1
|
Kanata E, Duffié R, Schulz EG. Establishment and maintenance of random monoallelic expression. Development 2024; 151:dev201741. [PMID: 38813842 PMCID: PMC11166465 DOI: 10.1242/dev.201741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This Review elucidates the regulatory principles of random monoallelic expression by focusing on two well-studied examples: the X-chromosome inactivation regulator Xist and the olfactory receptor gene family. Although the choice of a single X chromosome or olfactory receptor occurs in different developmental contexts, common gene regulatory principles guide monoallelic expression in both systems. In both cases, an event breaks the symmetry between genetically and epigenetically identical copies of the gene, leading to the expression of one single random allele, stabilized through negative feedback control. Although many regulatory steps that govern the establishment and maintenance of monoallelic expression have been identified, key pieces of the puzzle are still missing. We provide an overview of the current knowledge and models for the monoallelic expression of Xist and olfactory receptors. We discuss their similarities and differences, and highlight open questions and approaches that could guide the study of other monoallelically expressed genes.
Collapse
Affiliation(s)
- Eleni Kanata
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Rachel Duffié
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Edda G. Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
2
|
Yusuf N, Monahan K. Epigenetic programming of stochastic olfactory receptor choice. Genesis 2024; 62:e23593. [PMID: 38562011 PMCID: PMC11003729 DOI: 10.1002/dvg.23593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/01/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
The mammalian sense of smell relies upon a vast array of receptor proteins to detect odorant compounds present in the environment. The proper deployment of these receptor proteins in olfactory sensory neurons is orchestrated by a suite of epigenetic processes that remodel the olfactory genes in differentiating neuronal progenitors. The goal of this review is to elucidate the central role of gene regulatory processes acting in neuronal progenitors of olfactory sensory neurons that lead to a singular expression of an odorant receptor in mature olfactory sensory neurons. We begin by describing the principal features of odorant receptor gene expression in mature olfactory sensory neurons. Next, we delineate our current understanding of how these features emerge from multiple gene regulatory mechanisms acting in neuronal progenitors. Finally, we close by discussing the key gaps in our understanding of how these regulatory mechanisms work and how they interact with each other over the course of differentiation.
Collapse
Affiliation(s)
- Nusrath Yusuf
- Division of Life Sciences-Molecular Biology and Biochemistry Department, Rutgers University-New Brunswick, New Brunswick, New Jersey, USA
| | - Kevin Monahan
- Division of Life Sciences-Molecular Biology and Biochemistry Department, Rutgers University-New Brunswick, New Brunswick, New Jersey, USA
| |
Collapse
|
3
|
Shah A, Ratkowski M, Rosa A, Feinstein P, Bozza T. Olfactory expression of trace amine-associated receptors requires cooperative cis-acting enhancers. Nat Commun 2021; 12:3797. [PMID: 34145232 PMCID: PMC8213819 DOI: 10.1038/s41467-021-23824-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/18/2021] [Indexed: 11/28/2022] Open
Abstract
Olfactory sensory neurons express a large family of odorant receptors (ORs) and a small family of trace amine-associated receptors (TAARs). While both families are subject to so-called singular expression (expression of one allele of one gene), the mechanisms underlying TAAR gene choice remain obscure. Here, we report the identification of two conserved sequence elements in the mouse TAAR cluster (T-elements) that are required for TAAR gene expression. We observed that cell-type-specific expression of a TAAR-derived transgene required either T-element. Moreover, deleting either element reduced or abolished expression of a subset of TAAR genes, while deleting both elements abolished olfactory expression of all TAARs in cis with the mutation. The T-elements exhibit several features of known OR enhancers but also contain highly conserved, unique sequence motifs. Our data demonstrate that TAAR gene expression requires two cooperative cis-acting enhancers and suggest that ORs and TAARs share similar mechanisms of singular expression.
Collapse
Affiliation(s)
- Ami Shah
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Madison Ratkowski
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Alessandro Rosa
- The Graduate Center Programs in Biochemistry, Biology and CUNY Neuroscience Collaborative, New York, NY, USA
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Paul Feinstein
- The Graduate Center Programs in Biochemistry, Biology and CUNY Neuroscience Collaborative, New York, NY, USA
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Thomas Bozza
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
4
|
Farber JE, Lane RP. Bioinformatics Discovery of Putative Enhancers within Mouse Odorant Receptor Gene Clusters. Chem Senses 2019; 44:705-720. [PMID: 31529021 DOI: 10.1093/chemse/bjz043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Olfactory neuronal function depends on the expression and proper regulation of odorant receptor (OR) genes. Previous studies have identified 54 putative intergenic enhancers within or flanking 40 mouse OR clusters. At least 2 of these putative enhancers have been shown to regulate the expression of a small subset of proximal OR genes. In recognition of the large size of the mouse OR gene family (~1400 OR genes distributed across multiple chromosomal loci), it is likely that there remain many additional not-as-yet discovered OR enhancers. We utilized 23 of the previously identified enhancers as a training set (TS) and designed an algorithm that combines a broad range of epigenetic criteria (histone-3-lysine-4 monomethylation, histone-3-lysine-79 trimethylation, histone-3-lysine-27 acetylation, and DNase hypersensitivity) and genetic criteria (cross-species sequence conservation and transcription-factor binding site enrichment) to more broadly search OR gene clusters for additional candidates. We identified 181 new candidate enhancers located at 58 (of 68) mouse OR loci, including 25 new candidates identified by stringent search criteria whose signal strengths are not significantly different from the 23 previously characterized OR enhancers used as the TS. Additionally, we compared OR enhancer versus generic enhancer features in order to evaluate likelihoods that new enhancer candidates specifically function in OR regulation. We found that features distinguishing OR-specific function are significantly more evident for enhancer candidates located within OR clusters as compared with those in flanking regions.
Collapse
Affiliation(s)
- James E Farber
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Robert P Lane
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| |
Collapse
|
5
|
Degl’Innocenti A, Meloni G, Mazzolai B, Ciofani G. A purely bioinformatic pipeline for the prediction of mammalian odorant receptor gene enhancers. BMC Bioinformatics 2019; 20:474. [PMID: 31521109 PMCID: PMC6744719 DOI: 10.1186/s12859-019-3012-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/29/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND In most mammals, a vast array of genes coding for chemosensory receptors mediates olfaction. Odorant receptor (OR) genes generally constitute the largest multifamily (> 1100 intact members in the mouse). From the whole pool, each olfactory neuron expresses a single OR allele following poorly characterized mechanisms termed OR gene choice. OR genes are found in genomic aggregations known as clusters. Nearby enhancers, named elements, are crucial regulators of OR gene choice. Despite their importance, searching for new elements is burdensome. Other chemosensory receptor genes responsible for smell adhere to expression modalities resembling OR gene choice, and are arranged in genomic clusters - often with chromosomal linkage to OR genes. Still, no elements are known for them. RESULTS Here we present an inexpensive framework aimed at predicting elements. We redefine cluster identity by focusing on multiple receptor gene families at once, and exemplify thirty - not necessarily OR-exclusive - novel candidate enhancers. CONCLUSIONS The pipeline we introduce could guide future in vivo work aimed at discovering/validating new elements. In addition, our study provides an updated and comprehensive classification of all genomic loci responsible for the transduction of olfactory signals in mammals.
