drive, San Diego, California 92121, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jiangli Yan
- Worldwide Medicinal Chemistry, Pfizer Inc. , 1070 Science Center Drive, San Diego, California 92121, United States
| | | | | |
Collapse
|
38
|
Genung NE, Guckian KM. Small Molecule Inhibition of Interleukin-1 Receptor-Associated Kinase 4 (IRAK4). PROGRESS IN MEDICINAL CHEMISTRY 2017; 56:117-163. [PMID: 28314411 DOI: 10.1016/bs.pmch.2016.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In recent years, interleukin-1 receptor-associated kinase 4, IRAK4, has become an attractive target for many medicinal chemistry programmes. Target inhibition is of potential therapeutic value in areas including autoimmune disorders, cancer, inflammatory diseases, and possibly neurodegenerative diseases. Results from high-throughput screening efforts have led, in conjunction with structure-based drug design, to the identification of highly potent and selective small molecule IRAK4 inhibitors from many diverse chemical series. In vitro and in vivo studies with entities from distinct structural classes have helped elucidate the downstream pharmacological responses associated with IRAK4 inhibition as a proof of concept in disease models, leading to the recent initiation of human clinical trials. Within this review, we will highlight the considerable effort by numerous groups dedicated to the development of small molecule IRAK4 inhibitors for the treatment of human disease.
Collapse
|
39
|
Norden DM, Trojanowski PJ, Villanueva E, Navarro E, Godbout JP. Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia 2016; 64:300-16. [PMID: 26470014 PMCID: PMC4707977 DOI: 10.1002/glia.22930] [Citation(s) in RCA: 435] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 12/11/2022]
Abstract
Activation of the peripheral immune system elicits a coordinated response from the central nervous system. Key to this immune to brain communication is that glia, microglia, and astrocytes, interpret and propagate inflammatory signals in the brain that influence physiological and behavioral responses. One issue in glial biology is that morphological analysis alone is used to report on glial activation state. Therefore, our objective was to compare behavioral responses after in vivo immune (lipopolysaccharide, LPS) challenge to glial specific mRNA and morphological profiles. Here, LPS challenge induced an immediate but transient sickness response with decreased locomotion and social interaction. Corresponding with active sickness behavior (2-12 h), inflammatory cytokine mRNA expression was elevated in enriched microglia and astrocytes. Although proinflammatory cytokine expression in microglia peaked 2-4 h after LPS, astrocyte cytokine, and chemokine induction was delayed and peaked at 12 h. Morphological alterations in microglia (Iba-1(+)) and astrocytes (GFAP(+)), however, were undetected during this 2-12 h timeframe. Increased Iba-1 immunoreactivity and de-ramified microglia were evident 24 and 48 h after LPS but corresponded to the resolution phase of activation. Morphological alterations in astrocytes were undetected after LPS. Additionally, glial cytokine expression did not correlate with morphology after four repeated LPS injections. In fact, repeated LPS challenge was associated with immune and behavioral tolerance and a less inflammatory microglial profile compared with acute LPS challenge. Overall, induction of glial cytokine expression was sequential, aligned with active sickness behavior, and preceded increased Iba-1 or GFAP immunoreactivity after LPS challenge.
