1
|
Khotskin NV, Komleva PD, Arefieva AB, Moskaliuk VS, Khotskina A, Alhalabi G, Izyurov AE, Sinyakova NA, Sherbakov D, Kulikova EA, Bazovkina DV, Kulikov AV. The C1473G Mutation in the Mouse Tph2 Gene: From Molecular Mechanism to Biological Consequences. Biomolecules 2025; 15:461. [PMID: 40305154 PMCID: PMC12024906 DOI: 10.3390/biom15040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 05/02/2025] Open
Abstract
Tryptophan hydroxylase 2 (TPH2) hydroxylates L-tryptophan to L-5-hydroxy tryptophan-the key step of 5-HT synthesis in the mammalian brain. Some mutations in the human hTPH2 gene are associated with psychopathologies and resistance to antidepressant therapy. The C1473G polymorphism in the mouse Tph2 gene decreases the TPH2 activity in the mouse brain. In the present paper, B6-1473C and B6-1473G congenic mice that were different only in the C > G substitution were used. The molecular mechanism of decrease in the mutant enzyme activity and some physiological and behavioral traits affected by this mutation were revealed for the first time. Analysis of thermal denaturation curves in vitro revealed that the C > G substitution reduces the free energy of denaturation, stability and lifetime of mutant TPH2. Later, we evaluated the effect of the 1473G allele on the hierarchical state, competition for a sexual partner in adult mice, mouse embryos, hind legs dystonia and the response to LPS treatment in young mice. No effect of this mutation on the hierarchical state and competition for a female was observed in adult males. The C > G substitution does not affect survival, body mass or the TPH activity in the brain of 19-day-old mouse embryos. At the same time, we found that the 1473G allele causes hind legs dystonia in juvenile (3 weeks old) mice, which can affect their escape capability in threatening situations. Moreover, a significant increase in the vulnerability to LPS in juvenile B6-1473G males was shown: a single ip LPS administration killed about 40% of young mutant mice, but not wild-type ones. The body mass of mutant males was lower compared to wild-type ones, which also can indirectly decrease their concurrent and reproductive success.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Alexander V. Kulikov
- The Federal Research Center Institute Cytology and Genetics, Russian Academy of Sciences, Avenue Lavrentyev, 10, Novosibirsk 630090, Russia; (N.V.K.); (P.D.K.); (A.B.A.); (V.S.M.); (A.K.); (G.A.); (A.E.I.); (N.A.S.); (D.S.); (E.A.K.); (D.V.B.)
| |
Collapse
|
2
|
Zhong H, Jiang M, Yuan K, Sheng F, Xu X, Cui Y, Sun X, Tan W. Alterations in gut microbiota and metabolites contribute to postoperative sleep disturbances. Animal Model Exp Med 2025. [PMID: 39924929 DOI: 10.1002/ame2.12557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 01/05/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND The composition of the intestinal flora and the resulting metabolites affect patients' sleep after surgery. METHODS We intended to elucidate the mechanisms by which disordered intestinal flora modulate the pathophysiology of postoperative sleep disturbances in hosts. In this study, we explored the impacts of anesthesia, surgery, and postoperative sleep duration on the fecal microbiota and metabolites of individuals classified postprocedurally as poor sleepers (PS) and good sleepers (GS), as diagnosed by the bispectral index. We also performed fecal microbiota transplantation in pseudo-germ-free (PGF) rats and applied Western blotting, immunohistochemistry, and gut permeability analyses to identify the potential mechanism of its effect. RESULTS Research finding shows the PS group had significantly higher postoperative stool levels of the metabolites tryptophan and kynurenine than the GS group. PGF rats that received gut microbiota from PSs exhibited less rapid eye movement (REM) sleep than those that received GS microbiota (GS-PGF: 11.4% ± 1.6%, PS-PGF: 4.8% ± 2.0%, p < 0.001). Measurement of 5-hydroxytryptophan (5-HTP) levels in the stool, serum, and prefrontal cortex (PFC) indicated that altered 5-HTP levels, including reduced levels in the PFC, caused sleep loss in PGF rats transplanted with PS gut flora. Through the brain-gut axis, the inactivity of tryptophan hydroxylase 1 (TPH1) and TPH2 in the colon and PFC, respectively, caused a loss of REM sleep in PGF rats and decreased the 5-HTP level in the PFC. CONCLUSIONS These findings indicate that postoperative gut dysbiosis and defective 5-HTP metabolism may cause postoperative sleep disturbances. Clinicians and sleep researchers may gain new insights from this study.
Collapse
Affiliation(s)
- Hui Zhong
- Department of Anesthesiology, Chengdu Third People's Hospital, Chengdu, China
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Meiru Jiang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Kun Yuan
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Fang Sheng
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiuyun Xu
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, China
| | - Yong Cui
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Xijia Sun
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Wenfei Tan
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Villani C, Sacchetti G, Invernizzi RW. Boosting Serotonin Synthesis Is Not Sufficient to Improve Motor Coordination of Mecp2 Heterozygous Mouse Model of Rett Syndrome. Biomolecules 2024; 14:1230. [PMID: 39456163 PMCID: PMC11506563 DOI: 10.3390/biom14101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Motor deficit is a core symptom of Rett syndrome, a rare neurological disease caused in most cases by mutations of the methyl-CpG-binding protein2 (MECP2) gene. Serotonin reuptake inhibitors improve motor coordination in Mecp2 heterozygous (Het) mice and serotonin depletion prevented this effect. Here, we assess alterations in indole levels in various brain regions and whether boosting brain serotonin synthesis with the serotonin precursors tryptophan, 5-hydroxytryptophan and α-lactalbumin rescued motor coordination deficit of Mecp2 Het mice. Motor coordination was assessed in the accelerated rotarod during and after systemic administration of serotonin precursors for 2-3 weeks. Since no data are available, the effect of α-lactalbumin on tryptophan, serotonin and 5-hydroxyindoleacetic acid levels was evaluated in various brain regions in order to identify the dose of ALAC to evaluate on motor coordination. As compared to WT, Mecp2 Het mice show reduced levels of serotonin in the whole brain, hippocampus, brainstem and cerebral cortex, but not the striatum. Reduced levels of 5-hydroxyindoleacetic acid were observed in the hippocampus and brainstem. Doses of serotonin precursors increasing brain tryptophan and/or serotonin production and metabolism had no effect on motor coordination. The results indicate that boosting serotonin synthesis is not sufficient to improve motor coordination of Mecp2 Het mice.
Collapse
Affiliation(s)
| | | | - Roberto W. Invernizzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, 20156 Milan, Italy; (C.V.)
| |
Collapse
|
4
|
Poggini S, Matte Bon G, Ciano Albanese N, Karpova N, Castrén E, D'Andrea I, Branchi I. Subjective experience of the environment determines serotoninergic antidepressant treatment outcome in male mice. J Affect Disord 2024; 350:900-908. [PMID: 38246279 DOI: 10.1016/j.jad.2024.01.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND The effects of the selective serotonin reuptake inhibitors (SSRIs), the first-line antidepressant treatment, have been proposed to be affected, at least in part, by the living environment. Since the quality of the environment depends not only on its objective features, but also on the subjective experience, we hypothesized that the latter plays a key role in determining SSRI treatment outcome. METHODS We chronically administered the SSRI fluoxetine to two groups of adult CD-1 male mice that reportedly show distinct subjective experiences of the environment measured as consistent and significantly different responses to the same emotional and social stimuli. These distinct socioemotional profiles were generated by rearing mice either in standard laboratory conditions (SN) or in a communal nest (CN) where three dams breed together their offspring, sharing caregiving behavior. RESULTS At adulthood, CN mice displayed higher levels of agonistic and anxiety-like behaviors than SN mice, indicating that they experience the environment as more socially challenging and potentially dangerous. We then administered fluoxetine, which increased offensive and anxious response in SN, while producing opposite effects in CN mice. BDNF regulation was modified by the treatment accordingly. LIMITATIONS Subjective experience in mice was assessed as behavioral response to the environment. CONCLUSIONS These results show that the subjective experience of the environment determines fluoxetine outcome. In a translational perspective, our findings suggest considering not only the objective quality, but also the subjective appraisal, of the patient's living environment for developing effective personalized therapeutic approaches in psychiatry.
Collapse
Affiliation(s)
- Silvia Poggini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Gloria Matte Bon
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy; Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Naomi Ciano Albanese
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Nina Karpova
- Neuroscience Center, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| | - Ivana D'Andrea
- Institut national de la santé et de la recherche médicale (INSERM) UMR-S 1270, Sorbonne Université, Sciences and Engineering Faculty, Institut du Fer à Moulin, Paris, France
| | - Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
5
|
Gammoh O, Ibrahim A, Yehya A, Alqudah A, Qnais E, Altaber S, Alrob OA, Aljabali AAA, Tambuwala MM. Exploring the Roles of Vitamins C and D and Etifoxine in Combination with Citalopram in Depression/Anxiety Model: A Focus on ICAM-1, SIRT1 and Nitric Oxide. Int J Mol Sci 2024; 25:1960. [PMID: 38396638 PMCID: PMC10889164 DOI: 10.3390/ijms25041960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The study of intercellular adhesion molecule-1 (ICAM-1) and SIRT1, a member of the sirtuin family with nitric oxide (NO), is emerging in depression and anxiety. As with all antidepressants, the efficacy is delayed and inconsistent. Ascorbic acid (AA) and vitamin D (D) showed antidepressant properties, while etifoxine (Etx), a GABAA agonist, alleviates anxiety symptoms. The present study aimed to investigate the potential augmentation of citalopram using AA, D and Etx and related the antidepressant effect to brain and serum ICAM-1, SIRT1 and NO in an animal model. BALB/c mice were divided into naive, control, citalopram, citalopram + etx, citalopram + AA, citalopram + D and citalopram + etx + AA + D for 7 days. On the 8th day, the mice were restrained for 8 h, followed by a forced swim test and marble burying test before scarification. Whole-brain and serum expression of ICAM-1, Sirt1 and NO were determined. Citalopram's antidepressant and sedative effects were potentiated by ascorbic acid, vitamin D and etifoxine alone and in combination (p < 0.05), as shown by the decreased floating time and rearing frequency. Brain NO increased significantly (p < 0.05) in depression and anxiety and was associated with an ICAM-1 increase versus naive (p < 0.05) and a Sirt1 decrease (p < 0.05) versus naive. Both ICAM-1 and Sirt1 were modulated by antidepressants through a non-NO-dependent pathway. Serum NO expression was unrelated to serum ICAM-1 and Sirt1. Brain ICAM-1, Sirt1 and NO are implicated in depression and are modulated by antidepressants.
Collapse
Affiliation(s)
- Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan; (A.Y.); (O.A.A.)
| | - Aseel Ibrahim
- Faculty of Sciences, Yarmouk University, Irbid 21163, Jordan;
| | - Ala Yehya
- Department of Clinical Pharmacy and Pharmacy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan; (A.Y.); (O.A.A.)
| | - Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan; (E.Q.); (S.A.)
| | - Sara Altaber
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan; (E.Q.); (S.A.)
| | - Osama Abo Alrob
- Department of Clinical Pharmacy and Pharmacy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan; (A.Y.); (O.A.A.)
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan;
| | - Murtaza M. Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln LN6 7TS, UK;
| |
Collapse
|
6
|
Arefieva AB, Komleva PD, Naumenko VS, Khotskin NV, Kulikov AV. In Vitro and In Vivo Chaperone Effect of (R)-2-amino-6-(1R, 2S)-1,2-dihydroxypropyl)-5,6,7,8-tetrahydropterin-4(3H)-one on the C1473G Mutant Tryptophan Hydroxylase 2. Biomolecules 2023; 13:1458. [PMID: 37892138 PMCID: PMC10604173 DOI: 10.3390/biom13101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/29/2023] Open
Abstract
Tryptophan hydroxylase 2 (TPH2) is the key and rate-limiting enzyme of serotonin (5-HT) synthesis in the mammalian brain. The 1473G mutation in the Tph2 gene decreases TPH2 activity in the mouse brain by twofold. (R)-2-amino-6-(1R, 2S)-1,2-dihydroxypropyl)-5,6,7,8-tetrahydropterin-4(3H)-one (BH4) is a pharmacological chaperone for aromatic amino acid hydroxylases. In the present study, chaperone effects of BH4 on the mutant C1473G TPH2 were investigated in vitro and in vivo. In vitro BH4 increased the thermal stability (T50 value) of mutant and wild-type TPH2 molecules. At the same time, neither chronic (twice per day for 7 days) intraperitoneal injection of 48.3 mg/kg of BH4 nor a single intraventricular administration of 60 μg of the drug altered the mutant TPH2 activity in the brain of Balb/c mice. This result indicates that although BH4 shows a chaperone effect in vitro, it is unable to increase the activity of mutant TPH2 in vivo.
