1
|
Yu C, Jiang TT, Shoemaker CT, Fan D, Rossi MA, Yin HH. Striatal mechanisms of turning behaviour following unilateral dopamine depletion in mice. Eur J Neurosci 2022; 56:4529-4545. [PMID: 35799410 PMCID: PMC9710193 DOI: 10.1111/ejn.15764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Unilateral dopamine (DA) depletion produces ipsiversive turning behaviour, and the injection of DA receptor agonists can produce contraversive turning, but the underlying mechanisms remain unclear. We conducted in vivo recording and pharmacological and optogenetic manipulations to study the role of DA and striatal output in turning behaviour. We used a video-based tracking programme while recording single unit activity in both putative medium spiny projection neurons (MSNs) and fast-spiking interneurons (FSIs) in the dorsal striatum bilaterally. Our results suggest that unilateral DA depletion reduced striatal output from the depleted side, resulting in asymmetric striatal output. Depletion systematically altered activity in both MSNs and FSIs, especially in neurons that increased firing during turning movements. Like D1 agonist SKF 38393, optogenetic stimulation in the depleted striatum increased striatal output and reversed biassed turning. These results suggest that relative striatal outputs from the two cerebral hemispheres determine the direction of turning: Mice turn away from the side of higher striatal output and towards the side of the lower striatal output.
Collapse
Affiliation(s)
- Chunxiu Yu
- Department of Biomedical Engineering, Michigan Technological University
| | | | | | - David Fan
- Department of Psychology and Neuroscience, Duke University
| | | | - Henry H. Yin
- Department of Psychology and Neuroscience, Duke University
| |
Collapse
|
2
|
Ahlers-Dannen KE, Spicer MM, Fisher RA. RGS Proteins as Critical Regulators of Motor Function and Their Implications in Parkinson's Disease. Mol Pharmacol 2020; 98:730-738. [PMID: 32015009 PMCID: PMC7662528 DOI: 10.1124/mol.119.118836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/25/2020] [Indexed: 11/22/2022] Open
Abstract
Parkinson disease (PD) is a devastating, largely nonfamilial, age-related disorder caused by the progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Release of DA from these neurons into the dorsal striatum is crucial for regulating movement and their loss causes PD. Unfortunately, the mechanisms underlying SNc neurodegeneration remain unclear, and currently there is no cure for PD, only symptomatic treatments. Recently, several regulator of G protein signaling (RGS) proteins have emerged as critical modulators of PD pathogenesis and/or motor dysfunction and dyskinesia: RGSs 4, 6, 9, and 10. Striatal RGS4 has been shown to exacerbate motor symptoms of DA loss by suppressing M4-autoreceptor-Gα i/o signaling in striatal cholinergic interneurons. RGS6 and RGS9 are key regulators of D2R-Gα i/o signaling in SNc DA neurons and striatal medium spiny neurons, respectively. RGS6, expressed in human and mouse SNc DA neurons, suppresses characteristic PD hallmarks in aged mice, including SNc DA neuron loss, motor deficits, and α-synuclein accumulation. After DA depletion, RGS9 (through its inhibition of medium spiny neuron D2R signaling) suppresses motor dysfunction induced by L-DOPA or D2R-selective agonists. RGS10 is highly expressed in microglia, the brain's resident immune cells. Within the SNc, RGS10 may promote DA neuron survival through the upregulation of prosurvival genes and inhibition of microglial inflammatory factor expression. Thus, RGSs 4, 6, 9, and 10 are critical modulators of cell signaling pathways that promote SNc DA neuron survival and/or proper motor control. Accordingly, these RGS proteins represent novel therapeutic targets for the treatment of PD pathology. SIGNIFICANCE STATEMENT: Parkinson disease (PD), the most common movement disorder, is a progressive neurodegenerative disease characterized by substantia nigra pars compacta (SNc) dopamine (DA) neuron loss and subsequent motor deficits. Current PD therapies only target disease motor symptomology and are fraught with side effects. Therefore, researchers have begun to explore alternative therapeutic options. Regulator of G protein signaling (RGS) proteins, whether primarily expressed in SNc DA neurons (RGS6), striatal neurons (RGSs 4 and 9), or microglia (RGS10), modulate key signaling pathways important for SNc DA neuron survival and/or proper motor control. As such, RGS proteins represent novel therapeutic targets in PD.
Collapse
Affiliation(s)
- Katelin E Ahlers-Dannen
- Department of Neuroscience and Pharmacology (K.E.A.-D., M.M.S., R.A.F.), Iowa Neuroscience Institute (R.A.F.), and Interdisciplinary Graduate Program in Molecular Medicine (M.M.S., R.A.F.), University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Mackenzie M Spicer
- Department of Neuroscience and Pharmacology (K.E.A.-D., M.M.S., R.A.F.), Iowa Neuroscience Institute (R.A.F.), and Interdisciplinary Graduate Program in Molecular Medicine (M.M.S., R.A.F.), University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Rory A Fisher
- Department of Neuroscience and Pharmacology (K.E.A.-D., M.M.S., R.A.F.), Iowa Neuroscience Institute (R.A.F.), and Interdisciplinary Graduate Program in Molecular Medicine (M.M.S., R.A.F.), University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
3
|
Sakloth F, Polizu C, Bertherat F, Zachariou V. Regulators of G Protein Signaling in Analgesia and Addiction. Mol Pharmacol 2020; 98:739-750. [PMID: 32474445 PMCID: PMC7662521 DOI: 10.1124/mol.119.119206] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins are multifunctional proteins expressed in peripheral and neuronal cells, playing critical roles in development, physiologic processes, and pharmacological responses. RGS proteins primarily act as GTPase accelerators for activated Gα subunits of G-protein coupled receptors, but they may also modulate signal transduction by several other mechanisms. Over the last two decades, preclinical work identified members of the RGS family with unique and critical roles in intracellular responses to drugs of abuse. New information has emerged on the mechanisms by which RGS proteins modulate the efficacy of opioid analgesics in a brain region- and agonist-selective fashion. There has also been progress in the understanding of the protein complexes and signal transduction pathways regulated by RGS proteins in addiction and analgesia circuits. In this review, we summarize findings on the mechanisms by which RGS proteins modulate functional responses to opioids in models of analgesia and addiction. We also discuss reports on the regulation and function of RGS proteins in models of psychostimulant addiction. Using information from preclinical studies performed over the last 20 years, we highlight the diverse mechanisms by which RGS protein complexes control plasticity in response to opioid and psychostimulant drug exposure; we further discuss how the understanding of these pathways may lead to new opportunities for therapeutic interventions in G protein pathways. SIGNIFICANCE STATEMENT: Regulator of G protein signaling (RGS) proteins are signal transduction modulators, expressed widely in various tissues, including brain regions mediating addiction and analgesia. Evidence from preclinical work suggests that members of the RGS family act by unique mechanisms in specific brain regions to control drug-induced plasticity. This review highlights interesting findings on the regulation and function of RGS proteins in models of analgesia and addiction.
Collapse
Affiliation(s)
- Farhana Sakloth
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Claire Polizu
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Feodora Bertherat
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
4
|
Regulators of G protein signalling as pharmacological targets for the treatment of neuropathic pain. Pharmacol Res 2020; 160:105148. [PMID: 32858121 DOI: 10.1016/j.phrs.2020.105148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 12/30/2022]
Abstract
Neuropathic pain, a specific type of chronic pain resulting from persistent nervous tissue lesions, is a debilitating condition that affects about 7% of the population. This condition remains particularly difficult to treat because of the poor understanding of its underlying mechanisms. Drugs currently used to alleviate this chronic pain syndrome are of limited benefit due to their lack of efficacy and the elevated risk of side effects, especially after a prolonged period of treatment. Although drugs targeting G protein-coupled receptors (GPCR) also have several limitations, such as progressive loss of efficacy due to receptor desensitization or unavoidable side effects due to wide receptor distribution, the identification of several molecular partners that contribute to the fine-tuning of receptor activity has raised new opportunities for the development of alternative therapeutic approaches. Regulators of G protein signalling (RGS) act intracellularly by influencing the coupling process and activity of G proteins, and are amongst the best-characterized physiological modulators of GPCR. Changes in RGS expression have been documented in a range of models of neuropathic pain, or after prolonged treatment with diverse analgesics, and could participate in altered pain processing as well as impaired physiological or pharmacological control of nociceptive signals. The present review summarizes the experimental data that implicates RGS in the development of pain with focus on the pathological mechanisms of neuropathic pain, including the impact of neuropathic lesions on RGS expression and, reciprocally, the influence of modifying RGS on GPCRs involved in the modulation of nociception as well as on the outcome of pain. In this context, we address the question of the relevance of RGS as promising targets in the treatment of neuropathic pain.
Collapse
|
5
|
O'Brien JB, Wilkinson JC, Roman DL. Regulator of G-protein signaling (RGS) proteins as drug targets: Progress and future potentials. J Biol Chem 2019; 294:18571-18585. [PMID: 31636120 PMCID: PMC6901330 DOI: 10.1074/jbc.rev119.007060] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) play critical roles in regulating processes such as cellular homeostasis, responses to stimuli, and cell signaling. Accordingly, GPCRs have long served as extraordinarily successful drug targets. It is therefore not surprising that the discovery in the mid-1990s of a family of proteins that regulate processes downstream of GPCRs generated great excitement in the field. This finding enhanced the understanding of these critical signaling pathways and provided potentially new targets for pharmacological intervention. These regulators of G-protein signaling (RGS) proteins were viewed by many as nodes downstream of GPCRs that could be targeted with small molecules to tune signaling processes. In this review, we provide a brief overview of the discovery of RGS proteins and of the gradual and continuing discovery of their roles in disease states, focusing particularly on cancer and neurological disorders. We also discuss high-throughput screening efforts that have led to the discovery first of peptide-based and then of small-molecule inhibitors targeting a subset of the RGS proteins. We explore the unique mechanisms of RGS inhibition these chemical tools have revealed and highlight the most up-to-date studies using these tools in animal experiments. Finally, we discuss the future opportunities in the field, as there are clearly more avenues left to be explored and potentials to be realized.
