1
|
Reichenbach A, Bringmann A. Purinergic signaling in retinal degeneration and regeneration. Neuropharmacology 2015; 104:194-211. [PMID: 25998275 DOI: 10.1016/j.neuropharm.2015.05.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 02/01/2023]
Abstract
Purinergic signaling is centrally involved in mediating the degeneration of the injured and diseased retina, the induction of retinal gliosis, and the protection of the retinal tissue from degeneration. Dysregulated calcium signaling triggered by overactivation of P2X7 receptors is a crucial step in the induction of neuronal and microvascular cell death under pathogenic conditions like ischemia-hypoxia, elevated intraocular pressure, and diabetes, respectively. Overactivation of P2X7 plays also a pathogenic role in inherited and age-related photoreceptor cell death and in the age-related dysfunction and degeneration of the retinal pigment epithelium. Gliosis of micro- and macroglial cells, which is induced and/or modulated by purinergic signaling and associated with an impaired homeostatic support to neurons, and the ATP-mediated propagation of retinal gliosis from a focal injury into the surrounding noninjured tissue are involved in inducing secondary cell death in the retina. On the other hand, alterations in the glial metabolism of extracellular nucleotides, resulting in a decreased level of ATP and an increased level of adenosine, may be neuroprotective in the diseased retina. Purinergic signals stimulate the proliferation of retinal glial cells which contributes to glial scarring which has protective effects on retinal degeneration and adverse effects on retinal regeneration. Pharmacological modulation of purinergic receptors, e.g., inhibition of P2X and activation of adenosine receptors, may have clinical importance for the prevention of photoreceptor, neuronal, and microvascular cell death in diabetic retinopathy, retinitis pigmentosa, age-related macular degeneration, and glaucoma, respectively, for the clearance of retinal edema, and the inhibition of dysregulated cell proliferation in proliferative retinopathies. This article is part of a Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany.
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
|
3
|
Wang AL, Carroll RC, Nawy S. Down-regulation of the RNA editing enzyme ADAR2 contributes to RGC death in a mouse model of glaucoma. PLoS One 2014; 9:e91288. [PMID: 24608178 PMCID: PMC3946738 DOI: 10.1371/journal.pone.0091288] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 02/11/2014] [Indexed: 12/13/2022] Open
Abstract
Glaucoma is a progressive neurodegenerative disease of retinal ganglion cells (RGCs) associated with characteristic axon degeneration in the optic nerve. Excitotoxic damage due to increased Ca(2+) influx, possibly through NMDA-type glutamate receptors, has been proposed to be a cause of RGC dysfunction and death in glaucoma. Recent work has found that expression of another potentially critical receptor, the Ca(2+)-permeable AMPA receptor (CP-AMPAR), is elevated during various pathological conditions (including ALS and ischemia), resulting in increased neuronal death. Here we test the hypothesis that CP-AMPARs contribute to RGC death due to elevated Ca(2+) influx in glaucoma. AMPA receptors are impermeable to Ca(2+) if the tetrameric receptor contains a GluA2 subunit that has undergone Q/R RNA editing at a site in the pore region. The activity of ADAR2, the enzyme responsible for this RNA editing, generally ensures that the vast majority of GluA2 proteins are edited. Here, we demonstrate that ADAR2 levels decrease in a mouse model of glaucoma in which IOP is chronically elevated. Furthermore, using an in vitro model of RGCs, we find that knockdown of ADAR2 using siRNA increased the accumulation of Co(2+) in response to glutamate, and decreased the rectification index of AMPA currents detected electrophysiologically, indicating an increased Ca(2+) permeability through AMPARs. The RGCs in primary culture also exhibited increased excitotoxic cell death following knock down of ADAR2. Furthermore, cell death was reversed by NASPM, a specific blocker for CP-AMPARs. Together, our data suggest that chronically elevated IOP in adult mice reduces expression of the ADAR2 enzyme, and the loss of ADAR2 editing and subsequent disruption of GluA2 RNA editing might potentially play a role in promoting RGC neuronal death as observed in glaucoma.
Collapse
Affiliation(s)
- Ai Ling Wang
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Reed C. Carroll
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Scott Nawy
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
The role of purinergic receptors in retinal function and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 664:385-91. [PMID: 20238039 DOI: 10.1007/978-1-4419-1399-9_44] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Extracellular ATP acts as a neurotransmitter in the central and peripheral nervous systems. In this review, the role of purinergic receptors in neuronal signaling and bi-directional glial-neuronal communication in the retina will be considered. There is growing evidence that a range of P2X and P2Y receptors are expressed on most classes of retinal neurons and that activation of P2 receptors modulates retinal function. Furthermore, neuronal control of glial function is achieved through neuronal release of ATP and activation of P2Y receptors expressed by Müller cells. Altered purinergic signaling in Müller cells has been implicated in gliotic changes in the diseased retina and furthermore, elevations in extracellular ATP may lead to apoptosis of retinal neurons.
Collapse
|
5
|
Abstract
The development of treatments that slow photoreceptor death could profoundly improve patient wellbeing in those with inherited retinal degenerations. Over recent years, it has emerged that extracellular adenosine-tri-phosphate (ATP) regulates the function of photoreceptors in rodents and primates. Moreover, when the retina is exposed to high levels of ATP, rapid death of photoreceptors occurs, which can be blocked by pretreatment with antagonists to P2X receptors. Compounds that inhibit the action of extracellular ATP slow photoreceptor loss in an animal model of inherited retinal degeneration. In this article, I provide an overview of our work in relation to other research in this area and suggest a model by which ATP contributes to photoreceptor death in inherited retinal degenerations.
Collapse
|
6
|
Ito K, Chihara Y, Iwasaki S, Komuta Y, Sugasawa M, Sahara Y. Functional ligand-gated purinergic receptors (P2X) in rat vestibular ganglion neurons. Hear Res 2010; 267:89-95. [PMID: 20430087 DOI: 10.1016/j.heares.2010.03.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 03/22/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
Abstract
The expression of purinergic receptors (P2X) on rat vestibular ganglion neurons (VGNs) was examined using whole-cell patch-clamp recordings. An application of adenosine 5'-triphosphate (ATP; 100microM) evoked inward currents in VGNs at a holding potential of -60mV. The decay time constant of the ATP-evoked currents was 2-4s, which is in between the values for rapidly desensitizing subgroups (P2X1 and P2X3) and slowly desensitizing subgroups (P2X2, P2X4, etc.), suggesting the heterogeneous expression of P2X receptors. A dose-response experiment showed an EC(50) of 11.0microM and a Hill's coefficient of 0.82. Suramin (100microM) reversibly inhibited the ATP-evoked inward currents. Alpha, beta-methylene ATP (100microM), a P2X-specific agonist, also evoked inward currents but less extensively than ATP. An application of adenosine 5'-dihosphate (ADP; 100microM) evoked similar, but much smaller, currents. The current-voltage relationship of the ATP-evoked conductance showed pronounced inward rectification with a reversal potential more positive than 0mV, suggesting non-selective cation conductance. However, the channel was not permeable to a large cation (N-methyl-d-glucamine) and acidification (pH 6.3) had little effect on the ATP-evoked conductance. RT-PCR confirmed the expression of five subtypes (P2X2-P2X6) in VGNs. The physiological role of P2X receptors includes the modulation of excitability at the synapses between hair cells and dendrites and/or trophic support (or also neuromodulation) from supporting cells surrounding the VGNs.
