1
|
Ferraro TN, DeChiara JR, Chen R, Chen Y, Doyle GA, Buono RJ. Modulation of mu-opioid receptor function alters electroshock seizure responses in mice. Neuropharmacology 2025; 272:110427. [PMID: 40122226 DOI: 10.1016/j.neuropharm.2025.110427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/03/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
We studied the effects of mu-opioid receptor (MOR) modulation on seizure responses to electroshock stimulation in C57BL/6J (B6) and DBA/2J (D2) mice of both sexes. Using a genetic approach, we show that B6 and D2 mice with a constitutive deletion of the MOR gene Oprm1 have a significantly reduced maximal electroconvulsive shock (ECS) seizure threshold. Using a pharmacological approach, we show that morphine treatment (25 mg pellet, s.c.) significantly reduces expression of maximal ECS seizures in both wild type strains, and conversely, that naltrexone treatment (1-10 mg/kg, s.c.) increases maximal ECS seizure susceptibility, more so in B6 mice than in D2. Unexpectedly, we observe that higher doses of naltrexone (100-500 mg/kg, i.p.) elicit generalized seizures, with D2 mice displaying significantly greater susceptibility than B6. Together, results suggest that decreasing MOR function increases ECS seizure susceptibility in mice, whereas increasing MOR function decreases ECS seizure susceptibility. The greater sensitivity of D2 mice to the direct proconvulsant effect of high dose naltrexone is consistent with the relative response of this strain to other chemoconvulsants and suggests that endogenous opioids play a role in mediating the previously reported robust difference in seizure susceptibility between D2 and B6 mice. On the other hand, our finding that naltrexone intensifies ECS seizures more in B6 mice than D2 underscores the complex nature of seizure susceptibility and the interaction between opioids and seizures. We conclude that further refinement of approaches to modulate neuronal signaling linked to the effect of the MOR on electroshock seizure responses may provide clues for development of new anti-epilepsy treatments.
Collapse
MESH Headings
- Animals
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/physiology
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/deficiency
- Seizures/etiology
- Seizures/metabolism
- Seizures/genetics
- Seizures/physiopathology
- Seizures/drug therapy
- Mice
- Electroshock/adverse effects
- Male
- Mice, Inbred C57BL
- Naltrexone/pharmacology
- Female
- Mice, Inbred DBA
- Narcotic Antagonists/pharmacology
- Morphine/pharmacology
- Dose-Response Relationship, Drug
- Mice, Knockout
- Analgesics, Opioid/pharmacology
- Species Specificity
Collapse
Affiliation(s)
- Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, USA.
| | - James R DeChiara
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| | - Ruoyu Chen
- Moorestown High School, Moorestown, NJ, 08057, USA
| | - Yong Chen
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, 08028, USA
| | - Glenn A Doyle
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Russell J Buono
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| |
Collapse
|
2
|
Li X, Shi W, Zhao Z, Matsuura T, Lu J, Che J, Chen Q, Zhou Z, Xue M, Hao S, Xu F, Bi G, Kaang B, Collingridge GL, Zhuo M. Increased GluK1 Subunit Receptors in Corticostriatal Projection from the Anterior Cingulate Cortex Contributed to Seizure-Like Activities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308444. [PMID: 39225597 PMCID: PMC11497107 DOI: 10.1002/advs.202308444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/26/2024] [Indexed: 09/04/2024]
Abstract
The corticostriatal connection plays a crucial role in cognitive, emotional, and motor control. However, the specific roles and synaptic transmissions of corticostriatal connection are less studied, especially the corticostriatal transmission from the anterior cingulate cortex (ACC). Here, a direct glutamatergic excitatory synaptic transmission in the corticostriatal projection from the ACC is found. Kainate receptors (KAR)-mediated synaptic transmission is increased in this corticostriatal connection both in vitro and in vivo seizure-like activities. GluK1 containing KARs and downstream calcium-stimulated adenylyl cyclase subtype 1 (AC1) are involved in the upregulation of KARs following seizure-like activities. Inhibiting the activities of ACC or its corticostriatal connection significantly attenuated pentylenetetrazole (PTZ)-induced seizure. Additionally, injection of GluK1 receptor antagonist UBP310 or the AC1 inhibitor NB001 both show antiepileptic effects. The studies provide direct evidence that KARs are involved in seizure activity in the corticostriatal connection and the KAR-AC1 signaling pathway is a potential novel antiepileptic strategy.
Collapse
Affiliation(s)
- Xu‐Hui Li
- Center for Neuron and DiseaseFrontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
- Department of PhysiologyFaculty of MedicineUniversity of TorontoMedical Science Building, 1 King's College CircleTorontoOntarioM5S 1A8Canada
| | - Wantong Shi
- Center for Neuron and DiseaseFrontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Zhi‐Xia Zhao
- Center for Neuron and DiseaseFrontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Takanori Matsuura
- Department of PhysiologyFaculty of MedicineUniversity of TorontoMedical Science Building, 1 King's College CircleTorontoOntarioM5S 1A8Canada
- Department of OrthopaedicsSchool of MedicineUniversity of Occupational and Environmental HealthYahatanishi‐kuKitakyushu807–8555Japan
| | - Jing‐Shan Lu
- Center for Neuron and DiseaseFrontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Jingmin Che
- Shaanxi Provincial Key Laboratory of Infection and Immune DiseasesShaanxi Provincial People's HospitalXi'anShaanxi710068China
| | - Qi‐Yu Chen
- CAS Key Laboratory of Brain Connectome and ManipulationInterdisciplinary Center for Brain InformationThe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyShenzhenGuangdong518055China
| | - Zhaoxiang Zhou
- Department of PhysiologyFaculty of MedicineUniversity of TorontoMedical Science Building, 1 King's College CircleTorontoOntarioM5S 1A8Canada
- Department of NeurologyFirst Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510130China
| | - Man Xue
- Center for Neuron and DiseaseFrontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Shun Hao
- Department of PharmacologyQingdao University School of PharmacyQingdaoShandong266071China
| | - Fang Xu
- CAS Key Laboratory of Brain Connectome and ManipulationInterdisciplinary Center for Brain InformationThe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyShenzhenGuangdong518055China
| | - Guo‐Qiang Bi
- CAS Key Laboratory of Brain Connectome and ManipulationInterdisciplinary Center for Brain InformationThe Brain Cognition and Brain Disease InstituteShenzhen Institute of Advanced TechnologyShenzhenGuangdong518055China
| | - Bong‐Kiun Kaang
- Department of Biological SciencesCollege of Natural SciencesSeoul National UniversitySeoul151–746South Korea
| | - Graham L. Collingridge
- Department of PhysiologyFaculty of MedicineUniversity of TorontoMedical Science Building, 1 King's College CircleTorontoOntarioM5S 1A8Canada
| | - Min Zhuo
- Center for Neuron and DiseaseFrontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710049China
- Department of PhysiologyFaculty of MedicineUniversity of TorontoMedical Science Building, 1 King's College CircleTorontoOntarioM5S 1A8Canada
- Department of NeurologyFirst Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510130China
- Department of PharmacologyQingdao University School of PharmacyQingdaoShandong266071China
| |
Collapse
|
3
|
Zapater LJ, Lewis SA, Gutierrez RL, Yamada M, Rodriguez-Fos E, Planas-Felix M, Cameron D, Demarest P, Nabila A, Mueller H, Zhao J, Bergin P, Reed C, Chwat-Edelstein T, Pagnozzi A, Nava C, Bourel-Ponchel E, Cornejo P, Dursun A, Özgül RK, Akar HT, Maroofian R, Houlden H, Cheema HA, Anjum MN, Zifarelli G, Essid M, Ben Hafsa M, Benrhouma H, Montoya CIG, Proekt A, Zhao X, Socci ND, Hayes M, Bigot Y, Rabadan R, Torrents D, Kleinmann CL, Kruer MC, Toth M, Kentsis A. A transposase-derived gene required for human brain development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.28.538770. [PMID: 37163102 PMCID: PMC10168387 DOI: 10.1101/2023.04.28.538770] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
DNA transposable elements and transposase-derived genes are present in most living organisms, including vertebrates, but their function is largely unknown. PiggyBac Transposable Element Derived 5 (PGBD5) is an evolutionarily conserved vertebrate DNA transposase-derived gene with retained nuclease activity in human cells. Vertebrate brain development is known to be associated with prominent neuronal cell death and DNA breaks, but their causes and functions are not well understood. Here, we show that PGBD5 contributes to normal brain development in mice and humans, where its deficiency causes disorder of intellectual disability, movement, and seizures. In mice, Pgbd5 is required for the developmental induction of post-mitotic DNA breaks and recurrent somatic genome rearrangements. In the brain cortex, loss of Pgbd5 leads to aberrant differentiation and gene expression of distinct neuronal populations, including specific types of glutamatergic neurons, which explains the features of PGBD5 deficiency in humans. Thus, PGBD5 might be a transposase-derived enzyme required for brain development in mammals.