Collapse
Affiliation(s)
- Alla B. Arefieva
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.B.A.); (N.V.K.)
| | - Polina D. Komleva
- Department of Psychoneuropharmacology, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.D.K.); (V.S.N.)
| | - Vladimir S. Naumenko
- Department of Psychoneuropharmacology, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.D.K.); (V.S.N.)
- Departments of Behavioral Neurogenomics, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nikita V. Khotskin
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.B.A.); (N.V.K.)
| | - Alexander V. Kulikov
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.B.A.); (N.V.K.)
| |
Collapse
|
7
|
Bosco F, Guarnieri L, Leo A, Tallarico M, Gallelli L, Rania V, Citraro R, De Sarro G. Audiogenic epileptic DBA/2 mice strain as a model of genetic reflex seizures and SUDEP. Front Neurol 2023; 14:1223074. [PMID: 37681009 PMCID: PMC10481168 DOI: 10.3389/fneur.2023.1223074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/14/2023] [Indexed: 09/09/2023] Open
Abstract
Epilepsy is a chronic neurological disease characterized by abnormal brain activity, which results in repeated spontaneous seizures. Sudden unexpected death in epilepsy (SUDEP) is the leading cause of seizure-related premature death, particularly in drug-resistant epilepsy patients. The etiology of SUDEP is a structural injury to the brain that is not fully understood, but it is frequently associated with poorly controlled and repeated generalized tonic-clonic seizures (GTCSs) that cause cardiorespiratory and autonomic dysfunctions, indicating the involvement of the brainstem. Both respiratory and cardiac abnormalities have been observed in SUDEP, but not much progress has been made in their prevention. Owing to the complexity of SUDEP, experimental animal models have been used to investigate cardiac and/or respiratory dysregulation due to or associated with epileptic seizures that may contribute to death in humans. Numerous rodent models, especially mouse models, have been developed to better understand epilepsy and SUDEP physiopathology. This review synthesizes the current knowledge about dilute brown agouti coat color (DBA/2) mice as a possible SUDEP model because respiratory arrest (RA) and sudden death induced by audiogenic generalized seizures (AGSs) have been observed in these animals. Respiratory/cardiac dysfunction, brainstem arousal system dysfunction, and alteration of the neurotransmitter systems, which are observed in human SUDEP, have also been observed in these mice. In particular, serotonin (5-HT) alteration and adenosine neurotransmission appear to contribute to not only the pathophysiological mechanisms of medication but also seizure-related respiratory dysfunctions in this animal model. These neurotransmitter systems could be the relevant targets for medication development for chronic epilepsy and SUDEP prevention. We reviewed data on AGSs in DBA/2 mice and the relevance of this model of generalized tonic-clonic epilepsy to human SUDEP. Furthermore, the advantages of using this strain prone to AGSs for the identification of possible new therapeutic targets and treatment options have also been assessed.
Collapse
Affiliation(s)
- Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Martina Tallarico
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Luca Gallelli
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Rania
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
8
|
Evsiukova VS, Arefieva AB, Sorokin IE, Kulikov AV. Age-Related Alterations in the Level and Metabolism of Serotonin in the Brain of Males and Females of Annual Turquoise Killifish ( Nothobranchius furzeri). Int J Mol Sci 2023; 24:ijms24043185. [PMID: 36834593 PMCID: PMC9959878 DOI: 10.3390/ijms24043185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
The annual turquoise killifish (Nothobranchius furzeri) is a laboratory model organism for neuroscience of aging. In the present study, we investigated for the first time the levels of serotonin and its main metabolite, 5-hydroxyindoleacetic acid, as well as the activities of the key enzymes of its synthesis, tryptophan hydroxylases, and degradation, monoamine oxidase, in the brains of 2-, 4- and 7-month-old male and female N. furzeri. The marked effect of age on the body mass and the level of serotonin, as well as the activities of tryptophan hydroxylases and monoamine oxidase in the brain of killifish were revealed. The level of serotonin decreased in the brain of 7-month-old males and females compared with 2-month-old ones. A significant decrease in the tryptophan hydroxylase activity and an increase in the monoamine oxidase activity in the brain of 7-month-old females compared to 2-month-old females was shown. These findings agree with the age-related alterations in expression of the genes encoding tryptophan hydroxylases and monoamine oxidase. N. furzeri is a suitable model with which to study the fundamental problems of age-related changes of the serotonin system in the brain.
Collapse
Affiliation(s)
- Valentina S. Evsiukova
- Department of Psychoneuropharmacology, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alla B. Arefieva
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ivan E. Sorokin
- Department of Monogenic Forms of Human Common Disorders, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexander V. Kulikov
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-3833636187
| |
Collapse
|
9
|
Mulkey DK, Milla BM. Perspectives on the basis of seizure-induced respiratory dysfunction. Front Neural Circuits 2022; 16:1033756. [PMID: 36605420 PMCID: PMC9807672 DOI: 10.3389/fncir.2022.1033756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Epilepsy is an umbrella term used to define a wide variety of seizure disorders and sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in epilepsy. Although some SUDEP risk factors have been identified, it remains largely unpredictable, and underlying mechanisms remain poorly understood. Most seizures start in the cortex, but the high mortality rate associated with certain types of epilepsy indicates brainstem involvement. Therefore, to help understand SUDEP we discuss mechanisms by which seizure activity propagates to the brainstem. Specifically, we highlight clinical and pre-clinical evidence suggesting how seizure activation of: (i) descending inhibitory drive or (ii) spreading depolarization might contribute to brainstem dysfunction. Furthermore, since epilepsy is a highly heterogenous disorder, we also considered factors expected to favor or oppose mechanisms of seizure propagation. We also consider whether epilepsy-associated genetic variants directly impact brainstem function. Because respiratory failure is a leading cause of SUDEP, our discussion of brainstem dysfunction focuses on respiratory control.
Collapse
Affiliation(s)
- Daniel K. Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | | |
Collapse
|
10
|
Russo AM, Payet JM, Kent S, Lesku JA, Lowry CA, Hale MW. Acute treatment with 5-hydroxytryptophan increases social approach behaviour but does not activate serotonergic neurons in the dorsal raphe nucleus in juvenile male BALB/c mice: A model of human disorders with deficits of sociability. J Psychopharmacol 2022; 36:806-818. [PMID: 35475390 DOI: 10.1177/02698811221089039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The BALB/c mouse has been proposed as a model of human psychiatric disorders characterised by elevated anxiety and altered sociability. Juvenile BALB/c mice show decreased social exploratory behaviour, increased anxiety, and reduced brain serotonin synthesis compared to other strains including C57BL/6J mice. AIM To determine whether supplementation of brain serotonin synthesis alters social behaviour and activation of serotonergic neurons across subregions of the dorsal raphe nucleus (DR) in BALB/c mice. METHODS Juvenile male BALB/c mice were assigned to one of four treatment conditions: vehicle/vehicle, carbidopa (25 mg/kg)/vehicle, vehicle/5-HTP (10 mg/kg), carbidopa (25 mg/kg)/5-HTP (10 mg/kg). Social behaviour was measured using the three-chamber social approach test, followed by immunohistochemical staining for TPH2 and c-Fos to measure activation of serotonergic neurons across subregions of the DR. RESULTS Mice treated with carbidopa/5-HTP spent more time in the social cage zone and covered more distance in the social approach test compared to other treatment groups. There was no difference between treatment groups in the activation of serotonergic neurons across subregions of the DR. However, the DRD was associated with increased social approach behaviour in carbidopa/5-HTP treated animals. CONCLUSIONS Supplementation of serotonin synthesis can increase social approach behaviour in juvenile BALB/c mice. An increase in locomotor behaviour was also observed suggesting that increasing central serotonin synthesis may have led to a reduction in state anxiety, manifesting in increased exploratory behaviour. As no effect on serotonergic activation within the DR was found, alternative mechanisms are likely important for the effects of 5-HTP on social behaviour.
Collapse
Affiliation(s)
- Adrian M Russo
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Jennyfer M Payet
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Stephen Kent
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - John A Lesku
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Christopher A Lowry
- Department of Integrative Physiology and Centre for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Matthew W Hale
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Evsiukova VS, Bazovkina D, Bazhenova E, Kulikova EA, Kulikov AV. Tryptophan Hydroxylase 2 Deficiency Modifies the Effects of Fluoxetine and Pargyline on the Behavior, 5-HT- and BDNF-Systems in the Brain of Zebrafish ( Danio rerio). Int J Mol Sci 2021; 22:ijms222312851. [PMID: 34884655 PMCID: PMC8657639 DOI: 10.3390/ijms222312851] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022] Open
Abstract
The mechanisms of resistance to antidepressant drugs is a key and still unresolved problem of psychopharmacology. Serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) play a key role in the therapeutic effect of many antidepressants. Tryptophan hydroxylase 2 (TPH2) is the rate-limiting enzyme in 5-HT synthesis in the brain. We used zebrafish (Danio rerio) as a promising model organism in order to elucidate the effect of TPH2 deficiency caused by p-chlorophenylalanine (pCPA) on the alterations in behavior and expression of 5-HT-related (Tph2, Slc6a4b, Mao, Htr1aa, Htr2aa) and BDNF-related (Creb, Bdnf, Ntrk2a, Ngfra) genes in the brain after prolonged treatment with two antidepressants, inhibitors of 5-HT reuptake (fluoxetine) and oxidation (pargyline). In one experiment, zebrafish were treated for 72 h with 0.2 mg/L fluoxetine, 2 mg/L pCPA, or the drugs combination. In another experiment, zebrafish were treated for 72 h with 0.5 mg/L pargyline, 2 mg/L pCPA, or the drugs combination. Behavior was studied in the novel tank diving test, mRNA levels were assayed by qPCR, 5-HT and its metabolite concentrations were measured by HPLC. The effects of interaction between pCPA and the drugs on zebrafish behavior were observed: pCPA attenuated “surface dwelling” induced by the drugs. Fluoxetine decreased mRNA levels of Tph2 and Htr2aa genes, while pargyline decreased mRNA levels of Slc6a4b and Htr1aa genes. Pargyline reduced Creb, Bdnf and Ntrk2a genes mRNA concentration only in the zebrafish treated with pCPA. The results show that the disruption of the TPH2 function can cause a refractory to antidepressant treatment.
Collapse
Affiliation(s)
- Valentina S. Evsiukova
- Department of Psychoneuropharmacology, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.E.); (E.A.K.)
| | - Daria Bazovkina
- Department of Behavioral Neurogenomics, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Ekaterina Bazhenova
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Elizabeth A. Kulikova
- Department of Psychoneuropharmacology, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.E.); (E.A.K.)
| | - Alexander V. Kulikov
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Correspondence: ; Tel.: +7-3833636187
| |
Collapse
|
12
|
Maiolati M, Tarmati V, Latagliata C, Cabib S, Orsini C. Opposite genotype-specific effects of serotoninergic treatments on Pavlovian Conditioned Approach in mice of two inbred strains C57 BL/6J and DBA/2J. Behav Pharmacol 2021; 32:392-403. [PMID: 33709985 DOI: 10.1097/fbp.0000000000000629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Individual variability in the response to pharmacological therapies is a major problem in the treatment of psychiatric disorders. Comparative studies of phenotypes expressed by mice of the C57BL/6J (C57) and DBA/2J (DBA) inbred strains can help identify neurobiological determinants of this variability at preclinical levels. We have recently demonstrated that whereas young adult mice of both strains develop sign-tracking in a Pavlovian Conditioned Approach (PCA), a trait associated with dysfunctional behavior in rat models, in full adult C57 mice acquisition of this phenotype is inhibited by pre-frontal cortical (PFC) serotonin (5HT) transmission. These findings suggest a different role of 5HT transmission on sign-tracking development in mice of the two genotypes. In the present experiments, we tested the effects of the 5-HT synthesis booster 5-hydroxytryptophan (5-HTP) and of the selective 5HT reuptake inhibitor (SSRI) fluoxetine on the development and expression of sign-tracking in young adult mice from both inbred strains. In mice of the C57 strain, administration of 5-HTP before each training session blocked the training-induced shift to positive PCA scores which indicates the development of sign-tracking, whereas the same treatment was ineffective in mice of DBA strain. On the other hand, a single administration of fluoxetine was ineffective in unhandled saline- and 5-HTP-treated C57 mice, whereas it enhanced the expression of positive PCA scores by mice of DBA strain treated with 5-HTP during training. These findings confirm the strain-specific inhibitory role of PFC 5-HT transmission on sign-tracking development by mice of the C57 strain and support the hypothesis that different genotype-specific neurobiological substrates of dysfunctional phenotypes contribute to variable effects of pharmacotherapies.