Collapse
Affiliation(s)
- Ken Ito
- Department of Otolaryngology, Faculty of Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Pereira TDOS, da Costa GNF, Santiago ARS, Ambrósio AF, dos Santos PFM. High glucose enhances intracellular Ca2+ responses triggered by purinergic stimulation in retinal neurons and microglia. Brain Res 2010; 1316:129-38. [DOI: 10.1016/j.brainres.2009.12.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/11/2009] [Accepted: 12/12/2009] [Indexed: 01/06/2023]
|
8
|
The P2X(7) receptor in retinal ganglion cells: A neuronal model of pressure-induced damage and protection by a shifting purinergic balance. Purinergic Signal 2009; 5:241-9. [PMID: 19241145 DOI: 10.1007/s11302-009-9142-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 09/12/2008] [Indexed: 01/19/2023] Open
Abstract
Retinal ganglion cells process the visual signal and transmit it along their axons in the optic nerve to the brain. Molecular, immunohistochemical, and functional analyses indicate that the majority of retinal ganglion cells express the ionotropic P2X(7) receptor. Stimulation of the receptor can lead to a rise in intracellular calcium and cell death, although death does not involve the opening of a large diameter pore. Adenosine acting at A(3) receptors can attenuate the rise in calcium and death accompanying P2X(7) receptor activation, suggesting that dephosphorylation of ATP into adenosine is neuroprotective and that the balance of extracellular purines can influence neuronal survival. Increased intraocular pressure can lead to release of excessive extracellular ATP in the retina and damage ganglion cells by acting on P2X(7) receptors, implicating a role for the receptor in the loss of ganglion cell activity in glaucoma. In summary, the activation of P2X(7) receptors has both physiologic and pathophysiologic implications for ganglion cell function. These characteristics may also provide an insight into the contributions the P2X(7) receptor makes to neurons elsewhere.
Collapse
|
9
|
Chizhmakov I, Mamenko N, Volkova T, Khasabova I, Simone DA, Krishtal O. P2X receptors in sensory neurons co-cultured with cancer cells exhibit a decrease in opioid sensitivity. Eur J Neurosci 2008; 29:76-86. [PMID: 19077126 DOI: 10.1111/j.1460-9568.2008.06556.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Opioids are known to control the activity of P2X receptors in the sensory neurons of rats. These receptors are important in persistent pain signaling. However, there are extremely severe pain states, such as those associated with metastatic diseases, that are refractory to opioid treatment. We have tested the possibility that cancer cells affect the sensitivity of P2X(2/3) and P2X(2) receptors to opiates. The sensitivity of ATP-activated currents to the selective mu-opioid receptor agonist endomorphin-1 was evaluated in rat nodose neurons co-cultured (on separate coverslips) with fibrosarcoma cells (NCTC 2472) using whole-cell patch-clamp recordings. Both in control and in co-cultured neurons, P2X-mediated responses exhibited highly variable biphasic desensitization kinetics with fast and slow components. However, ATP-activated currents in co-cultured neurons acquired a new feature: the degree of their inhibition by endomorphin-1 demonstrated strong dependence on their desensitization kinetics. The neurons with 'slower' responses were subject to a smaller inhibitory effect of the opioid. The 'ultra-slow' responses completely lost their sensitivity to the opioid. The occurrence of such responses, rarely observed in the control neurons, was considerably increased with the duration of co-culturing. Application of endomorphin-1 to nodose neurons, co-cultured with rapidly proliferating but non-malignant cells (fibroblasts), resulted in data similar to those for the control. In summary, fibrosarcoma cells release diffusible factors altering the properties of desensitization kinetics of P2X receptors and, in particular, decrease their sensitivity to opioid inhibitory control. These phenomena may increase neuronal excitability initiated by peripheral ATP release and thereby contribute to the decreased sensitivity of cancer pain to opioids.
Collapse
Affiliation(s)
- I Chizhmakov
- Bogomoletz Institute of Physiology, Ukraine Bogomoletz Institute of Physiology, Kiev, Ukraine
| | | | | | | | | | | |
Collapse
|
10
|
Quantal ATP release in rat beta-cells by exocytosis of insulin-containing LDCVs. Pflugers Arch 2008; 458:389-401. [PMID: 19018564 DOI: 10.1007/s00424-008-0610-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 10/25/2008] [Indexed: 10/21/2022]
Abstract
Quantal release of adenosine triphosphate (ATP) was monitored in rat pancreatic beta-cells expressing P2X(2) receptors. Stimulation of exocytosis evoked rapidly activating and deactivating ATP-dependent transient inward currents (TICs). The unitary charge (q) of the events recorded at 0.2 microM [Ca(2+)](i) averaged 4.3 pC. The distribution of the 3 square root q of these events could be described by a single Gaussian. The rise times averaged approximately 5 ms over a wide range of TIC amplitudes. In beta-cells preloaded with 5-hydroxytryptamine (5-HT; accumulating in insulin granules), ATP was coreleased with 5-HT during >90% of the release events. Following step elevation of [Ca(2+)](i) to approximately 5 microM by photo release of caged Ca(2+), an increase in membrane capacitance was observed after 33 ms, whereas ATP release first became detectable after 43 ms. The step increase in [Ca(2+)](i) produced an initial large TIC followed by a series of smaller events that echoed the changes in membrane capacitance (DeltaC(m)). Mathematical modeling suggests that the large initial TIC reflects the superimposition of many unitary events. Exocytosis, measured as DeltaC(m) or TICs, was complete within 2 s after elevation of [Ca(2+)](i) with no sign of endocytosis masking the capacitance increase. The relationship between total charge (Q) and DeltaC(m) was linear with a slope of approximately 1.2 pC/fF. The latter value predicts a capacitance increase of 3.6 fF for the observed mean value of q, close to that expected for exocytosis of individual insulin granules. Our results indicate that measurements of ATP release and DeltaC(m) principally (> or =85-95%) report exocytosis of insulin granules.
Collapse
|
11
|
The P2X(7) receptor in retinal ganglion cells: A neuronal model of pressure-induced damage and protection by a shifting purinergic balance. Purinergic Signal 2008; 4:313-21. [PMID: 18923921 DOI: 10.1007/s11302-008-9125-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022] Open
Abstract
Retinal ganglion cells process the visual signal and transmit it along their axons in the optic nerve to the brain. Molecular, immunohistochemical, and functional analyses indicate that the majority of retinal ganglion cells express the ionotropic P2X(7) receptor. Stimulation of the receptor can lead to a rise in intracellular calcium and cell death, although death does not involve the opening of a large diameter pore. Adenosine acting at A(3) receptors can attenuate the rise in calcium and death accompanying P2X(7) receptor activation, suggesting that dephosphorylation of ATP into adenosine is neuroprotective and that the balance of extracellular purines can influence neuronal survival. Increased intraocular pressure can lead to release of excessive extracellular ATP in the retina and damage ganglion cells by acting on P2X(7) receptors, implicating a role for the receptor in the loss of ganglion cell activity in glaucoma. In summary, the activation of P2X(7) receptors has both physiologic and pathophysiologic implications for ganglion cell function. These characteristics may also provide an insight into the contributions the P2X(7) receptor makes to neurons elsewhere.
Collapse
|
12
|
Pankratov Y, Lalo U, Krishtal OA, Verkhratsky A. P2X receptors and synaptic plasticity. Neuroscience 2008; 158:137-48. [PMID: 18495357 DOI: 10.1016/j.neuroscience.2008.03.076] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 03/09/2008] [Accepted: 03/17/2008] [Indexed: 01/15/2023]
Abstract
Adenosine triphosphate (ATP) is released in many synapses in the CNS either together with other neurotransmitters, such as glutamate and GABA, or on its own. Postsynaptic action of ATP is mediated through metabotropic P2Y and ionotropic P2X receptors abundantly expressed in neural cells. Activation of P2X receptors induces fast excitatory postsynaptic currents in synapses located in various brain regions, including medial habenula, hippocampus and cortex. P2X receptors display relatively high Ca2+ permeability and can mediate substantial Ca2+ influx at resting membrane potential. P2X receptors can dynamically interact with other neurotransmitter receptors, including N-methyl-D-aspartate (NMDA) receptors, GABA(A) receptors and nicotinic acetylcholine (ACh) receptors. Activation of P2X receptors has multiple modulatory effects on synaptic plasticity, either inhibiting or facilitating the long-term changes of synaptic strength depending on physiological context. At the same time precise mechanisms of P2X-dependent regulation of synaptic plasticity remain elusive. Further understanding of the role of P2X receptors in regulation of synaptic transmission in the CNS requires dissection of P2X-mediated effects on pre-synaptic terminals, postsynaptic membrane and glial cells.