Collapse
Affiliation(s)
- Andrea Degl’Innocenti
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
- Max Planck Institute for Biophysics, Max-Planck-Gesellschaft, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - Gabriella Meloni
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Barbara Mazzolai
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
6
|
Sharma A, Kumar R, Aier I, Semwal R, Tyagi P, Varadwaj P. Sense of Smell: Structural, Functional, Mechanistic Advancements and Challenges in Human Olfactory Research. Curr Neuropharmacol 2019; 17:891-911. [PMID: 30520376 PMCID: PMC7052838 DOI: 10.2174/1570159x17666181206095626] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Olfaction, the sense of smell detects and discriminate odors as well as social cues which influence our innate responses. The olfactory system in human beings is found to be weak as compared to other animals; however, it seems to be very precise. It can detect and discriminate millions of chemical moieties (odorants) even in minuscule quantities. The process initiates with the binding of odorants to specialized olfactory receptors, encoded by a large family of Olfactory Receptor (OR) genes belonging to the G-protein-coupled receptor superfamily. Stimulation of ORs converts the chemical information encoded in the odorants, into respective neuronal action-potentials which causes depolarization of olfactory sensory neurons. The olfactory bulb relays this signal to different parts of the brain for processing. Odors are encrypted using a combinatorial approach to detect a variety of chemicals and encode their unique identity. The discovery of functional OR genes and proteins provided an important information to decipher the genomic, structural and functional basis of olfaction. ORs constitute 17 gene families, out of which 4 families were reported to contain more than hundred members each. The olfactory machinery is not limited to GPCRs; a number of non- GPCRs is also employed to detect chemosensory stimuli. The article provides detailed information about such olfaction machinery, structures, transduction mechanism, theories of odor perception, and challenges in the olfaction research. It covers the structural, functional and computational studies carried out in the olfaction research in the recent past.
Collapse
Affiliation(s)
| | | | | | | | | | - Pritish Varadwaj
- Address correspondence to this author at the Department of Applied Science, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India; E-mail:
| |
Collapse
|
7
|
Degl'Innocenti A, Parrilla M, Harr B, Teschke M. The Mouse Solitary Odorant Receptor Gene Promoters as Models for the Study of Odorant Receptor Gene Choice. PLoS One 2016; 11:e0144698. [PMID: 26794459 PMCID: PMC4721658 DOI: 10.1371/journal.pone.0144698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/23/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In vertebrates, several anatomical regions located within the nasal cavity mediate olfaction. Among these, the main olfactory epithelium detects most conventional odorants. Olfactory sensory neurons, provided with cilia exposed to the air, detect volatile chemicals via an extremely large family of seven-transmembrane chemoreceptors named odorant receptors. Their genes are expressed in a monogenic and monoallelic fashion: a single allele of a single odorant receptor gene is transcribed in a given mature neuron, through a still uncharacterized molecular mechanism known as odorant receptor gene choice. AIM Odorant receptor genes are typically arranged in genomic clusters, but a few are isolated (we call them solitary) from the others within a region broader than 1 Mb upstream and downstream with respect to their transcript's coordinates. The study of clustered genes is problematic, because of redundancy and ambiguities in their regulatory elements: we propose to use the solitary genes as simplified models to understand odorant receptor gene choice. PROCEDURES Here we define number and identity of the solitary genes in the mouse genome (C57BL/6J), and assess the conservation of the solitary status in some mammalian orthologs. Furthermore, we locate their putative promoters, predict their homeodomain binding sites (commonly present in the promoters of odorant receptor genes) and compare candidate promoter sequences with those of wild-caught mice. We also provide expression data from histological sections. RESULTS In the mouse genome there are eight intact solitary genes: Olfr19 (M12), Olfr49, Olfr266, Olfr267, Olfr370, Olfr371, Olfr466, Olfr1402; five are conserved as solitary in rat. These genes are all expressed in the main olfactory epithelium of three-day-old mice. The C57BL/6J candidate promoter of Olfr370 has considerably varied compared to its wild-type counterpart. Within the putative promoter for Olfr266 a homeodomain binding site is predicted. As a whole, our findings favor Olfr266 as a model gene to investigate odorant receptor gene choice.
Collapse
Affiliation(s)
- Andrea Degl'Innocenti
- Max-Planck-Institut für Biophysik, Frankfurt am Main, Germany
- Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Marta Parrilla
- Max-Planck-Institut für Biophysik, Frankfurt am Main, Germany
| | - Bettina Harr
- Abteilung Evolutionsgenetik, Max-Planck-Institut für Evolutionsbiologie, Plön, Germany
| | - Meike Teschke
- Abteilung Evolutionsgenetik, Max-Planck-Institut für Evolutionsbiologie, Plön, Germany
| |
Collapse
|
8
|
Abdus-Saboor I, Fleischmann A, Shykind B. Setting limits: maintaining order in a large gene family. Transcription 2015; 5:e28978. [PMID: 25764336 PMCID: PMC4215173 DOI: 10.4161/trns.28978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Odorant receptor (OR) gene choice is a paradigmatic example of stochastic regulation in which olfactory neurons choose one OR from > 1,000 possibilities. Recent biochemical, mathematical, and in vivo findings have revealed key players, introduced new axes of control, and brought the core mechanisms of the process into sharper focus.
Collapse
Affiliation(s)
- Ishmail Abdus-Saboor
- a Weill Cornell Medical College in Qatar; Qatar Foundation-Education City; Doha, Qatar
| | | | | |
Collapse
|
9
|
Sensational placodes: neurogenesis in the otic and olfactory systems. Dev Biol 2014; 389:50-67. [PMID: 24508480 PMCID: PMC3988839 DOI: 10.1016/j.ydbio.2014.01.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 11/22/2022]
Abstract
For both the intricate morphogenetic layout of the sensory cells in the ear and the elegantly radial arrangement of the sensory neurons in the nose, numerous signaling molecules and genetic determinants are required in concert to generate these specialized neuronal populations that help connect us to our environment. In this review, we outline many of the proteins and pathways that play essential roles in the differentiation of otic and olfactory neurons and their integration into their non-neuronal support structures. In both cases, well-known signaling pathways together with region-specific factors transform thickened ectodermal placodes into complex sense organs containing numerous, diverse neuronal subtypes. Olfactory and otic placodes, in combination with migratory neural crest stem cells, generate highly specialized subtypes of neuronal cells that sense sound, position and movement in space, odors and pheromones throughout our lives.