Collapse
Affiliation(s)
- Joseph B O'Brien
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242
| | - Joshua C Wilkinson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242
| | - David L Roman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242; Iowa Neuroscience Institute, Iowa City, Iowa 52242; Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242.
| |
Collapse
|
6
|
Mores KL, Cummins BR, Cassell RJ, van Rijn RM. A Review of the Therapeutic Potential of Recently Developed G Protein-Biased Kappa Agonists. Front Pharmacol 2019; 10:407. [PMID: 31057409 PMCID: PMC6478756 DOI: 10.3389/fphar.2019.00407] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/01/2019] [Indexed: 01/22/2023] Open
Abstract
Between 2000 and 2005 several studies revealed that morphine is more potent and exhibits fewer side effects in beta-arrestin 2 knockout mice. These findings spurred efforts to develop opioids that signal primarily via G protein activation and do not, or only very weakly, recruit beta-arrestin. Development of such molecules targeting the mu opioid receptor initially outpaced those targeting the kappa, delta and nociceptin opioid receptors, with the G protein-biased mu opioid agonist oliceridine/TRV130 having completed phase III clinical trials with improved therapeutic window to treat moderate-to-severe acute pain. Recently however, there has been a sharp increase in the development of novel G protein-biased kappa agonists. It is hypothesized that G protein-biased kappa agonists can reduce pain and itch, but exhibit fewer side effects, such as anhedonia and psychosis, that have thus far limited the clinical development of unbiased kappa opioid agonists. Here we summarize recently discovered G protein-biased kappa agonists, comparing structures, degree of signal bias and preclinical effects. We specifically reviewed nalfurafine, 22-thiocyanatosalvinorin A (RB-64), mesyl-salvinorin B, 2-(4-(furan-2-ylmethyl)-5-((4-methyl-3-(trifluoromethyl)benzyl)thio)-4H-1,2,4-triazol-3-yl)pyridine (triazole 1.1), 3-(2-((cyclopropylmethyl)(phenethyl)amino)ethyl)phenol (HS666), N-n-butyl-N-phenylethyl-N-3-hydroxyphenylethyl-amine (compound 5/BPHA), 6-guanidinonaltrindole (6′GNTI), and collybolide. These agonists encompass a variety of chemical scaffolds and range in both their potency and efficacy in terms of G protein signaling and beta-arrestin recruitment. Thus unsurprisingly, the behavioral responses reported for these agonists are not uniform. Yet, it is our conclusion that the kappa opioid field will benefit tremendously from future studies that compare several biased agonists and correlate the degree of signaling bias to a particular pharmacological response.
Collapse
Affiliation(s)
- Kendall L Mores
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, West Lafayette, IN, United States
| | - Benjamin R Cummins
- Department of Chemistry, College of Science, West Lafayette, IN, United States
| | - Robert J Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, West Lafayette, IN, United States.,Purdue Institute for Drug Discovery, West Lafayette, IN, United States
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, West Lafayette, IN, United States.,Purdue Institute for Drug Discovery, West Lafayette, IN, United States.,Purdue Institute for Integrative Neuroscience, West Lafayette, IN, United States
| |
Collapse
|
7
|
Liput DJ. Cre-Recombinase Dependent Germline Deletion of a Conditional Allele in the Rgs9cre Mouse Line. Front Neural Circuits 2018; 12:68. [PMID: 30254571 PMCID: PMC6141680 DOI: 10.3389/fncir.2018.00068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/07/2018] [Indexed: 12/29/2022] Open
Abstract
Cre-LoxP conditional knockout animals have become a prominent tool to understand gene function in discrete cell-types and neural circuits. However, this technology has significant limitations including off target cre-dependent recombination. The Rgs9cre strain has been used to generate a conditional knockout in striatal medium spiny neurons, but, as presented in the current study, off target recombination in the germline results in nonconditional deletion of LoxP alleles. Using a Rem2 conditional allele, germline deletion (GD) was observed in a sex dependent manner. When Cre and LoxP alleles were co-inherited from the female parent, 27 of 29 LoxP alleles were recombined, but when co-inherited from the male parent, 5 of 36 LoxP alleles were recombined. Rem2 expression measured by RT-qPCR confirmed nonconditional recombination in extrastriatal nuclei. Cre-LoxP is a powerful technique to modify genomic DNA (gDNA), however careful characterization of these mice is required to confirm control of conditional recombination.
Collapse
Affiliation(s)
- Daniel J Liput
- Laboratory for Integrated Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
8
|
Ho JH, Stahl EL, Schmid CL, Scarry SM, Aubé J, Bohn LM. G protein signaling-biased agonism at the κ-opioid receptor is maintained in striatal neurons. Sci Signal 2018; 11:11/542/eaar4309. [PMID: 30087177 DOI: 10.1126/scisignal.aar4309] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Biased agonists of G protein-coupled receptors may present a means to refine receptor signaling in a way that separates side effects from therapeutic properties. Several studies have shown that agonists that activate the κ-opioid receptor (KOR) in a manner that favors G protein coupling over β-arrestin2 recruitment in cell culture may represent a means to treat pain and itch while avoiding sedation and dysphoria. Although it is attractive to speculate that the bias between G protein signaling and β-arrestin2 recruitment is the reason for these divergent behaviors, little evidence has emerged to show that these signaling pathways diverge in the neuronal environment. We further explored the influence of cellular context on biased agonism at KOR ligand-directed signaling toward G protein pathways over β-arrestin-dependent pathways and found that this bias persists in striatal neurons. These findings advance our understanding of how a G protein-biased agonist signal differs between cell lines and primary neurons, demonstrate that measuring [35S]GTPγS binding and the regulation of adenylyl cyclase activity are not necessarily orthogonal assays in cell lines, and emphasize the contributions of the environment to assessing biased agonism.
Collapse
Affiliation(s)
- Jo-Hao Ho
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Edward L Stahl
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Cullen L Schmid
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Sarah M Scarry
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey Aubé
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura M Bohn
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
9
|
Squires KE, Montañez-Miranda C, Pandya RR, Torres MP, Hepler JR. Genetic Analysis of Rare Human Variants of Regulators of G Protein Signaling Proteins and Their Role in Human Physiology and Disease. Pharmacol Rev 2018; 70:446-474. [PMID: 29871944 PMCID: PMC5989036 DOI: 10.1124/pr.117.015354] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins modulate the physiologic actions of many neurotransmitters, hormones, and other signaling molecules. Human RGS proteins comprise a family of 20 canonical proteins that bind directly to G protein-coupled receptors/G protein complexes to limit the lifetime of their signaling events, which regulate all aspects of cell and organ physiology. Genetic variations account for diverse human traits and individual predispositions to disease. RGS proteins contribute to many complex polygenic human traits and pathologies such as hypertension, atherosclerosis, schizophrenia, depression, addiction, cancers, and many others. Recent analysis indicates that most human diseases are due to extremely rare genetic variants. In this study, we summarize physiologic roles for RGS proteins and links to human diseases/traits and report rare variants found within each human RGS protein exome sequence derived from global population studies. Each RGS sequence is analyzed using recently described bioinformatics and proteomic tools for measures of missense tolerance ratio paired with combined annotation-dependent depletion scores, and protein post-translational modification (PTM) alignment cluster analysis. We highlight selected variants within the well-studied RGS domain that likely disrupt RGS protein functions and provide comprehensive variant and PTM data for each RGS protein for future study. We propose that rare variants in functionally sensitive regions of RGS proteins confer profound change-of-function phenotypes that may contribute, in newly appreciated ways, to complex human diseases and/or traits. This information provides investigators with a valuable database to explore variation in RGS protein function, and for targeting RGS proteins as future therapeutic targets.
Collapse
Affiliation(s)
- Katherine E Squires
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Carolina Montañez-Miranda
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Rushika R Pandya
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Matthew P Torres
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - John R Hepler
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| |
Collapse
|
10
|
Signal transduction in L-DOPA-induced dyskinesia: from receptor sensitization to abnormal gene expression. J Neural Transm (Vienna) 2018; 125:1171-1186. [PMID: 29396608 PMCID: PMC6060907 DOI: 10.1007/s00702-018-1847-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/23/2018] [Indexed: 01/06/2023]
Abstract
A large number of signaling abnormalities have been implicated in the emergence and expression of l-DOPA-induced dyskinesia (LID). The primary cause for many of these changes is the development of sensitization at dopamine receptors located on striatal projection neurons (SPN). This initial priming, which is particularly evident at the level of dopamine D1 receptors (D1R), can be viewed as a homeostatic response to dopamine depletion and is further exacerbated by chronic administration of l-DOPA, through a variety of mechanisms affecting various components of the G-protein-coupled receptor machinery. Sensitization of dopamine receptors in combination with pulsatile administration of l-DOPA leads to intermittent and coordinated hyperactivation of signal transduction cascades, ultimately resulting in long-term modifications of gene expression and protein synthesis. A detailed mapping of these pathological changes and of their involvement in LID has been produced during the last decade. According to this emerging picture, activation of sensitized D1R results in the stimulation of cAMP-dependent protein kinase and of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa. This, in turn, activates the extracellular signal-regulated kinases 1 and 2 (ERK), leading to chromatin remodeling and aberrant gene transcription. Dysregulated ERK results also in the stimulation of the mammalian target of rapamycin complex 1, which promotes protein synthesis. Enhanced levels of multiple effector targets, including several transcription factors have been implicated in LID and associated changes in synaptic plasticity and morphology. This article provides an overview of the intracellular modifications occurring in SPN and associated with LID.