Collapse
Affiliation(s)
- Diana M. Norden
- Department of Neuroscience, The Ohio State University, 333 W. 10 Ave, Columbus, OH 43210, USA
| | - Paige J. Trojanowski
- Department of Neuroscience, The Ohio State University, 333 W. 10 Ave, Columbus, OH 43210, USA
| | - Emmanuel Villanueva
- Department of Neuroscience, The Ohio State University, 333 W. 10 Ave, Columbus, OH 43210, USA
| | - Elisa Navarro
- Department of Neuroscience, The Ohio State University, 333 W. 10 Ave, Columbus, OH 43210, USA
| | - Jonathan P. Godbout
- Department of Neuroscience, The Ohio State University, 333 W. 10 Ave, Columbus, OH 43210, USA
- Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr., Columbus, OH 43210, USA
- Corresponding author: J.P. Godbout, 259 IBMR Bldg, 460 Medical Center Dr., The Ohio State University, Columbus, OH 43210, USA. Tel: (614) 293-3456 Fax: (614) 366-2097,
| |
Collapse
|
40
|
Gad ES, Zaitone SA, Moustafa YM. Pioglitazone and exenatide enhance cognition and downregulate hippocampal beta amyloid oligomer and microglia expression in insulin-resistant rats. Can J Physiol Pharmacol 2015; 94:819-28. [PMID: 27389824 DOI: 10.1139/cjpp-2015-0242] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin resistance is known to be a risk factor for cognitive impairment, most likely linked to insulin signaling, microglia overactivation, and beta amyloid (Aβ) deposition in the brain. Exenatide, a long lasting glucagon-like peptide-1 (GLP-1) analogue, enhances insulin signaling and shows neuroprotective properties. Pioglitazone, a peroxisome proliferated-activated receptor-γ (PPAR-γ) agonist, was previously reported to enhance cognition through its effect on Aβ accumulation and clearance. In the present study, insulin resistance was induced in male rats by drinking fructose for 12 weeks. The effect of monotherapy with pioglitazone (10 mg·kg(-1)) and exenatide or their combination on memory dysfunction was determined and some of the probable underlying mechanisms were studied. The current results confirmed that (1) feeding male rats with fructose syrup for 12 weeks resulted in a decline of learning and memory registered in eight-arm radial maze test; (2) treatment with pioglitazone or exenatide enhanced cognition, reduced hippocampal neurodegeneration, and reduced hippocampal microglia expression and beta amyloid oligomer deposition in a manner that is equal to monotherapies. These results may give promise for the use of pioglitazone or exenatide for ameliorating the learning and memory deficits associated with insulin resistance in clinical setting.
Collapse
Affiliation(s)
- Enas S Gad
- a Medical Department at Faculty of Commerce, Suez Canal University, Ismailia, Egypt
| | - Sawsan A Zaitone
- b Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Yasser M Moustafa
- b Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
41
|
Jha NK, Jha SK, Kumar D, Kejriwal N, Sharma R, Ambasta RK, Kumar P. Impact of Insulin Degrading Enzyme and Neprilysin in Alzheimer’s Disease Biology: Characterization of Putative Cognates for Therapeutic Applications. J Alzheimers Dis 2015; 48:891-917. [DOI: 10.3233/jad-150379] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Niraj Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Saurabh Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Noopur Kejriwal
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Renu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Rashmi K. Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
- Department of Neurology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
42
|
Corona AW, Kodoma N, Casali BT, Landreth GE. ABCA1 is Necessary for Bexarotene-Mediated Clearance of Soluble Amyloid Beta from the Hippocampus of APP/PS1 Mice. J Neuroimmune Pharmacol 2015; 11:61-72. [PMID: 26175148 DOI: 10.1007/s11481-015-9627-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/07/2015] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is characterized by impaired clearance of amyloid beta (Aβ) peptides, leading to the accumulation of Aβ in the brain and subsequent neurodegeneration and cognitive impairment. ApoE plays a critical role in the proteolytic degradation of soluble forms of Aβ. This effect is dependent upon lipidation of ApoE by ABCA1-mediated transfer of phospholipids and cholesterol. ApoE and ABCA1 are induced by the action of the RXR agonist, bexarotene. We have previously shown that bexarotene reduces Aβ levels in AD mouse models and we have hypothesized that this effect requires ABCA1-mediated lipidation of ApoE. To test this hypothesis, we crossed ABCA1-deficient (ABCA1 KO) mice with the APP/PS1 model of AD. Aged ABCA1 WT and ABCA1 KO APP/PS1 mice were treated for 7 days with vehicle or bexarotene (100 mg/kg/day). Bexarotene reduced levels of soluble Aβ 1-40 and 1-42 in the hippocampus of ABCA1 WT but not ABCA1 KO APP/PS1 mice. In contrast, insoluble levels of Aβ, and plaque loads were unaffected by bexarotene in this study. ABCA1 KO mice had increased levels of inflammation compared with ABCA1 WT mice. Bexarotene also increased most inflammatory gene markers evaluated. The effect of bexarotene on microglial inflammatory profiles, however, was independent of ABCA1 genotype. Importantly, bexarotene ameliorated deficits in novel object recognition in ABCA1 WT but not ABCA1 KO APP/PS1 mice. These data indicate that ABCA1-induced lipidation of ApoE is necessary for the ability of bexarotene to clear hippocampal soluble Aβ and ameliorate cognitive deficits.