Collapse
|
10
|
Alsing AK, Sneppen K. Differentiation of developing olfactory neurons analysed in terms of coupled epigenetic landscapes. Nucleic Acids Res 2013; 41:4755-64. [PMID: 23519617 PMCID: PMC3643594 DOI: 10.1093/nar/gkt181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/26/2013] [Accepted: 02/26/2013] [Indexed: 02/06/2023] Open
Abstract
The olfactory system integrates signals from receptors expressed in olfactory sensory neurons. Each sensory neuron expresses only one of many similar olfactory receptors (ORs). The choice of receptor is made stochastically early in the differentiation process and is maintained throughout the life of the neuron. The underlying mechanism of this stochastic commitment to one of multiple similar OR genes remains elusive. We present a theoretical analysis of a mechanism that invokes important epigenetic properties of the system. The proposed model combines nucleosomes and associated read-write enzymes as mediators of a cis-acting positive feedback with a trans-acting negative feedback, thereby coupling the local epigenetic landscape of the individual OR genes in a way that allow one and only one gene to be active at any time. The model pinpoint that singular gene selection does not require transient mechanisms, enhancer elements or transcription factors to separate choice from maintenance. In addition, our hypothesis allow us to combine all reported characteristics of singular OR gene selection, in particular that OR genes are silenced from OR transgenes. Intriguingly, it predicts that OR transgenes placed in close proximity should always be expressed simultaneously, though rarely.
Collapse
Affiliation(s)
| | - Kim Sneppen
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| |
Collapse
|
11
|
Abstract
Monoallelic expression poses an intriguing problem in epigenetics because it requires the unequal treatment of two segments of DNA that are present in the same nucleus and which can have absolutely identical sequences. This review will consider different known types of monoallelic expression. For all monoallelically expressed genes, their respective allele-specific patterns of expression have the potential to affect brain function and dysfunction.
Collapse
Affiliation(s)
- Andrew Chess
- Fishberg Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
12
|
Brancucci NMB, Witmer K, Schmid CD, Flueck C, Voss TS. Identification of a cis-acting DNA-protein interaction implicated in singular var gene choice in Plasmodium falciparum. Cell Microbiol 2012; 14:1836-48. [PMID: 22891919 PMCID: PMC3549481 DOI: 10.1111/cmi.12004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/06/2012] [Accepted: 08/08/2012] [Indexed: 01/23/2023]
Abstract
Plasmodium falciparum is responsible for the most severe form of malaria in humans. Antigenic variation of P. falciparum erythrocyte membrane protein 1 leads to immune evasion and occurs through switches in mutually exclusive var gene transcription. The recent progress in Plasmodium epigenetics notwithstanding, the mechanisms by which singularity of var activation is achieved are unknown. Here, we employed a functional approach to dissect the role of var gene upstream regions in mutually exclusive activation. Besides identifying sequence elements involved in activation and initiation of transcription, we mapped a region downstream of the transcriptional start site that is required to maintain singular var gene choice. Activation of promoters lacking this sequence occurs no longer in competition with endogenous var genes. Within this region we pinpointed a sequence-specific DNA–protein interaction involving a cis-acting sequence motif that is conserved in the majority of var loci. These results suggest an important role for this interaction in mutually exclusive locus recognition. Our findings are furthermore consistent with a novel mechanism for the control of singular gene choice in eukaryotes. In addition to their importance in P. falciparum antigenic variation, our results may also help to explain similar processes in other systems.
Collapse
Affiliation(s)
- Nicolas M B Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Mechanisms and consequences of widespread random monoallelic expression. Nat Rev Genet 2012; 13:421-8. [PMID: 22585065 DOI: 10.1038/nrg3239] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although random monoallelic expression has been known for decades to affect genes on the X chromosome in female placental mammals, until a few years ago it was thought that there were few autosomal genes that were regulated in this manner. New tools for assaying gene expression genome-wide are now revealing that there are perhaps more genes that are subject to random monoallelic expression on mammalian autosomes than there are on the X chromosome and that these expression properties are achieved by diverse molecular mechanisms. This mode of expression has the potential to have an impact on natural selection and on the evolution of gene families.
Collapse
|
14
|
Michaloski JS, Galante PAF, Nagai MH, Armelin-Correa L, Chien MS, Matsunami H, Malnic B. Common promoter elements in odorant and vomeronasal receptor genes. PLoS One 2011; 6:e29065. [PMID: 22216168 PMCID: PMC3247230 DOI: 10.1371/journal.pone.0029065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/20/2011] [Indexed: 01/16/2023] Open
Abstract
In mammals, odorants and pheromones are detected by hundreds of odorant receptors (ORs) and vomeronasal receptors (V1Rs and V2Rs) expressed by sensory neurons that are respectively located in the main olfactory epithelium and in the vomeronasal organ. Even though these two olfactory systems are functionally and anatomically separate, their sensory neurons show a common mechanism of receptor gene regulation: each neuron expresses a single receptor gene from a single allele. The mechanisms underlying OR and VR gene expression remain unclear. Here we investigated if OR and V1R genes share common sequences in their promoter regions. We conducted a comparative analysis of promoter regions of 39 mouse V1R genes and found motifs that are common to a large number of promoters. We then searched mouse OR promoter regions for motifs that resemble the ones found in the V1R promoters. We identified motifs that are present in both the V1R and OR promoter regions. Some of these motifs correspond to the known O/E like binding sites while others resemble binding sites for transcriptional repressors. We show that one of these motifs specifically interacts with proteins extracted from both nuclei from olfactory and vomeronasal neurons. Our study is the first to identify motifs that resemble binding sites for repressors in the promoters of OR and V1R genes. Analysis of these motifs and of the proteins that bind to these motifs should reveal important aspects of the mechanisms of OR/V1R gene regulation.
Collapse
Affiliation(s)
- Jussara S. Michaloski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Pedro A. F. Galante
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Ludwig Institute for Cancer Research, São Paulo, São Paulo, Brazil
| | - Maíra H. Nagai
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Lucia Armelin-Correa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Ming-Shan Chien
- Department of Molecular Genetics and Microbiology and Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology and Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bettina Malnic
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
15
|
Homeodomain binding motifs modulate the probability of odorant receptor gene choice in transgenic mice. Mol Cell Neurosci 2010; 46:381-96. [PMID: 21111823 DOI: 10.1016/j.mcn.2010.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/11/2010] [Accepted: 11/01/2010] [Indexed: 11/24/2022] Open
Abstract
Odorant receptor (OR) genes constitute with 1200 members the largest gene family in the mouse genome. A mature olfactory sensory neuron (OSN) is thought to express just one OR gene, and from one allele. The cell bodies of OSNs that express a given OR gene display a mosaic pattern within a particular region of the main olfactory epithelium. The mechanisms and cis-acting DNA elements that regulate the expression of one OR gene per OSN - OR gene choice - remain poorly understood. Here, we describe a reporter assay to identify minimal promoters for OR genes in transgenic mice, which are produced by the conventional method of pronuclear injection of DNA. The promoter transgenes are devoid of an OR coding sequence, and instead drive expression of the axonal marker tau-β-galactosidase. For four mouse OR genes (M71, M72, MOR23, and P3) and one human OR gene (hM72), a mosaic, OSN-specific pattern of reporter expression can be obtained in transgenic mice with contiguous DNA segments of only ~300 bp that are centered around the transcription start site (TSS). The ~150bp region upstream of the TSS contains three conserved sequence motifs, including homeodomain (HD) binding sites. Such HD binding sites are also present in the H and P elements, DNA sequences that are known to strongly influence OR gene expression. When a 19mer encompassing a HD binding site from the P element is multimerized nine times and added upstream of a MOR23 minigene that contains the MOR23 coding region, we observe a dramatic increase in the number of transgene-expressing founders and lines and in the number of labeled OSNs. By contrast, a nine times multimerized 19mer with a mutant HD binding site does not have these effects. We hypothesize that HD binding sites in the H and P elements and in OR promoters modulate the probability of OR gene choice.