Collapse
|
11
|
Regulator of G protein signaling 14 (RGS14) is expressed pre- and postsynaptically in neurons of hippocampus, basal ganglia, and amygdala of monkey and human brain. Brain Struct Funct 2017; 223:233-253. [PMID: 28776200 DOI: 10.1007/s00429-017-1487-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
Abstract
Regulator of G protein signaling 14 (RGS14) is a multifunctional signaling protein primarily expressed in mouse pyramidal neurons of hippocampal area CA2 where it regulates synaptic plasticity important for learning and memory. However, very little is known about RGS14 protein expression in the primate brain. Here, we validate the specificity of a new polyclonal RGS14 antibody that recognizes not only full-length RGS14 protein in primate, but also lower molecular weight forms of RGS14 protein matching previously predicted human splice variants. These putative RGS14 variants along with full-length RGS14 are expressed in the primate striatum. By contrast, only full-length RGS14 is expressed in hippocampus, and shorter variants are completely absent in rodent brain. We report that RGS14 protein immunoreactivity is found both pre- and postsynaptically in multiple neuron populations throughout hippocampal area CA1 and CA2, caudate nucleus, putamen, globus pallidus, substantia nigra, and amygdala in adult rhesus monkeys. A similar cellular expression pattern of RGS14 in the monkey striatum and hippocampus was further confirmed in humans. Our electron microscopy data show for the first time that RGS14 immunostaining localizes within nuclei of striatal neurons in monkeys. Taken together, these findings suggest new pre- and postsynaptic regulatory functions of RGS14 and RGS14 variants, specific to the primate brain, and provide evidence for unconventional roles of RGS14 in the nuclei of striatal neurons potentially important for human neurophysiology and disease.
Collapse
|
12
|
New Concepts in Dopamine D 2 Receptor Biased Signaling and Implications for Schizophrenia Therapy. Biol Psychiatry 2017; 81:78-85. [PMID: 27832841 PMCID: PMC5702557 DOI: 10.1016/j.biopsych.2016.10.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/11/2023]
Abstract
The dopamine D2 receptor (D2R) is a G protein-coupled receptor that is a common target for antipsychotic drugs. Antagonism of D2R signaling in the striatum is thought to be the primary mode of action of antipsychotic drugs in alleviating psychotic symptoms. However, antipsychotic drugs are not clinically effective at reversing cortical-related symptoms, such as cognitive deficits in schizophrenia. While the exact mechanistic underpinnings of these cognitive deficits are largely unknown, deficits in cortical dopamine function likely play a contributing role. It is now recognized that similar to most G protein-coupled receptors, D2Rs signal not only through canonical G protein pathways but also through noncanonical beta-arrestin2-dependent pathways. We review the current mechanistic bases for this dual signaling mode of D2Rs and how these new concepts might be leveraged for therapeutic gain to target both cortical and striatal dysfunction in dopamine neurotransmission and hence have the potential to correct both positive and cognitive symptoms of schizophrenia.
Collapse
|
13
|
The molecular, temporal and region-specific requirements of the beta isoform of Calcium/Calmodulin-dependent protein kinase type 2 (CAMK2B) in mouse locomotion. Sci Rep 2016; 6:26989. [PMID: 27244486 PMCID: PMC4886626 DOI: 10.1038/srep26989] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/11/2016] [Indexed: 11/13/2022] Open
Abstract
Genetic approaches using temporal and brain region-specific restricted gene deletions have provided a wealth of insight in the brain regions and temporal aspects underlying spatial and associative learning. However, for locomotion such extensive studies are still scarce. Previous studies demonstrated that Camk2b–/– mice, which lack the β isoform of Calcium/Calmodulin-dependent protein kinase 2 (CAMK2B), show very severe locomotion deficits. However, where these locomotion deficits originate is unknown. Here we made use of novel Camk2b mutants (Camk2bf/f and Camk2bT287A), to explore the molecular, temporal and brain region-specific requirements of CAMK2B for locomotion. At the molecular level we found that normal locomotion requires Calcium/Calmodulin mediated activation of CAMK2B, but CAMK2B autonomous activity is largely dispensable. At a systems level, we found that global deletion of Camk2b in the adult mouse causes only mild locomotion deficits, suggesting that the severe locomotion deficits of Camk2b–/– mice are largely of developmental origin. However, early onset deletion of Camk2b in cerebellum, striatum or forebrain did not recapitulate the locomotion deficits, suggesting that these deficits cannot be attributed to a single brain area. Taken together, these results provide the first insights into the molecular, temporal and region-specific role of CAMK2B in locomotion.
Collapse
|
14
|
Gerber KJ, Squires KE, Hepler JR. Roles for Regulator of G Protein Signaling Proteins in Synaptic Signaling and Plasticity. Mol Pharmacol 2016; 89:273-86. [PMID: 26655302 PMCID: PMC4727123 DOI: 10.1124/mol.115.102210] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/10/2015] [Indexed: 11/22/2022] Open
Abstract
The regulator of G protein signaling (RGS) family of proteins serves critical roles in G protein-coupled receptor (GPCR) and heterotrimeric G protein signal transduction. RGS proteins are best understood as negative regulators of GPCR/G protein signaling. They achieve this by acting as GTPase activating proteins (GAPs) for Gα subunits and accelerating the turnoff of G protein signaling. Many RGS proteins also bind additional signaling partners that either regulate their functions or enable them to regulate other important signaling events. At neuronal synapses, GPCRs, G proteins, and RGS proteins work in coordination to regulate key aspects of neurotransmitter release, synaptic transmission, and synaptic plasticity, which are necessary for central nervous system physiology and behavior. Accumulating evidence has revealed key roles for specific RGS proteins in multiple signaling pathways at neuronal synapses, regulating both pre- and postsynaptic signaling events and synaptic plasticity. Here, we review and highlight the current knowledge of specific RGS proteins (RGS2, RGS4, RGS7, RGS9-2, and RGS14) that have been clearly demonstrated to serve critical roles in modulating synaptic signaling and plasticity throughout the brain, and we consider their potential as future therapeutic targets.
Collapse
Affiliation(s)
- Kyle J Gerber
- Programs in Molecular and Systems Pharmacology (K.J.G., K.E.S., J.R.H.) and Neuroscience (J.R.H.), Department of Pharmacology (K.J.G., K.E.S., J.R.H.), Emory University School of Medicine, Atlanta, Georgia
| | - Katherine E Squires
- Programs in Molecular and Systems Pharmacology (K.J.G., K.E.S., J.R.H.) and Neuroscience (J.R.H.), Department of Pharmacology (K.J.G., K.E.S., J.R.H.), Emory University School of Medicine, Atlanta, Georgia
| | - John R Hepler
- Programs in Molecular and Systems Pharmacology (K.J.G., K.E.S., J.R.H.) and Neuroscience (J.R.H.), Department of Pharmacology (K.J.G., K.E.S., J.R.H.), Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
15
|
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WKD, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | - Barbara Picconi
- Laboratory of Neurophysiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Stefania Fasano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cristina Alcacer
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yunmin Ding
- Department of Neurology, Columbia University, New York, USA
| | - Riccardo Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia, Vancouver, Canada
| | - Mathieu Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michel Engeln
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sylvia Navailles
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wai Kin D Ko
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Laurent Groc
- Univ. de Bordeaux, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France; CNRS, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France
| | - Maria-Cruz Rodriguez
- Department of Neurology, Hospital Universitario Donostia and Neuroscience Unit, Bio Donostia Research Institute, San Sebastian, Spain
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maryka Quik
- Center for Health Sciences, SRI International, CA 94025, USA
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Manuela Mellone
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - Dominique Guehl
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - François Tison
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | | | - Un Jung Kang
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan Fox
- Morton & Gloria Shulman Movement Disorders Center, Toronto Western Hospital, Toronto, Ontario M4T 2S8, Canada
| | - Manolo Carta
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, UK.
| |
Collapse
|
16
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
17
|
ZHU YONGSHENG, ZHANG HONGBO. Evidence for the contribution of genetic variations in regulator of G protein signaling 9 to the genetic susceptibility of heroin dependence. Mol Med Rep 2015; 11:3908-13. [DOI: 10.3892/mmr.2015.3210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 12/19/2014] [Indexed: 11/05/2022] Open
|
18
|
Okamura-Oho Y, Shimokawa K, Nishimura M, Takemoto S, Sato A, Furuichi T, Yokota H. Broad integration of expression maps and co-expression networks compassing novel gene functions in the brain. Sci Rep 2014; 4:6969. [PMID: 25382412 PMCID: PMC4225549 DOI: 10.1038/srep06969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022] Open
Abstract
Using a recently invented technique for gene expression mapping in the whole-anatomy context, termed transcriptome tomography, we have generated a dataset of 36,000 maps of overall gene expression in the adult-mouse brain. Here, using an informatics approach, we identified a broad co-expression network that follows an inverse power law and is rich in functional interaction and gene-ontology terms. Our framework for the integrated analysis of expression maps and graphs of co-expression networks revealed that groups of combinatorially expressed genes, which regulate cell differentiation during development, were present in the adult brain and each of these groups was associated with a discrete cell types. These groups included non-coding genes of unknown function. We found that these genes specifically linked developmentally conserved groups in the network. A previously unrecognized robust expression pattern covering the whole brain was related to the molecular anatomy of key biological processes occurring in particular areas.