Collapse
Affiliation(s)
- Y Pankratov
- The University of Warwick, Department of Biological Sciences, Gibbet Hill Road, Coventry CV4 7AL, UK
| | | | | | | |
Collapse
|
13
|
Electrical activity of rat retinal ganglion cells. NEUROPHYSIOLOGY+ 2007. [DOI: 10.1007/s11062-007-0048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
15
|
Resta V, Novelli E, Vozzi G, Scarpa C, Caleo M, Ahluwalia A, Solini A, Santini E, Parisi V, Di Virgilio F, Galli-Resta L. Acute retinal ganglion cell injury caused by intraocular pressure spikes is mediated by endogenous extracellular ATP. Eur J Neurosci 2007; 25:2741-54. [PMID: 17459106 DOI: 10.1111/j.1460-9568.2007.05528.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Elevated intraocular pressure may lead to retinal ganglion cell injury and consequent visual deficits. Chronic intraocular pressure increase is a major risk factor for glaucoma, a leading blinding disease, and permanent visual deficits can also occur following acute pressure increments due to trauma, acute glaucoma or refractive surgery. How pressure affects retinal neurons is not firmly established. Mechanical damage at the optic nerve head, reduced blood supply, inflammation and cytotoxic factors have all been called into play. Reasoning that the analysis of retinal neurons soon after pressure elevation would provide useful cues, we imaged individual ganglion cells in isolated rat retinas before and after short hydrostatic pressure increments. We found that slowly rising pressure to peaks observed in trauma, acute glaucoma or refractive surgery (50-90 mmHg) did not damage ganglion cells, whereas a rapid 1 min pulse to 50 mmHg injured 30% of these cells within 1 h. The severity of damage and the number of affected cells increased with stronger or repeated insults. Degrading extracellular ATP or blocking the P2X receptors for ATP prevented acute pressure-induced damage in ganglion cells. Similar effects were observed in vivo. A short intraocular pressure transient increased extracellular ATP levels in the eye fluids and damaged ganglion cells within 1 h. Reducing extracellular ATP in the eye prevented damage to ganglion cells and accelerated recovery of their response to light. These data show that rapid pressure transients induce acute ganglion cell injury and unveil the causal role of extracellular ATP elevation in such injury.
Collapse
|
16
|
Egan TM, Samways DSK, Li Z. Biophysics of P2X receptors. Pflugers Arch 2006; 452:501-12. [PMID: 16708237 DOI: 10.1007/s00424-006-0078-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 03/16/2006] [Indexed: 10/24/2022]
Abstract
The P2X receptor is the baby brother of the ligand-gated ion channel super-family. An understanding of its role in human physiology is still developing, and no one truly knows how it works to transport ions across the membrane. In this study, we review some aspects of P2X channel biophysics, concentrating on ion permeation and gating. P2X channels transport both small and large cations and anions across cell membranes in a manner that depends on both the subunit composition of the receptor and the experimental conditions. We describe the pore properties of wild-type receptors and use the altered phenotypes of mutant receptors to point the way towards a structural model of the pore.
Collapse
Affiliation(s)
- Terrance M Egan
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, St. Louis, MO 63104, USA.
| | | | | |
Collapse
|
17
|
Puthussery T, Fletcher EL. P2X2 receptors on ganglion and amacrine cells in cone pathways of the rat retina. J Comp Neurol 2006; 496:595-609. [PMID: 16615123 DOI: 10.1002/cne.20889] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Extracellular ATP is known to mediate fast, excitatory neurotransmission through activation of ionotropic P2X receptors. In this study, the localization of the P2X(2) receptor (P2X(2)R) subunit was studied in rat retina by using immunofluorescence immunohistochemistry and preembedding immunoelectron microscopy. The P2X(2)R was observed in large ganglion cells as well as in a subset of amacrine cells. Double labeling revealed that 96% of all P2X(2)R-immunoreactive amacrine cells showed gamma-aminobutyric acid (GABA) immunoreactivity. Subsets of P2X(2)R-immunoreactive amacrine cells expressed nitric oxide synthase and substance P; however, no colocalization was observed with choline acetyltransferase, vasoactive intestinal peptide, or tyrosine hydroxylase. Nearest-neighbor analysis confirmed that P2X(2)Rs were expressed by a heterogeneous population of amacrine cells. The synaptic connectivity of P2X(2)R amacrine cells was also investigated. It was interesting that P2X(2)R-immunoreactive amacrine cell dendrites stratified in the sublaminae of the inner plexiform layer occupied by cone, but not rod bipolar cell axon terminals. Immunoelectron microscopy revealed that P2X(2)-immunoreactive amacrine cell processes were associated with cone bipolar cell axon terminals as well as other conventional synapses in the inner plexiform layer. Taken together, these data provide further evidence for the involvement of extracellular ATP in neuronal signaling in the retina, particularly within cone pathways.
Collapse
Affiliation(s)
- Theresa Puthussery
- Department of Anatomy and Cell Biology, The University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
18
|
Lilley S, Robbins J. The rat retinal ganglion cell in culture: An accessible CNS neurone. J Pharmacol Toxicol Methods 2005; 51:209-20. [PMID: 15862466 DOI: 10.1016/j.vascn.2004.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2004] [Indexed: 10/25/2022]
Abstract
Retinal ganglion cells are vital for vision, some have intrinsic light sensing properties and in retinal networks display complex computational abilities. Furthermore they are implicated in a very common form of blindness, glaucoma as well some the symptoms of AIDS. Retinal ganglion cells, unlike many neurones of the central nervous system, have a clearly defined physiological role and can be identified in primary cultures with ease. Here we detail the cell culture and electrophysiological methods required to obtain recordings on the voltage-gated and ligand-gated ion currents and channels expressed by these neurones. Information is given on the range of non-ionotropic receptors that are thought to be present on these cells and what role they may have as model systems in the pharmacological and pharmaceutical research environment.
Collapse
Affiliation(s)
- Sarah Lilley
- Receptors and Signalling Group, Wolfson Centre for Age Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | | |
Collapse
|
19
|
Linden R, Martins RAP, Silveira MS. Control of programmed cell death by neurotransmitters and neuropeptides in the developing mammalian retina. Prog Retin Eye Res 2004; 24:457-91. [PMID: 15845345 DOI: 10.1016/j.preteyeres.2004.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It has long been known that a barrage of signals from neighboring and connecting cells, as well as components of the extracellular matrix, control cell survival. Given the extensive repertoire of retinal neurotransmitters, neuromodulators and neurotrophic factors, and the exhuberant interconnectivity of retinal interneurons, it is likely that various classes of released neuroactive substances may be involved in the control of sensitivity to retinal cell death. The aim of this article is to review evidence that neurotransmitters and neuropeptides control the sensitivity to programmed cell death in the developing retina. Whereas the best understood mechanism of execution of cell death is that of caspase-mediated apoptosis, current evidence shows that not only there are many parallel pathways to apoptotic cell death, but non-apoptotic programs of execution of cell death are also available, and may be triggered either in isolation or combined with apoptosis. The experimental data show that many upstream signaling pathways can modulate cell death, including those dependent on the second messengers cAMP-PKA, calcium and nitric oxide. Evidence for anterograde neurotrophic control is provided by a variety of models of the central nervous system, and the data reviewed here indicate that an early function of certain neurotransmitters, such as glutamate and dopamine, as well as neuropeptides such as pituitary adenylyl cyclase-activating polypeptide and vasoactive intestinal peptide is the trophic support of cell populations in the developing retina. This may have implications both regarding the mechanisms of retinal organogenesis, as well as pathological conditions leading to retinal dystrophies and to dysfunctional cellular behavior.