Collapse
|
16
|
Abstract
Odor discrimination requires differential expression of odor detectors. In fact, olfactory input to the brain is organized in units (glomeruli) innervated only by olfactory sensory neurons that express the same odorant receptor (OR). Therefore, discriminatory capacity is maximized if each sensory neuron expresses only one allele of a single OR gene, a postulate sometimes canonized as the "one neuron-one receptor rule." OR gene choice appears to result from a hierarchy of processes: differential availability of the alleles of each OR gene, zonal exclusion (or selection), OR gene switching during the initiation of OR gene transcription, and OR-dependent feedback to solidify the choice of one OR gene. The mechanisms underlying these processes are poorly understood, though a few elements are known or suspected. For example, the mechanism of activation of OR gene transcription appears to work in part through a few homeobox transcription factors (Emx2, and perhaps Lhx2) and the Ebf family of transcription factors. Further insights will probably come from several directions, but a promising hypothesis is that epigenetic mechanisms contribute to all levels of the hierarchical control of OR gene expression, especially the repressive events that seem to be necessary to achieve the singularity of OR gene choice.
Collapse
Affiliation(s)
- Timothy S McClintock
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA.
| |
Collapse
|
17
|
Abstract
In many species, the sense of smell plays important roles in locating food, detecting predators, navigating, and communicating social information. The olfactory system has evolved complex repertoires of odor receptors (ORs) to fulfill these functions. Through computational data mining, OR repertoires of multiple species were identified, revealing a surprisingly large OR gene family in rodents and evolutionary fluctuation among different organisms. Characteristics of OR genes were explored through computational and experimental methods, showing a complicated gene structure and special genomic distribution. Utilizing high-throughput OR microarrays, expression profiles of the mouse and human OR repertoire were examined, their olfactory functions verified, and their zonal, ectopic and developmental expression determined. Variation in human smelling abilities results from different functional OR repertoires, variable expressional levels and polymorphisms in the copy number of the OR genes. These genomic approaches have both provided new data and generated new questions.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | |
Collapse
|
18
|
Fuss SH, Ray A. Mechanisms of odorant receptor gene choice in Drosophila and vertebrates. Mol Cell Neurosci 2009; 41:101-12. [PMID: 19303443 DOI: 10.1016/j.mcn.2009.02.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 02/27/2009] [Indexed: 01/13/2023] Open
Abstract
Odorant receptors are encoded by extremely large and divergent families of genes. Each receptor is expressed in a small proportion of neurons in the olfactory organs, and each neuron in turn expresses just one odorant receptor gene. This fundamental property of the peripheral olfactory system is widely conserved across evolution, and observed in vertebrates, like mice, and invertebrates, like Drosophila, despite their olfactory receptor gene families being evolutionarily unrelated. Here we review the progress that has been made in these two systems to understand the intriguing and elusive question: how does a single neuron choose to express just one of many possible odorant receptors and exclude expression of all others?
Collapse
Affiliation(s)
- Stefan H Fuss
- Department of Molecular Biology and Genetics, Bogazici University, 34342 Istanbul, Turkey
| | | |
Collapse
|
19
|
McIntyre JC, Bose SC, Stromberg AJ, McClintock TS. Emx2 stimulates odorant receptor gene expression. Chem Senses 2008; 33:825-37. [PMID: 18854508 DOI: 10.1093/chemse/bjn061] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The mechanisms selecting a single odorant receptor (OR) gene for expression in each olfactory sensory neuron (OSN) establish an OR expression pattern critical for odor discrimination. These mechanisms are largely unknown, but putative OR promoters contain homeodomain-like sites, implicating homeobox transcription factors such as Emx2. At embryonic day 18.5, expression of 49-76% of ORs was decreased in mice lacking Emx2, depending on the metric used. The decreases were due to fewer OSNs expressing each OR. Affected ORs showed changes that were disproportionately greater than the 42% reduction in mature neurons and similar decreases in unrelated olfactory neuron-enriched messenger RNAs in Emx2(-/-) mice. Both Class I and Class II ORs decreased, as did ORs expressed in both the dorsal and ventral regions of the epithelium. Conversely, 7% of Class II ORs tested were expressed more frequently, suggesting that some ORs are independent of Emx2. Emx2 helps stimulate transcription for many OR genes, which we hypothesize is through direct action at OR promoters, but Emx2 appears to have no significant role in regulating other aspects of OR gene expression, including the zonal patterns, OR gene cluster selection mechanisms, and singularity of OR gene choice.
Collapse
Affiliation(s)
- Jeremy C McIntyre
- Department of Physiology, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | | | |
Collapse
|
20
|
Nguyen MQ, Zhou Z, Marks CA, Ryba NJP, Belluscio L. Prominent roles for odorant receptor coding sequences in allelic exclusion. Cell 2008; 131:1009-17. [PMID: 18045541 DOI: 10.1016/j.cell.2007.10.050] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 10/26/2007] [Accepted: 10/30/2007] [Indexed: 01/05/2023]
Abstract
Mammalian odorant receptors (ORs) are crucial for establishing the functional organization of the olfactory system, but the mechanisms controlling their expression remain largely unexplained. Here, we utilized a transgenic approach to explore OR gene regulation. We determined that although olfactory sensory neurons (OSNs) are capable of supporting expression of multiple functional ORs, several levels of control ensure that each neuron normally expresses only a single odorant receptor. Surprisingly, this regulation extends beyond endogenous ORs even preventing expression of transgenes consisting of OR-coding sequences driven by synthetic promoters. Thus, part of the intrinsic feedback system must rely on elements present in the OR-coding sequence. Notably, by expressing the same transgenic ORs precociously in immature neurons, we have overcome this suppression and established a generic method to express any OR in approximately 90% of OSNs. These results provide important insights into the hierarchy of OR gene expression and the vital role of the OR-coding sequence in this regulation.
Collapse
Affiliation(s)
- Minh Q Nguyen
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
21
|
Rodriguez I. Odorant and pheromone receptor gene regulation in vertebrates. Curr Opin Genet Dev 2007; 17:465-70. [PMID: 17709237 DOI: 10.1016/j.gde.2007.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 07/09/2007] [Indexed: 11/22/2022]
Abstract
The largest mammalian gene family codes for odorant receptors and is exclusively devoted to the perception of the outside world. Its expression is very peculiar, since olfactory sensory neurons are only allowed to express a single of its numerous members, from a single parental allele. How this is achieved is unknown, but recent work points to multiple regulatory mechanisms, possibly shared by pheromone receptor genes, acting at (a) a general level, via the expression of the chemoreceptor itself and (b) a more restricted level, defined by activator elements.