Collapse
Affiliation(s)
- Marzia Maiolati
- PhD Program in Behavioral Neuroscience, Department of Psychology, University of Rome "Sapienza"
| | - Valeria Tarmati
- PhD Program in Behavioral Neuroscience, Department of Psychology, University of Rome "Sapienza"
| | | | - Simona Cabib
- IRCSS Fondazione Santa Lucia, Department of Experimental Neurosciences
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - Cristina Orsini
- IRCSS Fondazione Santa Lucia, Department of Experimental Neurosciences
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
13
|
Villani C, Carli M, Castaldo AM, Sacchetti G, Invernizzi RW. Fluoxetine increases brain MeCP2 immuno-positive cells in a female Mecp2 heterozygous mouse model of Rett syndrome through endogenous serotonin. Sci Rep 2021; 11:14690. [PMID: 34282222 PMCID: PMC8290043 DOI: 10.1038/s41598-021-94156-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Motor skill deficit is a common and invalidating symptom of Rett syndrome (RTT), a rare disease almost exclusively affecting girls during the first/second year of life. Loss-of-function mutations of the methyl-CpG-binding protein2 (MECP2; Mecp2 in rodents) gene is the cause in most patients. We recently found that fluoxetine, a selective serotonin (5-HT) reuptake inhibitor and antidepressant drug, fully rescued motor coordination deficits in Mecp2 heterozygous (Mecp2 HET) mice acting through brain 5-HT. Here, we asked whether fluoxetine could increase MeCP2 expression in the brain of Mecp2 HET mice, under the same schedule of treatment improving motor coordination. Fluoxetine increased the number of MeCP2 immuno-positive (MeCP2+) cells in the prefrontal cortex, M1 and M2 motor cortices, and in dorsal, ventral and lateral striatum. Fluoxetine had no effect in the CA3 region of the hippocampus or in any of the brain regions of WT mice. Inhibition of 5-HT synthesis abolished the fluoxetine-induced rise of MeCP2+ cells. These findings suggest that boosting 5-HT transmission is sufficient to enhance the expression of MeCP2 in several brain regions of Mecp2 HET mice. Fluoxetine-induced rise of MeCP2 could potentially rescue motor coordination and other deficits of RTT.
Collapse
Affiliation(s)
- Claudia Villani
- Laboratory Neurochemistry and Behavior, Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Mirjana Carli
- Laboratory Neurochemistry and Behavior, Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Anna Maria Castaldo
- Laboratory Neurochemistry and Behavior, Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Giuseppina Sacchetti
- Laboratory Neurochemistry and Behavior, Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Roberto William Invernizzi
- Laboratory Neurochemistry and Behavior, Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
| |
Collapse
|
14
|
Campanelli F, Marino G, Barsotti N, Natale G, Calabrese V, Cardinale A, Ghiglieri V, Maddaloni G, Usiello A, Calabresi P, Pasqualetti M, Picconi B. Serotonin drives striatal synaptic plasticity in a sex-related manner. Neurobiol Dis 2021; 158:105448. [PMID: 34280523 DOI: 10.1016/j.nbd.2021.105448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 06/01/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Plasticity at corticostriatal synapses is a key substrate for a variety of brain functions - including motor control, learning and reward processing - and is often disrupted in disease conditions. Despite intense research pointing toward a dynamic interplay between glutamate, dopamine (DA), and serotonin (5-HT) neurotransmission, their precise circuit and synaptic mechanisms regulating their role in striatal plasticity are still unclear. Here, we analyze the role of serotonergic raphe-striatal innervation in the regulation of DA-dependent corticostriatal plasticity. METHODS Mice (males and females, 2-6 months of age) were housed in standard plexiglass cages at constant temperature (22 ± 1°C) and maintained on a 12/12h light/dark cycle with food and demineralized water ad libitum. In the present study, we used a knock-in mouse line in which the green fluorescent protein reporter gene (GFP) replaced the I Tph2 exon (Tph2GFP mice), allowing selective expression of GFP in the whole 5-HT system, highlighting both somata and neuritis of serotonergic neurons. Heterozygous, Tph2+/GFP, mice were intercrossed to obtain experimental cohorts, which included Wild-type (Tph2+/+), Heterozygous (Tph2+/GFP), and Mutant serotonin-depleted (Tph2GFP/GFP) animals. RESULTS Using male and female mice, carrying on different Tph2 gene dosages, we show that Tph2 gene modulation results in sex-specific corticostriatal abnormalities, encompassing the abnormal amplitude of spontaneous glutamatergic transmission and the loss of Long Term Potentiation (LTP) in Tph2GFP/GFP mice of both sexes, while this form of plasticity is normally expressed in control mice (Tph2+/+). Once LTP is induced, only the Tph2+/GFP female mice present a loss of synaptic depotentiation. CONCLUSION We showed a relevant role of the interaction between dopaminergic and serotonergic systems in controlling striatal synaptic plasticity. Overall, our data unveil that 5-HT plays a primary role in regulating DA-dependent corticostriatal plasticity in a sex-related manner and propose altered 5-HT levels as a critical determinant of disease-associated plasticity defects.
Collapse
Affiliation(s)
- Federica Campanelli
- Laboratory of Neurophysiology, Santa Lucia Foundation IRCCS, Rome 00143, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy; Department of Medicine, Università degli Studi di Perugia, Perugia 06123, Italy
| | - Gioia Marino
- Laboratory of Neurophysiology, Santa Lucia Foundation IRCCS, Rome 00143, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy; Department of Medicine, Università degli Studi di Perugia, Perugia 06123, Italy
| | - Noemi Barsotti
- Department of Biology Unit of Cell and Developmental Biology, University of Pisa, Pisa 56127, Italy
| | - Giuseppina Natale
- Laboratory of Neurophysiology, Santa Lucia Foundation IRCCS, Rome 00143, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy; Department of Medicine, Università degli Studi di Perugia, Perugia 06123, Italy
| | - Valeria Calabrese
- Department of Medicine, Università degli Studi di Perugia, Perugia 06123, Italy; Laboratory Experimental Neurophysiology, IRCCS San Raffaele Pisana, Rome 00166, Italy
| | - Antonella Cardinale
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy; Laboratory Experimental Neurophysiology, IRCCS San Raffaele Pisana, Rome 00166, Italy
| | | | - Giacomo Maddaloni
- Department of Biology Unit of Cell and Developmental Biology, University of Pisa, Pisa 56127, Italy
| | - Alessandro Usiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania, Luigi Vanvitelli, Caserta 81100, Italy; IRCCS-Foundation SDN, Via Gianturco, Naples 80143, Italy
| | - Paolo Calabresi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy; Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Massimo Pasqualetti
- Department of Biology Unit of Cell and Developmental Biology, University of Pisa, Pisa 56127, Italy; Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto (TN), 38068, Italy
| | - Barbara Picconi
- Laboratory Experimental Neurophysiology, IRCCS San Raffaele Pisana, Rome 00166, Italy; Università Telematica San Raffaele, Rome 00166, Italy.
| |
Collapse
|
15
|
Vahid-Ansari F, Albert PR. Rewiring of the Serotonin System in Major Depression. Front Psychiatry 2021; 12:802581. [PMID: 34975594 PMCID: PMC8716791 DOI: 10.3389/fpsyt.2021.802581] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Serotonin is a key neurotransmitter that is implicated in a wide variety of behavioral and cognitive phenotypes. Originating in the raphe nuclei, 5-HT neurons project widely to innervate many brain regions implicated in the functions. During the development of the brain, as serotonin axons project and innervate brain regions, there is evidence that 5-HT plays key roles in wiring the developing brain, both by modulating 5-HT innervation and by influencing synaptic organization within corticolimbic structures. These actions are mediated by 14 different 5-HT receptors, with region- and cell-specific patterns of expression. More recently, the role of the 5-HT system in synaptic re-organization during adulthood has been suggested. The 5-HT neurons have the unusual capacity to regrow and reinnervate brain regions following insults such as brain injury, chronic stress, or altered development that result in disconnection of the 5-HT system and often cause depression, anxiety, and cognitive impairment. Chronic treatment with antidepressants that amplify 5-HT action, such as selective serotonin reuptake inhibitors (SSRIs), appears to accelerate the rewiring of the 5-HT system by mechanisms that may be critical to the behavioral and cognitive improvements induced in these models. In this review, we survey the possible 5-HT receptor mechanisms that could mediate 5-HT rewiring and assess the evidence that 5-HT-mediated brain rewiring is impacting recovery from mental illness. By amplifying 5-HT-induced rewiring processes using SSRIs and selective 5-HT agonists, more rapid and effective treatments for injury-induced mental illness or cognitive impairment may be achieved.
Collapse
Affiliation(s)
- Faranak Vahid-Ansari
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
16
|
Kondaurova EM, Rodnyy AY, Ilchibaeva TV, Tsybko AS, Eremin DV, Antonov YV, Popova NK, Naumenko VS. Genetic Background Underlying 5-HT 1A Receptor Functioning Affects the Response to Fluoxetine. Int J Mol Sci 2020; 21:ijms21228784. [PMID: 33233644 PMCID: PMC7699677 DOI: 10.3390/ijms21228784] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022] Open
Abstract
The influence of genetic background on sensitivity to drugs represents a topical problem of personalized medicine. Here, we investigated the effect of chronic (20 mg/kg, 14 days, i.p.) antidepressant fluoxetine treatment on recombinant B6-M76C mice, differed from control B6-M76B mice by CBA-derived 102.73–110.56 Mbp fragment of chromosome 13 and characterized by altered sensitivity of 5-HT1A receptors to chronic 8-OH-DPAT administration and higher 5-HT1A receptor mRNA levels in the frontal cortex and hippocampus. Significant changes in the effects of fluoxetine treatment on behavior and brain 5-HT system in recombinant B6-M76C mice were revealed. In contrast to B6-M76B mice, in B6-M76C mice, fluoxetine produced pro-depressive effects, assessed in a forced swim test. Fluoxetine decreased 5-HT1A receptor mRNA levels in the cortex and hippocampus, reduced 5-HT1A receptor protein levels and increased receptor silencer Freud-1 protein levels in the hippocampus of B6-M76C mice. Fluoxetine increased mRNA levels of the gene encoding key enzyme for 5-HT synthesis in the brain, tryptophan hydroxylase-2, but decreased tryptophan hydroxylase-2 protein levels in the midbrain of B6-M76B mice. These changes were accompanied by increased expression of the 5-HT transporter gene. Fluoxetine reduced 5-HT and 5-HIAA levels in cortex, hippocampus and midbrain of B6-M76B and in cortex and midbrain of B6-M76C; mice. These data demonstrate that changes in genetic background may have a dramatic effect on sensitivity to classic antidepressants from the Selective Serotonin Reuptake Inhibitors family. Additionally, the results provide new evidence confirming our idea on the disrupted functioning of 5-HT1A autoreceptors in the brains of B6-M76C mice, suggesting these mice as a model of antidepressant resistance.
Collapse
|
17
|
Shen T, Li X, Chen L, Chen Z, Tan T, Hua T, Chen B, Yuan Y, Zhang Z, Kuney L, Xu Z. The relationship of tryptophan hydroxylase-2 methylation to early-life stress and its impact on short-term antidepressant treatment response. J Affect Disord 2020; 276:850-858. [PMID: 32738671 DOI: 10.1016/j.jad.2020.07.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The gene tryptophan hydroxylase 2 (TPH2) encodes the associated rate-limiting enzyme in the biosynthesis 5-HT (serotonin). Early life stress and adult variability in TPH2 can correspond with diminished response to antidepressants for patients with major depressive disorder (MDD). DNA methylation is an epigenetic mechanism mediating gene expression, often tempered by environmental factors. Here, we investigate the influence of TPH2 methylation combined with stress on response to antidepressants within the first two weeks of treatment initiation. METHODS 291 Han Chinese patients with major depressive disorder and 100 healthy controls comprised the study population. The Life Events Scale (LES) and the Childhood Trauma Questionnaire (CTQ) rated recent and early-life stress. The primary outcome equaled a reduction by ≥ 50% from the Hamilton Depression Rating Scale-17 (HAMD-17) after 2 weeks of treatment. The Illumina HiSeq platform assessed methylation status in 38 CpG sites located upstream and downstream of 11 TPH2 polymorphism sites. RESULTS In 291 patients and 100 healthy controls, 3 CpG sites predict antidepressant treatment response per sex (TPH2-7-142, p=0.012; TPH2-1-43, p=0.033; TPH2-5-203, p=0.036). High-level CTQ scores relate significantly to DNA hypomethylation at CpG-site TPH2-8-237 in males (false discovery rate [FDR]-corrected p=0.038). Additionally, the interaction of hypermethylation in two CpG sites and elevated early-life stress may reduce antidepressant response (TPH2-5-203, FDR corrected p=0.010; TPH2-10-60, FDR corrected p=0.001). CONCLUSIONS Our study suggests that TPH2 methylation and its interaction with early-life stress may impair antidepressant response, suggesting that pharmaco-epigenetic studies could identify epigenetic biomarkers for antidepressant response.