Collapse
Affiliation(s)
- Angela W Corona
- Department of Neurosciences School of Medicine, Case Western Reserve University, 2210 Circle Dr., Rm E649, Cleveland, OH, 44106-4928, USA
| | - Nathan Kodoma
- Department of Neurosciences School of Medicine, Case Western Reserve University, 2210 Circle Dr., Rm E649, Cleveland, OH, 44106-4928, USA
| | - Brad T Casali
- Department of Neurosciences School of Medicine, Case Western Reserve University, 2210 Circle Dr., Rm E649, Cleveland, OH, 44106-4928, USA
| | - Gary E Landreth
- Department of Neurosciences School of Medicine, Case Western Reserve University, 2210 Circle Dr., Rm E649, Cleveland, OH, 44106-4928, USA.
| |
Collapse
|
43
|
Ferreira ST, Lourenco MV, Oliveira MM, De Felice FG. Soluble amyloid-β oligomers as synaptotoxins leading to cognitive impairment in Alzheimer's disease. Front Cell Neurosci 2015; 9:191. [PMID: 26074767 PMCID: PMC4443025 DOI: 10.3389/fncel.2015.00191] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/30/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia in the elderly, and affects millions of people worldwide. As the number of AD cases continues to increase in both developed and developing countries, finding therapies that effectively halt or reverse disease progression constitutes a major research and public health challenge. Since the identification of the amyloid-β peptide (Aβ) as the major component of the amyloid plaques that are characteristically found in AD brains, a major effort has aimed to determine whether and how Aβ leads to memory loss and cognitive impairment. A large body of evidence accumulated in the past 15 years supports a pivotal role of soluble Aβ oligomers (AβOs) in synapse failure and neuronal dysfunction in AD. Nonetheless, a number of basic questions, including the exact molecular composition of the synaptotoxic oligomers, the identity of the receptor(s) to which they bind, and the signaling pathways that ultimately lead to synapse failure, remain to be definitively answered. Here, we discuss recent advances that have illuminated our understanding of the chemical nature of the toxic species and the deleterious impact they have on synapses, and have culminated in the proposal of an Aβ oligomer hypothesis for Alzheimer’s pathogenesis. We also highlight outstanding questions and challenges in AD research that should be addressed to allow translation of research findings into effective AD therapies.
Collapse
Affiliation(s)
- Sergio T Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil ; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Mauricio M Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| |
Collapse
|
44
|
Heneka MT, Golenbock DT, Latz E. Innate immunity in Alzheimer's disease. Nat Immunol 2015; 16:229-36. [PMID: 25689443 DOI: 10.1038/ni.3102] [Citation(s) in RCA: 583] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/13/2015] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is the world's most common dementing illness, affecting over 150 million patients. Classically AD has been viewed as a neurodegenerative disease of the elderly, characterized by the extracellular deposition of misfolded amyloid-β (Aβ) peptide and the intracellular formation of neurofibrillary tangles. Only recently has neuroinflammation emerged as an important component of AD pathology. Experimental, genetic and epidemiological data now indicate a crucial role for activation of the innate immune system as a disease-promoting factor. The sustained formation and deposition of Aβ aggregates causes chronic activation of the immune system and disturbance of microglial clearance functions. Here we review advances in the molecular understanding of the inflammatory response in AD that point to novel therapeutic approaches for the treatment of this devastating disease.