Collapse
Affiliation(s)
- Rafael Linden
- Centro de Ciencias da Saude, Instituto de Biofísica da UFRJ, Cidade Universitária, bloco G, Rio de Janeiro 21949-900, Brazil.
| | | | | |
Collapse
|
20
|
Watanabe T, Frahm J, Michaelis T. Functional mapping of neural pathways in rodent brain in vivo using manganese-enhanced three-dimensional magnetic resonance imaging. NMR IN BIOMEDICINE 2004; 17:554-568. [PMID: 15617054 DOI: 10.1002/nbm.937] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This work presents three-dimensional MRI studies of rodent brain in vivo after focal and systemic administration of MnCl2. Particular emphasis is paid to the morphology and dynamics of Mn2+-induced MRI signal enhancements, and the physiological mechanisms underlying cerebral Mn2+ uptake and distribution. It turns out that intravitreal and intrahippocampal injections of MnCl2 emerge as useful tools for a delineation of major axonal connections in the intact central nervous system. Subcutaneous administrations may be exploited to highlight regions involved in fundamental brain functions such as the olfactory bulb, inferior colliculus, cerebellum and hippocampal formation. Specific insights into the processes supporting cerebral Mn2+ accumulation may be obtained by intraventricular MnCl2 injection as well as by pharmacologic modulation of, for example, hippocampal function. Taken together, Mn2+-enhanced MRI opens new ways for mapping functioning pathways in animal brain in vivo with applications ranging from assessments of transgenic animals to follow-up studies of animal models of human brain disorders.
Collapse
Affiliation(s)
- Takashi Watanabe
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | | | | |
Collapse
|
21
|
Abstract
The distribution of P2X(7) receptor (P2X(7)R) subunits was studied in the rat retina using a subunit-specific antiserum. Punctate immunofluorescence was observed in the inner and outer plexiform layers. Double labeling of P2X(7) and the horizontal cell marker, calbindin, revealed extensive colocalization in the outer plexiform layer (OPL). Significant colocalization of P2X(7)R and kinesin, a marker of photoreceptor ribbons, was also observed, indicating that this receptor may be expressed at photoreceptor terminals. Furthermore, another band of P2X(7)R puncta was identified below the level of the photoreceptor terminals, adjacent to the inner nuclear layer (INL). This band of P2X(7)R puncta colocalized with the active-zone protein, bassoon, suggesting that "synapse-like" structures exist outside photoreceptor terminals. Preembedding immunoelectron microscopy demonstrated P2X(7)R labeling of photoreceptor terminals adjacent to ribbons. In addition, some horizontal cell dendrites and putative "desmosome-like" junctions below cone pedicles were labeled. In the inner plexiform layer (IPL), P2X(7)R puncta were observed surrounding terminals immunoreactive for protein kinase C-alpha, a marker of rod bipolar cells. Double labeling with bassoon in the IPL revealed extensive colocalization, indicating that P2X(7)R is likely to be found at conventional cell synapses. This finding was confirmed at the ultrastructural level: only processes presynaptic to rod bipolar cells were found to be labeled for the P2X(7)R, as well as other conventional synapses. These findings suggest that purines play a significant role in neurotransmission within the retina, and may modulate both photoreceptor and rod bipolar cell responses.
Collapse
Affiliation(s)
- Theresa Puthussery
- Department of Anatomy and Cell Biology, The University of Melbourne, Parkville 3010 Victoria, Australia
| | | |
Collapse
|
22
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 592] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
23
|
Schwiebert EM, Zsembery A. Extracellular ATP as a signaling molecule for epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1615:7-32. [PMID: 12948585 DOI: 10.1016/s0005-2736(03)00210-4] [Citation(s) in RCA: 346] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The charge of this invited review is to present a convincing case for the fact that cells release their ATP for physiological reasons. Many of our "purinergic" colleagues as well as ourselves have experienced resistance to this concept, because it is teleologically counter-intuitive. This review serves to integrate the three main tenets of extracellular ATP signaling: ATP release from cells, ATP receptors on cells, and ATP receptor-driven signaling within cells to affect cell or tissue physiology. First principles will be discussed in the Introduction concerning extracellular ATP signaling. All possible cellular mechanisms of ATP release will then be presented. Use of nucleotide and nucleoside scavengers as well as broad-specificity purinergic receptor antagonists will be presented as a method of detecting endogenous ATP release affecting a biological endpoint. Innovative methods of detecting released ATP by adapting luciferase detection reagents or by using "biosensors" will be presented. Because our laboratory has been primarily interested in epithelial cell physiology and pathophysiology for several years, the role of extracellular ATP in regulation of epithelial cell function will be the focus of this review. For ATP release to be physiologically relevant, receptors for ATP are required at the cell surface. The families of P2Y G protein-coupled receptors and ATP-gated P2X receptor channels will be introduced. Particular attention will be paid to P2X receptor channels that mediate the fast actions of extracellular ATP signaling, much like neurotransmitter-gated channels versus metabotropic heptahelical neurotransmitter receptors that couple to G proteins. Finally, fascinating biological paradigms in which extracellular ATP signaling has been implicated will be highlighted. It is the goal of this review to convert and attract new scientists into the exploding field of extracellular nucleotide signaling and to convince the reader that extracellular ATP is indeed a signaling molecule.
Collapse
Affiliation(s)
- Erik M Schwiebert
- Department of Physiology and Biophysics, University of Alabama at Birmingham, 35294-0005, USA.
| | | |
Collapse
|
24
|
Nucleotides and dinucleotides in ocular physiology: New possibilities of nucleotides as therapeutic agents in the eye. Drug Dev Res 2003. [DOI: 10.1002/ddr.10193] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Boyce AT, Schwiebert EM. Extracellular ATP-Gated P2X Purinergic Receptor Channels. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Abstract
P2X receptors are membrane ion channels that open in response to the binding of extracellular ATP. Seven genes in vertebrates encode P2X receptor subunits, which are 40-50% identical in amino acid sequence. Each subunit has two transmembrane domains, separated by an extracellular domain (approximately 280 amino acids). Channels form as multimers of several subunits. Homomeric P2X1, P2X2, P2X3, P2X4, P2X5, and P2X7 channels and heteromeric P2X2/3 and P2X1/5 channels have been most fully characterized following heterologous expression. Some agonists (e.g., alphabeta-methylene ATP) and antagonists [e.g., 2',3'-O-(2,4,6-trinitrophenyl)-ATP] are strongly selective for receptors containing P2X1 and P2X3 subunits. All P2X receptors are permeable to small monovalent cations; some have significant calcium or anion permeability. In many cells, activation of homomeric P2X7 receptors induces a permeability increase to larger organic cations including some fluorescent dyes and also signals to the cytoskeleton; these changes probably involve additional interacting proteins. P2X receptors are abundantly distributed, and functional responses are seen in neurons, glia, epithelia, endothelia, bone, muscle, and hemopoietic tissues. The molecular composition of native receptors is becoming understood, and some cells express more than one type of P2X receptor. On smooth muscles, P2X receptors respond to ATP released from sympathetic motor nerves (e.g., in ejaculation). On sensory nerves, they are involved in the initiation of afferent signals in several viscera (e.g., bladder, intestine) and play a key role in sensing tissue-damaging and inflammatory stimuli. Paracrine roles for ATP signaling through P2X receptors are likely in neurohypophysis, ducted glands, airway epithelia, kidney, bone, and hemopoietic tissues. In the last case, P2X7 receptor activation stimulates cytokine release by engaging intracellular signaling pathways.