Collapse
Affiliation(s)
- Tian Shen
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Xingyu Li
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, PR China
| | - Lei Chen
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Zimu Chen
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Tingting Tan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Tiantian Hua
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Bingwei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Zhijun Zhang
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Liz Kuney
- Psychiatry Department, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
18
|
Besckow EM, Nonemacher NT, Garcia CS, da Silva Espíndola CN, Balbom ÉB, Gritzenco F, Savegnago L, Godoi B, Bortolatto CF, Brüning CA. Antidepressant-like effect of a selenopropargylic benzamide in mice: involvement of the serotonergic system. Psychopharmacology (Berl) 2020; 237:3149-3159. [PMID: 32617647 DOI: 10.1007/s00213-020-05600-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
RATIONALE Major depressive disorder is a psychiatric disorder that requires considerable attention, since it dramatically impairs the quality of life of the sufferers. The available treatments do not have the efficacy needed, often presenting several side effects. Organoselenium compounds and benzamides have presented some pharmacological properties, among them an antidepressant-like effect. OBJECTIVES AND METHODS This study evaluated the antidepressant-like effect of N-(3-(phenylselanyl)prop-2-yn-1-yl)benzamide (SePB), an organoselenium compound containing a benzamide moiety, on the forced swimming test (FST) and the tail suspension test (TST) in mice, as well as the involvement of the serotonergic system in its effect. RESULTS SePB, tested after different times (15-120 min) and doses (1-50 mg/kg, intragastrically (i.g.)), reduced immobility of male mice during FST and TST, without changing locomotor activity in the open-field test (OFT), demonstrating its antidepressant-like effect. SePB (10 mg/kg) also produced an antidepressant-like effect in female mice in the TST. The preadministration of the serotonin (5-HT) depletor p-chlorophenylalanine (pCPA; 100 mg/kg, intraperitoneal route (i.p.) once daily for 4 days) prevented the anti-immobility effect of SePB, indicating that the serotonergic system is involved in the SePB antidepressant-like effect. The preadministration of the selective serotonergic receptor antagonists WAY100635 (0.1 mg/kg, subcutaneous route (s.c.), a selective 5-HT1A receptor antagonist), ketanserin (1 mg/kg, i.p., a 5-HT2A/2C receptor antagonist), and ondansetron (1 mg/kg, i.p., a selective 5-HT3 receptor antagonist) also prevented the anti-immobility effect of SePB, demonstrating that these receptors are involved in the antidepressant-like effect of SePB. CONCLUSION The search for new antidepressants drugs is a noteworthy goal. This study has described a new compound with an antidepressant-like effect, whose mechanism of action is related to modulation of the serotonergic system.
Collapse
Affiliation(s)
- Evelyn Mianes Besckow
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Neurobiotechnology Research Group, Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Natália Tavares Nonemacher
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Neurobiotechnology Research Group, Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Cleisson Schossler Garcia
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Neurobiotechnology Research Group, Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Carlos Natã da Silva Espíndola
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Neurobiotechnology Research Group, Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Éverton Berwanger Balbom
- Núcleo de Síntese, Aplicação e Análise de Compostos Orgânicos e Inorgânicos (NUSAACOI), Federal University of Fronteira Sul (UFFS), Cerro Largo, RS, Brazil
| | - Fabiane Gritzenco
- Núcleo de Síntese, Aplicação e Análise de Compostos Orgânicos e Inorgânicos (NUSAACOI), Federal University of Fronteira Sul (UFFS), Cerro Largo, RS, Brazil
| | - Lucielli Savegnago
- Postgraduate Program in Biotechnology, Neurobiotechnology Research Group, Center of Biotechnology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Benhur Godoi
- Núcleo de Síntese, Aplicação e Análise de Compostos Orgânicos e Inorgânicos (NUSAACOI), Federal University of Fronteira Sul (UFFS), Cerro Largo, RS, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Neurobiotechnology Research Group, Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil.
| | - César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Neurobiotechnology Research Group, Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
19
|
Martin V, Mathieu L, Diaz J, Salman H, Alterio J, Chevarin C, Lanfumey L, Hamon M, Austin MC, Darmon M, Stockmeier CA, Masson J. Key role of the 5-HT1A receptor addressing protein Yif1B in serotonin neurotransmission and SSRI treatment. J Psychiatry Neurosci 2020; 45:344-355. [PMID: 32459080 PMCID: PMC7850149 DOI: 10.1503/jpn.190134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Altered function of serotonin receptor 1A (5-HT1AR) has been consistently implicated in anxiety, major depressive disorder and resistance to antidepressants. Mechanisms by which the function of 5-HT1AR (expressed as an autoreceptor in serotonergic raphe neurons and as a heteroreceptor in serotonin [5-HT] projection areas) is altered include regulation of its expression, but 5-HT1AR trafficking may also be involved. METHODS We investigated the consequences of the lack of Yif1B (the 5-HT1AR trafficking protein) on 5-HT neurotransmission in mice, and whether Yif1B expression might be affected under conditions known to alter 5-HT neurotransmission, such as anxious or depressive states or following treatment with fluoxetine (a selective serotonin reuptake inhibitor) in humans, monkeys and mice. RESULTS Compared with wild-type mice, Yif1B-knockout mice showed a significant decrease in the forebrain density of 5-HT projection fibres and a hypofunctionality of 5-HT1A autoreceptors expressed on raphe 5-HT neurons. In addition, social interaction was less in Yif1B-knockout mice, which did not respond to the antidepressant-like effect of acute fluoxetine injection. In wild-type mice, social defeat was associated with downregulated Yif1B mRNA in the prefrontal cortex, and chronic fluoxetine treatment increased Yif1B expression. The expression of Yif1B was also downregulated in the postmortem prefrontal cortex of people with major depressive disorder and upregulated after chronic treatment with a selective serotonin reuptake inhibitor in monkeys. LIMITATIONS We found sex differences in Yif1B expression in humans and monkeys, but not in mice under the tested conditions. CONCLUSION These data support the concept that Yif1B plays a critical role in 5-HT1AR functioning and brain 5-HT homeostasis. The opposite changes in its expression observed in anxious or depressive states and after therapeutic fluoxetine treatment suggest that Yif1B might be involved in vulnerability to anxiety and depression, and fluoxetine efficacy.
Collapse
Affiliation(s)
- Vincent Martin
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Lionel Mathieu
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Jorge Diaz
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Haysam Salman
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Jeanine Alterio
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Caroline Chevarin
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Laurence Lanfumey
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Michel Hamon
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Mark C Austin
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Michèle Darmon
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Craig A Stockmeier
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| | - Justine Masson
- From Inserm UMR894, Centre de Psychiatrie et Neuroscience, Paris F-75014 France; Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France (Martin, Mathieu, Diaz, Salman, Alterio, Chevarin, Lanfumey, Hamon, Darmon, Masson); the College of Pharmacy, Idaho State University, Pocatello, ID 83209 USA (Austin); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216 USA (Stockmeier); and Inserm UMR-S 1270, Paris, France; Sorbonne Université, Science and Engineering Faculty, Paris, France; Institut du Fer à Moulin, Paris, France (Darmon, Masson)
| |
Collapse
|
20
|
Fluoxetine rescues rotarod motor deficits in Mecp2 heterozygous mouse model of Rett syndrome via brain serotonin. Neuropharmacology 2020; 176:108221. [PMID: 32652084 DOI: 10.1016/j.neuropharm.2020.108221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/24/2020] [Accepted: 06/20/2020] [Indexed: 01/28/2023]
Abstract
Motor skill is a specific area of disability of Rett syndrome (RTT), a rare disorder occurring almost exclusively in girls, caused by loss-of-function mutations of the X-linked methyl-CpG-binding protein2 (MECP2) gene, encoding the MECP2 protein, a member of the methyl-CpG-binding domain nuclear proteins family. Brain 5-HT, which is defective in RTT patients and Mecp2 mutant mice, regulates motor circuits and SSRIs enhance motor skill learning and plasticity. In the present study, we used heterozygous (Het) Mecp2 female and Mecp2-null male mice to investigate whether fluoxetine, a SSRI with pleiotropic effects on neuronal circuits, rescues motor coordination deficits. Repeated administration of 10 mg/kg fluoxetine fully rescued rotarod deficit in Mecp2 Het mice regardless of age, route of administration or pre-training to rotarod. The motor improvement was confirmed in the beam walking test while no effect was observed in the hanging-wire test, suggesting a preferential action of fluoxetine on motor coordination. Citalopram mimicked the effects of fluoxetine, while the inhibition of 5-HT synthesis abolished the fluoxetine-induced improvement of motor coordination. Mecp2 null mice, which responded poorly to fluoxetine in the rotarod, showed reduced 5-HT synthesis in the prefrontal cortex, hippocampus and striatum, and reduced efficacy of fluoxetine in raising extracellular 5-HT as compared to female mutants. No sex differences were observed in the ability of fluoxetine to desensitize 5-HT1A autoreceptors upon repeated administration. These findings indicate that fluoxetine rescues motor coordination in Mecp2 Het mice through its ability to enhance brain 5-HT and suggest that drugs enhancing 5-HT neurotransmission may have beneficial effects on motor symptoms of RTT.
Collapse
|
21
|
Kulikova EA, Kulikov AV. Tryptophan hydroxylase 2 as a therapeutic target for psychiatric disorders: focus on animal models. Expert Opin Ther Targets 2019; 23:655-667. [PMID: 31216212 DOI: 10.1080/14728222.2019.1634691] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Tryptophan hydroxylase 2 (TPH2) is the key, rate-limiting enzyme of serotonin (5-HT) synthesis in the brain. Some polymorphic variants of the human Tph2 gene are associated with psychiatric disorders. Area covered: This review focuses on the mechanisms underlying the association between the TPH2 activity and behavioral disturbances in models of psychiatric disorders. Specifically, it discusses: 1) genetic and posttranslational mechanisms defining the TPH2 activity, 2) behavioral effects of knockout and loss-of-function mutations in the mouse Tph2 gene, 3) pharmacological inhibition and the activation of the TPH2 activity and 4) alterations in the brain TPH2 activity in animal models of psychiatric disorders. We show the dual role of the TPH2 activity: both deficit and excess of the TPH2 activity cause significant behavioral disturbances in animal models of depression, anxiety, aggression, obsessive-compulsive disorders, schizophrenia, and catalepsy. Expert opinion: Pharmacological chaperones correcting the structure of the TPH2 molecule are promising tools for treatment of some hereditary psychiatric disorders caused by loss-of-function mutations in the human Tph2 gene; while some stress-induced affective disorders, associated with the elevated TPH2 activity, may be effectively treated by TPH2 inhibitors. This dual role of TPH2 should be taken into consideration during therapy of psychiatric disorders.
Collapse
Affiliation(s)
- Elizabeth A Kulikova
- a Federal Research Center Institute of Cytology and Genetics , Siberian Division of the Russian Academy of Science , Novosibirsk , Russia
| | - Alexander V Kulikov
- a Federal Research Center Institute of Cytology and Genetics , Siberian Division of the Russian Academy of Science , Novosibirsk , Russia
| |
Collapse
|
22
|
Cseh EK, Veres G, Szentirmai M, Nánási N, Szatmári I, Fülöp F, Vécsei L, Zádori D. HPLC method for the assessment of tryptophan metabolism utilizing separate internal standard for each detector. Anal Biochem 2019; 574:7-14. [PMID: 30885797 DOI: 10.1016/j.ab.2019.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/02/2019] [Accepted: 03/12/2019] [Indexed: 01/25/2023]
Abstract
The development of a validated method, applicable for the measurement of tryptophan (TRP) and serotonin (5-HT), and that of the neuroprotective branch of the kynurenine pathway from several different biological matrices, including mouse brain, is described. Following the spectral analysis of the metabolites, they were quantified with reversed-phase high-performance liquid chromatography (HPLC), using separate internal standards (ISs) for UV (3-nitro-L-tyrosine) and fluorescent (the newly utilized 4-hydroxyquinazoline-2-carboxylic acid) detectors. With regard to validation parameters, selectivity, linearity, limit of detection, limit of quantification, precision and recovery were determined. Although the linearity ranges were different for the assessed matrices, the correlation coefficient was >0.999 in each case. Furthermore, good intra- and inter-day precision values were obtained with coefficient of variation <5%, and bias <6.5% (except the 5-HT level in brain samples), respectively. The recoveries varied between 82.5% and 116%. The currently developed methods yield opportunities for the assessment of concentration changes in the TRP metabolism from a wide range of biological matrices, therefore they may well be utilized in future clinical and preclinical studies, especially in view that so many metabolites with the application of ISs have not been detected from mouse brain with such a simple HPLC method before.