Collapse
Affiliation(s)
- Michael T Heneka
- 1] Clinical Neuroscience, Department of Neurology, University of Bonn, Bonn, Germany. [2] Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. [3] German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Douglas T Golenbock
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Eicke Latz
- 1] Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. [2] German Center for Neurodegenerative Diseases, Bonn, Germany. [3] Institute of Innate Immunology, University of Bonn, Bonn, Germany
| |
Collapse
|
45
|
Compromised MAPK signaling in human diseases: an update. Arch Toxicol 2015; 89:867-82. [PMID: 25690731 DOI: 10.1007/s00204-015-1472-2] [Citation(s) in RCA: 783] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/09/2015] [Indexed: 02/08/2023]
Abstract
The mitogen-activated protein kinases (MAPKs) in mammals include c-Jun NH2-terminal kinase (JNK), p38 MAPK, and extracellular signal-regulated kinase (ERK). These enzymes are serine-threonine protein kinases that regulate various cellular activities including proliferation, differentiation, apoptosis or survival, inflammation, and innate immunity. The compromised MAPK signaling pathways contribute to the pathology of diverse human diseases including cancer and neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The JNK and p38 MAPK signaling pathways are activated by various types of cellular stress such as oxidative, genotoxic, and osmotic stress as well as by proinflammatory cytokines such as tumor necrosis factor-α and interleukin 1β. The Ras-Raf-MEK-ERK signaling pathway plays a key role in cancer development through the stimulation of cell proliferation and metastasis. The p38 MAPK pathway contributes to neuroinflammation mediated by glial cells including microglia and astrocytes, and it has also been associated with anticancer drug resistance in colon and liver cancer. We here summarize recent research on the roles of MAPK signaling pathways in human diseases, with a focus on cancer and neurodegenerative conditions.
Collapse
|
46
|
Abstract
Alzheimer's disease (AD) is typified by a robust microglial-mediated inflammatory response within the brain. Indeed, microglial accumulation around plaques in AD is one of the classical hallmarks of the disease pathology. Although microglia have the capacity to remove β-amyloid deposits and alleviate disease pathology, they fail to do so. Instead, they become chronically activated and promote inflammation-mediated impairment of cognition and cytotoxicity. However, if microglial function could be altered to engage their phagocytic response, promote their tissue maintenance functions, and prevent release of factors that promote tissue damage, this could provide therapeutic benefit. This review is focused on the current knowledge of microglial homeostatic mechanisms in AD, and mechanisms involved in the regulation of microglial phenotype in this context.
Collapse
Affiliation(s)
- Tarja M Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland,
| | | | | |
Collapse
|
47
|
IKKβ deficiency in myeloid cells ameliorates Alzheimer's disease-related symptoms and pathology. J Neurosci 2014; 34:12982-99. [PMID: 25253847 DOI: 10.1523/jneurosci.1348-14.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by extracellular amyloid-β (Aβ) deposits and microglia-dominated inflammatory activation. Innate immune signaling controls microglial inflammatory activities and Aβ clearance. However, studies examining innate immunity in Aβ pathology and neuronal degeneration have produced conflicting results. In this study, we investigated the pathogenic role of innate immunity in AD by ablating a key signaling molecule, IKKβ, specifically in the myeloid cells of TgCRND8 APP-transgenic mice. Deficiency of IKKβ in myeloid cells, especially microglia, simultaneously reduced inflammatory activation and Aβ load in the brain and these effects were associated with reduction of cognitive deficits and preservation of synaptic structure proteins. IKKβ deficiency enhanced microglial recruitment to Aβ deposits and facilitated Aβ internalization, perhaps by inhibiting TGF-β-SMAD2/3 signaling, but did not affect Aβ production and efflux. Therefore, inhibition of IKKβ signaling in myeloid cells improves cognitive functions in AD mice by reducing inflammatory activation and enhancing Aβ clearance. These results contribute to a better understanding of AD pathogenesis and could offer a new therapeutic option for delaying AD progression.