Collapse
Affiliation(s)
- Yuko Okamura-Oho
- Brain Research Network (BReNt), 2-2-41 Sakurayama, Zushi-shi, Kanagawa, 249-0005, Japan
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| | - Kazuro Shimokawa
- Department of Health Record Informatics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-chou Aoba-ku Sendai-shi Miyagi, 980-8573, Japan
| | - Masaomi Nishimura
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| | - Satoko Takemoto
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| | - Akira Sato
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Hideo Yokota
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| |
Collapse
|
19
|
Walker PD, Jarosz PA, Bouhamdan M, MacKenzie RG. Effects of gender on locomotor sensitivity to amphetamine, body weight, and fat mass in regulator of G protein signaling 9 (RGS9) knockout mice. Physiol Behav 2014; 138:305-12. [PMID: 25455864 DOI: 10.1016/j.physbeh.2014.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 06/24/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
Abstract
Regulator of G-protein signaling (RGS) protein 9-2 is enriched in the striatum where it modulates dopamine and opioid receptor-mediated signaling. RGS9 knockout (KO) mice show increased psychostimulant-induced behavioral sensitization, as well as exhibit higher body weights and greater fat accumulation compared to wild-type (WT) littermates. In the present study, we found gender influences on each of these phenotypic characteristics. Female RGS9 KO mice exhibited greater locomotor sensitization to amphetamine (1.0mg/kg) treatment as compared to male RGS9 KO mice. Male RGS9 KO mice showed increased body weights as compared to male WT littermates, while no such differences were detected in female mice. Quantitative magnetic resonance showed that male RGS9 KO mice accumulated greater fat mass vs. WT littermates at 5months of age. Such observations could not be explained by increased caloric consumption since male and female RGS9 KO mice demonstrated equivalent daily food intake as compared to their respective WT littermates. Although indirect calorimetry methods found decreased oxygen consumption and carbon dioxide production during the 12-hour dark phase in male RGS9 KO vs. WT mice which are indicative of less energy expenditure, male RGS9 KO mice exhibited lower levels of locomotor activity during this period. Genotype had no effect on metabolic activities when KO and WT groups were compared under fasting vs. feeding treatments. In summary, these results highlight the importance of factoring gender into the experimental design since many studies conducted in RGS9 KO mice utilize locomotor activity as a measured outcome.
Collapse
Affiliation(s)
- Paul D Walker
- Department of Anatomy & Cell Biology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | | - Mohamad Bouhamdan
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Robert G MacKenzie
- Center for Integrative Metabolic and Endocrine Research, Department of Psychiatry & Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
20
|
RGS4 is involved in the generation of abnormal involuntary movements in the unilateral 6-OHDA-lesioned rat model of Parkinson's disease. Neurobiol Dis 2014; 70:138-48. [PMID: 24969021 DOI: 10.1016/j.nbd.2014.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/15/2014] [Accepted: 06/17/2014] [Indexed: 12/31/2022] Open
Abstract
Regulators of G-protein signalling (RGS) proteins are implicated in striatal G-protein coupled receptor (GPCR) sensitisation in the pathophysiology of l-DOPA-induced abnormal involuntary movements (AIMs), also known as dyskinesia (LID), in Parkinson's disease (PD). In this study, we investigated RGS protein subtype 4 in the expression of AIMs in the unilateral 6-hydroxydopamine (6-OHDA)-lesioned rat model of LID. The effects of RGS4 antisense brain infusion on the behavioural and molecular correlates of l-DOPA priming in 6-OHDA-lesioned rats were assessed. In situ hybridisation revealed that repeated l-DOPA/benserazide treatment caused an elevation of RGS4 mRNA levels in the striatum, predominantly in the lateral regions. The increased expression of RGS4 mRNA in the rostral striatum was found to positively correlate with the behavioural (AIM scores) and molecular (pre-proenkephalin B, PPE-B expression) markers of LID. We found that suppressing the elevation of RGS4 mRNA in the striatum by continuous infusion of RGS4 antisense oligonucleotides, via implanted osmotic mini-pumps, during l-DOPA priming, reduced the induction of AIMs. Moreover, ex vivo analyses of the rostral dorsolateral striatum showed that RGS4 antisense infusion attenuated l-DOPA-induced elevations of PPE-B mRNA and dopamine-stimulated [(35)S]GTPγS binding, a marker used for measuring dopamine receptor super-sensitivity. Taken together, these data suggest that (i) RGS4 proteins play an important pathophysiological role in the development and expression of LID and (ii) suppressing the elevation of RGS4 mRNA levels in l-DOPA priming attenuates the associated pathological changes in LID, dampening its physiological expression. Thus, modulating RGS4 proteins could prove beneficial in the treatment of dyskinesia in PD.
Collapse
|
21
|
Li SJ, Li Y, Cui SC, Qi Y, Zhao JJ, Liu XY, Xu P, Chen XH. Splicing factor transformer-2β (Tra2β) regulates the expression of regulator of G protein signaling 4 (RGS4) gene and is induced by morphine. PLoS One 2013; 8:e72220. [PMID: 23977258 PMCID: PMC3747076 DOI: 10.1371/journal.pone.0072220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/08/2013] [Indexed: 12/19/2022] Open
Abstract
Regulator of G protein signaling 4 (RGS4) is a critical modulator of G protein-coupled receptor (GPCR)-mediated signaling and plays important roles in many neural process and diseases. Particularly, drug-induced alteration in RGS4 protein levels is associated with acute and chronic effects of drugs of abuse. However, the precise mechanism underlying the regulation of RGS4 expression is largely unknown. Here, we demonstrated that the expression of RGS4 gene was subject to regulation by alternative splicing of the exon 6. Transformer-2β (Tra2β), an important splicing factor, bound to RGS4 mRNA and increased the relative level of RGS4-1 mRNA isoform by enhancing the inclusion of exon 6. Meanwhile, Tra2β increased the expression of full-length RGS4 protein. In rat brain, Tra2β was co-localized with RGS4 in multiple opioid action-related brain regions. In addition, the acute and chronic morphine treatment induced alteration in the expression level of Tra2β in rat locus coerulus (LC) in parallel to that of RGS4 proteins. It suggests that induction of this splicing factor may contribute to the change of RGS4 level elicited by morphine. Taken together, the results provide the evidence demonstrating the function of Tra2β as a new mediator in opioid-induced signaling pathway via regulating RGS4 expression.
Collapse
Affiliation(s)
- Shu-Jing Li
- State Key Laboratory of Medical Neurobiology and Department of Neurobiology,School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Laboratory of Genomic Physiology and Institutes of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ya Li
- State Key Laboratory of Medical Neurobiology and Department of Neurobiology,School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shi-chao Cui
- State Key Laboratory of Medical Neurobiology and Department of Neurobiology,School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yao Qi
- State Key Laboratory of Medical Neurobiology and Department of Neurobiology,School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jing-Jing Zhao
- State Key Laboratory of Medical Neurobiology and Department of Neurobiology,School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiao-Yan Liu
- State Key Laboratory of Medical Neurobiology and Department of Neurobiology,School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ping Xu
- State Key Laboratory of Medical Neurobiology and Department of Neurobiology,School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xian-Hua Chen
- State Key Laboratory of Medical Neurobiology and Department of Neurobiology,School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Laboratory of Genomic Physiology and Institutes of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
22
|
Liao GY, Li Y, Xu B. Ablation of TrkB expression in RGS9-2 cells leads to hyperphagic obesity. Mol Metab 2013; 2:491-7. [PMID: 24327964 DOI: 10.1016/j.molmet.2013.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 07/31/2013] [Accepted: 08/03/2013] [Indexed: 01/05/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB (tropomyosin receptor kinase B), are widely expressed in the brain where they regulate a wide variety of biological processes, including energy homeostasis. However, the specific population(s) of TrkB-expressing neurons through which BDNF governs energy homeostasis remain(s) to be determined. Using the Cre-loxP recombination system, we deleted the mouse TrkB gene in RGS9-2-expressing cells. In this mouse mutant, TrkB expression was abolished in several hypothalamic nuclei, including arcuate nucleus, dorsomedial hypothalamus, and lateral hypothalamus. TrkB expression was also abolished in a small number of cells in other brain regions, including the cerebral cortex and striatum. The mutant animals developed hyperphagic obesity with normal energy expenditure. Despite hyperglycemia under fed conditions, these animals exhibited normal fasting blood glucose levels and normal glucose tolerance. These results suggest that BDNF regulates energy homeostasis in part through TrkB-expressing neurons in the hypothalamus.