Collapse
Affiliation(s)
- Edina Katalin Cseh
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Gábor Veres
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary; MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Márton Szentirmai
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Nikolett Nánási
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary; MTA-SZTE Stereochemistry Research Group, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary; MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Dénes Zádori
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.
| |
Collapse
|
23
|
Kulikov AV, Gainetdinov RR, Ponimaskin E, Kalueff AV, Naumenko VS, Popova NK. Interplay between the key proteins of serotonin system in SSRI antidepressants efficacy. Expert Opin Ther Targets 2018. [DOI: 10.1080/14728222.2018.1452912] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alexander V. Kulikov
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Allan V. Kalueff
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
- Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Ural Federal University, Ekaterinburg 620002, Russia
- Research Institute of Physiology and Basic Medicine, Novosibirsk 630117, Russia
- Russian Research Center for Radiology and Surgical Technologies, Pesochny 197758, Russia
| | - Vladimir S. Naumenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nina K. Popova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
24
|
Composite carbohydrate interpenetrating polyelectrolyte nano-complexes (IPNC) as a controlled oral delivery system of citalopram HCl for pediatric use: in-vitro/in-vivo evaluation and histopathological examination. Drug Deliv Transl Res 2018. [DOI: 10.1007/s13346-018-0506-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Metabolic profile associated with distinct behavioral coping strategies of 129Sv and Bl6 mice in repeated motility test. Sci Rep 2018; 8:3405. [PMID: 29467440 PMCID: PMC5821849 DOI: 10.1038/s41598-018-21752-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
We investigated the metabolic outcome of different coping strategies in 129S6/SvEvTac (129Sv) and C57BL/6Ntac (Bl6) strains. Two different batches of male 129Sv and Bl6 mice were used. One batch was not subjected to any behavioral manipulations (home cage control; HCC), whereas the other batch was treated with saline for 11 days and exposed after every treatment to the motor activity measurement (repeated motility tested; RMT). Bl6 RMT mice displayed a robust increase in number of rearings during repeated testing. 129Sv RMT mice experienced significant loss of body weight, but showed enhanced weight gain in HCC batch compared to Bl6. Serum metabolites (acylcarnitines, amino acids, biogenic amines, hexoses, glycerophospholipids and sphingolipids) were determined with AbsoluteIDQ p180 kit. Results of the metabolomic study revealed prominent peculiarities between strains in two different conditions. Comparison of both batches of mice demonstrated that in Bl6 biogenic amines (acetyl-ornithine, alpha-amionadipic acid, carnosine) and lysophosphatidylcholine PC(16:1/0:0) dominated. However in 129Sv acylcarnitine C5 clearly dominated, indicating shift towards short-chain acylcarnitines. Stable strain-specific ratios also emerged for both lines, ratio of glycine/PC ae C38:2 for Bl6 and ratios of C5/C0 as well as PC(16:0/0:0)/PC(16:1/0:0) for 129Sv. The described metabolic changes probably reflect different behavioral coping strategies of 129Sv and Bl6 mice.
Collapse
|
26
|
Akladious A, Azzam S, Hu Y, Feng P. Bmal1 knockdown suppresses wake and increases immobility without altering orexin A, corticotrophin-releasing hormone, or glutamate decarboxylase. CNS Neurosci Ther 2018; 24:549-563. [PMID: 29446232 DOI: 10.1111/cns.12815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 01/02/2018] [Accepted: 01/10/2018] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To determine the effect of Bmal1 knockdown (KD) on sleep, activity, immobility, hypothalamic levels of orexin, corticotrophin-releasing hormone (CRH), and GABAergic glutamate decarboxylase (GAD). METHODS We used Bmal1 siRNA, or control siRNA intracerebroventricular (ICV) injection to knock down Bmal1 in C57BL/6 mice. Sleep polysomnography, wheel-running activity, and tail suspension test were performed. Polysomnographic (PSG) recordings in both groups were preceded by ICV injection made during both the light phase and the dark phase. We also measured brain orexin A and CRH using an ELISA and measured GAD using immunoblotting. RESULTS Compared with control group, Bmal1 KD group had reduced wheel activity and increased immobility. Compared with control, the Bmal1 KD group had reduced wheel activity and increased immobility. During the first 24 hours after treatment, we observed that control siRNA induced a much greater increase in sleep during the dark phase, which was associated with lower orexin levels. However, beginning 24 hours after treatment, we observed an increase in sleep and a decrease in time spent awake during the dark phase in the Bmal1 KD group. These changes were not associated with changes in brain levels of orexin A, CRH, or GAD. CONCLUSION Bmal1 KD led to reduced activity, increased immobility, and dramatic reduction in time spent awake as well as an increase in sleep during the dark phase. Early after injection, there was a slight change in sleep but brain levels of orexin, CRH, and GAD remain unchanged. Control siRNA also affected sleep associated with changes in orexin levels.
Collapse
Affiliation(s)
- Afaf Akladious
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Sausan Azzam
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yufen Hu
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Pingfu Feng
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
27
|
Ishikawa C, Shiga T. The postnatal 5-HT 1A receptor regulates adult anxiety and depression differently via multiple molecules. Prog Neuropsychopharmacol Biol Psychiatry 2017; 78:66-74. [PMID: 28483674 DOI: 10.1016/j.pnpbp.2017.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/14/2017] [Accepted: 04/14/2017] [Indexed: 11/16/2022]
Abstract
Serotonin (5-HT) and the 5-HT1A receptor during development are known to modulate anxiety and depression in later life. However, the brain mechanisms linking the postnatal 5-HT system and adult behavior remain unknown. Here, we examined the effects of pharmacological 5-HT1A receptor activation during the postnatal period on anxiety and depression-like behavior in adult BALB/c male mice. To elucidate the underlying mechanisms, we measured mRNA expression of the 5-HT1A receptor, brain-derived neurotrophic factor (BDNF), GABAA receptor subunits, and AMPA receptor subunits in the medial prefrontal cortex (mPFC), amygdala, and hippocampus. Treatment with the selective 5-HT reuptake inhibitor (fluoxetine) and 5-HT1A receptor agonist (8-OH-DPAT) during the postnatal period decreased anxiety-like behavior in adulthood, whereas only 8-OH-DPAT treatment increased depression-like behavior. Concomitantly with the behavioral effects, postnatal treatment with fluoxetine and 8-OH-DPAT decreased the mRNA expression of the GABAA receptor α3 subunit in the mPFC and ventral hippocampus in adulthood, while 8-OH-DPAT, but not fluoxetine, decreased the mRNA expression of the 5-HT1A receptor and BDNF in the mPFC and the GABAA receptor α2 subunit in the mPFC and ventral hippocampus. On the basis of the correlative changes between behavior and mRNA expression, these results suggest that the GABAA receptor α3 subunit in the mPFC and ventral hippocampus may regulate anxiety-like behavior. In contrast, depression-like behavior may be regulated by the 5-HT1A receptor and BDNF in the mPFC and by the GABAA receptor α2 subunit in the mPFC and ventral hippocampus. In summary, activation of the 5-HT1A receptor during the postnatal period may reduce anxiety levels, but increase depression levels during adulthood via different multiple molecules in the mPFC and ventral hippocampus.
Collapse
Affiliation(s)
- Chihiro Ishikawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Takashi Shiga
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan; Department of Neurobiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan.
| |
Collapse
|
28
|
Zhu W, Cao FS, Feng J, Chen HW, Wan JR, Lu Q, Wang J. NLRP3 inflammasome activation contributes to long-term behavioral alterations in mice injected with lipopolysaccharide. Neuroscience 2017; 343:77-84. [PMID: 27923741 PMCID: PMC5349320 DOI: 10.1016/j.neuroscience.2016.11.037] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Lipopolysaccharide (LPS) might affect the central nervous system by causing neuroinflammation, which subsequently leads to brain damage and dysfunction. In this study, we evaluated the role of nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome activation in long-term behavioral alterations of 8-week-old male C57BL/6 mice injected intraperitoneally with LPS (5mg/kg). At different time points after injection, we assessed locomotor function with a 24-point neurologic deficit scoring system and the rotarod test; assessed recognition memory with the novel object recognition test; and assessed emotional abnormality (anhedonia and behavioral despair) with the tail suspension test, forced swim test, and sucrose preference test. We also assessed protein expression of NLRP3, apoptosis-associated speck-like protein (ASC), and caspase-1 p10 in hippocampus by Western blotting; measured levels of interleukin (IL)-1β, IL-18, tumor necrosis factor α (TNFα), and IL-10 in hippocampus; measured TNFα and IL-1β in serum by ELISA; and evaluated microglial activity in hippocampus by Iba1 immunofluorescence. We found that LPS-injected mice displayed long-term depression-like behaviors and recognition memory deficit; elevated expression of NLRP3, ASC, and caspase-1 p10; increased levels of IL-1β, IL-18, and TNFα; decreased levels of IL-10; and increased microglial activation. These effects were blocked by the NLRP3 inflammasome inhibitor Ac-Tyr-Val-Ala-Asp-chloromethylketone. The results demonstrate proof of concept that NLRP3 inflammasome activation contributes to long-term behavioral alterations in LPS-exposed mice, probably through enhanced inflammation, and that NLRP3 inflammasome inhibition might alleviate peripheral and brain inflammation and thereby ameliorate long-term behavioral alterations in LPS-exposed mice.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Feng-Sheng Cao
- Department of Emergency Medicine, Xiangyang Central Hospital, Xiangyang, Hubei, PR China
| | - Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hua-Weng Chen
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jie-Ru Wan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Qing Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
29
|
Azimi Fashi Y, Mesripour A, Hajhashemi V. Evaluation of the effect of soybean diet on interferon-α-induced depression in male mice. AVICENNA JOURNAL OF PHYTOMEDICINE 2017; 7:436-443. [PMID: 29062805 PMCID: PMC5641418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Interferon-α (IFN) therapy can cause depressive symptom which may lead to drug discontinuation. By interfering with tryptophan pathway, the available level of tryptophan required for serotonin synthesis decreases which could be related to depression. The aim of this study was to evaluate whether soybean diet could improve IFN-induced depression. MATERIALS AND METHODS Male mice weighing 28±3 g were used in the forced swimming test (FST) as an animal model of depression; also, locomotor activity was recorded. IFN 16×105 IU/kg was injected subcutaneously for 6 days. Animals were fed with regular diet or soybean diet at 3 concentrations throughout the experiment. Fluoxetine was the reference drug. To check whether the tryptophan content in the soy bean diet was effective, a group of animals was injected with a single dose of tryptophan on the test day. RESULTS IFN-α increased the immobility time in the FST (192 sec ± 5.4), that denotes depression in mice. Soybean diets caused less immobility that was more profound with 50% soybean (26.4 sec ± 6). This diet overcame the depression caused by IFN in the FST (54 sec±18). This result was parallel with that of tryptophan injected to animals (38 sec±17). All the animals showed normal locomotor activity. CONCLUSION For the first time, we showed that soybean diet could counteract with depression caused by IFN-α. Since tryptophan therapy had similar effects, possibly the tryptophan content of soybean had induced the serotonin synthesis. Thus, not only less harmful kynurenine was produced but also more serotonin was available in the brain to overcome depression. However, this interpretation needs further evaluations.