Collapse
Affiliation(s)
- R Alan North
- Institute of Molecular Physiology, University of Sheffield, Western Bank, Sheffield, United Kingdom.
| |
Collapse
|
27
|
Pankratov Y, Lalo U, Krishtal O, Verkhratsky A. Ionotropic P2X purinoreceptors mediate synaptic transmission in rat pyramidal neurones of layer II/III of somato-sensory cortex. J Physiol 2002; 542:529-36. [PMID: 12122150 PMCID: PMC2290418 DOI: 10.1113/jphysiol.2002.021956] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Fast P2X receptor-mediated excitatory postsynaptic current (EPSC) was identified in pyramidal neurones of layer II/III of somato-sensory cortex in acutely isolated slices obtained from the brain of 17- to 22-day-old rats. The EPSCs were elicited by electrical stimulation of vertical axons originating from layer IV-VI neurones at 0.1 Hz in the presence of bicuculline. When the glutamatergic EPSC was blocked by saturating concentrations of glutamate receptor inhibitors 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo-[f]-quinoxaline-7-sulphonamide (NBQX) and D-(-)-2-amino-5-phosphonopentanoic acid (D-AP5), a small EPSC component was recorded from 90 % of neurones tested. This residual EPSC was not affected by selective blockers of nicotinic (hexamethonium) or serotonin (N-(1-azabicyclo-[2.2.2]oct-3-yl)-6-chloro-4-methyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-8-carboxamide hydrochloride, Y-25130) receptors, but it was reversibly inhibited by the antagonists of P2X receptors NF023 (8,8'-[carbonylbis(imino-3,1-phenylenecarbonylimino)]bis-1,3,5-naphthalene-trisulphonic acid), NF279 (8,8'-[carbonylbis (imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino)]bis-1,3,5-naphthalene-trisulphonic acid) and PPADS (pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid). Application of ATP (10 microM) or alpha,beta-methylene ATP (10 microM) to pyramidal neurones, acutely isolated from cortical slices, evoked inward currents (30 to 200 pA) in 65 % of cells tested. The relative calcium/caesium permeability (P(Ca)/P(Cs)) of P2X receptors was 12.3 as estimated from the reversal potential of ATP-induced current measured at different extracellular calcium concentrations. We concluded that P2X purinoreceptors are activated during synaptic transmission in neocortex.
Collapse
Affiliation(s)
- Y Pankratov
- School of Biological Sciences, University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
28
|
Wang XD, Kashii S, Zhao L, Tonchev AB, Katsuki H, Akaike A, Honda Y, Yamashita J, Yamashima T. Vitamin B6 protects primate retinal neurons from ischemic injury. Brain Res 2002; 940:36-43. [PMID: 12020872 DOI: 10.1016/s0006-8993(02)02587-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Vitamin B6 derivatives protect the retinal neurons from excitotoxic injury in vitro. However, their in vivo role in a process involving excitotoxicity, such as ischemia, remains unknown. We studied potential protective effects of pyridoxal 5'-phosphate (PLP) and pyridoxal hydrochloride (pyridoxal) on the retinal neurons in a monkey model of transient global ischemia. Daily intravenous injections (15 mg/kg) of pyridoxal and PLP were performed for consecutive 10 days. On the sixth day, whole brain complete ischemia was produced by clipping the innominate and the left subclavian arteries for 20 min. The monkeys were sacrificed 5 days after ischemia and their retinas were processed for histological analysis. The ischemia induced a marked cellular injury in the retina as shown by the loss of ganglion cells and the reduction of thickness of the ganglion cell, inner plexiform, and inner nuclear layers. PLP significantly prevented the ganglion cell loss and the reduction of thickness of the ganglion cell layer. Pyridoxal significantly prevented the ganglion cell loss as well as the reduction of thickness of ganglion cell, inner plexiform and inner nuclear layers. These results suggest that PLP and pyridoxal counteract the postischemic neuronal death in the adult primate retina, offering a potential for a novel pharmacotherapy of retinal ischemic injury.
Collapse
Affiliation(s)
- Xiang-Di Wang
- Department of Neurosurgery, Division of Neuroscience, Graduate School of Medical Science, Kanazawa University, Takaramachi 13-1, 920-8641, Kanazawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
We survey the primary roles of calcium in retinal function, including photoreceptor transduction, transmitter release by different classes of retinal neuron, calcium-mediated regulation of gap-junctional conductance, activation of certain voltage-gated channels for K+ and Cl-, and modulation of postsynaptic potentials in retinal ganglion cells. We discuss three mechanisms for changing [Ca2+]i, which include flux through voltage-gated calcium channels, through ligand-gated channels, and by release from stores. The neuromodulatory pathways affecting each of these routes of entry are considered. The many neuromodulatory mechanisms in which calcium is a player are described and their effects upon retinal function discussed.
Collapse
Affiliation(s)
- Abram Akopian
- Department of Ophthalmology, New York University School of Medicine, New York University Medical Center, New York 10016, USA.
| | | |
Collapse
|
30
|
Salih SG, Jagger DJ, Housley GD. ATP-gated currents in rat primary auditory neurones in situ arise from a heteromultimetric P2X receptor subunit assembly. Neuropharmacology 2002; 42:386-95. [PMID: 11897117 DOI: 10.1016/s0028-3908(01)00184-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Spiral ganglion neurones provide the primary afferent innervation to sensory hair cells within the mammalian cochlea. Recent evidence suggests that their function may be modulated by purinergic signalling mechanisms, associated with release of adenosine 5'-triphosphate (ATP). Utilising a newly developed slice preparation of the neonatal rat cochlea, we have investigated the response of neurones in situ, to purinergic agonists and antagonists using whole-cell voltage clamp recordings. In cells identified as type I spiral ganglion neurones on the basis of morphology and voltage-dependent conductances, pressure-applied ATP, alpha,beta-methyleneATP (alpha,beta-meATP), 2-methylthioATP (2-MeSATP) and adenosine 5'-diphosphate (ADP) elicited a consistent phenotype of desensitising, inwardly rectifying current. The ATP-activated currents were reversibly blocked by the P2X receptor antagonists pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS, 10 microM), and 2',3'-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP; IC(50) 407 nM). Neurones were more sensitive to ATP at low pH. The EC(50) value for ATP shifted from 18 microM at pH 7.3, to 1 microM at pH 6.3, with Hill coefficients of approximately 1. The results indicate that ATP-gated ion channels in spiral ganglion neurones arise from a specific heteromultimeric assembly of P2X receptor subunits which has no correspondence with present recombinant P2X receptor models.
Collapse
Affiliation(s)
- S G Salih
- Physiology Division, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | |
Collapse
|
31
|
Sorimachi M, Ishibashi H, Moritoyo T, Akaike N. Excitatory effect of ATP on acutely dissociated ventromedial hypothalamic neurons of the rat. Neuroscience 2002; 105:393-401. [PMID: 11672606 DOI: 10.1016/s0306-4522(01)00192-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ATP-induced increase in the cytosolic Ca(2+) concentration ([Ca]i) and current in acutely dissociated ventromedial hypothalamic rats neurons were investigated using fura-2 microfluorometry and the nystatin-perforated patch recording method, respectively. The ATP-induced [Ca]i increase was mimicked by dimethyl-thio-ATP and ATPgammaS, and was inhibited by P2 purinoreceptor antagonists. The ATP-induced [Ca]i increase was markedly reduced by removal of external Na(+) or Ca(2+), and by addition of various Ca(2+) channel antagonists. ATP induced a transient inward current exhibiting a strong inward rectification at membrane potentials more positive than -20 mV. The ATP-induced current at a holding potential of -70 mV was concentration-dependent with a half-maximum effective concentration of 26 microM. Increasing the external Ca(2+) concentration to 10 mM shifted the dose-response relationship to the right. ATP induced only a small current and a small increase in [Ca]i, even at 10 mM Ca(2+), when external Na(+) was removed, suggesting the relatively low permeability to Ca(2+) of purinoceptor channels. These results suggest that ATP activates non-selective cation channels by acting on P2X purinoceptors on dissociated ventromedial hypothalamic neurons, which in turn increases [Ca]i by increasing Ca(2+) influx through voltage-dependent Ca(2+) channels.