Collapse
Key Words
- 3V, third ventricle
- ARC, arcuate nucleus
- BDNF
- BS, brainstem
- Cb, cerebellum
- Ctx, cerebral cortex
- DMH, dorsomedial hypothalamus
- Hp, hippocampus
- Hy, hypothalamus
- Hyperphagia
- Hypothalamus
- LH, lateral hypothalamus
- NTS, nucleus of the solitary tract
- Obesity
- PMV, ventral premammillary nucleus
- PVH, paraventricular hypothalamus
- Rgs9-Cre
- SN, substantia nigra
- Stm, striatum
- TrkB
- Tu, olfactory tubercle
- VMH, ventromedial hypothalamus
Collapse
Affiliation(s)
- Guey-Ying Liao
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057, USA ; Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | | | | |
Collapse
|
23
|
The 5-HT1A-receptor agonist flibanserin reduces drug-induced dyskinesia in RGS9-deficient mice. J Neural Transm (Vienna) 2012; 119:1351-9. [PMID: 22569849 DOI: 10.1007/s00702-012-0815-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
Abstract
Drug-induced dyskinesia is a major complication of dopamine replacement therapy in advanced Parkinson's disease consisting of dystonia, chorea and athetosis. Agonists at 5-HT1A-receptors attenuate levodopa-induced motor complications in non-human primates. Mice with increased dopamine D2 receptor (DRD2) signalling due to the lack of expression of the regulator of G-protein signalling 9 (RGS9) also develop dyskinesia following levodopa treatment. We investigated whether the 5-HT1A-receptor agonist flibanserin compared with buspirone reduces motor abnormalities induced by levodopa or quinelorane, a selective dopamine D2-receptor agonist. Following dopamine depletion via reserpine, 40 mice (20 wild-type and 20 RGS9 knock-out) were treated with flibanserin or buspirone in combination with levodopa or quinelorane. Motor behaviour was analysed using open field analysis. RGS9 knock-out mice displayed significantly more drug-induced dystonia (p < 0.04; t test) than wild type. In quinelorane-treated wild-type mice flibanserin as well as buspirone significantly reduced dystonia (p < 0.05). In RGS9 knock-out animals again both reduced quinelorane-induced dystonia. However, flibanserin was significantly more effective (p = 0.003). Following reserpine pretreatment and administration of levodopa wild-type and RGS 9 knock-out mice showed mild to moderate dystonia. Surprisingly, 10 mg/kg buspirone increased dystonia in both animal groups, whereas it was decreased by 10 mg/kg flibanserin. However, compared with levodopa alone only the increase of dystonia by buspirone was significant (p < 0.04). Flibanserin showed promising antidyskinetic effects in a model of drug-induced dyskinesia. Our data underline the possible benefit of 5-HT1A agonists in drug-induced dyskinesia.
Collapse
|
24
|
Yu JZ, Rasenick MM. Receptor signaling and the cell biology of synaptic transmission. HANDBOOK OF CLINICAL NEUROLOGY 2012; 106:9-35. [PMID: 22608613 DOI: 10.1016/b978-0-444-52002-9.00002-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This volume describes a series of psychiatric and neuropsychiatric disorders, connects some aspects of somatic and psychiatric medicine, and describes various current and emerging therapies. The purpose of this chapter is to set the stage for the volume by developing the theoretical basis of synaptic transmission and introducing the various neurotransmitters and their receptors involved in the process. The intent is to provide not only a historical context through which to understand neurotransmitters, but a current contextual basis for understanding neuronal signal transduction and applying this knowledge to facilitate treatment of maladies of the brain and mind.
Collapse
Affiliation(s)
- Jiang-Zhou Yu
- Department of Physiology, University of Illinois, Chicago, IL, USA
| | | |
Collapse
|
25
|
Celver J, Sharma M, Kovoor A. D(2)-Dopamine receptors target regulator of G protein signaling 9-2 to detergent-resistant membrane fractions. J Neurochem 2011; 120:56-69. [PMID: 22035199 DOI: 10.1111/j.1471-4159.2011.07559.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Detergent-resistant membranes (DRM) are thought to contain structures such as lipid rafts that are involved in compartmentalizing cell membranes. We report that the majority of D(2)-dopamine receptors (D(2)R) expressed endogenously in mouse striatum or expressed in immortalized cell-lines is found in DRM. In addition, exogenous co-expression of D(2)R in a cell line shifted the expression of regulator of G protein signaling 9-2 (RGS9-2) into DRM. RGS9-2 is a protein that is highly enriched in the striatum and specifically regulates striatal D(2)R. In the striatum, RGS9-2 is mostly associated with DRMs but when expressed in cell lines, RGS9-2 is present in the soluble cytoplasmic fraction. In contrast, the majority of mu opioid receptors and delta opioid receptors are found in detergent-soluble membrane and there was no shift of RGS9-2 into DRM after co-expression of mu opioid receptor. These data suggest that the targeting of RGS9-2 to DRM in the striatum is mediated by D(2)R and that DRM is involved in the formation of a D(2)R signaling complex. D(2)R-mediated targeting of RGS9-2 to DRM was blocked by the deletion of the RGS9-2 DEP domain or by a point mutation that abolishes the GTPase accelerating protein function of RGS9-2.
Collapse
Affiliation(s)
- Jeremy Celver
- Department of Biomedical and Pharmacological Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | | | | |
Collapse
|
26
|
Waugh JL, Celver J, Sharma M, Dufresne RL, Terzi D, Risch SC, Fairbrother WG, Neve RL, Kane JP, Malloy MJ, Pullinger CR, Gu HF, Tsatsanis C, Hamilton SP, Gold SJ, Zachariou V, Kovoor A. Association between regulator of G protein signaling 9-2 and body weight. PLoS One 2011; 6:e27984. [PMID: 22132185 PMCID: PMC3223194 DOI: 10.1371/journal.pone.0027984] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/28/2011] [Indexed: 12/15/2022] Open
Abstract
Regulator of G protein signaling 9-2 (RGS9-2) is a protein that is highly enriched in the striatum, a brain region that mediates motivation, movement and reward responses. We identified a naturally occurring 5 nucleotide deletion polymorphism in the human RGS9 gene and found that the mean body mass index (BMI) of individuals with the deletion was significantly higher than those without. A splicing reporter minigene assay demonstrated that the deletion had the potential to significantly decrease the levels of correctly spliced RGS9 gene product. We measured the weights of rats after virally transduced overexpression of RGS9-2 or the structurally related RGS proteins, RGS7, or RGS11, in the nucleus accumbens (NAc) and observed a reduction in body weight after overexpression of RGS9-2 but not RGS7 or 11. Conversely, we found that the RGS9 knockout mice were heavier than their wild-type littermates and had significantly higher percentages of abdominal fat. The constituent adipocytes were found to have a mean cross-sectional area that was more than double that of corresponding cells from wild-type mice. However, food intake and locomotion were not significantly different between the two strains. These studies with humans, rats and mice implicate RGS9-2 as a factor in regulating body weight.
Collapse
Affiliation(s)
- Jeffrey L. Waugh
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Jeremy Celver
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
- Kovogen LLC, Mystic, Connecticut, United States of America
| | - Meenakshi Sharma
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Robert L. Dufresne
- Department of Pharmacy Practice, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Dimitra Terzi
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - S. Craig Risch
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
| | - William G. Fairbrother
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Rachael L. Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John P. Kane
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Mary J. Malloy
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Clive R. Pullinger
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Department of Physiological Nursing, University of California San Francisco, San Francisco, California, United States of America
| | - Harvest F. Gu
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Christos Tsatsanis
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Steven P. Hamilton
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
| | - Stephen J. Gold
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Venetia Zachariou
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Abraham Kovoor
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
- Kovogen LLC, Mystic, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
27
|
Differential regulation of RGS proteins in the prefrontal cortex of short- and long-term human opiate abusers. Neuropharmacology 2011; 62:1044-51. [PMID: 22056472 DOI: 10.1016/j.neuropharm.2011.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 10/20/2011] [Accepted: 10/24/2011] [Indexed: 12/20/2022]
Abstract
Opiate addiction is characterized by drug tolerance and dependence which involve adaptive changes in μ-opioid receptors (MORs) signaling. Regulators of G-protein signaling RGS9, RGS4 and RGS10 proteins negatively regulate G(αi/o) protein activity modulating MOR function. An important role of RGS proteins in drug addiction has been described but the status of RGS proteins in human brain of opiate addicts remains unknown. The present study evaluated the immunoreactivity levels of RGS4, RGS9 and RGS10 proteins in prefrontal cortex of short- (n = 15) and long-term (n = 21) opiate abusers and in matched control subjects. RGS4 protein was not altered in short-term opiate abusers but, in long-term abusers it was significantly up-regulated (Δ = 29 ± 6%). RGS10 protein expression was significantly decreased in short-term (Δ = -42 ± 7%) but remained unaltered in long-term opiate abusers. RGS9 protein levels in opiate abusers did not differ from matched controls either in the short-term or in the long-term opiate abuser groups. RGS4, RGS9 and RGS10 levels were also studied in brains (frontal cortex) of rats submitted to acute and chronic morphine treatment and to spontaneous and naloxone-precipitated opiate withdrawal. Chronic morphine treatment in rats was associated with an increase in RGS4 protein immunoreactivity (Δ = 28 ± 7%), which persisted in spontaneous (Δ = 35 ± 8%) and naloxone-precipitated withdrawal (Δ = 30 ± 9%) without significant changes in RGS9 and RGS10 proteins. The specific modulation of RGS4 and RGS10 protein expression observed in the prefrontal cortex of opiate abusers might be relevant in the neurobiology of opiate tolerance, dependence and withdrawal. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
|
28
|
Roman DL, Traynor JR. Regulators of G protein signaling (RGS) proteins as drug targets: modulating G-protein-coupled receptor (GPCR) signal transduction. J Med Chem 2011; 54:7433-40. [PMID: 21916427 DOI: 10.1021/jm101572n] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David L Roman
- College of Pharmacy, The University of Iowa , Iowa City, IA 52242, USA
| | | |
Collapse
|
29
|
Yin LL, Geng XC, Zhu XZ. The involvement of RGS9 in l-3,4-dihydroxyphenylalanine-induced dyskinesias in unilateral 6-OHDA lesion rat model. Brain Res Bull 2011; 86:367-72. [PMID: 21963945 DOI: 10.1016/j.brainresbull.2011.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 11/16/2022]
Abstract
Chronic dopamine (DA) replacement therapy with L-3,4-dihydroxyphenylalanine (L-DOPA) in Parkinson's disease (PD) often leads to abnormal involuntary movements (AIMs) known as L-DOPA-induced dyskinesia (LID), mediated by DA receptors. However, mechanisms underlying LID occurrence are still unclear. Regulator of G-protein signaling RGS9, a member of the RGS family of GTPase accelerating proteins, is expressed specifically in the striatum, has been reported participated in LID. L-DOPA-induced AIMs can be modeled in rats with 6-hydroxydopamine (6-OHDA) lesions by chronic injection of L-DOPA. Herein, we compared the rotational responses and AIMs in 6-OHDA lesioned rats with L-DOPA/benserazide (10/2.5 mg/kg, once per day, i.p.) administration for 14 days whereas control animals received injections of saline. Furthermore, whether sub-chronic L-DOPA treatment impact RGS9 mRNA or protein expression in 6-OHDA lesion rats were also evaluated. As results shown, rotational behavior was not increased significantly, while an obvious AIMs were observed in rats with L-DOPA/benserazide (10/2.5mg/kg, i.p.) administration sub-chronically. In addition, expressions of RGS9 protein or mRNA analyzed by Western blot or real-time PCR with striatal extracts increased significantly after L-DOPA/benserazide. These data demonstrate that RGS9 expression can be modulated by sub-chronic L-DOPA/benserazide administration and increased RGS9 expression in striatum may be one of the reasons for the side effects such as dyskinesia induced by L-DOPA therapy.