Collapse
Affiliation(s)
- Luz Jubierre Zapater
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center; New York, United States, 10021
| | - Sara A Lewis
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital and Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, Phoenix, AZ
| | | | - Makiko Yamada
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center; New York, United States, 10021
| | | | | | - Daniel Cameron
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center; New York, United States, 10021
| | - Phillip Demarest
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
| | - Anika Nabila
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10021
| | - Helen Mueller
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center; New York, United States, 10021
| | - Junfei Zhao
- Program for Mathematical Genomics, Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY
| | - Paul Bergin
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10021
| | - Casie Reed
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
| | - Tzippora Chwat-Edelstein
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Programs in Biochemistry, Cell, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| | - Alex Pagnozzi
- The Australian e-Health Research Centre, CSIRO, Brisbane, Australia
| | - Caroline Nava
- Assistance Publique-Hôpitaux de Paris, Département de Génétique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Emilie Bourel-Ponchel
- Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, France
- Pediatric Neurophysiology Unit, Amiens Picardie University Hospital, France
| | | | - Ali Dursun
- Hacettepe University, Faculty of Medicine & Institute of Child Health, Department of Pediatric Metabolism, Ankara, Turkey
| | - R Köksal Özgül
- Hacettepe University, Faculty of Medicine & Institute of Child Health, Department of Pediatric Metabolism, Ankara, Turkey
| | - Halil Tuna Akar
- Hacettepe University, Faculty of Medicine & Institute of Child Health, Department of Pediatric Metabolism, Ankara, Turkey
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Huma Arshad Cheema
- Department of Pediatric Medicine, The Children's Hospital, University of Child Health Sciences, Lahore, Pakistan
| | - Muhammad Nadeem Anjum
- Department of Pediatric Medicine, The Children's Hospital, University of Child Health Sciences, Lahore, Pakistan
| | | | - Miriam Essid
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, Tunisia
| | - Meriem Ben Hafsa
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, Tunisia
| | - Hanene Benrhouma
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, Tunisia
| | | | - Alex Proekt
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania
| | - Xiaolan Zhao
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
| | - Nicholas D Socci
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
| | - Matthew Hayes
- Department of Physics and Computer Science, Xavier University of Louisiana, New Orleans, LA
| | - Yves Bigot
- Physiologie de la reproduction et des comportements, UMR INRAe 0085 CNRS7247, Centre INRAE Val de Loire, France
| | - Raul Rabadan
- Program for Mathematical Genomics, Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY
| | - David Torrents
- Barcelona Supercomputing Center (BSC), Barcelona, Spain, 08034
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Claudia L Kleinmann
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital and Departments of Child Health, Neurology, Genetics and Cellular & Molecular Medicine, Phoenix, AZ
| | - Miklos Toth
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10021
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10021
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center; New York, United States, 10021
- Barcelona Supercomputing Center (BSC), Barcelona, Spain, 08034
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University; New York, United States
| |
Collapse
|
4
|
Krishnan V, Wu J, Mazumder AG, Kamen JL, Schirmer C, Adhyapak N, Bass JS, Lee SC, Maheshwari A, Molinaro G, Gibson JR, Huber KM, Minassian BA. Clinicopathologic Dissociation: Robust Lafora Body Accumulation in Malin KO Mice Without Observable Changes in Home-Cage Behavior. J Comp Neurol 2024; 532:e25660. [PMID: 39039998 PMCID: PMC11370821 DOI: 10.1002/cne.25660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Lafora disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments. At 6 weeks, ∼6-7 months, and ∼12 months of age, malin-deficient mice ("KO") and wild-type (WT) littermates underwent a standardized home-cage behavioral assessment designed to non-obtrusively appraise features of rest/arousal, consumptive behaviors, risk aversion, and voluntary wheel-running. At all timepoints, and over a range of metrics that we report transparently, WT and KO mice were essentially indistinguishable. In contrast, within WT mice compared across the same timepoints, we identified age-related nocturnal hypoactivity, diminished sucrose preference, and reduced wheel-running. Neuropathological examinations in subsets of the same mice revealed expected age-dependent LB accumulation, gliosis, and microglial activation in cortical and subcortical brain regions. At 12 months of age, despite the burden of neocortical LBs, we did not identify spontaneous seizures during an electroencephalographic (EEG) survey, and KO and WT mice exhibited similar spectral EEG features. However, in an in vitro assay of neocortical function, paroxysmal bursts of network activity (UP states) in KO slices were more prolonged at 3 and 6 months of age, but similar to WT at 12 months. KO mice displayed a distinct response to pentylenetetrazole, with a greater incidence of clonic seizures and a more pronounced postictal suppression of movement, feeding, and drinking behavior. Together, these results highlight the clinicopathologic dissociation in a mouse model of LD, where the accrual of LBs may latently modify cortical circuit function and seizure threshold without clinically meaningful changes in home-cage behavior. Our findings allude to a delay between LB accumulation and neurobehavioral decline in LD: one that may provide a window for treatment, and whose precise duration may be difficult to ascertain within the typical lifespan of a laboratory mouse.
Collapse
Affiliation(s)
- Vaishnav Krishnan
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Arindam Ghosh Mazumder
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jessica L. Kamen
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Catharina Schirmer
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Nandani Adhyapak
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - John Samuel Bass
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Samuel C. Lee
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Atul Maheshwari
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Gemma Molinaro
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jay R. Gibson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kimberly M. Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
5
|
Harby SA, Khalil NA, El-Sayed NS, Thabet EH, Saleh SR, Fathelbab MH. Implications of BCRP modulation on PTZ-induced seizures in mice: Role of ko143 and metformin as adjuvants to lamotrigine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2627-2636. [PMID: 37067582 PMCID: PMC10497685 DOI: 10.1007/s00210-023-02485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/31/2023] [Indexed: 04/18/2023]
Abstract
Blood-brain barrier (BBB) efflux transporters' overexpression hinders antiepileptic drug brain entry. Breast cancer resistance protein (BCRP) is a major BBB efflux transporter. In the present work, BCRP's role as a mechanism that might contribute to drug-resistant epilepsy (DRE) in a mouse model of acute seizures was studied with further assessment of the effect of its inhibition by ko143 and metformin (MET) on lamotrigine (LTG) bioavailability and efficacy. 42 male mice divided into 6 groups: G1: Normal control, G2: LTG-injected healthy mice: LTG 20 mg/kg i.p., G3: Acute seizures (A.S) mice: Pentylenetetrazole (PTZ) 50 mg/kg i.p., G4: LTG-treated A.S mice: LTG 20 mg/kg + PTZ 50 mg/kg i.p., G5: Ko143 + LTG treated A.S mice: Ko143 15 mg/kg i.p. before LTG + PTZ, G6: MET + LTG treated A.S mice: MET 200 mg/kg i.p. before LTG + PTZ. Seizures severity, serum, brain LTG, and brain BCRP were assessed. PTZ group experienced the highest seizure frequency and brain BCRP expression. Ko143 and MET groups showed a significant decrease in brain BCRP with subsequent improvement in brain LTG level and better seizure control. BCRP has a significant role in epilepsy resistance and its inhibition with ko143 or MET adds value to DRE management.
Collapse
Affiliation(s)
- Sahar A Harby
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Nehal A Khalil
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Norhan S El-Sayed
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Eman H Thabet
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Its Application (CERRMA), Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Samar R Saleh
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
- Bioscreening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mona Hassan Fathelbab
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Krishnan V, Wu J, Mazumder AG, Kamen JL, Schirmer C, Adhyapak N, Bass JS, Lee SC, Maheshwari A, Molinaro G, Gibson JR, Huber KM, Minassian BA. Clinicopathologic Dissociation: Robust Lafora Body Accumulation in Malin KO Mice Without Observable Changes in Home-cage Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557226. [PMID: 37745312 PMCID: PMC10515855 DOI: 10.1101/2023.09.11.557226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Lafora Disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD, as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments. At 6 weeks, ~6-7 months and ~12 months of age, malin deficient mice ("KO") and wild type (WT) littermates underwent a standardized home-cage behavioral assessment designed to non-obtrusively appraise features of rest/arousal, consumptive behaviors, risk aversion and voluntary wheel-running. At all timepoints, and over a range of metrics that we report transparently, WT and KO mice were essentially indistinguishable. In contrast, within WT mice compared across timepoints, we identified age-related nocturnal hypoactivity, diminished sucrose preference and reduced wheel-running. Neuropathological examinations in subsets of the same mice revealed expected age dependent LB accumulation, gliosis and microglial activation in cortical and subcortical brain regions. At 12 months of age, despite the burden of neocortical LBs, we did not identify spontaneous seizures during an electroencephalographic (EEG) survey, and KO and WT mice exhibited similar spectral EEG features. Using an in vitro assay of neocortical function, paroxysmal increases in network activity (UP states) in KO slices were more prolonged at 3 and 6 months of age, but were similar to WT at 12 months. KO mice displayed a distinct response to pentylenetetrazole, with a greater incidence of clonic seizures and a more pronounced post-ictal suppression of movement, feeding and drinking behavior. Together, these results highlight a stark clinicopathologic dissociation in a mouse model of LD, where LBs accrue substantially without clinically meaningful changes in overall wellbeing. Our findings allude to a delay between LB accumulation and neurobehavioral decline: one that may provide a window for treatment, and whose precise duration may be difficult to ascertain within the typical lifespan of a laboratory mouse.
Collapse
Affiliation(s)
- Vaishnav Krishnan
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Arindam Ghosh Mazumder
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jessica L. Kamen
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Catharina Schirmer
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Nandani Adhyapak
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - John Samuel Bass
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Samuel C. Lee
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Atul Maheshwari
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Gemma Molinaro
- Department of Neuroscience University of Texas Southwestern Medical Center, Dallas, TX
| | - Jay R. Gibson
- Department of Neuroscience University of Texas Southwestern Medical Center, Dallas, TX
| | - Kimberly M. Huber
- Department of Neuroscience University of Texas Southwestern Medical Center, Dallas, TX
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
7
|
Knowles JK, Xu H, Soane C, Batra A, Saucedo T, Frost E, Tam LT, Fraga D, Ni L, Villar K, Talmi S, Huguenard JR, Monje M. Maladaptive myelination promotes generalized epilepsy progression. Nat Neurosci 2022; 25:596-606. [PMID: 35501379 PMCID: PMC9076538 DOI: 10.1038/s41593-022-01052-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 03/14/2022] [Indexed: 12/18/2022]
Abstract
Activity-dependent myelination can fine-tune neural network dynamics. Conversely, aberrant neuronal activity, as occurs in disorders of recurrent seizures (epilepsy), could promote maladaptive myelination, contributing to pathogenesis. In this study, we tested the hypothesis that activity-dependent myelination resulting from absence seizures, which manifest as frequent behavioral arrests with generalized electroencephalography (EEG) spike-wave discharges, promote thalamocortical network hypersynchrony and contribute to epilepsy progression. We found increased oligodendrogenesis and myelination specifically within the seizure network in two models of generalized epilepsy with absence seizures (Wag/Rij rats and Scn8a+/mut mice), evident only after epilepsy onset. Aberrant myelination was prevented by pharmacological seizure inhibition in Wag/Rij rats. Blocking activity-dependent myelination decreased seizure burden over time and reduced ictal synchrony as assessed by EEG coherence. These findings indicate that activity-dependent myelination driven by absence seizures contributes to epilepsy progression; maladaptive myelination may be pathogenic in some forms of epilepsy and other neurological diseases.
Collapse
Affiliation(s)
- Juliet K Knowles
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
| | - Haojun Xu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Caroline Soane
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Ankita Batra
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Tristan Saucedo
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Eleanor Frost
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Lydia T Tam
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Danielle Fraga
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Lijun Ni
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Katlin Villar
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Sydney Talmi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
da Costa Sobral KG, Neuberger B, Mello FK, Mallmann MP, Sampaio TB, Oliveira MS. Anticonvulsant activity of β-caryophyllene in association with pregabalin in a seizure model in rats. Epilepsy Res 2022; 179:106842. [PMID: 34942451 DOI: 10.1016/j.eplepsyres.2021.106842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 11/03/2022]
Abstract
Epilepsy is a common chronic neurological disease. The hallmark of epilepsy is recurrent, unprovoked seizures. Unfortunately, drug resistance is frequent in patients with epilepsy, and therefore improved therapeutic strategies are needed. In the present study, we tested the effect of pregabalin in association with beta-caryophyllene, an FDA-approved food additive and naturally occurring agonist of cannabinoid receptor subtype 2 against pentylenetetrazol (PTZ)-induced seizures in rats. In addition, selected neurochemical parameters were evaluated in the cerebral cortex. Adult male Wistar rats received beta-caryophyllene (100 mg/kg), pregabalin (40 mg/kg) or their combination before PTZ (60 mg/kg). Appropriated vehicle-treated control groups were included for each treatment. Animals were monitored by video-EEG and the latency to myoclonic seizures, latency to tonic-clonic seizures, tonic-clonic seizure duration and overall seizure score were measured. Glial fibrillary acidic protein (GFAP) release, erythroid-related factor 2 (Nrf2), c-fos and 3-nitrotyrosine (3-NT) levels were evaluated in the frontal cortex. We found that beta-caryophyllene plus pregabalin increased the latency to PTZ-induced myoclonic and tonic-clonic seizures and decreased the tonic-clonic seizure duration and overall seizure score. Interestingly, lower levels of GFAP, c-Fos and 3-NT were observed in animals receiving beta-caryophyllene and pregabalin treatments. Our results suggest a possible synergic effect of beta-caryophyllene plus pregabalin against PTZ induced-seizures.