Collapse
Affiliation(s)
- Yazdan Azimi Fashi
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical sciences, Isfahan university of Medical Sciences, Isfahan, Iran
| | - Azadeh Mesripour
- Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical sciences, Isfahan university of Medical Sciences, Isfahan, Iran,Corresponding Author: Tel: +98 3137927089, Fax: +98 31336680011,
| | - Valiollah Hajhashemi
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical sciences, Isfahan university of Medical Sciences, Isfahan, Iran
| |
Collapse
|
30
|
Villani C, Sacchetti G, Bagnati R, Passoni A, Fusco F, Carli M, Invernizzi RW. Lovastatin fails to improve motor performance and survival in methyl-CpG-binding protein2-null mice. eLife 2016; 5:22409. [PMID: 27892851 PMCID: PMC5132339 DOI: 10.7554/elife.22409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 11/18/2016] [Indexed: 01/25/2023] Open
Abstract
Previous studies provided evidence for the alteration of brain cholesterol homeostasis in 129.Mecp2-null mice, an experimental model of Rett syndrome. The efficacy of statins in improving motor symptoms and prolonging survival of mutant mice suggested a potential role of statins in the therapy of Rett syndrome. In the present study, we show that Mecp2 deletion had no effect on brain and reduced serum cholesterol levels and lovastatin (1.5 mg/kg, twice weekly as in the previous study) had no effects on motor deficits and survival when Mecp2 deletion was expressed on a background strain (C57BL/6J; B6) differing from that used in the earlier study. These findings indicate that the effects of statins may be background specific and raise important issues to consider when contemplating clinical trials. The reduction of the brain cholesterol metabolite 24S-hydroxycholesterol (24S-OHC) found in B6.Mecp2-null mice suggests the occurrence of changes in brain cholesterol metabolism and the potential utility of using plasma levels of 24S-OHC as a biomarker of brain cholesterol homeostasis in RTT. DOI:http://dx.doi.org/10.7554/eLife.22409.001
Collapse
Affiliation(s)
- Claudia Villani
- Laboratory of Neurochemistry and Behaviour, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Giuseppina Sacchetti
- Laboratory of Neurochemistry and Behaviour, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Renzo Bagnati
- Analytical Instrumentation Unit, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Alice Passoni
- Analytical Instrumentation Unit, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Federica Fusco
- Genetics of Neurodegenerative Diseases Unit, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Mirjana Carli
- Laboratory of Neurochemistry and Behaviour, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Roberto William Invernizzi
- Laboratory of Neurochemistry and Behaviour, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| |
Collapse
|
31
|
Tetratricopeptide repeat domain 9A modulates anxiety-like behavior in female mice. Sci Rep 2016; 6:37568. [PMID: 27869229 PMCID: PMC5116628 DOI: 10.1038/srep37568] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/31/2016] [Indexed: 12/17/2022] Open
Abstract
Tetratricopeptide repeat domain 9A (TTC9A) expression is abundantly expressed in the brain. Previous studies in TTC9A knockout (TTC9A-/-) mice have indicated that TTC9A negatively regulates the action of estrogen. In this study we investigated the role of TTC9A on anxiety-like behavior through its functional interaction with estrogen using the TTC9A-/- mice model. A battery of tests on anxiety-related behaviors was conducted. Our results demonstrated that TTC9A-/- mice exhibited an increase in anxiety-like behaviors compared to the wild type TTC9A+/+ mice. This difference was abolished after ovariectomy, and administration of 17-β-estradiol benzoate (EB) restored this escalated anxiety-like behavior in TTC9A-/- mice. Since serotonin is well-known to be the key neuromodulator involved in anxiety behaviors, the mRNA levels of tryptophan hydroxylase (TPH) 1, TPH2 (both are involved in serotonin synthesis), and serotonin transporter (5-HTT) were measured in the ventromedial prefrontal cortex (vmPFC) and dorsal raphe nucleus (DRN). Interestingly, the heightened anxiety in TTC9A-/- mice under EB influence is consistent with a greater induction of TPH 2, and 5-HTT by EB in DRN that play key roles in emotion regulation. In conclusion, our data indicate that TTC9A modulates the anxiety-related behaviors through modulation of estrogen action on the serotonergic system in the DRN.
Collapse
|
32
|
Schoenrock SA, Oreper D, Young N, Ervin RB, Bogue MA, Valdar W, Tarantino LM. Ovariectomy results in inbred strain-specific increases in anxiety-like behavior in mice. Physiol Behav 2016; 167:404-412. [PMID: 27693591 DOI: 10.1016/j.physbeh.2016.09.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 12/31/2022]
Abstract
Women are at an increased risk for developing affective disorders during times of hormonal flux, including menopause when the ovaries cease production of estrogen. However, while all women undergo menopause, not all develop an affective disorder. Increased vulnerability can result from genetic predisposition, environmental factors and gene by environment interactions. In order to investigate interactions between genetic background and estrogen depletion, we performed bilateral ovariectomy, a surgical procedure that results in estrogen depletion and is thought to model the post-menopausal state, in a genetically defined panel of 37 inbred mouse strains. Seventeen days post-ovariectomy, we assessed behavior in two standard rodent assays of anxiety- and depressive-like behavior, the open field and forced swim tests. We detected a significant interaction between ovariectomy and genetic background on anxiety-like behavior in the open field. No strain specific effects of ovariectomy were observed in the forced swim assay. However, we did observe significant strain effects for all behaviors in both the open field and forced swim tests. This study is the largest to date to look at the effects of ovariectomy on behavior and provides evidence that ovariectomy interacts with genetic background to alter anxiety-like behavior in an animal model of menopause.
Collapse
Affiliation(s)
- Sarah Adams Schoenrock
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, United States
| | - Daniel Oreper
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States; Bioinformatics and Computational Biology Curriculum, University of North Carolina, Chapel Hill, NC, United States
| | - Nancy Young
- Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Robin Betsch Ervin
- Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Molly A Bogue
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - William Valdar
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Lisa M Tarantino
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States; Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, NC, United States; Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
33
|
Campus P, Accoto A, Maiolati M, Latagliata C, Orsini C. Role of prefrontal 5-HT in the strain-dependent variation in sign-tracking behavior of C57BL/6 and DBA/2 mice. Psychopharmacology (Berl) 2016; 233:1157-69. [PMID: 26728892 DOI: 10.1007/s00213-015-4192-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 12/18/2015] [Indexed: 01/28/2023]
Abstract
RATIONALE The expression of sign-tracking (ST) phenotype over goal-tracking (GT) phenotype has been associated to different aspects of impulsive behavior, and depletions of brain serotonin (5-HT) have been shown to selectively increase impulsive action as well as ST. OBJECTIVES The present study aimed at testing the relationship between reduced brain 5-HT availability and expression of ST phenotype in a genetic model of individual variation in brain 5-HT functionality. Inbred DBA/2J (DBA) mice are homozygous for the allelic variant of the TPH-2 gene causing lower brain 5-HT function in comparison with C57BL/6J (C57) inbred mice. MATERIALS Young adult (10 weeks) and adult (14 weeks) C57 and DBA mice were trained in a Pavlovian conditioned approach (PCA) paradigm. Lever-directed (ST) and magazine-directed (GT) responses were measured in 12 daily conditioning sessions. In a second experiment, effect of the medial prefrontal cortex (mPFC) 5-HT depletion by the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) was assessed on acquisition of ST phenotype in adult C57 mice, according to their higher 5-HT functionality compared to DBA mice. RESULTS Young adult mice of both strains developed ST phenotype, but only adult DBA mice developed ST phenotype. 5-HT depletion in the mPFC of adult C57 mice completely changed their phenotype, as shown by their increased ST. CONCLUSIONS These findings indicate that ST phenotype can be the expression of a transitory late developmental stage and that genetic factors determine persistence of this phenotype in adulthood. These findings also support a role of 5-HT transmission in PFC in constraining development of ST phenotype.
Collapse
Affiliation(s)
- P Campus
- Department of Psychology, University of Rome "Sapienza", Roma, Italy
| | - A Accoto
- Department of Psychology, University of Rome "Sapienza", Roma, Italy
| | - M Maiolati
- Department of Psychology, University of Rome "Sapienza", Roma, Italy
| | - C Latagliata
- Fondazione Santa Lucia IRCSS, European Center for Brain Research, Rome, Italy
| | - C Orsini
- Department of Psychology, University of Rome "Sapienza", Roma, Italy. .,Center for Research in Neurobiology "Daniel Bovet", University of Rome "Sapienza", Roma, Italy. .,Fondazione Santa Lucia IRCSS, European Center for Brain Research, Rome, Italy.
| |
Collapse
|
34
|
Ragan CM, Harding KM, Lonstein JS. Associations among within-litter differences in early mothering received and later emotional behaviors, mothering, and cortical tryptophan hydroxylase-2 expression in female laboratory rats. Horm Behav 2016; 77:62-71. [PMID: 26219576 PMCID: PMC7005883 DOI: 10.1016/j.yhbeh.2015.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 12/25/2022]
Abstract
This article is part of a Special Issue "Parental Care". The effects of differential maternal care received on offspring phenotype in rodents has been extensively studied between litters, but the consequences of differential mothering within litters on offspring neurobehavioral development have been rarely examined. We here investigated how variability in maternal care received among female rat siblings (measured four times daily on postnatal days 4, 6, 8, and 10) relates to the siblings' later emotional and maternal behaviors. As previously reported, we found that some female pups received up to three times more maternal licking bouts compared to their sisters; this difference was positively correlated with the pups' body weights. The number of maternal licking bouts that females received was negatively correlated with their later neophobic behaviors in an open field during periadolescence, but positively correlated with their anxiety-related behavior in an elevated plus maze during adulthood. Licking received was also positively correlated with females' later likelihood to retrieve pups in a maternal sensitization paradigm. In addition, females' neophobia during adolescence and anxiety-related behavior during adulthood predicted some aspects of both postpartum and sensitized maternal responsiveness. Medial prefrontal cortex expression of tryptophan hydroxylase-2 (TPH2; enzyme necessary for serotonin synthesis) was negatively associated with early maternal licking received. Interestingly, cortical TPH2 was positively associated with the maternal responsiveness of sensitized virgins but negatively associated with it in postpartum females. These results indicate that within-litter differences in maternal care received is an often neglected, but important, contributor to individual differences in offspring socioemotional behaviors as well as to the cortical serotonin neurochemistry that may influence these behaviors.
Collapse
Affiliation(s)
- Christina M Ragan
- Department of Psychology and Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA.
| | - Kaitlyn M Harding
- Department of Psychology and Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA
| | - Joseph S Lonstein
- Department of Psychology and Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA
| |
Collapse
|
35
|
Carli M, Kostoula C, Sacchetti G, Mainolfi P, Anastasia A, Villani C, Invernizzi RW. Tph2 gene deletion enhances amphetamine-induced hypermotility: effect of 5-HT restoration and role of striatal noradrenaline release. J Neurochem 2015; 135:674-85. [DOI: 10.1111/jnc.13280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Mirjana Carli
- Department of Neuroscience; IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri”; Lab. Neurochemistry and Behavior; Milano Italy
| | - Chrysaugi Kostoula
- Department of Neuroscience; IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri”; Lab. Neurochemistry and Behavior; Milano Italy
| | - Giuseppina Sacchetti
- Department of Neuroscience; IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri”; Lab. Neurochemistry and Behavior; Milano Italy
| | - Pierangela Mainolfi
- Department of Neuroscience; IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri”; Lab. Neurochemistry and Behavior; Milano Italy
| | - Alessia Anastasia
- Department of Neuroscience; IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri”; Lab. Neurochemistry and Behavior; Milano Italy
| | - Claudia Villani
- Department of Neuroscience; IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri”; Lab. Neurochemistry and Behavior; Milano Italy
| | - Roberto William Invernizzi
- Department of Neuroscience; IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri”; Lab. Neurochemistry and Behavior; Milano Italy
| |
Collapse
|
36
|
Jury NJ, McCormick BA, Horseman ND, Benoit SC, Gregerson KA. Enhanced responsiveness to selective serotonin reuptake inhibitors during lactation. PLoS One 2015; 10:e0117339. [PMID: 25689282 PMCID: PMC4331562 DOI: 10.1371/journal.pone.0117339] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 12/23/2014] [Indexed: 11/22/2022] Open
Abstract
The physiology of mood regulation in the postpartum is poorly understood despite the fact that postpartum depression (PPD) is a common pathology. Serotonergic mechanisms and their dysfunction are widely presumed to be involved, which has led us to investigate whether lactation induces changes in central or peripheral serotonin (5-HT) systems and related affective behaviors. Brain sections from lactating (day 10 postpartum) and age-matched nulliparous (non-pregnant) C57BL/6J mice were processed for 5-HT immunohistochemistry. The total number of 5-HT immunostained cells and optical density were measured. Lactating mice exhibited lower immunoreactive 5-HT and intensity in the dorsal raphe nucleus when compared with nulliparous controls. Serum 5-HT was quantified from lactating and nulliparous mice using radioimmunoassay. Serum 5-HT concentrations were higher in lactating mice than in nulliparous controls. Affective behavior was assessed in lactating and non-lactating females ten days postpartum, as well as in nulliparous controls using the forced swim test (FST) and marble burying task (MBT). Animals were treated for the preceding five days with a selective serotonin reuptake inhibitor (SSRI, citalopram, 5mg/kg/day) or vehicle. Lactating mice exhibited a lower baseline immobility time during the FST and buried fewer marbles during the MBT as compared to nulliparous controls. Citalopram treatment changed these behaviors in lactating mice with further reductions in immobility during the FST and decreased marble burying. In contrast, the same regimen of citalopram treatment had no effect on these behaviors in either non-lactating postpartum or nulliparous females. Our findings demonstrate changes in both central and peripheral 5-HT systems associated with lactation, independent of pregnancy. They also demonstrate a significant interaction of lactation and responsiveness to SSRI treatment, which has important implications in the treatment of PPD. Although recent evidence has cast doubt on the effectiveness of SSRIs, these results support their therapeutic use in the treatment of PPD.