Collapse
Affiliation(s)
- Lin-Lin Yin
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, 45 Changchun Street, Beijing 100053, PR China.
| | | | | |
Collapse
|
30
|
Papachatzaki MM, Antal Z, Terzi D, Szücs P, Zachariou V, Antal M. RGS9-2 modulates nociceptive behaviour and opioid-mediated synaptic transmission in the spinal dorsal horn. Neurosci Lett 2011; 501:31-4. [PMID: 21741448 DOI: 10.1016/j.neulet.2011.06.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 06/21/2011] [Accepted: 06/21/2011] [Indexed: 11/17/2022]
Abstract
The regulator of G protein signaling 9-2 (RGS9-2) is a constituent of G protein-coupled receptor (GPCR) macromolecular complexes with a major role in regulation of GPCR activity in the central nervous system. Previous in situ hybridization and Western blot studies revealed that RGS9-2 is expressed in the superficial dorsal horn of the spinal cord. In the present study, we monitored tail withdrawal latencies to noxious thermal stimuli and performed in vitro whole-cell patch clamp electrophysiological recordings from neurons in lamina II of the spinal dorsal horn to examine the role of RGS9-2 in the dorsal horn of the spinal cord in nociceptive behaviours and opiate mediated modulation of synaptic transmission. Our findings obtained from RGS9 knockout mice indicate that the lack of RGS9-2 protein decreases sensitivity to thermal stimuli and to the analgesic actions of morphine in the tail immersion paradigm. This modulatory role of RGS9-2 on opiate-mediated responses was further supported by electrophysiological studies showing that hyperpolarization of neurons in lamina II of the spinal dorsal horn evoked by application of DAMGO ([d-Ala2, N-MePhe4, Gly-ol]-enkephalin, a mu opioid receptor agonist) was diminished in RGS9 knockout mice. The results indicate that RGS9-2 enhances the effect of morphine and may play a crucial role in opiate-mediated analgesic mechanisms at the level of the spinal cord.
Collapse
Affiliation(s)
- Maria Martha Papachatzaki
- Department of Basic Science, University of Crete, Faculty of Medicine, Heraklion, Crete 71003, Greece
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Sárvári M, Kalló I, Hrabovszky E, Solymosi N, Tóth K, Likó I, Molnár B, Tihanyi K, Liposits Z. Estradiol replacement alters expression of genes related to neurotransmission and immune surveillance in the frontal cortex of middle-aged, ovariectomized rats. Endocrinology 2010; 151:3847-62. [PMID: 20534718 DOI: 10.1210/en.2010-0375] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Estradiol (E2) modulates a wide range of functions of the frontal cerebral cortex. From the onset of menopause, declining levels of E2 can cause cognitive disturbances and changes in behavior that can be counterbalanced by hormone replacement. To study the effect of E2 replacement on the cortical transcriptome in a rodent model with low serum E2 level, we treated middle-aged, ovariectomized rats with E2 or vehicle using osmotic minipumps for 4 wk. Six animals for each group were selected, and samples of their frontal cortex were subjected to expression profiling using oligonucleotide microarrays. The explored E2-regulated genes were related to neurotransmission (Adora2a, Cartpt, Drd1a, Drd2, Gjb2, Nts, and Tac1), immunity (C3, C4b, Cd74, Fcgr2b, Mpeg1, and RT1-Aw2), signal transduction (Igf2, Igfbp2, Igfbp6, Rgs9, and Sncg), transport (Abca1, Hba-a2, Slc13a3, and Slc22a8), extracellular matrix (Col1a2, Col3a1, Fmod, and Lum), and transcription (Irf7 and Nupr1). Seventy-four percent of the transcriptional changes identified by microarray were confirmed by quantitative real-time PCR. The genes identified by expression profiling indicated that chronic E2 replacement significantly altered the transcriptome of the frontal cortex. The genomic effects of E2 influenced dopaminergic and peptidergic neurotransmission, immune surveillance, adenosine and insulin-like growth factor signaling and transport processes, among other functions. Identification of these novel E2-regulated mechanisms highlights the wide range of genomic responses of the aging female frontal cerebral cortex subjected to hormone replacement. Some of the genomic effects identified in this study may underlie the beneficial effects of E2 on cognition, behavior, and neuroprotection.
Collapse
Affiliation(s)
- Miklós Sárvári
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Celver J, Sharma M, Kovoor A. RGS9-2 mediates specific inhibition of agonist-induced internalization of D2-dopamine receptors. J Neurochem 2010; 114:739-49. [PMID: 20477943 DOI: 10.1111/j.1471-4159.2010.06805.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulator of G protein signaling 9-2 (RGS9-2), a member of the RGS family of GTPase accelerating proteins, is expressed specifically in the striatum, a brain region involved in controlling movement, motivation, mood and addiction. RGS9-2 can be found co-localized with D(2)-class dopamine receptors in medium spiny striatal neurons and altered functioning of both RGS9-2 and D(2)-like dopamine receptors have been implicated in schizophrenia, movement disorders and reward responses. Previously we showed that RGS9-2 can specifically co-localize with D(2)-dopamine receptors (D2R). Here we provide further evidence of the specificity of RGS9-2 for regulating D2R cellular functions: the expression of RGS9-2 inhibits dopamine-mediated cellular internalization of D2R, while the expression of another RGS protein, RGS4, had no effect. In addition, the agonist-mediated internalization of the G protein coupled delta opioid receptor was unaffected by RGS9-2 expression. We utilized mutant constructs of RGS9-2 to show that the RGS9-2 DEP (for Disheveled, EGL-10, Pleckstrin homology) domain and the GTPase accelerating activity of RGS9-2 were necessary for mediating specific inhibition of D2R internalization.
Collapse
Affiliation(s)
- Jeremy Celver
- Department of Biomedical and Pharmacological Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | |
Collapse
|
34
|
Agatsuma S, Dang MT, Li Y, Hiroi N. N-methyl-D-aspartic acid receptors on striatal neurons are essential for cocaine cue reactivity in mice. Biol Psychiatry 2010; 67:778-80. [PMID: 20149346 PMCID: PMC2849905 DOI: 10.1016/j.biopsych.2009.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/17/2009] [Accepted: 12/22/2009] [Indexed: 11/21/2022]
Abstract
BACKGROUND Environmental cues associated with cocaine evoke craving and seeking. This process, termed cue reactivity, is a critical element of cocaine addiction. Although glutamatergic neurotransmission has been implicated in this effect of cocaine, the precise subtype and localization in the brain of the glutamatergic receptor critical for cocaine cue reactivity is not well-understood. METHODS We used a conditional N-methyl-D-aspartic acid receptor (NMDAR) knockout mouse whose NMDAR gene was deleted by Cre expression restricted to striatal neurons. To evaluate the role of NMDAR in cocaine cue reactivity, conditional knockout mice and control mice (n = 5-8/group) were conditioned for place preference with cocaine (5 and 10 mg/kg SC) for 3 days. Their subsequent place preference was examined in a drug-free state. RESULTS Although control mice developed cocaine conditioned place preference, mice deficient for NMDAR on striatal neurons failed to develop conditioned place preference. CONCLUSIONS The NMDAR on striatal neurons is essential for the development of cocaine cue reactivity in the place conditioning paradigm. Our finding identifies a brain region whose constitutive NMDAR level serves as a determinant for susceptibility to this aspect of cocaine addiction.
Collapse
Affiliation(s)
- Soh Agatsuma
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Mai T. Dang
- Medical Scholars Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yuqing Li
- Department of Neurology, University of Alabama at Birmingham, Birmingham AL 35294
| | - Noboru Hiroi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
35
|
Abstract
Regulator of G protein-signaling (RGS) proteins are a family of more than 30 intracellular proteins that negatively modulate intracellular signaling of receptors in the G protein-coupled receptor family. This family includes receptors for opioids, cannabinoids, and dopamine that mediate the acute effects of addictive drugs or behaviors and chronic effects leading to the development of addictive disease. Members of the RGS protein family, by negatively modulating receptor signaling, influence the intracellular processes that lead to addiction. In turn, addictive drugs control the expression levels of several RGS proteins. This review will consider the distribution and mechanisms of action of RGS proteins, particularly the R4 and R7 families that have been implicated in the actions of addictive drugs, how knowledge of these proteins is contributing to an understanding of addictive processes, and whether specific RGS proteins could provide targets for the development of medications to manage and/or treat addiction.