Collapse
Affiliation(s)
| | - Bruna Neuberger
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil.
| | | | | | | | | |
Collapse
|
9
|
Hu P, Wu D, Zang YY, Wang Y, Zhou YP, Qiao F, Teng XY, Chen J, Li QQ, Sun JH, Liu T, Feng HY, Zhou QG, Shi YS, Xu Z. A novel LGI1 mutation causing autosomal dominant lateral temporal lobe epilepsy confirmed by a precise knock-in mouse model. CNS Neurosci Ther 2021; 28:237-246. [PMID: 34767694 PMCID: PMC8739050 DOI: 10.1111/cns.13761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022] Open
Abstract
AIMS This study aimed to explore the pathomechanism of a mutation on the leucine-rich glioma inactivated 1 gene (LGI1) identified in a family having autosomal dominant lateral temporal lobe epilepsy (ADLTE), using a precise knock-in mouse model. METHODS AND RESULTS A novel LGI1 mutation, c.152A>G; p. Asp51Gly, was identified by whole exome sequencing in a Chinese family with ADLTE. The pathomechanism of the mutation was explored by generating Lgi1D51G knock-in mice that precisely phenocopied the epileptic symptoms of human patients. The Lgi1D51G / D51G mice showed spontaneous recurrent generalized seizures and premature death. The Lgi1D51G /+ mice had partial epilepsy, with half of them displaying epileptiform discharges on electroencephalography. They also showed enhanced sensitivity to the convulsant agent pentylenetetrazole. Mechanistically, the secretion of Lgi1 was impaired in the brain of the D51G knock-in mice and the protein level was drastically reduced. Moreover, the antiepileptic drugs, carbamazepine, oxcarbazepine, and sodium valproate, could prolong the survival time of Lgi1D51G / D51G mice, and oxcarbazepine appeared to be the most effective. CONCLUSIONS We identified a novel epilepsy-causing mutation of LGI1 in humans. The Lgi1D51G /+ mouse model, precisely phenocopying epileptic symptoms of human patients, could be a useful tool in future studies on the pathogenesis and potential therapies for epilepsy.
Collapse
Affiliation(s)
- Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health care Hospital, Nanjing, China
| | - Dan Wu
- Minister of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, National Resource for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yan-Yu Zang
- Minister of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, National Resource for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health care Hospital, Nanjing, China
| | - Ya-Ping Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Fengchang Qiao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health care Hospital, Nanjing, China
| | - Xiao-Yu Teng
- Minister of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, National Resource for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Jiang Chen
- Minister of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, National Resource for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Qing-Qing Li
- Minister of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, National Resource for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Jia-Hui Sun
- Minister of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, National Resource for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - TingTing Liu
- Minister of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, National Resource for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Hao-Yang Feng
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health care Hospital, Nanjing, China
| | - Qi-Gang Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yun Stone Shi
- Minister of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, National Resource for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health care Hospital, Nanjing, China
| |
Collapse
|
10
|
Yousfan A, Rubio N, Al-Ali M, Nattouf AH, Kafa H. Intranasal delivery of phenytoin-loaded nanoparticles to the brain suppresses pentylenetetrazol-induced generalized tonic clonic seizures in an epilepsy mouse model. Biomater Sci 2021; 9:7547-7564. [PMID: 34652351 DOI: 10.1039/d1bm01251g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we describe the preparation and characterization of lecithin-chitosan nanoparticles (L10Ci+), and investigate their ability to deliver the anti-epileptic drug phenytoin (PHT) to mouse brain following intranasal (IN) administration. L10Ci+ were retained in the nasal cavity compared to PHT in PEG200 solution (PHT/PEG), which suffered immediate nasal drainage. PHT was detected in the brain after 5 min of IN administration reaching a maximum of 11.84 ± 2.31 %ID g-1 after 48 hours. L10Ci+ were associated with a higher brain/plasma ratio (Cb/p) compared to the experimental control comprising free PHT injected via the intraperitoneal route (PHT-IP) across all tested time points. Additionally, L10Ci+ led to lower PHT accumulation in the liver and spleen compared to PHT-IP, which is vital for lowering the systemic side effects of PHT. The relatively high drug targeting efficiency (DTE%) of 315.46% and the drug targeting percentage (DTP%) of 68.29%, combined with the increasing anterior-to-posterior gradient of PHT in the brain confirmed the direct nose-to-brain transport of PHT from L10Ci+. Electroencephalogram (EEG) analysis was used to monitor seizure progression. L10Ci+ resulted in a complete seizure suppression after 4 hours of administration, and this inhibition persisted even with an 8-fold reduction of the encapsulated dose compared to the required PHT-IP dose to achieve a similar inhibitory effect due to systemic loss. The presented findings confirm the possibility of using L10Ci+ as a non-invasive delivery system of PHT for the management of epilepsy using reduced doses of PHT.
Collapse
Affiliation(s)
- Amal Yousfan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Syria
| | - Noelia Rubio
- Department of Chemistry and Materials, Imperial College London, SW7 2AZ, UK
| | - Mohammad Al-Ali
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria.
| | - Abdul Hakim Nattouf
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Syria
| | - Houmam Kafa
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria.
| |
Collapse
|
11
|
Sears SMS, Roberts SH, Hewett SJ. Hyperexcitability and brain morphological differences in mice lacking the cystine/glutamate antiporter, system x c. J Neurosci Res 2021; 99:3339-3353. [PMID: 34747522 DOI: 10.1002/jnr.24971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 01/17/2023]
Abstract
System xc - (Sxc - ) is a heteromeric antiporter (L-cystine/L-glutamate exchanger) expressed predominately on astrocytes in the central nervous system. Its activity contributes importantly to the maintenance of the ambient extracellular glutamate levels, as well as, to cellular redox homeostasis. Since alterations in glutamate levels and redox modifications could cause structural changes, we analyzed gross regional morphology of thionin-stained brain sections and cellular and subcellular morphology of Golgi-Cox stained layer V pyramidal neurons in the primary motor cortex (PM1) of mice naturally null for SLC7A11 (SLC7A11sut/sut )-the gene that encodes the substrate specific light chain (xCT) for Sxc - . Intriguingly, in comparison to age- and sex-matched wild-type (SLC7A11+/+ ) littermate controls, we found morphologic changes-including increased dendritic complexity and mushroom spine area in males and reduced corpus callosum and soma size in females-that have previously been described, in each case, as morphological correlates of excitability. Consistent with this, we found that both male and female SLC7A11sut/sut mice had lower convulsive seizure thresholds and greater seizure severity than their sex-matched wild-type (SLC7A11+/+ ) littermates after acute challenge with two pharmacologically distinct chemoconvulsants: the Glu receptor agonist, kainic acid (KA), or the GABAA receptor antagonist, pentylenetetrazole (PTZ). These results suggest that the loss of Sxc - signaling in males and females perturbs excitatory/inhibitory (E/I) balance in vivo, potentially through its regulation of cellular and subcellular morphology.
Collapse
Affiliation(s)
- Sheila M S Sears
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York, USA
| | - Sarah H Roberts
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York, USA
| | - Sandra J Hewett
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
12
|
Multimodal electrophysiological analyses reveal that reduced synaptic excitatory neurotransmission underlies seizures in a model of NMDAR antibody-mediated encephalitis. Commun Biol 2021; 4:1106. [PMID: 34545200 PMCID: PMC8452639 DOI: 10.1038/s42003-021-02635-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022] Open
Abstract
Seizures are a prominent feature in N-Methyl-D-Aspartate receptor antibody (NMDAR antibody) encephalitis, a distinct neuro-immunological disorder in which specific human autoantibodies bind and crosslink the surface of NMDAR proteins thereby causing internalization and a state of NMDAR hypofunction. To further understand ictogenesis in this disorder, and to test a potential treatment compound, we developed an NMDAR antibody mediated rat seizure model that displays spontaneous epileptiform activity in vivo and in vitro. Using a combination of electrophysiological and dynamic causal modelling techniques we show that, contrary to expectation, reduction of synaptic excitatory, but not inhibitory, neurotransmission underlies the ictal events through alterations in the dynamical behaviour of microcircuits in brain tissue. Moreover, in vitro application of a neurosteroid, pregnenolone sulphate, that upregulates NMDARs, reduced established ictal activity. This proof-of-concept study highlights the complexity of circuit disturbances that may lead to seizures and the potential use of receptor-specific treatments in antibody-mediated seizures and epilepsy.
Collapse
|
13
|
Carver CM, DeWitt HR, Stoja AP, Shapiro MS. Blockade of TRPC Channels Limits Cholinergic-Driven Hyperexcitability and Seizure Susceptibility After Traumatic Brain Injury. Front Neurosci 2021; 15:681144. [PMID: 34489621 PMCID: PMC8416999 DOI: 10.3389/fnins.2021.681144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
We investigated the contribution of excitatory transient receptor potential canonical (TRPC) cation channels to posttraumatic hyperexcitability in the brain 7 days following controlled cortical impact model of traumatic brain injury (TBI) to the parietal cortex in male adult mice. We investigated if TRPC1/TRPC4/TRPC5 channel expression is upregulated in excitatory neurons after TBI in contribution to epileptogenic hyperexcitability in key hippocampal and cortical circuits that have substantial cholinergic innervation. This was tested by measuring TRPC1/TRPC4/TRPC5 protein and messenger RNA (mRNA) expression, assays of cholinergic function, neuronal Ca2+ imaging in brain slices, and seizure susceptibility after TBI. We found region-specific increases in expression of TRPC1, TRPC4, and TRPC5 subunits in the hippocampus and cortex following TBI. The dentate gyrus, CA3 region, and cortex all exhibited robust upregulation of TRPC4 mRNA and protein. TBI increased cFos activity in dentate gyrus granule cells (DGGCs) and layer 5 pyramidal neurons both at the time of TBI and 7 days post-TBI. DGGCs displayed greater magnitude and duration of acetylcholine-induced rises in intracellular Ca2+ in brain slices from mice subjected to TBI. The TBI mice also exhibited greater seizure susceptibility in response to pentylenetetrazol-induced kindling. Blockade of TRPC4/TRPC5 channels with M084 reduced neuronal hyperexcitation and impeded epileptogenic progression of kindling. We observed that the time-dependent upregulation of TRPC4/TRPC5-containing channels alters cholinergic responses and activity of principal neurons acting to increase proexcitatory sensitivity. The underlying mechanism includes acutely decreased acetylcholinesterase function, resulting in greater Gq/11-coupled muscarinic receptor activation of TRPC channels. Overall, our evidence suggests that TBI-induced plasticity of TRPC channels strongly contributes to overt hyperexcitability and primes the hippocampus and cortex for seizures.