Collapse
Affiliation(s)
- Ivan Rodriguez
- Department of Zoology and Animal Biology, and NCCR Frontiers in Genetics, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
22
|
Fuss SH, Omura M, Mombaerts P. Local and cis effects of the H element on expression of odorant receptor genes in mouse. Cell 2007; 130:373-84. [PMID: 17662950 DOI: 10.1016/j.cell.2007.06.023] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 03/08/2007] [Accepted: 06/13/2007] [Indexed: 12/18/2022]
Abstract
From the approximately 1,200 odorant receptor (OR) genes in the mouse genome, an olfactory sensory neuron is thought to express only one gene. The mechanisms of OR gene choice are not understood. A 2.1 kilobase region (the H element) adjacent to a cluster of seven OR genes has been proposed as a trans- and pan-enhancer for OR gene expression. Here, we deleted the H element by gene targeting in mice. The deletion abolishes expression of a family of three OR genes proximal to H, and H operates in cis on these genes. Deletion of H has a graded effect on expression of a distal group of four OR genes, commensurate with genomic distance. There is no demonstrable effect on expression of OR genes located outside the cluster. Our findings are not consistent with the hypothesis of H as an essential trans-acting enhancer for genome-wide regulation of OR gene expression.
Collapse
Affiliation(s)
- Stefan H Fuss
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
23
|
Zhang YQ, Breer H, Strotmann J. Promotor elements governing the clustered expression pattern of odorant receptor genes. Mol Cell Neurosci 2007; 36:95-107. [PMID: 17656108 DOI: 10.1016/j.mcn.2007.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 06/18/2007] [Accepted: 06/20/2007] [Indexed: 11/29/2022] Open
Abstract
Odorant receptor (OR) genes of family mOR262 are only expressed in olfactory sensory neurons (OSNs) segregated in a central patch of the nasal turbinates; they comprise conserved DNA elements upstream of their transcription start sites that are proposed to govern the distinct expression pattern. In mouse lines with a transgene containing the coding sequence and a short upstream region of the mOR262-12 gene, expression was restricted to OSNs that were segregated in the characteristic central patch, although the number of cells varied considerably. Only in one line, the transgene was also expressed in OSNs ectopically positioned outside the patch. The axons of transgene-expressing OSNs co-converged with those expressing the endogenous gene. The transgene was found to be expressed in a mutually exclusive manner and from only one allele indicating that the conserved upstream DNA elements play a critical role in controlling the specific expression pattern of these genes.
Collapse
Affiliation(s)
- Yong-Quan Zhang
- University of Hohenheim, Institute of Physiology, Garbenstrasse 30, 70593, Stuttgart, Germany
| | | | | |
Collapse
|
24
|
Touhara K. Deorphanizing vertebrate olfactory receptors: Recent advances in odorant-response assays. Neurochem Int 2007; 51:132-9. [PMID: 17640771 DOI: 10.1016/j.neuint.2007.05.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 05/24/2007] [Accepted: 05/26/2007] [Indexed: 11/18/2022]
Abstract
Olfactory receptors (ORs) comprise the largest multigene G protein-coupled receptor families in organisms from fish to primates, and play a critical role in recognizing thousands of odorant molecules. Recent achievement of functional OR expression in heterologous cells led to identification of ligands for some ORs, revealing a combinatorial receptor coding scheme in the olfactory sensory system. Using the functional assay, the odorant-binding site in ORs has been elucidated, showing that a binding pocket constructed by transmembrane helices provides the molecular basis for agonist and antagonist specificity. To retrospectively identify ORs that recognize a particular odorant of interest, two functional cloning strategies have been developed: one is a strategy wherein OR genes are amplified from single olfactory neurons that show odorant responsiveness in Ca(2+) imaging, and another is an approach based on glomerular activity by combining in vivo bulbar Ca(2+) imaging and retrograde dye labeling of innervating olfactory neurons. The conventional ligand-screening approach and the functional cloning strategies in an odorant-directed manner have allowed us to match ORs to the cognate odorants both in vitro and in vivo.
Collapse
Affiliation(s)
- Kazushige Touhara
- Department of Integrated Biosciences, University of Tokyo, Chiba 277-8562, Japan.
| |
Collapse
|
25
|
Abstract
Odour perception is initiated by specific interactions between odorants and a large repertoire of receptors in olfactory neurons. During the past few years, considerable progress has been made in tracing olfactory perception from the odorant receptor protein to the activity of olfactory neurons to higher processing centres and, ultimately, to behaviour. The most complete picture is emerging for the simplest olfactory system studied--that of the fruitfly Drosophila melanogaster. Comparison of rodent, insect and nematode olfaction reveals surprising differences and unexpected similarities among chemosensory systems.
Collapse
Affiliation(s)
- Cornelia I Bargmann
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
26
|
Lomvardas S, Barnea G, Pisapia DJ, Mendelsohn M, Kirkland J, Axel R. Interchromosomal interactions and olfactory receptor choice. Cell 2006; 126:403-13. [PMID: 16873069 DOI: 10.1016/j.cell.2006.06.035] [Citation(s) in RCA: 473] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 04/28/2006] [Accepted: 06/22/2006] [Indexed: 12/31/2022]
Abstract
The expression of a single odorant receptor (OR) gene from a large gene family in individual sensory neurons is an essential feature of the organization and function of the olfactory system. We have used chromosome conformation capture to demonstrate the specific association of an enhancer element, H, on chromosome 14 with multiple OR gene promoters on different chromosomes. DNA and RNA fluorescence in situ hybridization (FISH) experiments allow us to visualize the colocalization of the H enhancer with the single OR allele that is transcribed in a sensory neuron. In transgenic mice bearing additional H elements, sensory neurons that express OR pseudogenes also express a second functional receptor. These data suggest a model of receptor choice in which a single trans-acting enhancer element may allow the stochastic activation of only one OR allele in an olfactory sensory neuron.
Collapse
Affiliation(s)
- Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics and Howard Hughes Medical Institute, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
27
|
Michaloski JS, Galante PAF, Malnic B. Identification of potential regulatory motifs in odorant receptor genes by analysis of promoter sequences. Genome Res 2006; 16:1091-8. [PMID: 16902085 PMCID: PMC1557771 DOI: 10.1101/gr.5185406] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mouse odorant receptors (ORs) are encoded by >1000 genes dispersed throughout the genome. Each olfactory neuron expresses one single OR gene, while the rest of the genes remain silent. The mechanisms underlying OR gene expression are poorly understood. Here, we investigated if OR genes share common cis-regulatory sequences in their promoter regions. We carried out a comprehensive analysis in which the upstream regions of a large number of OR genes were compared. First, using RLM-RACE, we generated cDNAs containing the complete 5'-untranslated regions (5'-UTRs) for a total number of 198 mouse OR genes. Then, we aligned these cDNA sequences to the mouse genome so that the 5' structure and transcription start sites (TSSs) of the OR genes could be precisely determined. Sequences upstream of the TSSs were retrieved and browsed for common elements. We found DNA sequence motifs that are overrepresented in the promoter regions of the OR genes. Most motifs resemble O/E-like sites and are preferentially localized within 200 bp upstream of the TSSs. Finally, we show that these motifs specifically interact with proteins extracted from nuclei prepared from the olfactory epithelium, but not from brain or liver. Our results show that the OR genes share common promoter elements. The present strategy should provide information on the role played by cis-regulatory sequences in OR gene regulation.