Collapse
Affiliation(s)
- Nicholas J. Jury
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, 45267, United States of America
- * E-mail:
| | - Betsy A. McCormick
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Cincinnati, Cincinnati, Ohio, 45267, United States of America
| | - Nelson D. Horseman
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, 45267, United States of America
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, 45267, United States of America
| | - Stephen C. Benoit
- Department of Psychiatry, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Karen A. Gregerson
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, 45267, United States of America
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, 45267, United States of America
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, 45267, United States of America
| |
Collapse
|
37
|
Andolina D, Puglisi-Allegra S, Ventura R. Strain-dependent differences in corticolimbic processing of aversive or rewarding stimuli. Front Syst Neurosci 2015; 8:207. [PMID: 25698940 PMCID: PMC4316691 DOI: 10.3389/fnsys.2014.00207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/02/2014] [Indexed: 11/13/2022] Open
Abstract
Aberrations in the elaboration of both aversive and rewarding stimuli characterize several psychopathologies including anxiety, depression and addiction. Several studies suggest that different neurotrasmitters, within the corticolimbic system, are critically involved in the processing of positive and negative stimuli. Individual differences in this system, depending on genotype, have been shown to act as a liability factor for different psychopathologies. Inbred mouse strains are commonly used in preclinical studies of normal and pathological behaviors. In particular, C57BL/6J (C57) and DBA/2J (DBA) strains have permitted to disclose the impact of different genetic backgrounds over the corticolimbic system functions. Here, we summarize the main findings collected over the years in our laboratory, showing how the genetic background plays a critical role in modulating amminergic and GABAergic neurotransmission in prefrontal-accumbal-amygdala system response to different rewarding and aversive experiences, as well as to stress response. Finally, we propose a top-down model for the response to rewarding and aversive stimuli in which amminergic transmission in prefrontal cortex (PFC) controls accumbal and amygdala neurotransmitter response.
Collapse
Affiliation(s)
- Diego Andolina
- Dipartimento di Scienze Cliniche Applicate e Biotecnologie, Università degli Studi dell'Aquila L'Aquila, Italy ; Santa Lucia Foundation Rome, Italy
| | - Stefano Puglisi-Allegra
- Santa Lucia Foundation Rome, Italy ; Dipartimento di Psicologia and Centro 'Daniel Bovet', Sapienza Università di Roma Rome, Italy
| | - Rossella Ventura
- Santa Lucia Foundation Rome, Italy ; Dipartimento di Psicologia and Centro 'Daniel Bovet', Sapienza Università di Roma Rome, Italy
| |
Collapse
|
38
|
Andolina D, Maran D, Viscomi MT, Puglisi-Allegra S. Strain-dependent variations in stress coping behavior are mediated by a 5-HT/GABA interaction within the prefrontal corticolimbic system. Int J Neuropsychopharmacol 2015; 18:pyu074. [PMID: 25522413 PMCID: PMC4360254 DOI: 10.1093/ijnp/pyu074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Serotonin and γ-aminobutyric acid (GABA) transmission is crucial in coping strategies. METHODS Here, using mice from 2 inbred strains widely exploited in behavioral neurochemistry, we investigated whether serotonin transmission in medial prefrontal cortex and GABA in basolateral amygdala determine strain-dependent liability to stress response and differences in coping. RESULTS C57BL/6J mice displayed greater immobility in the forced swimming test, higher serotonin outflow in medial prefrontal cortex, higher GABA outflow in basolateral amygdala induced by stress, and higher serotonin 1A receptor levels in medial prefrontal cortex accompanied by lower GABAb receptor levels in basolateral amygdala than DBA/2J mice. In assessing whether serotonin in medial prefrontal cortex determines GABA functioning in response to stress and passive coping behavior in C57BL/6J and DBA/2J mice, we observed that selective prefrontal serotonin depletion in C57BL/6J and DBA/2J reduced stress-induced GABA outflow in basolateral amygdala and immobility in the forced swimming test. CONCLUSIONS These results show that strain-dependent prefrontal corticolimbic serotonin/GABA regulation determines the strain differences in stress-coping behavior in the forced swimming test and point to a role of a specific neuronal system in genetic susceptibility to stress that opens up new prospects for innovative therapies for stress disorders.
Collapse
Affiliation(s)
- Diego Andolina
- Santa Lucia Foundation, Rome, Italy (Drs Andolina, Viscomi, and Puglisi-Allegra); Dipartimento di Scienze Cliniche Applicate e Biotecnologie, Universita` degli Studi dell'Aquila, Via Vetoio, L'Aquila, Italy (Dr Andolina); Dipartimento di Psicologia and Centro 'Daniel Bovet,' Sapienza Università di Roma, Rome, Italy (Drs Maran and Puglisi-Allegra).
| | | | | | | |
Collapse
|
39
|
Kulikov AV, Popova NK. Tryptophan hydroxylase 2 in seasonal affective disorder: underestimated perspectives? Rev Neurosci 2015; 26:679-90. [DOI: 10.1515/revneuro-2015-0013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/26/2015] [Indexed: 01/14/2023]
Abstract
AbstractSeasonal affective disorder (SAD) is characterized by recurrent depression occurring generally in fall/winter. Numerous pieces of evidence indicate the association of SAD with decreased brain neurotransmitter serotonin (5-HT) system functioning. Tryptophan hydroxylase 2 (TPH2) is the key and rate-limiting enzyme in 5-HT synthesis in the brain. This paper concentrates on the relationship between TPH2 activity and mood disturbances, the association between human
Collapse
|
40
|
Jacobsen JP, Plenge P, Sachs BD, Pehrson AL, Cajina M, Du Y, Roberts W, Rudder ML, Dalvi P, Robinson TJ, O’Neill SP, Khoo KS, Morillo CS, Zhang X, Caron MG. The interaction of escitalopram and R-citalopram at the human serotonin transporter investigated in the mouse. Psychopharmacology (Berl) 2014; 231:4527-40. [PMID: 24810106 PMCID: PMC4346315 DOI: 10.1007/s00213-014-3595-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 04/18/2014] [Indexed: 12/12/2022]
Abstract
RATIONALE Escitalopram appears to be a superior antidepressant to racemic citalopram. It has been hypothesized that binding of R-citalopram to the serotonin transporter (SERT) antagonizes escitalopram binding to and inhibition of the SERT, there by curtailing the elevation of extracellular 5-hydroxytryptamine (5-HTExt), and hence anti-depressant efficacy. Further, it has been suggested that a putative allosteric binding site is important for binding of escitalopram to the primary, orthosteric, site, and for R-citalopram's inhibition here of. OBJECTIVES Primary: Investigate at the human (h)SERT, at clinical relevant doses, whether R-citalopram antagonizes escitalopram-induced 5-HTExt elevation. Secondary: Investigate whether abolishing the putative allosteric site affects escitalopram-induced 5-HTExt elevation and/or modulates the effect of R-citalopram. METHODS Recombinant generation of hSERT transgenic mice; in vivo microdialysis; SERT binding; pharmacokinetics; 5-HT sensitive behaviors (tail suspension, marble burying). RESULTS We generated mice expressing either the wild-type human SERT (hSERT(WT)) or hSERT carrying amino acid substitutions (A505V, L506F, I507L, S574T and I575T) collectively abolishing the putative allosteric site (hSERT(ALI/VFL+SI/TT)). One mg/kg escitalopram yielded clinical relevant plasma levels and brain levels consistent with therapeutic SERT occupancy. The hSERT mice showed normal basal 5-HTExt levels. Escitalopram-induced 5-HTExt elevation was not decreased by R-citalopram co-treatment and was unaffected by loss of the allosteric site. The behavioral effects of the clinically relevant escitalopram dose were small and tended to be enhanced by R-citalopram co-administration. CONCLUSIONS We find no evidence that R-citalopram directly antagonizes escitalopram or that the putative allosteric site is important for hSERT inhibition by escitalopram.
Collapse
Affiliation(s)
| | - Per Plenge
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin D. Sachs
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | | | | | - Yunzhi Du
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Wendy Roberts
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Meghan L. Rudder
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Prachiti Dalvi
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Taylor J. Robinson
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Sharon P. O’Neill
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
| | - King S. Khoo
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
| | | | - Xiaodong Zhang
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Corresponding Author: Dr. Marc G. Caron, James B. Duke Professor, Department of Cell Biology, Duke University Medical Center, PO Box 3287, Durham, NC 27710, USA., Tel: +1 919 684 5433, Fax: +1 919 681 8641,
| |
Collapse
|
41
|
Feng P, Hu Y, Vurbic D, Akladious A, Strohl KP. Chromosome 1 replacement increases brain orexins and antidepressive measures without increasing locomotor activity. J Psychiatr Res 2014; 59:140-7. [PMID: 25190041 DOI: 10.1016/j.jpsychires.2014.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/08/2014] [Accepted: 08/14/2014] [Indexed: 12/31/2022]
Abstract
Decreased orexin level has been well demonstrated in patients suffering from narcolepsy, depression accompanied with suicide attempt; obstructive sleep apnea and comorbidity were also demonstrated in these diseases. As C57BL/6J (B6) mice are more "depressed" and have lower brain orexins than A/J mice, B6 mice having chromosome 1 replacement (B6A1 mice) might have restored orexin levels and less depressive behavior. We studied the behavior of 4-6 month old B6, A/J and B6A1 mice with forced swim, tail suspension, and locomotor activity tests. The animals were then sacrificed and hypothalamus and medullas dissected from brain tissue. Orexins-A and -B were determined by radioimmunoassay. Compared with A/J mice, B6 mice displayed several signs of depression, including increased immobility, increased locomotors activity, and decreased orexin A and -B levels in both the hypothalamus and medulla. Compared to B6 mice, B6A1 mice exhibited significantly higher levels of orexins-A and -B in both brain regions. B6A1 mice also exhibited antidepressive features in most of measured variables, including decreased locomotor activity, decreased immobility and increased swim in tail suspension test; compared with B6 mice, however. B6A1 mice also reversed immobility in the early phase of the swim test. In summary, B6 mice exhibited depressive attributes compared with A/J mice, including increased locomotor activity, greater immobility, and decreased brain orexins, these were largely reversed in B6A1 mice. We conclude that orexin levels modulate these B6 behaviors, likely due to expression of A/J alleles on Chromosome 1.
Collapse
Affiliation(s)
- Pingfu Feng
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| | - Yufen Hu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Drina Vurbic
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Afaf Akladious
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Kingman P Strohl
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| |
Collapse
|
42
|
Caldarone BJ, Zachariou V, King SL. Rodent models of treatment-resistant depression. Eur J Pharmacol 2014; 753:51-65. [PMID: 25460020 DOI: 10.1016/j.ejphar.2014.10.063] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/16/2014] [Accepted: 10/09/2014] [Indexed: 01/06/2023]
Abstract
Major depression is a prevalent and debilitating disorder and a substantial proportion of patients fail to reach remission following standard antidepressant pharmacological treatment. Limited efficacy with currently available antidepressant drugs highlights the need to develop more effective medications for treatment- resistant patients and emphasizes the importance of developing better preclinical models that focus on treatment- resistant populations. This review discusses methods to adapt and refine rodent behavioral models that are predictive of antidepressant efficacy to identify populations that show reduced responsiveness or are resistant to traditional antidepressants. Methods include separating antidepressant responders from non-responders, administering treatments that render animals resistant to traditional pharmacological treatments, and identifying genetic models that show antidepressant resistance. This review also examines pharmacological and non-pharmacological treatments regimes that have been effective in refractory patients and how some of these approaches have been used to validate animal models of treatment-resistant depression. The goals in developing rodent models of treatment-resistant depression are to understand the neurobiological mechanisms involved in antidepressant resistance and to develop valid models to test novel therapies that would be effective in patients that do not respond to traditional monoaminergic antidepressants.