Collapse
Affiliation(s)
- John Traynor
- Department of Pharmacology and Substance Abuse Research Center, University of Michigan, Ann Arbor, Michigan 48109-5632, USA.
| |
Collapse
|
36
|
|
37
|
Mancuso JJ, Qian Y, Long C, Wu GY, Wensel TG. Distribution of RGS9-2 in neurons of the mouse striatum. J Neurochem 2009; 112:651-61. [PMID: 19912469 DOI: 10.1111/j.1471-4159.2009.06488.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Regulators of G protein signaling (RGS) proteins negatively modulate G protein-coupled receptor (GPCR) signaling activity by accelerating G protein hydrolysis of GTP, hastening pathway shutoff. A wealth of data from cell culture experiments using exogenously expressed proteins indicates that RGS9 and other RGS proteins have the potential to down-regulate a significant number of pathways. We have used an array of biochemical and tissue staining techniques to examine the subcellular localization and membrane binding characteristics of endogenous RGS9-2 and known binding partners in rodent striatum and tissue homogenates. A small fraction of RGS9-2 is present in the soluble cytoplasmic fraction, whereas the majority is present primarily associated with the plasma membrane and structures insoluble in non-ionic detergents that efficiently extract the vast majority of its binding partners, R7BP and G(beta5). It is specifically excluded from the cell nucleus in mouse striatal tissue. In cultured striatal neurons, RGS9-2 is found at extrasynaptic sites primarily along the dendritic shaft near the spine neck. Heterogeneity in RGS9-2 detergent solubility along with its unique subcellular localization suggests that its mechanism of membrane anchoring and localization is complex and likely involves additional proteins beside R7BP. An important nuclear function for RGS9-2 seems unlikely.
Collapse
Affiliation(s)
- James J Mancuso
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
38
|
Terzi D, Stergiou E, King SL, Zachariou V. Regulators of G protein signaling in neuropsychiatric disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:299-333. [PMID: 20374720 DOI: 10.1016/s1877-1173(09)86010-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regulators of G protein signaling (RGS) comprise a diverse group of about 40 proteins which determine signaling amplitude and duration via modulation of receptor/G protein or receptor/effector coupling. Several members of the RGS family are expressed in the brain, where they have precise roles in regulation of important physiological processes. The unique functions of each RGS can be attributed to its structure, distinct pattern of expression, and regulation, and its preferential interactions with receptors, Galpha subunits and other signaling proteins. Evidence suggests dysfunction of RGS proteins is related to several neuropathological conditions. Moreover, clinical and preclinical work reveals that the efficacy and/or side effects of treatments are highly influenced by RGS activity. This article summarizes findings on RGS proteins in vulnerability to several neuropsychiatric disorders, the mechanism via which RGS proteins control neuronal responses and their potential use as drug targets.
Collapse
Affiliation(s)
- Dimitra Terzi
- Department of Pharmacology, Faculty of Medicine, University of Crete, Heraklion 71003, Crete, Greece
| | | | | | | |
Collapse
|
39
|
Slepak VZ. Structure, function, and localization of Gβ5-RGS complexes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:157-203. [PMID: 20374716 PMCID: PMC3312022 DOI: 10.1016/s1877-1173(09)86006-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Members of the R7 subfamily of regulator of G protein signaling (RGS) proteins (RGS6, 7, 9, and 11) exist as heterodimers with the G protein beta subunit Gβ5. These protein complexes are only found in neurons and are defined by the presence of three domains: DEP/DHEX, Gβ5/GGL, and RGS. This article summarizes published work in the following areas: (1) the functional significance of structural organization of Gβ5-R7 complexes, (2) regional distribution of Gβ5-R7 in the nervous system and regulation of R7 family expression, (3) subcellular localization of Gβ5-R7 complexes, and (4) novel binding partners of Gβ5-R7 proteins. The review points out some contradictions between observations made by different research groups and highlights the importance of using alternative experimental approaches to obtain conclusive information about Gβ5-R7 function in vivo.
Collapse
Affiliation(s)
- Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology and the Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
40
|
Anderson GR, Posokhova E, Martemyanov KA. The R7 RGS protein family: multi-subunit regulators of neuronal G protein signaling. Cell Biochem Biophys 2009; 54:33-46. [PMID: 19521673 PMCID: PMC2827338 DOI: 10.1007/s12013-009-9052-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 05/27/2009] [Indexed: 01/09/2023]
Abstract
G protein-coupled receptor signaling pathways mediate the transmission of signals from the extracellular environment to the generation of cellular responses, a process that is critically important for neurons and neurotransmitter action. The ability to promptly respond to rapidly changing stimulation requires timely inactivation of G proteins, a process controlled by a family of specialized proteins known as regulators of G protein signaling (RGS). The R7 group of RGS proteins (R7 RGS) has received special attention due to their pivotal roles in the regulation of a range of crucial neuronal processes such as vision, motor control, reward behavior, and nociception in mammals. Four proteins in this group, RGS6, RGS7, RGS9, and RGS11, share a common molecular organization of three modules: (i) the catalytic RGS domain, (ii) a GGL domain that recruits G beta(5), an outlying member of the G protein beta subunit family, and (iii) a DEP/DHEX domain that mediates interactions with the membrane anchor proteins R7BP and R9AP. As heterotrimeric complexes, R7 RGS proteins not only associate with and regulate a number of G protein signaling pathway components, but have also been found to form complexes with proteins that are not traditionally associated with G protein signaling. This review summarizes our current understanding of the biology of the R7 RGS complexes including their structure/functional organization, protein-protein interactions, and physiological roles.
Collapse
Affiliation(s)
- Garret R. Anderson
- From the Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Ekaterina Posokhova
- From the Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kirill A. Martemyanov
- From the Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
41
|
Changes in striatal signaling induce remodeling of RGS complexes containing Gbeta5 and R7BP subunits. Mol Cell Biol 2009; 29:3033-44. [PMID: 19332565 DOI: 10.1128/mcb.01449-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurotransmitter signaling via G protein coupled receptors is crucially controlled by regulators of G protein signaling (RGS) proteins that shape the duration and extent of the cellular response. In the striatum, members of the R7 family of RGS proteins modulate signaling via D2 dopamine and mu-opioid receptors controlling reward processing and locomotor coordination. Recent findings have established that R7 RGS proteins function as macromolecular complexes with two subunits: type 5 G protein beta (Gbeta5) and R7 binding protein (R7BP). In this study, we report that the subunit compositions of these complexes in striatum undergo remodeling upon changes in neuronal activity. We found that under normal conditions two equally abundant striatal R7 RGS proteins, RGS9-2 and RGS7, are unequally coupled to the R7BP subunit, which is present in complex predominantly with RGS9-2 rather than with RGS7. Changes in the neuronal excitability or oxygenation status resulting in extracellular calcium entry, uncouples RGS9-2 from R7BP, triggering its selective degradation. Concurrently, released R7BP binds to mainly intracellular RGS7 and recruits it to the plasma membrane and the postsynaptic density. These observations introduce activity-dependent remodeling of R7 RGS complexes as a new molecular plasticity mechanism in striatal neurons and suggest a general model for achieving rapid posttranslational subunit rearrangement in multisubunit complexes.
Collapse
|
42
|
Liou YJ, Chen ML, Wang YC, Chen JY, Liao DL, Bai YM, Lin CC, Chen TT, Mo GH, Lai IC. Analysis of genetic variations in the RGS9 gene and antipsychotic-induced tardive dyskinesia in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:239-42. [PMID: 18548510 DOI: 10.1002/ajmg.b.30796] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Some patients treated chronically with antipsychotics develop tardive dyskinesia (TD), an abnormal involuntary movement disorder. Typical antipsychotics block D(2) dopamine receptors (D(2)DR) and produce D(2)DR supersensitivity. On contrary, regulators of G-protein signaling (RGS) can enhance the signal termination of G-protein-coupled D(2)DR. Besides, after prolonged inhibition of dopaminergic transmission, dopaminergic agonists induced severe dyskinesia only in RGS9 knock-out mice but not in normal mice. Therefore, variety in the human RGS9 gene may be related to susceptibility to TD. In this study, schizophrenic inpatients receiving long-term antipsychotic treatment were assessed using the Abnormal Involuntary Movement Scale twice over a 3-month interval. Only patients in whom abnormal involuntary movements were absent (non-TD group) and those who showed persistent TD (TD group) were enrolled. There were 407 patients in the study sample (TD = 252; non-TD = 155) and seven single nucleus polymorphisms (SNPs) in the RGS9 gene were genotyped for each subject. Genotype and allelic distributions of SNPs did not differ between the TD and non-TD groups in this study, with the exception that a weak trend of allelic association was seen with rs4790953 (P = 0.0399). In the haplotype analysis, a significant association of the AGG haplotype (rs8077696-rs8070231-rs2292593) of the RGS9 gene was found (permutation P = 0.007), and this is worthy of replication and further study.