Collapse
Affiliation(s)
- Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Haley R DeWitt
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Aiola P Stoja
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Mark S Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
14
|
Huang W, Ke Y, Zhu J, Liu S, Cong J, Ye H, Guo Y, Wang K, Zhang Z, Meng W, Gao TM, Luhmann HJ, Kilb W, Chen R. TRESK channel contributes to depolarization-induced shunting inhibition and modulates epileptic seizures. Cell Rep 2021; 36:109404. [PMID: 34289346 DOI: 10.1016/j.celrep.2021.109404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/19/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022] Open
Abstract
Glutamatergic and GABAergic synaptic transmission controls excitation and inhibition of postsynaptic neurons, whereas activity of ion channels modulates neuronal intrinsic excitability. However, it is unclear how excessive neuronal excitation affects intrinsic inhibition to regain homeostatic stability under physiological or pathophysiological conditions. Here, we report that a seizure-like sustained depolarization can induce short-term inhibition of hippocampal CA3 neurons via a mechanism of membrane shunting. This depolarization-induced shunting inhibition (DShI) mediates a non-synaptic, but neuronal intrinsic, short-term plasticity that is able to suppress action potential generation and postsynaptic responses by activated ionotropic receptors. We demonstrate that the TRESK channel significantly contributes to DShI. Disruption of DShI by genetic knockout of TRESK exacerbates the sensitivity and severity of epileptic seizures of mice, whereas overexpression of TRESK attenuates seizures. In summary, these results uncover a type of homeostatic intrinsic plasticity and its underlying mechanism. TRESK might represent a therapeutic target for antiepileptic drugs.
Collapse
Affiliation(s)
- Weiyuan Huang
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Ke
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianping Zhu
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuai Liu
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin Cong
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hailin Ye
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanwu Guo
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Kewan Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenhai Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Center for Precision Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510030, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tian-Ming Gao
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Collaborative Innovation Center for Brain Science, Southern Medical University, Guangzhou 510515, China
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz 55120, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz 55120, Germany.
| | - Rongqing Chen
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
15
|
Neuroprotective effect of both synbiotics and ketogenic diet in a pentylenetetrazol-induced acute seizure murine model. Epilepsy Res 2021; 174:106668. [PMID: 34020148 DOI: 10.1016/j.eplepsyres.2021.106668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE We aimed to maximize the efficacy of both ketogenic diet (KD) and other treatments to protect brain from acute seizure. METHODS L. fermentum MSK 408 strain, galactooligosaccharide (GOS), and L. fermentum MSK 408 with GOS were administered with two different diets for 8 weeks. To reveal the relationships among gut microbiota, fecal short-chain fatty acids (SCFAs) and brain related action against pentylenetetrazole (PTZ)-induced kindling, qPCR, NGS, and GC-MS analyses were used. RESULTS KD administration significantly reduced PTZ-induced seizure through reducing cell damage in the specific part of the brain; this effect was not interrupted by co-administration of synbiotics. Additionally, the synbiotic-treated normal diet (ND) group showed reduced seizure-related scores. SCFA concentrations of both KDs and ND with synbiotics (NDS) were dramatically reduced compared to those with NDs. Interestingly, NDS group showed independently different SCFAs ratios compared to both ND and KD group, possibly related to a reduction in seizure symptoms compared with that by KD groups. The gut microbiota modulation by KD suggested that the gut microbiota aids the host in generating energy, thus increase the usage of SCFAs such as butyrate and acetate. SIGNIFICANCE The results suggest that KD could reduce PTZ-induced seizures through modulating various factors such as the neuroendocrine system, brain protection, gut microbiota, fecal SCFAs, and gene expression in the gut and brain. Additionally, synbiotic treatment with KD could be a better method to reduce the side effects of KD without interrupting its anti-seizure effect. However, ND with synbiotics seizure reducing effect requires further analysis.
Collapse
|
16
|
Sinha P, Verma B, Ganesh S. Trehalose Ameliorates Seizure Susceptibility in Lafora Disease Mouse Models by Suppressing Neuroinflammation and Endoplasmic Reticulum Stress. Mol Neurobiol 2021; 58:1088-1101. [PMID: 33094475 DOI: 10.1007/s12035-020-02170-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Lafora disease (LD) is one of the progressive and fatal forms of a neurodegenerative disorder and is characterized by teenage-onset myoclonic seizures. Neuropathological changes in LD include the formation of abnormal glycogen as Lafora bodies, gliosis, and neuroinflammation. LD is caused by defects in the gene coding for phosphatase (laforin) or ubiquitin ligase (malin). Mouse models of LD, developed by targeted disruption of these two genes, develop most symptoms of LD and show increased susceptibility to induced seizures. Studies on mouse models also suggest that defective autophagy might contribute to LD etiology. In an attempt to understand the specific role of autophagy in LD pathogenesis, in this study, we fed LD animals with trehalose, an inducer of autophagy, for 3 months and looked at its effect on the neuropathology and seizure susceptibility. We demonstrate here that trehalose ameliorates gliosis, neuroinflammation, and endoplasmic reticulum stress and reduces susceptibility to induced seizures in LD animals. However, trehalose did not affect the formation of Lafora bodies, suggesting the epileptic phenotype in LD could be either secondary to or independent of Lafora bodies. Taken together, our results suggest that autophagy inducers can be considered as potential therapeutic molecules for Lafora disease.
Collapse
Affiliation(s)
- Priyanka Sinha
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Bhupender Verma
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India.
| |
Collapse
|
17
|
Weston MC. A tRNA Variant Translates Into Seizure Resistance. Epilepsy Curr 2021; 21:126-128. [PMID: 34025291 PMCID: PMC8010880 DOI: 10.1177/1535759721990043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Expression of the Neuronal tRNA n-Tr20 Regulates Synaptic Transmission and Seizure Susceptibility Kapur M, Ganguly A, Nagy G, Adamson SI, Chuang JH, Frankel WN, Ackerman SL. Neuron. 2020;108(1):193-208. e9. doi:10.1016/j.neuron.2020.07.023; PMID: 32853550; PMCID: PMC7572898 The mammalian genome has hundreds of nuclear-encoded tRNAs, but the contribution of individual tRNA genes to cellular and organismal function remains unknown. Here, we demonstrate that mutations in a neuronally enriched arginine tRNA, n-Tr20, increased seizure threshold and altered synaptic transmission. n-Tr20 expression also modulated seizures caused by an epilepsy-linked mutation in Gabrg2, a gene encoding a GABAA receptor subunit. Loss of n-Tr20 altered translation initiation by activating the integrated stress response and suppressing mTOR signaling, the latter of which may contribute to altered neurotransmission in mutant mice. Deletion of a highly expressed isoleucine tRNA similarly altered these signaling pathways in the brain, suggesting that regulation of translation initiation is a conserved response to tRNA loss. Our data indicate that loss of a single member of a tRNA family results in multiple cellular phenotypes, highlighting the disease-causing potential of tRNA mutations.
Collapse
|
18
|
Jeon SJ, Ham J, Park CS, Lee B. Susceptibility of pentylenetetrazole-induced seizures in mice with Cereblon gene knockout. BMB Rep 2020. [PMID: 32843131 PMCID: PMC7526979 DOI: 10.5483/bmbrep.2020.53.9.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Epilepsy is a neurological disorder characterized by unpredictable seizures,
which are bursts of electrical activity that tempo-rarily affect the brain.
Cereblon (CRBN), a DCAFs (DDB1 and
CUL4associated factors),
is a well-established protein associated with human mental retardation. Being a
substrate receptor of the cullin-RING E3 ubiquitin ligase (CRL) 4 complex, CRBN
mediates ubiquitination of several substrates and conducts multiple biological
processes. In the central nervous system, the large-conductance
Ca2+-activated K+ (BKCa) channel, which is the
substrate of CRBN, is an important regulator of epilepsy. Despite the functional
role and importance of CRBN in the brain, di-rect injection of
pentylenetetrazole (PTZ) to induce seizures in CRBN knock-out mice has not been
challenged. In this study, we investigated the effect of PTZ in CRBN knock-out
mice. Here, we demonstrate that, compared with WT mice, CRBN knock-out mice do
not show the intensification of seizures by PTZ induction. Moreover,
electroencephalography recordings were also performed in the brains of both WT
and CRBN knockout mice to identify the absence of significant differences in the
pattern of seizure activities. Consistently, immunoblot analysis for validating
the protein level of the CRL4 complex containing CRBN (CRL4Crbn) in
the mouse brain was carried out. Taken together, we found that the deficiency of
CRBN does not affect PTZ-induced seizure.
Collapse
Affiliation(s)
- Seung-Je Jeon
- School of Life Sciences and Integrated Institute of Biomedical Research (IIBR), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Jinsil Ham
- Department of Biomedical Science and Engineering (BMSE), Institute of Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Chul-Seung Park
- School of Life Sciences and Integrated Institute of Biomedical Research (IIBR), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Boreom Lee
- Department of Biomedical Science and Engineering (BMSE), Institute of Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
19
|
Lee M, Liu YC, Chen C, Lu CH, Lu ST, Huang TN, Hsu MT, Hsueh YP, Cheng PL. Ecm29-mediated proteasomal distribution modulates excitatory GABA responses in the developing brain. J Cell Biol 2020; 219:133566. [PMID: 31910261 PMCID: PMC7041676 DOI: 10.1083/jcb.201903033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/14/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Neuronal GABAergic responses switch from excitatory to inhibitory at an early postnatal period in rodents. The timing of this switch is controlled by intracellular Cl− concentrations, but factors determining local levels of cation-chloride cotransporters remain elusive. Here, we report that local abundance of the chloride importer NKCC1 and timely emergence of GABAergic inhibition are modulated by proteasome distribution, which is mediated through interactions of proteasomes with the adaptor Ecm29 and the axon initial segment (AIS) scaffold protein ankyrin G. Mechanistically, both the Ecm29 N-terminal domain and an intact AIS structure are required for transport and tethering of proteasomes in the AIS region. In mice, Ecm29 knockout (KO) in neurons increases the density of NKCC1 protein in the AIS region, a change that positively correlates with a delay in the GABAergic response switch. Phenotypically, Ecm29 KO mice showed increased firing frequency of action potentials at early postnatal ages and were hypersusceptible to chemically induced convulsive seizures. Finally, Ecm29 KO neurons exhibited accelerated AIS developmental positioning, reflecting a perturbed AIS morphological plastic response to hyperexcitability arising from proteasome inhibition, a phenotype rescued by ectopic Ecm29 expression or NKCC1 inhibition. Together, our findings support the idea that neuronal maturation requires regulation of proteasomal distribution controlled by Ecm29.