Collapse
Affiliation(s)
- Jussara S Michaloski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077 CEP 05513-970, São Paulo, Brazil
| | | | | |
Collapse
|
28
|
Tsuboi A, Miyazaki T, Imai T, Sakano H. Olfactory sensory neurons expressing class I odorant receptors converge their axons on an antero-dorsal domain of the olfactory bulb in the mouse. Eur J Neurosci 2006; 23:1436-44. [PMID: 16553607 DOI: 10.1111/j.1460-9568.2006.04675.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vertebrate odorant receptor (OR) genes are divided phylogenetically into two distinct classes: the fish-like class I and the terrestrial-specific class II. In the present study, we systematically analysed mouse class I OR genes (42 subfamilies) to elucidate the expression profiles in the olfactory epithelium (OE) and the projection sites of their olfactory sensory neurons (OSNs) in the olfactory bulb (OB). In situ hybridization (ISH) revealed that most class I OR genes (36 subfamilies) were expressed in the dorso-medial zone (zone 1) of the OE. Furthermore, there appeared to be no significant differences in the distributions of OSNs expressing class I genes within zone 1. These results indicate that there is a clear boundary between zone 1 and non-zone 1 areas in the OE. Some class I ORs are known to possess ligand specificity for aliphatic acids, aldehydes and alcohols. Our ISH analysis has revealed that OSNs expressing the class I ORs in zone 1 tend to converge their axons on a cluster of glomeruli in an antero-dorsal domain that is assumed to be involved in responses to the aliphatic compounds on the OB.
Collapse
Affiliation(s)
- Akio Tsuboi
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Japan.
| | | | | | | |
Collapse
|
29
|
Hoppe R, Breer H, Strotmann J. Promoter motifs of olfactory receptor genes expressed in distinct topographic patterns. Genomics 2006; 87:711-23. [PMID: 16600568 DOI: 10.1016/j.ygeno.2006.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2005] [Revised: 11/07/2005] [Accepted: 02/09/2006] [Indexed: 11/25/2022]
Abstract
Novel olfactory receptor-encoding genes that are expressed in olfactory sensory neurons arranged in a clustered pattern in the nasal epithelium, typical of the mOR262 (approved gene symbol Olfr) family, were identified. The genes share sequence motifs upstream of their transcription start sites that are highly related to those previously identified as characteristic of the mOR262 genes, suggesting that these regulatory elements may contribute to governing their unique expression pattern. Promoter analyses of genes encoding class I receptors that are expressed in the dorsal region of the epithelium revealed a different, but again common set of sequence motifs. A prominent feature of the class I gene promoters are multiple O/E-like binding sites, and O/E-type transcription factors that bind to the putative promoter region of class I OR genes were in fact identified. The findings support the concept that common elements in the promoter region of these OR genes may determine their congenic expression pattern in the epithelium.
Collapse
Affiliation(s)
- Reiner Hoppe
- Institute of Physiology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | | | | |
Collapse
|
30
|
Abstract
The odorant receptors (ORs) make up the largest gene family in mammals. Each olfactory sensory neuron chooses just one OR from the more than 1000 possibilities encoded in the genome and transcribes it from just one allele. This process generates great neuronal diversity and forms the basis for the development and logic of the olfactory circuit between the nose and the brain. The mechanism behind this monoallelic regulation has been the subject of intense speculation and increasing experimental investigation, yet remains enigmatic. Recent genetic experiments have brought the outlines of the process into sharper relief, identifying a feedback mechanism in which the first odorant receptor expressed, generates a signal that stabilizes its choice, thus maintaining singular selection. In the absence of this signal, the olfactory neuron re-enters the selection process and switches to choose an alternate OR. Irreversible genetic changes in the nuclei of olfactory neurons do not accompany OR selection, which must therefore be initiated by an epigenetic process that may involve a stochastic mechanism.
Collapse
Affiliation(s)
- Benjamin M Shykind
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
31
|
Abstract
Similar to the expression of antigen receptor genes in lymphocytes, the mammalian odorant receptor (OR) genes are expressed in a mutually exclusive and monoallelic manner in olfactory sensory neurons (OSNs). DNA rearrangement has long been regarded as a possible mechanism for the allelic exclusion of the OR genes. However, mice cloned from mature OSN nuclei expressed the full repertoire of ORs, and the possibility of irreversible gene translocation was excluded as a mechanism to activate a single OR gene in each OSN. How is allelic exclusion achieved in the olfactory system? Recent transgenic experiments indicated an inhibitory role of the OR protein in preventing further activation of other OR genes. Stochastic activation of an OR gene and negative-feedback regulation by the OR gene product might ensure the maintenance of the one neuron-one receptor rule in the mammalian olfactory system.
Collapse
Affiliation(s)
- Shou Serizawa
- PRESTO program of Japan Science and Technology Agency, Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
32
|
Abstract
Color vision in Drosophila melanogaster relies on the presence of two different subtypes of ommatidia: the "green" and "blue." These two classes are distributed randomly throughout the retina. The decision of a given ommatidium to take on the "green" or "blue" fate seems to be based on a stochastic mechanism. Here we compare the stochastic choice of photoreceptors in the fly retina with other known examples of random choices in both sensory and other systems.
Collapse
Affiliation(s)
- Tamara Mikeladze-Dvali
- Center for Developmental Genetics, Department of Biology New York University, New York, New York 10003, USA
| | | | | |
Collapse
|
33
|
Zhang X, Rogers M, Tian H, Zhang X, Zou DJ, Liu J, Ma M, Shepherd GM, Firestein SJ. High-throughput microarray detection of olfactory receptor gene expression in the mouse. Proc Natl Acad Sci U S A 2004; 101:14168-73. [PMID: 15377787 PMCID: PMC521132 DOI: 10.1073/pnas.0405350101] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The large number of olfactory receptor genes necessitates high throughput methods to analyze their expression patterns. We have therefore designed a high-density oligonucleotide array containing all known mouse olfactory receptor (OR) and V1R vomeronasal receptor genes. This custom array detected a large number of receptor genes, demonstrating specific expression in the olfactory sensory epithelium for approximately 800 OR genes previously designated as ORs based solely on genomic sequences. The array also enabled us to monitor the spatial and temporal distribution of gene expression for the entire OR family. Interestingly, OR genes showing spatially segregated expression patterns were also segregated on the chromosomes. This correlation between genomic location and spatial expression provides unique insights about the regulation of this large family of genes.