Collapse
Affiliation(s)
- Ying-Jay Liou
- Department of Psychiatry, Taipei Veterans General Hospital, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chapter 7 Biology and Functions of the RGS9 Isoforms. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:205-27. [DOI: 10.1016/s1877-1173(09)86007-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Chapter 11 Identification of Ligands Targeting RGS Proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:335-56. [DOI: 10.1016/s1877-1173(09)86011-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
45
|
Jayaraman M, Zhou H, Jia L, Cain MD, Blumer KJ. R9AP and R7BP: traffic cops for the RGS7 family in phototransduction and neuronal GPCR signaling. Trends Pharmacol Sci 2009; 30:17-24. [PMID: 19042037 PMCID: PMC2776672 DOI: 10.1016/j.tips.2008.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/07/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022]
Abstract
RGS (regulator of G protein signaling) proteins have emerged as crucial regulators, effectors and integrators in G-protein-coupled receptor (GPCR) signaling networks. Many RGS proteins accelerate GTP hydrolysis by Galpha subunits, thereby regulating G protein activity, whereas certain RGS proteins also transduce Galpha signals to downstream targets. Particularly intriguing are members of the RGS7 (R7) family (RGS6, RGS7, RGS9 and RGS11), which heterodimerize with Gbeta5. In Caenorhabditis elegans, R7-Gbeta5 heterodimers regulate synaptic transmission, anesthetic action and behavior. In vertebrates, they regulate vision, postnatal development, working memory and the action of psychostimulants or morphine. Here we highlight R9AP and R7BP, a related pair of recently identified SNARE-like R7-family binding proteins, which regulate intracellular trafficking, expression and function of R7-Gbeta5 heterodimers in retina and brain. Emerging understanding of R7BP and R9AP promises to provide new insights into neuronal GPCR signaling mechanisms relevant to the causes and treatment of neurological disorders.
Collapse
Affiliation(s)
- Muralidharan Jayaraman
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
46
|
Martemyanov KA, Krispel CM, Lishko PV, Burns ME, Arshavsky VY. Functional comparison of RGS9 splice isoforms in a living cell. Proc Natl Acad Sci U S A 2008; 105:20988-93. [PMID: 19098104 PMCID: PMC2634932 DOI: 10.1073/pnas.0808941106] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Indexed: 11/18/2022] Open
Abstract
Two isoforms of the GTPase-activating protein, regulator of G protein signaling 9 (RGS9), control such fundamental functions as vision and behavior. RGS9-1 regulates phototransduction in rods and cones, and RGS9-2 regulates dopamine and opioid signaling in the basal ganglia. To determine their functional differences in the same intact cell, we replaced RGS9-1 with RGS9-2 in mouse rods. Surprisingly, RGS9-2 not only supported normal photoresponse recovery under moderate light conditions but also outperformed RGS9-1 in bright light. This versatility of RGS9-2 results from its ability to inactivate the G protein, transducin, regardless of its effector interactions, whereas RGS9-1 prefers the G protein-effector complex. Such versatility makes RGS9-2 an isoform advantageous for timely signal inactivation across a wide range of stimulus strengths and may explain its predominant representation throughout the nervous system.
Collapse
Affiliation(s)
- Kirill A. Martemyanov
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Claudia M. Krispel
- Center for Neuroscience and
- Department of Ophthalmology & Vision Science, University of California, Davis, CA 95618; and
| | - Polina V. Lishko
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Marie E. Burns
- Center for Neuroscience and
- Department of Ophthalmology & Vision Science, University of California, Davis, CA 95618; and
| | - Vadim Y. Arshavsky
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
- Departments of Ophthalmology and Pharmacology, Duke University, Durham, NC 27710
| |
Collapse
|
47
|
Harrison LM, Lahoste GJ, Ruskin DN. Ontogeny and dopaminergic regulation in brain of Ras homolog enriched in striatum (Rhes). Brain Res 2008; 1245:16-25. [PMID: 18929545 PMCID: PMC2615551 DOI: 10.1016/j.brainres.2008.09.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/12/2008] [Accepted: 09/23/2008] [Indexed: 11/20/2022]
Abstract
Rhes is one of several signaling molecules preferentially expressed in the striatum. This GTP-binding protein affects dopamine-mediated signaling and behavior. Denervating the striatum of its dopaminergic inputs in adulthood reduces rhes mRNA expression. Here we show that dopamine depletion in adult rats by 6-hydroxydopamine caused a significant decrease in striatal Rhes protein levels as measured by Western blotting. The role of dopamine input on rhes mRNA induction during ontogeny was also examined. Rhes mRNA was measured on postnatal days 4, 6, 8, 10, 15, and 24 with in situ hybridization to determine its normal ontogeny. Signal in striatum was detectable, but very low, on postnatal day 4 and increased gradually to peak levels at days 15 and 24. Outside of the striatum, rhes mRNA was expressed at high levels in hippocampus and cerebellum during the postnatal period. Hippocampal signal was initially highest in CA3 and dentate gyrus, but shifted to higher expression in CA1 by the late postnatal period. Several other nuclei showed low levels of rhes mRNA during ontogeny. Depletion of dopamine by 6-hydroxydopamine injection on postnatal day 4 did not affect the ontogenetic development of rhes mRNA, such that expression did not differ statistically in lesioned versus vehicle-treated animals tested in adulthood. These findings suggest that although dopamine input is not necessary for the ontogenetic development of rhes mRNA expression, changes in both rhes mRNA and Rhes protein are integral components of the response of the adult striatum to dopamine depletion.
Collapse
Affiliation(s)
- Laura M Harrison
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
48
|
Blundell J, Hoang CV, Potts B, Gold S, Powell CM. Motor coordination deficits in mice lacking RGS9. Brain Res 2008; 1190:78-85. [PMID: 18073128 PMCID: PMC2241663 DOI: 10.1016/j.brainres.2007.11.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 11/09/2007] [Accepted: 11/09/2007] [Indexed: 11/15/2022]
Abstract
RGS9-2 is a striatum-enriched protein that negatively modulates dopamine and opioid receptor signaling. We examined the role of RGS9-2 in modulating complex behavior. Genetic deletion of RGS9-2 does not lead to global impairments, but results in selective abnormalities in certain behavioral domains. RGS9 knockout (KO) mice have decreased motor coordination on the accelerating rotarod and deficits in working memory as measured in the delayed-match-to-place version of the water maze. In contrast, RGS9 KO mice exhibit normal locomotor activity, anxiety-like behavior, cue and contextual fear conditioning, startle threshold, and pre-pulse inhibition. These studies are the first to describe a role for RGS9-2 in motor coordination and working memory and implicate RGS9-2 as a potential therapeutic target for motor and cognitive dysfunction.
Collapse
Affiliation(s)
- Jacqueline Blundell
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390-8813
| | - Chau V. Hoang
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390-8813
| | - Bryan Potts
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390-8813
| | - Stephen Gold
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390-8813
| | - Craig M. Powell
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390-8813
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390-8813
| |
Collapse
|
49
|
Porras G, Bezard E. Preclinical development of gene therapy for Parkinson's disease. Exp Neurol 2008; 209:72-81. [PMID: 17904121 DOI: 10.1016/j.expneurol.2007.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/12/2007] [Accepted: 08/07/2007] [Indexed: 12/22/2022]
Abstract
Multiple targets and pathways may be amenable to the development of gene therapy approaches for Parkinson's disease. This article discusses some of the cellular and brain circuit pathways relevant to Parkinson's disease that would be clinically amenable to gene therapy. Approaches could be classified according to two main categories, i.e. symptomatic vs. neuroprotective/neurorestorative strategies. Examples of the different possibilities currently in development are given and feature both dopaminergic and non-dopaminergic symptomatic treatments of parkinsonian symptoms and/or L-DOPA-induced side effects, anti-apoptotic neuroprotective strategies and growth-factor delivery for neuroprotection/neurorestoration. While gene therapy has been mostly used so far for enhancing the expression of the target gene, the use of dominant negative or siRNA opens new possibilities. This, combined with the key feature of gene delivery that offers access to intracellular signalling pathways, is likely to further expand the number of proposed targets to be studied.
Collapse
Affiliation(s)
- Grégory Porras
- CNRS UMR 5227, Universite Victor Segalen-Bordeaux 2, 33076, Bordeaux, France
| | | |
Collapse
|
50
|
Potashkin JA, Kang UJ, Loomis PA, Jodelka FM, Ding Y, Meredith GE. MPTP administration in mice changes the ratio of splice isoforms of fosB and rgs9. Brain Res 2007; 1182:1-10. [PMID: 17936734 DOI: 10.1016/j.brainres.2007.08.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 08/20/2007] [Accepted: 08/30/2007] [Indexed: 11/22/2022]
Abstract
Most cases of Parkinson's disease (PD) are sporadic, suggesting an environmental influence on individuals affected by this neurodegenerative disorder. Environmental stresses often lead to changes in the regulation of splicing of pre-mRNA transcripts and this may lead to the pathogenesis of the disease. A 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/probenecid mouse model was used to examine the changes in the splicing of the fosB and rgs9 transcripts. The ratio of DeltafosB/fosB transcript was decreased in the substantia nigra and unchanged in the striatum after acute MPTP treatment. The DeltafosB/fosB transcript ratio decreased initially and then increased in the striatum of chronically MPTP-treated animals due to different degrees of reduction for the splice variants over time, whereas the ratio was unchanged in the substantia nigra. The ratio of rgs9-2/rgs9-1 transcript decreased in the substantia nigra of mice after acute MPTP treatment and increased temporarily in the striatum after chronic MPTP treatment. There was an increase in the DeltaFosB/FosB and RGS9-2/RGS9-1 protein ratios 3 weeks and 3 days post-treatment, respectively, in chronically treated mice. The data indicate that the pattern of splice isoforms of fosB and rgs9 reflects the brain's immediate and long-term responses to the physiological stress associated with Parkinsonism.
Collapse
Affiliation(s)
- Judith A Potashkin
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| | | | | | | | | | | |
Collapse
|