Collapse
Affiliation(s)
- Min Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yen-Chen Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chen Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Huan Lu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shao-Tzu Lu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Tzyy-Nan Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Meng-Tsung Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Pei-Lin Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
20
|
Gu B, Shorter JR, Williams LH, Bell TA, Hock P, Dalton KA, Pan Y, Miller DR, Shaw GD, Philpot BD, Pardo-Manuel de Villena F. Collaborative Cross mice reveal extreme epilepsy phenotypes and genetic loci for seizure susceptibility. Epilepsia 2020; 61:2010-2021. [PMID: 32852103 DOI: 10.1111/epi.16617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Animal studies remain essential for understanding mechanisms of epilepsy and identifying new therapeutic targets. However, existing animal models of epilepsy do not reflect the high level of genetic diversity found in the human population. The Collaborative Cross (CC) population is a genetically diverse recombinant inbred panel of mice. The CC offers large genotypic and phenotypic diversity, inbred strains with stable genomes that allow for repeated phenotypic measurements, and genomic tools including whole genome sequence to identify candidate genes and candidate variants. METHODS We evaluated multiple complex epileptic traits in a sampling of 35 CC inbred strains using the flurothyl-induced seizure and kindling paradigm. We created an F2 population of 297 mice with extreme seizure susceptibility and performed quantitative trait loci (QTL) mapping to identify genomic regions associated with seizure sensitivity. We used quantitative RNA sequencing from CC hippocampal tissue to identify candidate genes and whole genome sequence to identify genetic variants likely affecting gene expression. RESULTS We identified new mouse models with extreme seizure susceptibility, seizure propagation, epileptogenesis, and SUDEP (sudden unexpected death in epilepsy). We performed QTL mapping and identified one known and seven novel loci associated with seizure sensitivity. We combined whole genome sequencing and hippocampal gene expression to pinpoint biologically plausible candidate genes (eg, Gabra2) and variants associated with seizure sensitivity. SIGNIFICANCE New mouse models of epilepsy are needed to better understand the complex genetic architecture of seizures and to identify therapeutics. We performed a phenotypic screen utilizing a novel genetic reference population of CC mice. The data we provide enable the identification of protective/risk genes and novel molecular mechanisms linked to complex seizure traits that are currently challenging to study and treat.
Collapse
Affiliation(s)
- Bin Gu
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.,Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - John R Shorter
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA.,Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services, Copenhagen, Denmark.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Lucy H Williams
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Katherine A Dalton
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Yiyun Pan
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Darla R Miller
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin D Philpot
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.,Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA.,Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Kapur M, Ganguly A, Nagy G, Adamson SI, Chuang JH, Frankel WN, Ackerman SL. Expression of the Neuronal tRNA n-Tr20 Regulates Synaptic Transmission and Seizure Susceptibility. Neuron 2020; 108:193-208.e9. [PMID: 32853550 DOI: 10.1016/j.neuron.2020.07.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/07/2020] [Accepted: 07/19/2020] [Indexed: 12/31/2022]
Abstract
The mammalian genome has hundreds of nuclear-encoded tRNAs, but the contribution of individual tRNA genes to cellular and organismal function remains unknown. Here, we demonstrate that mutations in a neuronally enriched arginine tRNA, n-Tr20, increased seizure threshold and altered synaptic transmission. n-Tr20 expression also modulated seizures caused by an epilepsy-linked mutation in Gabrg2, a gene encoding a GABAA receptor subunit. Loss of n-Tr20 altered translation initiation by activating the integrated stress response and suppressing mTOR signaling, the latter of which may contribute to altered neurotransmission in mutant mice. Deletion of a highly expressed isoleucine tRNA similarly altered these signaling pathways in the brain, suggesting that regulation of translation initiation is a conserved response to tRNA loss. Our data indicate that loss of a single member of a tRNA family results in multiple cellular phenotypes, highlighting the disease-causing potential of tRNA mutations.
Collapse
Affiliation(s)
- Mridu Kapur
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Archan Ganguly
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gabor Nagy
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Scott I Adamson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Wayne N Frankel
- Institute for Genomic Medicine, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Liu M, Jiang L, Wen M, Ke Y, Tong X, Huang W, Chen R. Microglia depletion exacerbates acute seizures and hippocampal neuronal degeneration in mouse models of epilepsy. Am J Physiol Cell Physiol 2020; 319:C605-C610. [PMID: 32783655 DOI: 10.1152/ajpcell.00205.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Epileptic seizures are the manifestation of hypersynchronous and excessive neuronal excitation. While the glutamatergic and GABAergic neurons play major roles in shaping fast neuronal excitation/inhibition homeostasis, it is well illustrated that astrocytes profoundly regulate neuronal excitation by controlling glutamate, GABA, cannabinoids, adenosine, and concentration of K+ around neurons. However, little is known about whether microglia take part in the regulation of acute neuronal excitation and ongoing epileptic behaviors. We proposed that if microglia are innately ready to respond to epileptic overexcitation, depletion of microglia might alter neuronal excitability and severity of acute epileptic seizures. We found that microglia depletion by plx3397, an inhibitor of CSF1R, exacerbates seizure severity and excitotoxicity-induced neuronal degeneration, indicating that microglia are rapidly responsive to the change of excitation/inhibition homeostasis and participate in the protection of neurons from overexcitation.
Collapse
Affiliation(s)
- Mei Liu
- Department of Neurobiology, Guangdong Province Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lijuan Jiang
- Department of Neurobiology, Guangdong Province Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Min Wen
- Department of Neurobiology, Guangdong Province Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yue Ke
- Department of Neurobiology, Guangdong Province Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiangzhen Tong
- Department of Neurobiology, Guangdong Province Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weiyuan Huang
- Department of Neurobiology, Guangdong Province Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rongqing Chen
- Department of Neurobiology, Guangdong Province Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Mice Lacking Connective Tissue Growth Factor in the Forebrain Exhibit Delayed Seizure Response, Reduced C-Fos Expression and Different Microglial Phenotype Following Acute PTZ Injection. Int J Mol Sci 2020; 21:ijms21144921. [PMID: 32664674 PMCID: PMC7404259 DOI: 10.3390/ijms21144921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 01/03/2023] Open
Abstract
Connective tissue growth factor (CTGF) plays important roles in the development and regeneration of the connective tissue, yet its function in the nervous system is still not clear. CTGF is expressed in some distinct regions of the brain, including the dorsal endopiriform nucleus (DEPN) which has been recognized as an epileptogenic zone. We generated a forebrain-specific Ctgf knockout (FbCtgf KO) mouse line in which the expression of Ctgf in the DEPN is eliminated. In this study, we adopted a pentylenetetrazole (PTZ)-induced seizure model and found similar severity and latencies to death between FbCtgf KO and WT mice. Interestingly, there was a delay in the seizure reactions in the mutant mice. We further observed reduced c-fos expression subsequent to PTZ treatment in the KO mice, especially in the hippocampus. While the densities of astrocytes and microglia in the hippocampus were kept constant after acute PTZ treatment, microglial morphology was different between genotypes. Our present study demonstrated that in the FbCtgf KO mice, PTZ failed to increase neuronal activity and microglial response in the hippocampus. Our results suggested that inhibition of Ctgf function may have a therapeutic potential in preventing the pathophysiology of epilepsy.
Collapse
|
24
|
Shen W, Ba R, Su Y, Ni Y, Chen D, Xie W, Pleasure SJ, Zhao C. Foxg1 Regulates the Postnatal Development of Cortical Interneurons. Cereb Cortex 2020; 29:1547-1560. [PMID: 29912324 DOI: 10.1093/cercor/bhy051] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/23/2018] [Accepted: 02/15/2018] [Indexed: 12/12/2022] Open
Abstract
Abnormalities in cortical interneurons are closely associated with neurological diseases. Most patients with Foxg1 syndrome experience seizures, suggesting a possible role of Foxg1 in the cortical interneuron development. Here, by conditional deletion of Foxg1, which was achieved by crossing Foxg1fl/fl with the Gad2-CreER line, we found the postnatal distributions of somatostatin-, calretinin-, and neuropeptide Y-positive interneurons in the cortex were impaired. Further investigations revealed an enhanced dendritic complexity and decreased migration capacity of Foxg1-deficient interneurons, accompanied by remarkable downregulation of Dlx1 and CXCR4. Overexpression of Dlx1 or knock down its downstream Pak3 rescued the differentiation detects, demonstrated that Foxg1 functioned upstream of Dlx1-Pak3 signal pathway to regulate the postnatal development of cortical interneurons. Due to the imbalanced neural circuit, Foxg1 mutants showed increased seizure susceptibility. These findings will improve our understanding of the postnatal development of interneurons and help to elucidate the mechanisms underlying seizure in patients carrying Foxg1 mutations.
Collapse
Affiliation(s)
- Wei Shen
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Ru Ba
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Yan Su
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Yang Ni
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Dongsheng Chen
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, P. R. China
| | - Wei Xie
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Institute of Life Science, Southeast University, Nanjing, P. R. China
| | - Samuel J Pleasure
- Department of Neurology, Weill Institute for Neuroscience, Programs in Neuroscience and Developmental Stem Cell Biology, UCSF, San Francisco, CA, USA
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, P. R. China.,Center of Depression, Beijing Institute for Brain Disorders, Beijing 100069, People's Republic of China
| |
Collapse
|
25
|
He M, Jiang X, Zou Z, Qin X, Zhang S, Guo Y, Wang X, Tian X, Chen C. Exposure to carbon black nanoparticles increases seizure susceptibility in male mice. Nanotoxicology 2020; 14:595-611. [PMID: 32091294 DOI: 10.1080/17435390.2020.1728412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Carbon black nanoparticles (CBNPs) can enter the central nervous system through blood circulation and olfactory nerves, affecting brain development or increasing neurological disease susceptibility. However, whether CBNPs exposure affects seizure is unclear. Herein, mice were exposed to two different doses of CBNPs (21 and 103 μg/animal) based on previous studies and the maximum exposure limitation (4 mg/m3) in occupational workplaces set by the Chinese government. In the pentylenetetrazol (PTZ) and kainic acid (KA) seizure models, high-dose CBNPs exposure increased seizure susceptibility in both models and increased spontaneous recurrent seizure (SRS) frequency in the KA model. In vivo local field potential (LFP) recording in KA model mice revealed that both low-dose and high-dose CBNPs exposure increased seizure-like event (SLE) frequency in the SRS interval but shortened SLE duration. Intriguingly, H&E staining and Nissl staining on brain tissue revealed that CBNPs exposure did not cause significant brain tissue morphology or neuronal damage. Detection of inflammatory factors, such as TNF-α, TGF-β1, IL-1β, and IL-6, in brain tissue showed that only high dose of CBNPs exposure increased the expression of cortical TGF-β1. By using the primary cultured neurons, we observed that CBNPs exposure not only significantly decreased the expression of the neuronal marker MAP2 but also enhanced the levels of action potential frequency in the neurons. In general, CBNPs exposure can affect abnormal epileptic discharges during the seizure interval and enhance susceptibility to frequent seizures. Our findings suggest that minimizing CBNPs exposure may be a potential way to prevent or ease seizure.