Collapse
Affiliation(s)
- Xinmin Zhang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lane RP, Young J, Newman T, Trask BJ. Species specificity in rodent pheromone receptor repertoires. Genome Res 2004; 14:603-8. [PMID: 15060001 PMCID: PMC383304 DOI: 10.1101/gr.2117004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mouse V1R putative pheromone receptor gene family consists of at least 137 intact genes clustered at multiple chromosomal locations in the genome. Species-specific pheromone receptor repertoires may partly explain species-specific social behavior. We conducted a genomic analysis of an orthologous pair of mouse and rat V1R gene clusters to test for species specificity in rodent pheromone systems. Mouse and rat have lineage-specific V1R repertoires in each of three major subfamilies at these loci as a result of postspeciation duplications, gene loss, and gene conversions. The onset of this diversification roughly coincides with a wave of Line1 (L1) retrotranspositions into the two loci. We propose that L1 activity has facilitated postspeciation V1R duplications and gene conversions. In addition, we find extensive homology among putative V1R promoter regions in both species. We propose a regulatory model in which promoter homogenization could ensure that V1R genes are equally competitive for a limiting transcriptional structure to account for mutually exclusive V1R expression in vomeronasal neurons.
Collapse
Affiliation(s)
- Robert P Lane
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA.
| | | | | | | |
Collapse
|
35
|
Mombaerts P. Odorant receptor gene choice in olfactory sensory neurons: the one receptor-one neuron hypothesis revisited. Curr Opin Neurobiol 2004; 14:31-6. [PMID: 15018935 DOI: 10.1016/j.conb.2004.01.014] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Designed for general chemical recognition, the mammalian olfactory system shares many similarities with the immune system. Among these is the popular notion that a single olfactory sensory neuron expresses a single odorant receptor gene, while all other approximately 1000 genes of this type remain silent. Here, I examine the evidence supporting the one receptor-one neuron hypothesis. I conclude that, contrary to widespread belief, it is far from being proven. I propose an hypothesis of a developmental phase of oligogenic expression that is followed by positive and negative selection resulting usually in cells with one expressed receptor. Curiously, selective processes are well established and widely accepted for lymphocytes, but these concepts are essentially ignored for olfactory sensory neurons, despite the analogies that are frequently made between these two systems. More attention must be paid to odorant receptor gene choice and expression during development and neuronal differentiation.
Collapse
Affiliation(s)
- Peter Mombaerts
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
36
|
Ngai J. Science imitates art: the cloning of mice from olfactory sensory neurons. Cell 2004; 116:636-7. [PMID: 15006346 DOI: 10.1016/s0092-8674(04)00212-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The functional identity of an olfactory sensory neuron is defined by its expression of one odorant receptor from a large multigene family. The complexity of this process has led to speculation that DNA rearrangements are used to limit the expression of one receptor gene per cell. However, a recent report in Nature directly rules out irreversible DNA rearrangements as a mechanism for odorant receptor gene choice.
Collapse
Affiliation(s)
- John Ngai
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
37
|
Affiliation(s)
- Peter Mombaerts
- The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
38
|
Wang SS, Lewcock JW, Feinstein P, Mombaerts P, Reed RR. Genetic disruptions of O/E2 and O/E3 genes reveal involvement in olfactory receptor neuron projection. Development 2004; 131:1377-88. [PMID: 14993187 DOI: 10.1242/dev.01009] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mammalian Olf1/EBF (O/E) family of repeated helix-loop-helix (rHLH)transcription factors has been implicated in olfactory system gene regulation,nervous system development and B-cell differentiation. Ebf(O/E1) mutant animals showed defects in B-cell lineage and brain regions where it is the only O/E family member expressed, but the olfactory epithelium appeared unaffected and olfactory marker expression was grossly normal in these animals. In order to further study the mammalian O/E proteins,we disrupted O/E2 and O/E3 genes in mouse and placed tau-lacZ and tau-GFP reporter genes under the control of the respective endogenous O/E promoters. Mice mutant for each of these genes display reduced viability and other gene-specific phenotypes. Interestingly, both O/E2 and O/E3 knockout mice as well as O/E2/O/E3 double heterozygous animals share a common phenotype:olfactory neurons (ORN) fail to project to dorsal olfactory bulb. We suggest that a decreased dose of O/E protein may alter expression of O/E target genes and underlie the ORN projection defect.
Collapse
Affiliation(s)
- Song S Wang
- The Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, PCTB 818, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
The quest to identify mammalian odorant receptors was a triumph of molecular biology. The characterization of these molecules has provided extraordinary insight into the strategy used by one neuronal system to organize sensory structures and code complex information. The odorant receptor genes have also served as powerful tools in understanding genomic organization and gene regulation.
Collapse
Affiliation(s)
- Randall R Reed
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
40
|
Eggan K, Baldwin K, Tackett M, Osborne J, Gogos J, Chess A, Axel R, Jaenisch R. Mice cloned from olfactory sensory neurons. Nature 2004; 428:44-9. [PMID: 14990966 DOI: 10.1038/nature02375] [Citation(s) in RCA: 298] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 01/14/2004] [Indexed: 11/08/2022]
Abstract
Cloning by nuclear transplantation has been successfully carried out in various mammals, including mice. Until now mice have not been cloned from post-mitotic cells such as neurons. Here, we have generated fertile mouse clones derived by transferring the nuclei of post-mitotic, olfactory sensory neurons into oocytes. These results indicate that the genome of a post-mitotic, terminally differentiated neuron can re-enter the cell cycle and be reprogrammed to a state of totipotency after nuclear transfer. Moreover, the pattern of odorant receptor gene expression and the organization of odorant receptor genes in cloned mice was indistinguishable from wild-type animals, indicating that irreversible changes to the DNA of olfactory neurons do not accompany receptor gene choice.
Collapse
Affiliation(s)
- Kevin Eggan
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lewcock JW, Reed RR. A feedback mechanism regulates monoallelic odorant receptor expression. Proc Natl Acad Sci U S A 2004; 101:1069-74. [PMID: 14732684 PMCID: PMC327152 DOI: 10.1073/pnas.0307986100] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In olfactory neurons, expression of a single odorant receptor (OR) from a repertoire of >1000 genes is required for odor coding and axonal targeting. Here, we demonstrate a role for OR protein as an essential regulator in the establishment of monoallelic OR expression. An OR-promoter-driven reporter expresses in a receptor-like pattern but, unlike a native OR, is coexpressed with an additional OR allele. Expression of a functional OR from the identical promoter eliminates expression of other OR alleles. The presence of an untranslatable OR coding sequence in the mRNA is insufficient to exclude expression of a second OR. Together, these data identify the OR protein as a critical element in a feedback pathway that regulates OR selection.
Collapse
Affiliation(s)
- Joseph W Lewcock
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
42
|
Affiliation(s)
- Joseph W Lewcock
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
43
|
Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, Yoshihara Y, Sakano H. Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse. Science 2003; 302:2088-94. [PMID: 14593185 DOI: 10.1126/science.1089122] [Citation(s) in RCA: 391] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the mouse olfactory system, each olfactory sensory neuron (OSN) expresses only one odorant receptor (OR) gene in a monoallelic and mutually exclusive manner. Such expression forms the genetic basis for OR-instructed axonal projection of OSNs to the olfactory bulb of the brain during development. Here, we identify an upstream cis-acting DNA region that activates the OR gene cluster in mouse and allows the expression of only one OR gene within the cluster. Deletion of the coding region of the expressed OR gene or a naturally occurring frame-shift mutation allows a second OR gene to be expressed. We propose that stochastic activation of only one OR gene within the cluster and negative feedback regulation by that OR gene product are necessary to ensure the one receptor-one neuron rule.