Collapse
Affiliation(s)
- M Sorimachi
- Department of Physiology, Faculty of Medicine, Kagoshima University, Japan.
| | | | | | | |
Collapse
|
32
|
Jang IS, Rhee JS, Kubota H, Akaike N, Akaike N. Developmental changes in P2X purinoceptors on glycinergic presynaptic nerve terminals projecting to rat substantia gelatinosa neurones. J Physiol 2001; 536:505-19. [PMID: 11600685 PMCID: PMC2278888 DOI: 10.1111/j.1469-7793.2001.0505c.xd] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. In mechanically dissociated rat spinal cord substantia gelatinosa (SG) neurones attached with native presynaptic nerve endings, glycinergic miniature inhibitory postsynaptic currents (mIPSCs) were recorded using nystatin perforated patch recording mode under voltage-clamp conditions. Under these conditions, it was tested whether the changes in P2X receptor subtype on the glycinergic presynaptic nerve terminals occur during postnatal development. 2. ATP facilitated glycinergic mIPSC frequency in a concentration-dependent manner through all developmental stages tested, whereas alphabeta-methylene-ATP (alphabeta-me-ATP) was only effective at later developmental stages. 3. alphabeta-me-ATP-elicited mIPSC frequency facilitation was completely occluded in the Ca2+-free external solution, but it was not affected by adding 10(-4) M Cd2+. 4. alphabeta-me-ATP still facilitated mIPSC frequency even in the presence of 10(-6) M thapsigargin, a Ca2+ pump blocker. 5. In later developmental stages, ATP-elicited presynaptic or postsynaptic responses were reversibly blocked by 10(-5) M pyridoxal-5-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), but only partially blocked by 10(-7) M 2',3'-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP). However, alphabeta-me-ATP-elicited presynaptic or postsynaptic responses were completely and reversibly blocked by either 10(-5) M PPADS or 10(-7) M TNP-ATP. 6. alphabeta-me-ATP significantly reduced the evoked glycinergic IPSC amplitude in postnatal 28-30 day neurones, whereas it had no effect in 10-12 day neurones. 7. It was concluded that alphabeta-me-ATP-sensitive P2X receptors were functionally expressed on the glycinergic presynaptic nerve terminals projecting to SG neurones in later developmental stages. Such developmental changes of presynaptic P2X receptor subtypes might contribute to synaptic plasticity such as the regulation of neuronal excitability and the fine controlling of the pain signal in spinal dorsal horn neurones.
Collapse
Affiliation(s)
- I S Jang
- Cellular and System Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
33
|
Watanabe T, Michaelis T, Frahm J. Mapping of retinal projections in the living rat using high-resolution 3D gradient-echo MRI with Mn2+-induced contrast. Magn Reson Med 2001; 46:424-9. [PMID: 11550231 DOI: 10.1002/mrm.1209] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study describes the neuroaxonal tracing of the visual pathway in the living rat using high-resolution T1-weighted 3D gradient-echo MRI (195 x 195 x 125 microm3) at 8, 24, 48, and 72 h after intraocular Mn2+ injection (0.1 microl of 1 M aqueous MnCl2). Best results were obtained at 24 h postinjection, revealing a continuous pattern of anterograde labeling from the retina, optic nerve, and chiasm to the contralateral optic tract, the dorsal and ventral lateral geniculate nucleus, the superior colliculus and its brachium, the olivary pretectal nucleus, the nucleus of the optic tract, and the suprachiasmatic nucleus. These results underline the feasibility of repeated MRI tract tracing in living animals after a single injection of Mn2+. The approach is expected to advance studies of neuroaxonal function in behaving animals with special emphasis on applications in developmental neurobiology.
Collapse
Affiliation(s)
- T Watanabe
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | | | | |
Collapse
|
34
|
Mott DD, Erreger K, Banke TG, Traynelis SF. Open probability of homomeric murine 5-HT3A serotonin receptors depends on subunit occupancy. J Physiol 2001; 535:427-43. [PMID: 11533135 PMCID: PMC2278792 DOI: 10.1111/j.1469-7793.2001.00427.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
1. The time course of macroscopic current responses of homomeric murine serotonin 5-HT3A receptors was studied in whole cells and excised membrane patches under voltage clamp in response to rapid application of serotonin. 2. Serotonin activated whole cell currents with an EC(50) value for the peak response of 2 microM and a Hill slope of 3.0 (n = 12), suggesting that the binding of at least three agonist molecules is required to open the channel. 3. Homomeric 5-HT3A receptors in excised membrane patches had a slow activation time course (mean +/- S.E.M. 10-90 % rise time 12.5 +/- 1.6 ms; n = 9 patches) for 100 microM serotonin. The apparent activation rate was estimated by fitting an exponential function to the rising phase of responses to supramaximal serotonin to be 136 s(-1). 4. The 5-HT3A receptor response to 100 microM serotonin in outside-out patches (n = 19) and whole cells (n = 41) desensitized with a variable rate that accelerated throughout the experiment. The time course for desensitization was described by two exponential components (for patches tau(slow) 1006 +/- 139 ms, amplitude 31 %; tau(fast) 176 +/- 25 ms, amplitude 69 %). 5. Deactivation of the response following serotonin removal from excised membrane patches (n = 8) and whole cells (n = 29) was described by a dual exponential time course with time constants similar to those for desensitization (for patches tau(slow) 838 +/- 217 ms, 55 % amplitude; tau(fast) 213 +/- 44 ms, 45 % amplitude). 6. In most patches (6 of 8), the deactivation time course in response to a brief 1-5 ms pulse of serotonin was similar to or slower than desensitization. This suggests that the continued presence of agonist can induce desensitization with a similar or more rapid time course than agonist unbinding. The difference between the time course for deactivation and desensitization was voltage independent over the range -100 to -40 mV in patches (n = 4) and -100 to +50 mV in whole cells (n = 4), suggesting desensitization of these receptors in the presence of serotonin does not reflect a voltage-dependent block of the channel by agonist. 7. Simultaneously fitting the macroscopic 5-HT3A receptor responses in patches to submaximal (2 microM) and maximal (100 microM) concentrations of serotonin to a variety of state models suggests that homomeric 5-HT3A receptors require the binding of three agonists to open and possess a peak open probability greater than 0.8. Our modelling also suggests that channel open probability varies with the number of serotonin molecules bound to the receptor, with a reduced open probability for fully liganded receptors. Increasing the desensitization rate constants in this model can generate desensitization that is more rapid than deactivation, as observed in a subpopulation of our patches.
Collapse
Affiliation(s)
- D D Mott
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322-3090, USA
| | | | | | | |
Collapse
|
35
|
Wheeler-Schilling TH, Marquordt K, Kohler K, Guenther E, Jabs R. Identification of purinergic receptors in retinal ganglion cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 92:177-80. [PMID: 11483255 DOI: 10.1016/s0169-328x(01)00160-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
P2X receptors are ligand-gated ion channels activated by adenosine triphosphate and expressed in a broad variety of tissues. The present study demonstrates the expression of various types of purinergic P2X receptors in identified retinal ganglion cells (RGCs) of the adult rat retina. Single-cell reverse transcription polymerase chain reaction (SC-RT-PCR) resulted in a positive amplification signal for all P2X receptor subunit mRNAs examined (P2X(3-5), P2X(7)). Immunohistochemistry with P2X(3,4) receptor subunit-specific antibodies showed a labelling of neurons in the ganglion cell layer and inner nuclear layer. Our data suggest that extracellular ATP acts directly on RGCs via several types of P2X receptors and may provide neuromodulatory influences on information processing in the retina.