Collapse
Affiliation(s)
- Miaoqing He
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Chinese Institute for Brain Research, Peking University, Beijing, China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Dongsheng Lung-Brain Diseases Joint Lab, Chongqing Medical University, Chongqing, China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shanshan Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yi Guo
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xuefeng Wang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xin Tian
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Chengzhi Chen
- Dongsheng Lung-Brain Diseases Joint Lab, Chongqing Medical University, Chongqing, China.,Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Impaired motor skill learning and altered seizure susceptibility in mice with loss or gain of function of the Kcnt1 gene encoding Slack (K Na1.1) Na +-activated K + channels. Sci Rep 2020; 10:3213. [PMID: 32081855 PMCID: PMC7035262 DOI: 10.1038/s41598-020-60028-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/03/2020] [Indexed: 12/23/2022] Open
Abstract
Gain-of-function mutations in KCNT1, the gene encoding Slack (KNa1.1) channels, result in epilepsy of infancy with migrating focal seizures (EIMFS) and several other forms of epilepsy associated with severe intellectual disability. We have generated a mouse model of this condition by replacing the wild type gene with one encoding Kcnt1R455H, a cytoplasmic C-terminal mutation homologous to a human R474H variant that results in EIMFS. We compared behavior patterns and seizure activity in these mice with those of wild type mice and Kcnt1-/- mice. Complete loss of Kcnt1 produced deficits in open field behavior and motor skill learning. Although their thresholds for electrically and chemically induced seizures were similar to those of wild type animals, Kcnt1-/- mice were significantly protected from death after maximum electroshock-induced seizures. In contrast, homozygous Kcnt1R455H/R455H mice were embryonic lethal. Video-EEG monitoring of heterozygous Kcnt1+/R455H animals revealed persistent interictal spikes, spontaneous seizures and a substantially decreased threshold for pentylenetetrazole-induced seizures. Surprisingly, Kcnt1+/R455H mice were not impaired in tasks of exploratory behavior or procedural motor learning. These findings provide an animal model for EIMFS and suggest that Slack channels are required for the development of procedural learning and of pathways that link cortical seizures to other regions required for animal survival.
Collapse
|
27
|
Shuto T, Kuroiwa M, Sotogaku N, Kawahara Y, Oh YS, Jang JH, Shin CH, Ohnishi YN, Hanada Y, Miyakawa T, Kim Y, Greengard P, Nishi A. Obligatory roles of dopamine D1 receptors in the dentate gyrus in antidepressant actions of a selective serotonin reuptake inhibitor, fluoxetine. Mol Psychiatry 2020; 25:1229-1244. [PMID: 30531938 PMCID: PMC7244404 DOI: 10.1038/s41380-018-0316-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 10/10/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022]
Abstract
Depression is a leading cause of disability. Current pharmacological treatment of depression is insufficient, and development of improved treatments especially for treatment-resistant depression is desired. Understanding the neurobiology of antidepressant actions may lead to development of improved therapeutic approaches. Here, we demonstrate that dopamine D1 receptors in the dentate gyrus act as a pivotal mediator of antidepressant actions in mice. Chronic administration of a selective serotonin reuptake inhibitor (SSRI), fluoxetine, increases D1 receptor expression in mature granule cells in the dentate gyrus. The increased D1 receptor signaling, in turn, contributes to the actions of chronic fluoxetine treatment, such as suppression of acute stress-evoked serotonin release, stimulation of adult neurogenesis and behavioral improvement. Importantly, under severely stressed conditions, chronic administration of a D1 receptor agonist in conjunction with fluoxetine restores the efficacy of fluoxetine actions on D1 receptor expression and behavioral responses. Thus, our results suggest that stimulation of D1 receptors in the dentate gyrus is a potential adjunctive approach to improve therapeutic efficacy of SSRI antidepressants.
Collapse
Affiliation(s)
- Takahide Shuto
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Mahomi Kuroiwa
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Naoki Sotogaku
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Yukie Kawahara
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Yong-Seok Oh
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA ,0000 0004 0438 6721grid.417736.0Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Jin-Hyeok Jang
- 0000 0004 0438 6721grid.417736.0Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Chang-Hoon Shin
- 0000 0004 0438 6721grid.417736.0Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Yoshinori N. Ohnishi
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Yuuki Hanada
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Tsuyoshi Miyakawa
- 0000 0004 1761 798Xgrid.256115.4Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Yong Kim
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA
| | - Paul Greengard
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan. .,Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
28
|
Copping NA, Adhikari A, Petkova SP, Silverman JL. Genetic backgrounds have unique seizure response profiles and behavioral outcomes following convulsant administration. Epilepsy Behav 2019; 101:106547. [PMID: 31698263 PMCID: PMC6901115 DOI: 10.1016/j.yebeh.2019.106547] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 01/16/2023]
Abstract
Three highly utilized strains of mice, common for preclinical genetic studies, were evaluated for seizure susceptibility and behavioral outcomes common to the clinical phenotypes of numerous psychiatric disorders following repeated low-dose treatment with either a gamma-aminobutyric acid (GABA) receptor antagonist (pentylenetetrazole (PTZ)) or a glutamate agonist (kainic acid (KA)). Effects of strain and treatment were evaluated with classic seizure scoring and a tailored behavior battery focused on behavioral domains common in neuropsychiatric research: learning and memory, social behavior, and motor abilities, as well as seizure susceptibility and/or resistance. Seizure response was induced by a single daily treatment of either PTZ (30 mg/kg, intraperitoneally (i.p.)) or KA (5 mg/kg, i.p.) for 10 days. Pentylenetetrazole-treated FVB/NJ and C57BL/6NJ strains of mice showed strong, clear seizure responses. This also resulted in cognitive and social deficits, and increased susceptibility to a high dose of PTZ. Kainic acid-treated FVB/NJ and C57BL/6NJ strains of mice had a robust seizure response, which resulted in hyperactivity. Pentylenetetrazole-treated C57BL/6J mice demonstrated mild hyperactivity, while KA-treated C57BL/6J displayed cognitive deficits and resistance to a high dose of KA but no social deficits. Overall, a uniquely different seizure response profile was detected in the C57BL/6J strain with few observable instances of seizure response despite repeated convulsant administration by two mechanisms. This work illustrated that differing background genetic strains have unique seizure susceptibility profiles and distinct social and cognitive behavior following PTZ and/or KA treatment and that it is, therefore, necessary to consider strain differences before attributing behavioral phenotypes to gene(s) of interest during preclinical evaluations of genetic mouse models, especially when outcome measures are focused on cognitive and/or social behaviors common to the clinical features of numerous neurological disorders.
Collapse
Affiliation(s)
- Nycole Ashley Copping
- University of California, Davis, MIND Institute, School of Medicine, Department of Psychiatry and Behavioral Sciences, Sacramento, CA, USA
| | - Anna Adhikari
- University of California, Davis, MIND Institute, School of Medicine, Department of Psychiatry and Behavioral Sciences, Sacramento, CA, USA
| | - Stela Pavlova Petkova
- University of California, Davis, MIND Institute, School of Medicine, Department of Psychiatry and Behavioral Sciences, Sacramento, CA, USA
| | - Jill Lynn Silverman
- University of California, Davis, MIND Institute, School of Medicine, Department of Psychiatry and Behavioral Sciences, Sacramento, CA, USA.
| |
Collapse
|
29
|
Jankovic MJ, Kapadia PP, Krishnan V. Home-cage monitoring ascertains signatures of ictal and interictal behavior in mouse models of generalized seizures. PLoS One 2019; 14:e0224856. [PMID: 31697745 PMCID: PMC6837443 DOI: 10.1371/journal.pone.0224856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/23/2019] [Indexed: 11/25/2022] Open
Abstract
Epilepsy is a significant contributor to worldwide disability. In epilepsy, disability can be broadly divided into two components: ictal (pertaining to the burden of unpredictable seizures and associated medical complications including death) and interictal (pertaining to more pervasive debilitating changes in cognitive and emotional behavior). In this study, we objectively and noninvasively appraise aspects of ictal and interictal behavior in mice using instrumented home-cage chambers designed to assay kinematic and appetitive behavioral measures. Through daily intraperitoneal injections of the chemoconvulsant pentylenetetrazole (PTZ) applied to C57BL/6J mice, we coordinately measure how “behavioral severity” (complex dynamic changes in movement and sheltering behavior) and convulsive severity (latency and occurrence of convulsive seizures) evolve or kindle with repeated injections. By closely studying long epochs between PTZ injections, we identify an interictal syndrome of nocturnal hypoactivity and increased sheltering behavior which remits with the cessation of seizure induction. We observe elements of this interictal behavioral syndrome in seizure-prone DBA/2J mice and in mice with a pathogenic Scn1a mutation (modeling Dravet syndrome). Through analyzing their responses to PTZ, we illustrate how convulsive severity and “behavioral” severity are distinct and independent aspects of the overall severity of a PTZ-induced seizure. Our results illustrate the utility of an ethologically centered automated approach to quantitatively appraise murine expressions of disability in mouse models of seizures and epilepsy. In doing so, this study highlights the very unique psychopharmacological profile of PTZ.
Collapse
Affiliation(s)
- Miranda J. Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States of America
| | - Paarth P. Kapadia
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States of America
| | - Vaishnav Krishnan
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
30
|
Qiu F, Mao X, Liu P, Wu J, Zhang Y, Sun D, Zhu Y, Gong L, Shao M, Fan K, Chen J, Lu J, Jiang Y, Zhang Y, Curia G, Li A, He M. microRNA Deficiency in VIP+ Interneurons Leads to Cortical Circuit Dysfunction. Cereb Cortex 2019; 30:2229-2249. [PMID: 33676371 DOI: 10.1093/cercor/bhz236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 12/13/2022] Open
Abstract
Genetically distinct GABAergic interneuron subtypes play diverse roles in cortical circuits. Previous studies revealed that microRNAs (miRNAs) are differentially expressed in cortical interneuron subtypes, and are essential for the normal migration, maturation, and survival of medial ganglionic eminence-derived interneuron subtypes. How miRNAs function in vasoactive intestinal peptide expressing (VIP+) interneurons derived from the caudal ganglionic eminence remains elusive. Here, we conditionally removed Dicer in postmitotic VIP+ interneurons to block miRNA biogenesis. We found that the intrinsic and synaptic properties of VIP+ interneurons and pyramidal neurons were concordantly affected prior to a progressive loss of VIP+ interneurons. In vivo recording further revealed elevated cortical local field potential power. Mutant mice had a shorter life span but exhibited better spatial working memory and motor coordination. Our results demonstrate that miRNAs are indispensable for the function and survival of VIP+ interneurons, and highlight a key role of VIP+ interneurons in cortical circuits.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Neurology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xingfeng Mao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Jinyun Wu
- Department of Neurology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuan Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Daijing Sun
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yueyan Zhu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ling Gong
- Department of Neurology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengmeng Shao
- Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Keyang Fan
- Department of Neurology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junjie Chen
- Department of Neurology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiangteng Lu
- Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yan Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yubin Zhang
- Department of Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Giulia Curia
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41121, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Miao He
- Department of Neurology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
31
|
Carver CM, Hastings SD, Cook ME, Shapiro MS. Functional responses of the hippocampus to hyperexcitability depend on directed, neuron-specific KCNQ2 K + channel plasticity. Hippocampus 2019; 30:435-455. [PMID: 31621989 DOI: 10.1002/hipo.23163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/24/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
M-type (KCNQ2/3) K+ channels play dominant roles in regulation of active and passive neuronal discharge properties such as resting membrane potential, spike-frequency adaptation, and hyper-excitatory states. However, plasticity of M-channel expression and function in nongenetic forms of epileptogenesis are still not well understood. Using transgenic mice with an EGFP reporter to detect expression maps of KCNQ2 mRNA, we assayed hyperexcitability-induced alterations in KCNQ2 transcription across subregions of the hippocampus. Pilocarpine and pentylenetetrazol chemoconvulsant models of seizure induction were used, and brain tissue examined 48 hr later. We observed increases in KCNQ2 mRNA in CA1 and CA3 pyramidal neurons after chemoconvulsant-induced hyperexcitability at 48 hr, but no significant change was observed in dentate gyrus (DG) granule cells. Using chromogenic in situ hybridization assays, changes to KCNQ3 transcription were not detected after hyper-excitation challenge, but the results for KCNQ2 paralleled those using the KCNQ2-mRNA reporter mice. In mice 7 days after pilocarpine challenge, levels of KCNQ2 mRNA were similar in all regions to those from control mice. In brain-slice electrophysiology recordings, CA1 pyramidal neurons demonstrated increased M-current amplitudes 48 hr after hyperexcitability; however, there were no significant changes to DG granule cell M-current amplitude. Traumatic brain injury induced significantly greater KCNQ2 expression in the hippocampal hemisphere that was ipsilateral to the trauma. In vivo, after a secondary challenge with subconvulsant dose of pentylenetetrazole, control mice were susceptible to tonic-clonic seizures, whereas mice administered the M-channel opener retigabine were protected from such seizures. This study demonstrates that increased excitatory activity promotes KCNQ2 upregulation in the hippocampus in a cell-type specific manner. Such novel ion channel expressional plasticity may serve as a compensatory mechanism after a hyperexcitable event, at least in the short term. The upregulation described could be potentially leveraged in anticonvulsant enhancement of KCNQ2 channels as therapeutic target for preventing onset of epileptogenic seizures.