Collapse
Affiliation(s)
- Barbara J Caldarone
- Department of Neurology, Brigham and Women's Hospital and NeuroBehavior Laboratory, Harvard NeuroDiscovery Center, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Venetia Zachariou
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY 10029, USA
| | - Sarah L King
- School of Psychology, University of Sussex, Brighton, East Sussex, UK
| |
Collapse
|
43
|
Savignac HM, Kiely B, Dinan TG, Cryan JF. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol Motil 2014; 26:1615-27. [PMID: 25251188 DOI: 10.1111/nmo.12427] [Citation(s) in RCA: 300] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 08/17/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Accumulating evidence suggests that commensal bacteria consumption has the potential to have a positive impact on stress-related psychiatric disorders. However, the specific bacteria influencing behaviors related to anxiety and depression remain unclear. To this end, we compared the effects of two different Bifidobacteria on anxiety and depression-like behavior; an antidepressant was also used as a comparator. METHODS Innately anxious BALB/c mice received daily Bifidobacterium longum (B.) 1714, B. breve 1205, the antidepressant escitalopram or vehicle treatment for 6 weeks. Behavior was assessed in stress-induced hyperthermia test, marble burying, elevated plus maze, open field, tail suspension test, and forced swim test. Physiological responses to acute stress were also assessed. KEY RESULTS Both Bifidobacteria and escitalopram reduced anxiety in the marble burying test; however, only B. longum 1714 decreased stress-induced hyperthermia. B. breve 1205 induced lower anxiety in the elevated plus maze whereas B. longum 1714 induced antidepressant-like behavior in the tail suspension test. However, there was no difference in corticosterone levels between groups. CONCLUSIONS & INFERENCES These data show that these two Bifidobacteria strains reduced anxiety in an anxious mouse strain. These results also suggest that each bacterial strain has intrinsic effects and may be beneficially specific for a given disorder. These findings strengthen the role of gut microbiota supplementation as psychobiotic-based strategies for stress-related brain-gut axis disorders, opening new avenues in the field of neurogastroenterology.
Collapse
Affiliation(s)
- H M Savignac
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
44
|
Angoa-Pérez M, Kane MJ, Briggs DI, Herrera-Mundo N, Sykes CE, Francescutti DM, Kuhn DM. Mice genetically depleted of brain serotonin do not display a depression-like behavioral phenotype. ACS Chem Neurosci 2014; 5:908-19. [PMID: 25089765 DOI: 10.1021/cn500096g] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reductions in function within the serotonin (5HT) neuronal system have long been proposed as etiological factors in depression. Selective serotonin reuptake inhibitors (SSRIs) are the most common treatment for depression, and their therapeutic effect is generally attributed to their ability to increase the synaptic levels of 5HT. Tryptophan hydroxylase 2 (TPH2) is the initial and rate-limiting enzyme in the biosynthetic pathway of 5HT in the CNS, and losses in its catalytic activity lead to reductions in 5HT production and release. The time differential between the onset of 5HT reuptake inhibition by SSRIs (minutes) and onset of their antidepressant efficacy (weeks to months), when considered with their overall poor therapeutic effectiveness, has cast some doubt on the role of 5HT in depression. Mice lacking the gene for TPH2 are genetically depleted of brain 5HT and were tested for a depression-like behavioral phenotype using a battery of valid tests for affective-like disorders in animals. The behavior of TPH2(-/-) mice on the sucrose preference test, tail suspension test, and forced swim test and their responses in the unpredictable chronic mild stress and learned helplessness paradigms was the same as wild-type controls. While TPH2(-/-) mice as a group were not responsive to SSRIs, a subset responded to treatment with SSRIs in the same manner as wild-type controls with significant reductions in immobility time on the tail suspension test, indicative of antidepressant drug effects. The behavioral phenotype of the TPH2(-/-) mouse questions the role of 5HT in depression. Furthermore, the TPH2(-/-) mouse may serve as a useful model in the search for new medications that have therapeutic targets for depression that are outside of the 5HT neuronal system.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, Michigan 48201, United States
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Michael J. Kane
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, Michigan 48201, United States
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Denise I. Briggs
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, Michigan 48201, United States
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Nieves Herrera-Mundo
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, Michigan 48201, United States
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Catherine E. Sykes
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, Michigan 48201, United States
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Dina M. Francescutti
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, Michigan 48201, United States
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Donald M. Kuhn
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, Michigan 48201, United States
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| |
Collapse
|
45
|
Duan D, Yang X, Ya T, Chen L. Hippocampal gene expression in a rat model of depression after electroacupuncture at the Baihui and Yintang acupoints. Neural Regen Res 2014; 9:76-83. [PMID: 25206746 PMCID: PMC4146319 DOI: 10.4103/1673-5374.125333] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2013] [Indexed: 12/15/2022] Open
Abstract
Preliminary basic research and clinical findings have demonstrated that electroacupuncture therapy exhibits positive effects in ameliorating depression. However, most studies of the underlying mechanism are at the single gene level; there are few reports regarding the mechanism at the whole-genome level. Using a rat genomic gene-chip, we profiled hippocampal gene expression changes in rats after electroacupuncture therapy. Electroacupuncture therapy alleviated depression-related manifestations in the model rats. Using gene-chip analysis, we demonstrated that electroacupuncture at Baihui (DU20) and Yintang (EX-HN3) regulates the expression of 21 genes. Real-time PCR showed that the genes Vgf, Igf2, Tmp32, Loc500373, Hif1a, Folr1, Nmb, and Rtn were upregulated or downregulated in depression and that their expression tended to normalize after electroacupuncture therapy. These results indicate that electroacupuncture at Baihui and Yintang modulates depression by regulating the expression of particular genes.
Collapse
Affiliation(s)
- Dongmei Duan
- Department of Traditional Chinese Medicine of South Building, Chinese PLA General Hospital, Beijing, China
| | - Xiuyan Yang
- Institute of Health Maintenance, Beijing University of Chinese Medicine, Beijing, China
| | - Tu Ya
- School of Acupuncture and Moxibustion, Beijing University of Chinese Medicine, Beijing, China
| | - Liping Chen
- Department of Traditional Chinese Medicine of South Building, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
46
|
O'Leary OF, O'Brien FE, O'Connor RM, Cryan JF. Drugs, genes and the blues: Pharmacogenetics of the antidepressant response from mouse to man. Pharmacol Biochem Behav 2014; 123:55-76. [PMID: 24161683 DOI: 10.1016/j.pbb.2013.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/04/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022]
|
47
|
Heinla I, Leidmaa E, Visnapuu T, Philips MA, Vasar E. Enrichment and individual housing reinforce the differences in aggressiveness and amphetamine response in 129S6/SvEv and C57BL/6 strains. Behav Brain Res 2014; 267:66-73. [DOI: 10.1016/j.bbr.2014.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/11/2014] [Accepted: 03/16/2014] [Indexed: 12/13/2022]
|
48
|
Zhu W, Gao Y, Chang CF, Wan JR, Zhu SS, Wang J. Mouse models of intracerebral hemorrhage in ventricle, cortex, and hippocampus by injections of autologous blood or collagenase. PLoS One 2014; 9:e97423. [PMID: 24831292 PMCID: PMC4022524 DOI: 10.1371/journal.pone.0097423] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 04/17/2014] [Indexed: 01/08/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating condition. Existing preclinical ICH models focus largely on striatum but neglect other brain areas such as ventricle, cortex, and hippocampus. Clinically, however, hemorrhagic strokes do occur in these other brain regions. In this study, we established mouse hemorrhagic models that utilize stereotactic injections of autologous whole blood or collagenase to produce ventricular, cortical, and hippocampal injury. We validated and characterized these models by histology, immunohistochemistry, and neurobehavioral tests. In the intraventricular hemorrhage (IVH) model, C57BL/6 mice that received unilateral ventricular injections of whole blood demonstrated bilateral ventricular hematomas, ventricular enlargement, and brain edema in the ipsilateral cortex and basal ganglia at 72 h. Unilateral injections of collagenase (150 U/ml) caused reproducible hematomas and brain edema in the frontal cortex in the cortical ICH (c-ICH) model and in the hippocampus in the hippocampal ICH (h-ICH) model. Immunostaining revealed cellular inflammation and neuronal death in the periventricular regions in the IVH brain and in the perihematomal regions in the c-ICH and h-ICH brains. Locomotor abnormalities measured with a 24-point scoring system were present in all three models, especially on days 1, 3, and 7 post-ICH. Locomotor deficits measured by the wire-hanging test were present in models of IVH and c-ICH, but not h-ICH. Interestingly, mice in the c-ICH model demonstrated emotional abnormality, as measured by the tail suspension test and forced swim test, whereas h-ICH mice exhibited memory abnormality, as measured by the novel object recognition test. All three ICH models generated reproducible brain damage, brain edema, inflammation, and consistent locomotor deficits. Additionally, the c-ICH model produced emotional deficits and the h-ICH model produced cognitive deficits. These three models closely mimic human ICH and should be useful for investigating the pathophysiology of ICH in ventricle, cortex, and hippocampus and for evaluating potential therapeutic strategies.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Yufeng Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Che-Feng Chang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Jie-ru Wan
- Department of Biological Sciences, Illinois Institute of Technology, College of Science, Chicago, Illinois, United States of America
| | - Shan-shan Zhu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
49
|
Can A, Schulze TG, Gould TD. Molecular actions and clinical pharmacogenetics of lithium therapy. Pharmacol Biochem Behav 2014; 123:3-16. [PMID: 24534415 DOI: 10.1016/j.pbb.2014.02.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 12/21/2022]
Abstract
Mood disorders, including bipolar disorder and depression, are relatively common human diseases for which pharmacological treatment options are often not optimal. Among existing pharmacological agents and mood stabilizers used for the treatment of mood disorders, lithium has a unique clinical profile. Lithium has efficacy in the treatment of bipolar disorder generally, and in particular mania, while also being useful in the adjunct treatment of refractory depression. In addition to antimanic and adjunct antidepressant efficacy, lithium is also proven effective in the reduction of suicide and suicidal behaviors. However, only a subset of patients manifests beneficial responses to lithium therapy and the underlying genetic factors of response are not exactly known. Here we discuss preclinical research suggesting mechanisms likely to underlie lithium's therapeutic actions including direct targets inositol monophosphatase and glycogen synthase kinase-3 (GSK-3) among others, as well as indirect actions including modulation of neurotrophic and neurotransmitter systems and circadian function. We follow with a discussion of current knowledge related to the pharmacogenetic underpinnings of effective lithium therapy in patients within this context. Progress in elucidation of genetic factors that may be involved in human response to lithium pharmacology has been slow, and there is still limited conclusive evidence for the role of a particular genetic factor. However, the development of new approaches such as genome-wide association studies (GWAS), and increased use of genetic testing and improved identification of mood disorder patients sub-groups will lead to improved elucidation of relevant genetic factors in the future.
Collapse
Affiliation(s)
- Adem Can
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Thomas G Schulze
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
50
|
Nguyen HT, Guiard BP, Bacq A, David DJ, David I, Quesseveur G, Gautron S, Sanchez C, Gardier AM. Blockade of the high-affinity noradrenaline transporter (NET) by the selective 5-HT reuptake inhibitor escitalopram: an in vivo microdialysis study in mice. Br J Pharmacol 2014; 168:103-16. [PMID: 22233336 DOI: 10.1111/j.1476-5381.2012.01850.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Escitalopram, the S(+)-enantiomer of citalopram is the most selective 5-HT reuptake inhibitor approved. Although all 5-HT selective reuptake inhibitors (SSRIs) increase extracellular levels of 5-HT ([5-HT](ext)). some also enhance, to a lesser extent, extracellular levels of noradrenaline ([NA](ext)). However, the mechanisms by which SSRIs activate noradrenergic transmission in the brain remain to be determined. EXPERIMENTAL APPROACH This study examined the effects of escitalopram, on both [5-HT](ext) and [NA](ext) in the frontal cortex (FCx) of freely moving wild-type (WT) and mutant mice lacking the 5-HT transporter (SERT(-/-)) by using intracerebral microdialysis. We explored the possibilities that escitalopram enhances [NA](ext), either by a direct mechanism involving the inhibition of the low- or high-affinity noradrenaline transporters, or by an indirect mechanism promoted by [5-HT](ext) elevation. The forced swim test (FST) was used to investigate whether enhancing cortical [5-HT](ext) and/or [NA](ext) affected the antidepressant-like activity of escitalopram. KEY RESULTS In WT mice, a single systemic administration of escitalopram produced a significant increase in cortical [5-HT](ext) and [NA](ext). As expected, escitalopram failed to increase cortical [5-HT](ext) in SERT(-/-) mice, whereas its neurochemical effects on [NA](ext) persisted in these mutants. In WT mice subjected to the FST, escitalopram increased swimming parameters without affecting climbing behaviour. Finally, escitalopram, at relevant concentrations, failed to inhibit cortical noradrenaline and 5-HT uptake mediated by low-affinity monoamine transporters. CONCLUSIONS AND IMPLICATIONS These experiments suggest that escitalopram enhances, although moderately, cortical [NA](ext) in vivo by a direct mechanism involving the inhibition of the high-affinity noradrenaline transporter (NET).
Collapse
Affiliation(s)
- Hai T Nguyen
- Laboratoire de Neuropharmacologie, Faculté de Pharmacie, Université Paris-Sud XI, Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | |
Collapse
|