Collapse
Affiliation(s)
- Shou Serizawa
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0032, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Thousands of neurons expressing a given mouse odorant receptor project to a few glomeruli in the olfactory bulb. New observations on mice expressing small odorant receptor transgenes provide support for the idea that interdependence is involved in the maturation of this remarkable convergence.
Collapse
Affiliation(s)
- Asaf Hellman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
45
|
Fuchs T, Malecova B, Linhart C, Sharan R, Khen M, Herwig R, Shmulevich D, Elkon R, Steinfath M, O'Brien JK, Radelof U, Lehrach H, Lancet D, Shamir R. DEFOG: a practical scheme for deciphering families of genes. Genomics 2002; 80:295-302. [PMID: 12213199 DOI: 10.1006/geno.2002.6830] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We developed a novel efficient scheme, DEFOG (for "deciphering families of genes"), for determining sequences of numerous genes from a family of interest. The scheme provides a powerful means to obtain a gene family composition in species for which high-throughput genomic sequencing data are not available. DEFOG uses two key procedures. The first is a novel algorithm for designing highly degenerate primers based on a set of known genes from the family of interest. These primers are used in PCR reactions to amplify the members of the gene family. The second combines oligofingerprinting of the cloned PCR products with clustering of the clones based on their fingerprints. By selecting members from each cluster, a low-redundancy clone subset is chosen for sequencing. We applied the scheme to the human olfactory receptor (OR) genes. OR genes constitute the largest gene superfamily in the human genome, as well as in the genomes of other vertebrate species. DEFOG almost tripled the size of the initial repertoire of human ORs in a single experiment, and only 7% of the PCR clones had to be sequenced. Extremely high degeneracies, reaching over a billion combinations of distinct PCR primer pairs, proved to be very effective and yielded only 0.4% nonspecific products.
Collapse
Affiliation(s)
- Tania Fuchs
- Department of Molecular Genetics and the Crown Human Genome Center, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Vassalli A, Rothman A, Feinstein P, Zapotocky M, Mombaerts P. Minigenes impart odorant receptor-specific axon guidance in the olfactory bulb. Neuron 2002; 35:681-96. [PMID: 12194868 DOI: 10.1016/s0896-6273(02)00793-6] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An olfactory sensory neuron (OSN) expresses selectively one member from a repertoire of approximately 1000 odorant receptor (OR) genes and projects its axon to a specific glomerulus in the olfactory bulb. Both processes are here recapitulated by MOR23 and M71 OR minigenes, introduced into mice. Minigenes of 9 kb and as short as 2.2 kb are selectively expressed by neurons that do not coexpress the endogenous gene but coproject their axons to the same glomeruli. Deletion of a 395 bp upstream region in the MOR23 minigene abolishes expression. In this region we recognize sequence motifs conserved in many OR genes. Transgenic lines expressing the OR in ectopic epithelial zones form ectopic glomeruli, which also receive input from OSNs expressing the cognate endogenous receptor. This suggests a recruitment through homotypic interactions between OSNs expressing the same OR.
Collapse
Affiliation(s)
- Anne Vassalli
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
47
|
Abstract
Mammalian olfactory sensory neurons that express a particular odorant receptor (OR) project axons to the same few glomeruli in the olfactory bulb. In this issue of Neuron, Vassalli et al. use OR minigenes that coexpress histochemical markers and show that the determinants in the sensory neurons required to generate the stereotyped olfactory bulb map are the same as those needed for appropriate expression of the OR.
Collapse
Affiliation(s)
- Rajesh Ranganathan
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | |
Collapse
|
48
|
Abstract
Odorant receptor genes comprise the largest known family of G-protein-coupled receptors in vertebrates. These receptor genes are tightly clustered in the genomes of every vertebrate organism investigated, including zebrafish, mice and humans, and they appear to have expanded and duplicated throughout evolution. In a mechanism that has yet to be elucidated, each olfactory neuron expresses a single receptor gene. This highly restricted expression pattern underlies the ability to distinguish between a wide variety of odorants. Here, we address the evolutionary expansion of odorant receptor genes and the role genomic organization of these genes might have in their tightly regulated expression.
Collapse
Affiliation(s)
- Erica Kratz
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
49
|
Lane RP, Roach JC, Lee IY, Boysen C, Smit A, Trask BJ, Hood L. Genomic analysis of the olfactory receptor region of the mouse and human T-cell receptor alpha/delta loci. Genome Res 2002; 12:81-7. [PMID: 11779833 PMCID: PMC155264 DOI: 10.1101/gr.197901] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2001] [Accepted: 10/16/2001] [Indexed: 11/24/2022]
Abstract
We have conducted a comparative genomic analysis of several olfactory receptor (OR) genes that lie immediately 5' to the V-alpha gene segments at the mouse and human T-cell receptor (TCR) alpha/delta loci. Five OR genes are identified in the human cluster. The murine cluster has at least six OR genes; the first five are orthologous to the human genes. The sixth mouse gene has arisen since mouse-human divergence by a duplication of a approximately 10-kb block. One pair of OR paralogs found at the mouse and human loci are more similar to each other than to their corresponding orthologs. This paralogous "twinning" appears to be under selection, perhaps to increase sensitivity to particular odorants or to resolve structurally-similar odorants. The promoter regions of the mouse OR genes were identified by RACE-PCR. Orthologs share extensive 5' UTR homology, but we find no significant similarity among paralogs. These findings extend previous observations that suggest that OR genes do not share local significant regulatory homology despite having a common regulatory agenda. We also identified a diverged TCR-alpha gene segment that uses a divergent recombination signal sequence (RSS) to initiate recombination in T-cells from within the OR region. We explored the hypothesis that OR genes may use DNA recombination in expressing neurons, e.g., to recombine ORs into a transcriptionally active locus. We searched the mouse sequence for OR-flanking RSS motifs, but did not find evidence to suggest that these OR genes use TCR-like recombination target sequences.
Collapse
Affiliation(s)
- Robert P Lane
- Department of Molecular Biotechnology, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The mouse's sense of smell is built of approximately 1000 input channels. Each of these consists of a population of olfactory sensory neurons that express the same odorant receptor gene and project their axons to the same targets (glomeruli) in the olfactory bulb. A neuron must choose to express a singular receptor gene from a repertoire of approximately 1000 genes, and its axon must be wired to the corresponding glomerulus, from an array of approximately 1800 glomeruli. Genetic experiments have shown that the expressed odorant receptor specifies axonal choice of the innervated glomerulus, but it is not the only determinant. The mechanisms of odorant receptor gene choice and axonal wiring are central to the functional organization of the mammalian olfactory system. Although principles have emerged, our understanding of these processes is still limited.
Collapse
Affiliation(s)
- P Mombaerts
- The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| |
Collapse
|