Collapse
Affiliation(s)
- Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Shayne D Hastings
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Mileah E Cook
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Mark S Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
32
|
de Zorzi VN, Haupenthal F, Cardoso AS, Cassol G, Facundo VA, Bálico LJ, Lima DKS, Santos ARS, Furian AF, Oliveira MS, Royes LFF, Fighera MR. Galangin Prevents Increased Susceptibility to Pentylenetetrazol-Stimulated Seizures by Prostaglandin E2. Neuroscience 2019; 413:154-168. [PMID: 31200106 DOI: 10.1016/j.neuroscience.2019.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
Epilepsy is one of the most common chronic neurological diseases. It is characterized by recurrent epileptic seizures, where one-third of patients are refractory to existing treatments. Evidence revealed the association between neuroinflammation and increased susceptibility to seizures since there is a pronounced increase in the expression of key inflammatory mediators, such as prostaglandin E2 (PGE2), during seizures. The purpose of this study was to investigate whether PGE2 increases susceptibility to pentylenetetrazol-induced (PTZ) seizures. Subsequently, we evaluated if the flavonoid isolated from the plant Piper aleyreanum (galangin) presented any anticonvulsive effects. Our results demonstrated that the group treated with PGE2 increased susceptibility to PTZ and caused myoclonic and generalized seizures, which increased seizure duration and electroencephalographic wave amplitudes. Furthermore, treatment with PGE2 and PTZ increased IBA-1 (microglial marker), GFAP (astrocytic marker), 4-HNE (lipid peroxidation marker), VCAM-1 (vascular cell adhesion molecule 1), and p-PKAIIα (phosphorylated cAMP-dependent protein kinase) immunocontent. Indeed, galangin prevented behavioral and electroencephalographic seizures, reactive species production, decreased microglial and astrocytic immunocontent, as well as decreased VCAM-1 immunocontent and p-PKA/PKA ratio induced by PGE2/PTZ. Therefore, this study suggests galangin may have an antagonizing role on PGE2-induced effects, reducing cerebral inflammation and protecting from excitatory effects evidenced by administrating PGE2 and PTZ. However, further studies are needed to investigate the clinical implications of the findings and their underlying mechanisms.
Collapse
Affiliation(s)
- Viviane Nogueira de Zorzi
- Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda Haupenthal
- Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alexandra Seide Cardoso
- Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Gustavo Cassol
- Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Valdir A Facundo
- Departamento de Química, Universidade Federal de Rondônia, Porto Velho, RO, Brazil
| | - Laudir J Bálico
- Departamento de Química, Universidade Federal de Rondônia, Porto Velho, RO, Brazil
| | - Daniella K S Lima
- Departamento de Química, Universidade Federal de Rondônia, Porto Velho, RO, Brazil; Laboratório de Neurobiologia da Dor e Inflamação, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Adair Roberto Soares Santos
- Laboratório de Neurobiologia da Dor e Inflamação, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ana Flavia Furian
- Laboratório de Neurotoxicidade e Psicofarmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Mauro Schneider Oliveira
- Laboratório de Neurotoxicidade e Psicofarmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Luiz Fernando Freire Royes
- Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michele Rechia Fighera
- Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
33
|
Li Z, Jagadapillai R, Gozal E, Barnes G. Deletion of Semaphorin 3F in Interneurons Is Associated with Decreased GABAergic Neurons, Autism-like Behavior, and Increased Oxidative Stress Cascades. Mol Neurobiol 2019; 56:5520-5538. [PMID: 30635860 PMCID: PMC6614133 DOI: 10.1007/s12035-018-1450-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
Abstract
Autism and epilepsy are diseases which have complex genetic inheritance. Genome-wide association and other genetic studies have implicated at least 500+ genes associated with the occurrence of autism spectrum disorders (ASD) including the human semaphorin 3F (Sema 3F) and neuropilin 2 (NRP2) genes. However, the genetic basis of the comorbid occurrence of autism and epilepsy is unknown. The aberrant development of GABAergic circuitry is a possible risk factor in autism and epilepsy. Molecular biological approaches were used to test the hypothesis that cell-specific genetic variation in mouse homologs affects the formation and function of GABAergic circuitry. The empirical analysis with mice homozygous null for one of these genes, Sema 3F, in GABAergic neurons substantiated these predictions. Notably, deletion of Sema 3F in interneurons but not excitatory neurons during early development decreased the number of interneurons/neurites and mRNAs for cell-specific GABAergic markers and increased epileptogenesis and autistic behaviors. Studies of interneuron cell-specific knockout of Sema 3F signaling suggest that deficient Sema 3F signaling may lead to neuroinflammation and oxidative stress. Further studies of mouse KO models of ASD genes such as Sema 3F or NRP2 may be informative to clinical phenotypes contributing to the pathogenesis in autism and epilepsy patients.
Collapse
Affiliation(s)
- Zhu Li
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rekha Jagadapillai
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Evelyne Gozal
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Gregory Barnes
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, USA.
- Pediatric Research Institute, University of Louisville Autism Center, 1405 East Burnett Ave, Louisville, KY, 40217, USA.
| |
Collapse
|
34
|
Chen D, Wang C, Li M, She X, Yuan Y, Chen H, Zhang W, Zhao C. Loss of Foxg1 Impairs the Development of Cortical SST-Interneurons Leading to Abnormal Emotional and Social Behaviors. Cereb Cortex 2019; 29:3666-3682. [DOI: 10.1093/cercor/bhz114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/10/2019] [Accepted: 05/05/2019] [Indexed: 12/19/2022] Open
Abstract
Abstract
FOXG1 syndrome is a severe encephalopathy that exhibit intellectual disability, emotional disorder, and limited social communication. To elucidate the contribution of somatostatin-expressing interneurons (SST-INs) to the cellular basis underlying FOXG1 syndrome, here, by crossing SST-cre with a Foxg1fl/fl line, we selectively ablated Foxg1. Loss of Foxg1 resulted in an obvious reduction in the number of SST-INs, accompanied by an altered ratio of subtypes. Foxg1-deficient SST-INs exhibited decreased membrane excitability and a changed ratio of electrophysiological firing patterns, which subsequently led to an excitatory/inhibitory imbalance. Moreover, cognitive defects, limited social interactions, and depression-like behaviors were detected in Foxg1 cKO mice. Treatment with low-dose of clonazepam effectively alleviated the defects. These results identify a link of SST-IN development to the aberrant emotion, cognition, and social capacities in patients. Our findings identify a novel role of Foxg1 in SST-IN development and put new insights into the cellular basis of FOXG1 syndrome.
Collapse
Affiliation(s)
- Dongsheng Chen
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Chunlian Wang
- Key Lab of Cognition and Personality, MOE, School of Psychology, Southwest University, Chongqing, China
| | - Meiyi Li
- Key Lab of Cognition and Personality, MOE, School of Psychology, Southwest University, Chongqing, China
| | - Xinyu She
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, Medical School of Southeast University, Nanjing, Jiangsu Province, China
| | - Huanxin Chen
- Key Lab of Cognition and Personality, MOE, School of Psychology, Southwest University, Chongqing, China
| | - Weining Zhang
- School of Medicine, Jiangsu University, ZhenJiang, Jiangsu Province, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| |
Collapse
|
35
|
Shin W, Kweon H, Kang R, Kim D, Kim K, Kang M, Kim SY, Hwang SN, Kim JY, Yang E, Kim H, Kim E. Scn2a Haploinsufficiency in Mice Suppresses Hippocampal Neuronal Excitability, Excitatory Synaptic Drive, and Long-Term Potentiation, and Spatial Learning and Memory. Front Mol Neurosci 2019; 12:145. [PMID: 31249508 PMCID: PMC6582764 DOI: 10.3389/fnmol.2019.00145] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/17/2019] [Indexed: 01/13/2023] Open
Abstract
Nav1.2, a voltage-gated sodium channel subunit encoded by the Scn2a gene, has been implicated in various brain disorders, including epilepsy, autism spectrum disorder, intellectual disability, and schizophrenia. Nav1.2 is known to regulate the generation of action potentials in the axon initial segment and their propagation along axonal pathways. Nav1.2 also regulates synaptic integration and plasticity by promoting back-propagation of action potentials to dendrites, but whether Nav1.2 deletion in mice affects neuronal excitability, synaptic transmission, synaptic plasticity, and/or disease-related animal behaviors remains largely unclear. Here, we report that mice heterozygous for the Scn2a gene (Scn2a+/- mice) show decreased neuronal excitability and suppressed excitatory synaptic transmission in the presence of network activity in the hippocampus. In addition, Scn2a+/- mice show suppressed hippocampal long-term potentiation (LTP) in association with impaired spatial learning and memory, but show largely normal locomotor activity, anxiety-like behavior, social interaction, repetitive behavior, and whole-brain excitation. These results suggest that Nav1.2 regulates hippocampal neuronal excitability, excitatory synaptic drive, LTP, and spatial learning and memory in mice.