Collapse
|
48
|
Abstract
The triggering of innate immune mechanisms is emerging as a crucial component of major neurodegenerative diseases. Microglia and other cell types in the brain can be activated in response to misfolded proteins or aberrantly localized nucleic acids. This diverts microglia from their physiological and beneficial functions, and leads to their sustained release of pro-inflammatory mediators. In this Review, we discuss how the activation of innate immune signalling pathways - in particular, the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome - by aberrant host proteins may be a common step in the development of diverse neurodegenerative disorders. During chronic activation of microglia, the sustained exposure of neurons to pro-inflammatory mediators can cause neuronal dysfunction and contribute to cell death. As chronic neuroinflammation is observed at relatively early stages of neurodegenerative disease, targeting the mechanisms that drive this process may be useful for diagnostic and therapeutic purposes.
Collapse
|
49
|
Doty KR, Guillot-Sestier MV, Town T. The role of the immune system in neurodegenerative disorders: Adaptive or maladaptive? Brain Res 2014; 1617:155-73. [PMID: 25218556 DOI: 10.1016/j.brainres.2014.09.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/31/2014] [Accepted: 09/02/2014] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases share common features, including catastrophic neuronal loss that leads to cognitive or motor dysfunction. Neuronal injury occurs in an inflammatory milieu that is populated by resident and sometimes, infiltrating, immune cells - all of which participate in a complex interplay between secreted inflammatory modulators and activated immune cell surface receptors. The importance of these immunomodulators is highlighted by the number of immune factors that have been associated with increased risk of neurodegeneration in recent genome-wide association studies. One of the more difficult tasks for designing therapeutic strategies for immune modulation against neurodegenerative diseases is teasing apart beneficial from harmful signals. In this regard, learning more about the immune components of these diseases has yielded common themes. These unifying concepts should eventually enable immune-based therapeutics for treatment of Alzheimer׳s and Parkinson׳s diseases and amyotrophic lateral sclerosis. Targeted immune modulation should be possible to temper maladaptive factors, enabling beneficial immune responses in the context of neurodegenerative diseases. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease.
Collapse
Affiliation(s)
- Kevin R Doty
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | | | - Terrence Town
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
50
|
Cudaback E, Yang Y, Montine TJ, Keene CD. APOE genotype-dependent modulation of astrocyte chemokine CCL3 production. Glia 2014; 63:51-65. [PMID: 25092803 DOI: 10.1002/glia.22732] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 07/14/2014] [Indexed: 12/19/2022]
Abstract
Apolipoprotein E (apoE) is well known as a regulator of cholesterol homeostasis, and is increasingly recognized to play a prominent role in the modulation of innate immune response, including cell-to-cell communication and migration. Alzheimer's disease (AD) is a slowly progressive neurodegenerative disorder characterized by neuroinflammation that appears to be an important component of the pathophysiology of the disease. Astrocytes are the majority cell type in brain, exerting significant influence over a range of central nervous system activities, including microglial-mediated neuroinflammatory responses. As the resident innate immune effector cells of the brain, microglia respond to soluble chemical signals released from tissue during injury and disease by mobilizing to lesion sites, clearing toxic molecules, and releasing chemical signals of their own. While microglial-mediated neuroinflammation in the AD brain remains an area of intense investigation, the mechanisms underlying reinforcement and regulation of these aberrant microglial responses by astrocytes are largely unstudied. Moreover, although inheritance of APOE ɛ4 represents the greatest genetic risk factor for sporadic AD, the mechanism by which apoE isoforms differentially influence AD pathophysiology is unknown. Here we show that APOE ɛ4 genotype specifically modulates astrocyte secretion of potent microglial chemotactic agents, including CCL3, thus providing evidence that APOE modulation of central nervous system (CNS) innate immune response is mediated through astrocytes.
Collapse
Affiliation(s)
- Eiron Cudaback
- Department of Pathology, University of Washington, Seattle, Washington
| | | | | | | |
Collapse
|