Collapse
Affiliation(s)
- T H Wheeler-Schilling
- Department of Pathophysiology of Vision and Neuroophthalmology, Division of Experimental Ophthalmology, University Eye Hospital, Tuebingen, Roentgenweg 11, D-72076 Tuebingen, Germany.
| | | | | | | | | |
Collapse
|
36
|
Liu DM, Adams DJ. Ionic selectivity of native ATP-activated (P2X) receptor channels in dissociated neurones from rat parasympathetic ganglia. J Physiol 2001; 534:423-35. [PMID: 11454961 PMCID: PMC2278712 DOI: 10.1111/j.1469-7793.2001.00423.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. The relative permeability of the native P2X receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements of ATP-evoked currents in parasympathetic neurones dissociated from rat submandibular ganglia using the dialysed whole-cell patch clamp technique. 2. The P2X receptor-channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Na(+) > Li(+) > Cs(+) > Rb(+) > K(+), and permeability ratios relative to Cs(+) (P(X)/P(Cs)) ranging from 1.11 to 0.86. 3. The selectivity for the divalent alkaline earth cations was also weak with the sequence Ca(2+) > Sr(2+) > Ba(2+) > Mn(2+) > Mg(2+). ATP-evoked currents were strongly inhibited when the extracellular divalent cation concentration was increased. 4. The calculated permeability ratios of different ammonium cations are higher than those of the alkali metal cations. The permeability sequence obtained for the saturated organic cations is inversely correlated with the size of the cation. The unsaturated organic cations have a higher permeability than that predicted by molecular size. 5. Acidification to pH 6.2 increased the ATP-induced current amplitude twofold, whereas alkalization to 8.2 and 9.2 markedly reduced current amplitude. Cell dialysis with either anti-P2X(2) and/or anti-P2X(4) but not anti-P2X(1) antibodies attenuated the ATP-evoked current amplitude. Taken together, these data are consistent with homomeric and/or heteromeric P2X(2) and P2X(4) receptor subtypes expressed in rat submandibular neurones. 6. The permeability ratios for the series of monovalent organic cations, with the exception of unsaturated cations, were approximately related to the ionic size. The relative permeabilities of the monovalent inoganic and organic cations tested are similar to those reported previously for cloned rat P2X(2) receptors expressed in mammalian cells.
Collapse
Affiliation(s)
- D M Liu
- School of Biomedical Sciences, Department of Physiology and Pharmacology, University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
37
|
Nägler K, Mauch DH, Pfrieger FW. Glia-derived signals induce synapse formation in neurones of the rat central nervous system. J Physiol 2001; 533:665-79. [PMID: 11410625 PMCID: PMC2278670 DOI: 10.1111/j.1469-7793.2001.00665.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. To study the effects of glial cells on synapse formation, we established microcultures of purified rat retinal ganglion cells (RGCs) and monitored synapse (autapse) development in single neurones using electrophysiological recordings, FM1-43 labelling and immunocytochemistry. 2. Solitary neurones grew ramifying neurites, but formed only very few and inefficient excitatory autapses, when cultured for up to 2 weeks in defined medium and in the absence of glial cells. 3. Treatment of glia-free microcultures of RGCs with glia-conditioned medium (GCM) increased the number of autapses per neurone by up to 10-fold. This was indicated by a similar increase in the frequency of spontaneous events and the number of FM1-43-labelled functional release sites and of puncta, where pre- and postsynaptic markers colocalized. 4. In addition, GCM treatment enhanced the efficacy of presynaptic transmitter release as indicated by lower failure rates of stimulation-induced excitatory autaptic currents, a 200-fold increase in the frequency of asynchronous release and an accelerated stimulation-induced FM1-43 destaining. Furthermore, GCM induced an increase in the quantal size. 5. GCM affected autaptic activity not immediately, but with a delay of 24 h, and the effects on stimulation-induced autaptic currents occurred before changes in the frequency of spontaneous events indicating an early strengthening of existing autapses followed by a later increase in autapse number. 6. The observed effects were mediated by proteinase K-sensitive factors in GCM and occurred independently of electrical activity. 7. These results suggest that soluble glia-derived signals induce synapse formation and maturation in neurones of the central nervous system (CNS).
Collapse
Affiliation(s)
- K Nägler
- Synapse Group, Max-Delbrück-Center for Molecular Medicine, 13092 Berlin, Germany
| | | | | |
Collapse
|
38
|
Newman EA. Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. J Neurosci 2001; 21:2215-23. [PMID: 11264297 PMCID: PMC2409971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Intercellular Ca(2+) waves are believed to propagate through networks of glial cells in culture in one of two ways: by diffusion of IP(3) between cells through gap junctions or by release of ATP, which functions as an extracellular messenger. Experiments were conducted to determine the mechanism of Ca(2+) wave propagation between glial cells in an intact CNS tissue. Calcium waves were imaged in the acutely isolated rat retina with the Ca(2+) indicator dye fluo-4. Mechanical stimulation of astrocyte somata evoked Ca(2+) waves that propagated through both astrocytes and Müller cells. Octanol (0.5 mm), which blocks coupling between astrocytes and Müller cells, did not reduce propagation into Müller cells. Purinergic receptor antagonists suramin (100 microm), PPADS (20-50 microm), and apyrase (80 U/ml), in contrast, substantially reduced wave propagation into Müller cells (wave radii reduced to 16-61% of control). Suramin also reduced wave propagation from Müller cell to Müller cell (51% of control). Purinergic antagonists reduced wave propagation through astrocytes to a lesser extent (64-81% of control). Mechanical stimulation evoked the release of ATP, imaged with the luciferin-luciferase bioluminescence assay. Peak ATP concentration at the surface of the retina averaged 78 microm at the stimulation site and 6.8 microm at a distance of 100 microm. ATP release propagated outward from the stimulation site with a velocity of 41 microm/sec, somewhat faster than the 28 microm/sec velocity of Ca(2+) waves. Ejection of 3 microm ATP onto the retinal surface evoked propagated glial Ca(2+) waves. Together, these results indicate that Ca(2+) waves are propagated through retinal glial cells by two mechanisms. Waves are propagated through astrocytes principally by diffusion of an internal messenger, whereas waves are propagated from astrocytes to Müller cells and from Müller cells to other Müller cells primarily by the release of ATP.
Collapse
Affiliation(s)
- E A Newman
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
39
|
Birkenbeil H. Pharmacological study of signal transduction during stimulation of prothoracic glands from Manduca sexta. JOURNAL OF INSECT PHYSIOLOGY 2000; 46:1409-1414. [PMID: 10878267 DOI: 10.1016/s0022-1910(00)00064-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cytosolic free calcium, [Ca(2+)](i), measured in individual prothoracic gland cells of Manduca sexta with Fura-2 was increased by prothoracicotropic hormone, PTTH, and by mastoparan, a wasp venom peptide, activating G proteins. The effect on [Ca(2+)](i) of mastoparan and of PTTH was inhibited by cadmium and the antagonist of T-type calcium channels, amiloride, and not influenced by the L-type calcium channel blocker nitrendipine, suggesting that the same or similar plasma membrane channels are involved in the action of mastoparan and of PTTH. Pertussis toxin prevented the mastoparan-induced increase of [Ca(2+)](i), whereas the effect of PTTH is not influenced by pertussis toxin. Intracellular addition of GDP-beta-S failed to inhibit the PTTH-stimulated increase in [Ca(2+)](i) suggesting that G proteins are not involved in the stimulatory mechanism of PTTH.
Collapse
Affiliation(s)
- H Birkenbeil
- Sächsische Akademie der Wissenschaften zu Leipzig, AG Neurohormonale Wirkungsmechanismen, Erbert-Str.1 PF 100322, 07703, Jena, Germany
| |
Collapse
|
40
|
Pannicke T, Fischer W, Biedermann B, Schädlich H, Grosche J, Faude F, Wiedemann P, Allgaier C, Illes P, Burnstock G, Reichenbach A. P2X7 receptors in Müller glial cells from the human retina. J Neurosci 2000; 20:5965-72. [PMID: 10934244 PMCID: PMC6772577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
ATP has been shown to be an important extracellular signaling molecule. There are two subgroups of receptors for ATP (and other purines and pyrimidines): the ionotropic P2X and the G-protein-coupled P2Y receptors. Different subtypes of these receptors have been identified by molecular biology, but little is known about their functional properties in the nervous system. Here we present data for the existence of P2 receptors in Müller (glial) cells of the human retina. The cells were studied by immunocytochemistry, electrophysiology, Ca(2+)-microfluorimetry, and molecular biology. They displayed both P2Y and P2X receptors. Freshly enzymatically isolated cells were used throughout the study. Although the [Ca(2+)](i) response to ATP was dominated by release from intracellular stores, there is multiple evidence that the ATP-induced membrane currents were caused by an activation of P2X(7) receptors. Immunocytochemistry and single-cell RT-PCR revealed the expression of P2X(7) receptors by Müller cells. In patch-clamp studies, we found that (1) benzoyl-benzoyl ATP (BzATP) was the most effective agonist to evoke large inward currents and (2) the currents were abolished by P2X antagonists; however, (3) long-lasting application of BzATP did not cause an opening of large pores in addition to the cationic channels. By microfluorimetry it was shown that the P2X receptors mediated a Ca(2+) influx that contributed a small component to the total [Ca(2+)](i) response. Activation of P2X receptors may modulate the uptake of neurotransmitters from the extracellular space by Müller cells in the retina.
Collapse
Affiliation(s)
- T Pannicke
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, 04109 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
1. Electrochemical homeostasis, sound transduction and auditory neurotransmission in the cochlea are influenced by extracellular purines and pyrimidines. 2. Evidence that ATP and related nucleotides influence inner ear function arises from a considerable number of cellular, molecular and physiological studies in vitro and in vivo. 3. With a full understanding of these processes, which include ionotropic (P2X receptor) and metabotropic (P2Y receptor) signal transduction pathways, signal termination involving ecto-nucleotidases and recycling via nucleoside transporters, exciting possibilities emerge for treating hearing disorders, such as Meniere's disease, tinnitus and sensorineural deafness.
Collapse
Affiliation(s)
- G D Housley
- Department of Physiology, University of Auckland, New Zealand.
| |
Collapse
|
42
|
Housley GD, Thorne PR. Purinergic signalling: an experimental perspective. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 2000; 81:139-45. [PMID: 10869712 DOI: 10.1016/s0165-1838(00)00116-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Investigation of the multiple roles of extracellular nucleotides in the cochlea has developed from analysis of ATP-activated conductances in single sensory hair cells. Molecular probes such as radiolabelled ATP analogues and radiolabelled mRNA for ATP-gated ion channel subunits (P2X receptors) rapidly revealed the extensive nature of ATP signalling in this sensory organ. This has provided a foundation for physiological investigations which put extracellular nucleotides at the centre of homeostatic regulation of the driving force for sound transduction, modulation of mechanical tuning, control of cochlear blood flow and auditory neurotransmission. The purinergic signal transduction pathways associated with these processes have several novel features of significance to the broader field of purinergic neuroscience. In turn, these studies have benefited from the recent experimental advances in the field of purinergic signalling, a significant component of which is associated with the work of Professor Geoffrey Burnstock.
Collapse
Affiliation(s)
- G D Housley
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | |
Collapse
|
43
|
Nawy S. Regulation of the on bipolar cell mGluR6 pathway by Ca2+. J Neurosci 2000; 20:4471-9. [PMID: 10844016 PMCID: PMC6772459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Glutamate produces a hyperpolarizing synaptic potential in On bipolar cells by binding to the metabotropic glutamate receptor mGluR6, leading to closure of a cation channel. Here it is demonstrated that this cation channel is regulated by intracellular Ca(2+). Glutamate-evoked currents were recorded from On bipolar cells in light-adapted salamander retinal slices in the presence of 2 mm external Ca(2+). When glutamate was applied almost continuously, interrupted only briefly to measure the size of the response, the glutamate response remained robust. However, currents elicited by intermittent and brief applications of glutamate exhibited time-dependent run down. Run down of the glutamate response was also voltage dependent, because it was accelerated by membrane hyperpolarization. Run down was triggered, at least in part, by a rise in intracellular Ca(2+); measured as a function of time or voltage, it was attenuated by intracellular buffering of Ca(2+) with BAPTA or by omitting Ca(2+) from the bathing solution. Current-voltage measurements demonstrated that Ca(2+) induced run down of the glutamate response by downregulating cation channel function, rather than by preventing closure of the channel by glutamate and mGluR6. A major source of the Ca(2+) that mediated this inhibition is the cation channel itself, which was found to be permeable to Ca(2+), accounting for the use dependence of the run down. These results suggest that Ca(2+) influx through the cation channel during background illumination could provide a signal to close the cation channel and repolarize the membrane toward its dark potential, an adaptive mechanism for coping with changes in ambient light.
Collapse
Affiliation(s)
- S Nawy
- Department of Ophthalmology, Visual Science and of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
44
|
Rhee JS, Wang ZM, Nabekura J, Inoue K, Akaike N. ATP facilitates spontaneous glycinergic IPSC frequency at dissociated rat dorsal horn interneuron synapses. J Physiol 2000; 524 Pt 2:471-83. [PMID: 10766927 PMCID: PMC2269889 DOI: 10.1111/j.1469-7793.2000.t01-1-00471.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. The ATP action on spontaneous miniature glycinergic inhibitory postsynaptic currents (mIPSCs) was investigated in rat substantia gelatinosa (SG) neurons mechanically dissociated from the 2nd layer of the dorsal horn in which their presynaptic glycinergic nerve terminals remained intact. 2. ATP reversibly facilitated the frequency of the mIPSCs in a concentration-dependent manner without affecting their amplitude distribution. The ATP agonist, 2-methylthioATP (2MeSATP), mimicked the ATP action, while another ATP receptor agonist, alphabeta-methylene-ATP (alpha,beta-meATP), had no effect on mIPSCs. 3. The ATP receptor antagonists, suramin (1 x 10-6 M) and pyridoxal-5-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) (1 x 10-5 M), completely blocked the facilitatory effect of ATP on glycine release (102.0 +/- 11.2 % and 99.3 +/- 16.2 %, n = 6, respectively) without altering the current amplitude distributions. 4. N-Ethylmaleimide (NEM), a sulphydryl alkylating agent, suppressed the inhibitory effect of adenosine on mIPSC frequency (111.2 +/- 13. 3 %, n = 4) without altering the current amplitude distribution. However, ATP still facilitated the mIPSC frequency (693.3 +/- 245.2 %, n = 4) even in the presence of NEM. 5. The facilitatory effect of ATP (1 x 10-5 M) on mIPSC frequency was not affected by adding 1 x 10-4 M Cd2+ to normal external solution but was eliminated in a Ca2+-free external solution. 6. These results suggest that ATP enhances glycine release from nerve terminals, presumably resulting in the inhibition of SG neurons which conduct nociceptive signals to the CNS. This presynaptic P2X-type ATP receptor may function to prevent excess excitability in SG neurons, thus preventing an excessive pain signal and/or SG cell death.
Collapse
Affiliation(s)
- J S Rhee
- Department of Cellular and System Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8285, Japan
| | | | | | | | | |
Collapse
|
45
|
Wheeler-Schilling TH, Marquordt K, Kohler K, Jabs R, Guenther E. Expression of purinergic receptors in bipolar cells of the rat retina. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:415-8. [PMID: 10762720 DOI: 10.1016/s0169-328x(00)00020-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
P2X receptors are ligand-gated ion channels which are activated by excitatory neurotransmitter ATP. Despite considerable evidence of signaling by extracellular nucleotides in other sensory systems, P2X receptors in the visual system have only rarely been studied, and almost nothing is known about their functional significance in the retina. To determine whether ATP plays a role in the modulation of vertical retinal signal pathways, we examined the expression of P2X receptor mRNA in freshly isolated bipolar cells of the rat retina (Brown Norway, P25) using the single-cell RT-PCR technique. Positive amplification signals were found in about 33% of the bipolar cells for P2X(3), P2X(4) and P2X(5) but not for P2X(7) mRNA. We conclude that at least a subpopulation of bipolar cells in the rat retina expresses ionotropic P2 receptors of the P2X type and that these possibly exert a neuromodulatory influence on information processing in the retina.
Collapse
Affiliation(s)
- T H Wheeler-Schilling
- Department of Pathophysiology of Vision and Neuroophthalmology, Division of Experimental Ophthalmology, University Eye Hospital Tuebingen Roentgenweg 11, 72076, Tuebingen, Germany.
| | | | | | | | | |
Collapse
|