Collapse
Affiliation(s)
- Wangyong Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hanseul Kweon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Ryeonghwa Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Kyungdeok Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Muwon Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Seo Yeong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Sun Nam Hwang
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Jin Yong Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Esther Yang
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| |
Collapse
|
36
|
The Protective Role of Peroxisome Proliferator-Activated Receptor-Gamma in Seizure and Neuronal Excitotoxicity. Mol Neurobiol 2019; 56:5497-5506. [PMID: 30623373 DOI: 10.1007/s12035-018-1457-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023]
Abstract
The peroxisome proliferator-activated receptor (PPAR) family, type II nucleus receptors have been successfully tested for their neuroprotective potential in certain central nervous system diseases. The aim of the present study was to determine if modulation by PPAR-γ could attenuate pilocarpine-induced seizures and decrease neuronal excitability. Adult male C57BL/6 mice were divided into two groups: one group received pretreatment with pioglitazone and the other received dimethyl sulfoxide (DMSO) for a period of 2 weeks. Status epilepticus was then induced in both groups by lithium-pilocarpine, after which seizure susceptibility, severity, and mortality were evaluated. Hippocampal histopathology was carried out on all mice at 24 h post-status epilepticus as well as blood-brain barrier (BBB) damage analysis. With the aid of patch clamp technology, the hippocampal neuronal excitability from mice with PPAR-γ 50% expression (PpargC/C) and PPAR-γ 25% expression (PpargC/-), as well as the effect of pioglitazone on the sodium currents in hippocampal neurons, were evaluated. It was found that pioglitazone, a PPAR-γ agonist, could attenuate pilocarpine-induced seizure severity in mice. Pathological examination showed that pioglitazone significantly attenuated pilocarpine-induced status epilepticus-related hippocampal neuronal loss and BBB damage. Further characterization of neuronal excitability revealed higher excitability in the brain slices from mice with PpargC/- expression, compared with the PpargC/C group. It was also found that pioglitazone could decrease sodium currents in hippocampal neurons. In conclusion, PPAR-γ deficiency aggravated neuronal excitability and excitotoxicity. PPAR-γ attenuated pilocarpine-induced seizure severity, neuronal loss, BBB damage, and sodium currents in hippocampal neurons. Modulation of PPAR-γ could be a potential novel treatment for epileptic seizures.
Collapse
|
37
|
Anticonvulsant-like effect of thromboxane receptor agonist U-46619 against pentylenetetrazol-induced seizures. Epilepsy Res 2018; 146:137-143. [PMID: 30153647 DOI: 10.1016/j.eplepsyres.2018.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/02/2018] [Accepted: 08/18/2018] [Indexed: 01/10/2023]
Abstract
Increasing evidence suggests that prostanoid receptors and their ligands may constitute valuable tools for development of new antiepileptic drugs. Thromboxane A2 (TXA2) is a major eicosanoid in cardiovascular homeostasis. TXA2 exerts its action through the specific G protein-coupled TXA2 receptor (TP). In addition to its crucial role in the cardiovascular system, TXA2 and TPs play a role in the brain. Nevertheless, previously identified roles have been limited to cell protection of neurotoxicity, and the role of TPs on seizure activity was not investigated. Here we evaluated the effect of potent and selective TP agonist U-46619 on seizures induced by pentylenetetrazol (PTZ). Adult C57BL/6 mice received increasing doses of U-46619 (0, 30, 100 or 300 μg/kg). After 30 min we measured the latencies to myoclonic and generalized seizures induced by PTZ (60 mg/kg). We found that U-46619 increased the latency to PTZ-induced myoclonic jerks and tonic-clonic seizures. Moreover, U-46619 increased the immunocontent of phosphorylated Ser657 at protein kinase C (PKC) alpha subunit, indicating PKC activation in the hippocampus and cerebral cortex. Levels of TPs were not altered by the agonist. Administration of a TP antagonist, SQ 29,548, did not alter seizures and did not blunt the anticonvulsant-like effect of the agonist. In summary, we showed that a potent and selective TP agonist, U-46619, increased seizure latency in mice. Activation of PKC signaling pathways may underlie the anticonvulsant-like effect. Further investigation is needed to understand the potential of TPs in seizure treatment.
Collapse
|
38
|
Rai A, Mishra R, Ganesh S. Suppression of leptin signaling reduces polyglucosan inclusions and seizure susceptibility in a mouse model for Lafora disease. Hum Mol Genet 2018; 26:4778-4785. [PMID: 28973665 DOI: 10.1093/hmg/ddx357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 09/12/2017] [Indexed: 01/10/2023] Open
Abstract
Lafora disease (LD) represents a fatal form of neurodegenerative disorder characterized by the presence of abnormally large number of polyglucosan bodies-called the Lafora bodies-in neurons and other tissues of the affected patients. The disease is caused by defects in the EPM2A gene coding for a protein phosphatase (laforin) or the NHLRC1 gene coding for an ubiquitin ligase (malin). Studies have shown that inhibition of glycogen synthesis in the brain could prevent the formation of Lafora bodies in the neurons and reduce seizure susceptibility in laforin-deficient mouse, an established animal model for LD. Since increased glucose uptake is thought to underlie increased glycogen in LD, and since the adipocyte hormone leptin is known to positively regulate the glucose uptake in neurons, we reasoned that blocking leptin signaling might reduce the neuronal glucose uptake and ameliorate the LD pathology. We demonstrate here that mice that were deficient for both laforin and leptin receptor showed a reduction in the glycogen level, Lafora bodies and gliosis in the brain, and displayed reduced susceptibility to induced seizures as compared to animals that were deficient only for laforin. Thus, blocking leptin signaling could be a one of the effective therapeutic strategies in LD.
Collapse
Affiliation(s)
- Anupama Rai
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Rohit Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
39
|
Abstract
Pentylenetetrazole (PTZ) is a GABA-A receptor antagonist. An intraperitoneal injection of PTZ into an animal induces an acute, severe seizure at a high dose, whereas sequential injections of a subconvulsive dose have been used for the development of chemical kindling, an epilepsy model. A single low-dose injection of PTZ induces a mild seizure without convulsion. However, repetitive low-dose injections of PTZ decrease the threshold to evoke a convulsive seizure. Finally, continuous low-dose administration of PTZ induces a severe tonic-clonic seizure. This method is simple and widely applicable to investigate the pathophysiology of epilepsy, which is defined as a chronic disease that involves repetitive seizures. This chemical kindling protocol causes repetitive seizures in animals. With this method, vulnerability to PTZ-mediated seizures or the degree of aggravation of epileptic seizures was estimated. These advantages have led to the use of this method for screening anti-epileptic drugs and epilepsy-related genes. In addition, this method has been used to investigate neuronal damage after epileptic seizures because the histological changes observed in the brains of epileptic patients also appear in the brains of chemical-kindled animals. Thus, this protocol is useful for conveniently producing animal models of epilepsy.
Collapse
Affiliation(s)
- Tadayuki Shimada
- Synaptic Plasticity Project, Tokyo Metropolitan Institute of Medical Science;
| | - Kanato Yamagata
- Synaptic Plasticity Project, Tokyo Metropolitan Institute of Medical Science;
| |
Collapse
|
40
|
Singh K, Loreth D, Pöttker B, Hefti K, Innos J, Schwald K, Hengstler H, Menzel L, Sommer CJ, Radyushkin K, Kretz O, Philips MA, Haas CA, Frauenknecht K, Lilleväli K, Heimrich B, Vasar E, Schäfer MKE. Neuronal Growth and Behavioral Alterations in Mice Deficient for the Psychiatric Disease-Associated Negr1 Gene. Front Mol Neurosci 2018; 11:30. [PMID: 29479305 PMCID: PMC5811522 DOI: 10.3389/fnmol.2018.00030] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022] Open
Abstract
Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been implicated in neuronal growth and connectivity. In addition, genetic variants in or near the NEGR1 locus have been associated with obesity and more recently with learning difficulties, intellectual disability and psychiatric disorders. However, experimental evidence is lacking to support a possible link between NEGR1, neuronal growth and behavioral abnormalities. Initial expression analysis of NEGR1 mRNA in C57Bl/6 wildtype (WT) mice by in situ hybridization demonstrated marked expression in the entorhinal cortex (EC) and dentate granule cells. In co-cultures of cortical neurons and NSC-34 cells overexpressing NEGR1, neurite growth of cortical neurons was enhanced and distal axons occupied an increased area of cells overexpressing NEGR1. Conversely, in organotypic slice co-cultures, Negr1-knockout (KO) hippocampus was less permissive for axons grown from EC of β-actin-enhanced green fluorescent protein (EGFP) mice compared to WT hippocampus. Neuroanatomical analysis revealed abnormalities of EC axons in the hippocampal dentate gyrus (DG) of Negr1-KO mice including increased numbers of axonal projections to the hilus. Neurotransmitter receptor ligand binding densities, a proxy of functional neurotransmitter receptor abundance, did not show differences in the DG of Negr1-KO mice but altered ligand binding densities to NMDA receptor and muscarinic acetylcholine receptors M1 and M2 were found in CA1 and CA3. Activity behavior, anxiety-like behavior and sensorimotor gating were not different between genotypes. However, Negr1-KO mice exhibited impaired social behavior compared to WT littermates. Moreover, Negr1-KO mice showed reversal learning deficits in the Morris water maze and increased susceptibility to pentylenetetrazol (PTZ)-induced seizures. Thus, our results from neuronal growth assays, neuroanatomical analyses and behavioral assessments provide first evidence that deficiency of the psychiatric disease-associated Negr1 gene may affect neuronal growth and behavior. These findings might be relevant to further evaluate the role of NEGR1 in cognitive and psychiatric disorders.
Collapse
Affiliation(s)
- Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Desirée Loreth
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bruno Pöttker
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kyra Hefti
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kathrin Schwald
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heidi Hengstler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lutz Menzel
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Clemens J Sommer
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Konstantin Radyushkin
- Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Mouse Behavioral Unit, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Oliver Kretz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Frauenknecht
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Bernd Heimrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
41
|
Shan W, Nagai T, Tanaka M, Itoh N, Furukawa-Hibi Y, Nabeshima T, Sokabe M, Yamada K. Neuronal PAS domain protein 4 (Npas4) controls neuronal homeostasis in pentylenetetrazole-induced epilepsy through the induction of Homer1a. J Neurochem 2017; 145:19-33. [DOI: 10.1111/jnc.14274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Wei Shan
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Motoki Tanaka
- Mechanobiology Laboratory; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Norimichi Itoh
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Yoko Furukawa-Hibi
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory; Graduate School of Health Sciences; Fujita Health University; Toyoake Japan
- Aino University; Ibaraki Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
42
|
Mitjans M, Begemann M, Ju A, Dere E, Wüstefeld L, Hofer S, Hassouna I, Balkenhol J, Oliveira B, van der Auwera S, Tammer R, Hammerschmidt K, Völzke H, Homuth G, Cecconi F, Chowdhury K, Grabe H, Frahm J, Boretius S, Dandekar T, Ehrenreich H. Sexual dimorphism of AMBRA1-related autistic features in human and mouse. Transl Psychiatry 2017; 7:e1247. [PMID: 28994820 PMCID: PMC5682605 DOI: 10.1038/tp.2017.213] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/01/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
Ambra1 is linked to autophagy and neurodevelopment. Heterozygous Ambra1 deficiency induces autism-like behavior in a sexually dimorphic manner. Extraordinarily, autistic features are seen in female mice only, combined with stronger Ambra1 protein reduction in brain compared to males. However, significance of AMBRA1 for autistic phenotypes in humans and, apart from behavior, for other autism-typical features, namely early brain enlargement or increased seizure propensity, has remained unexplored. Here we show in two independent human samples that a single normal AMBRA1 genotype, the intronic SNP rs3802890-AA, is associated with autistic features in women, who also display lower AMBRA1 mRNA expression in peripheral blood mononuclear cells relative to female GG carriers. Located within a non-coding RNA, likely relevant for mRNA and protein interaction, rs3802890 (A versus G allele) may affect its stability through modification of folding, as predicted by in silico analysis. Searching for further autism-relevant characteristics in Ambra1+/- mice, we observe reduced interest of female but not male mutants regarding pheromone signals of the respective other gender in the social intellicage set-up. Moreover, altered pentylentetrazol-induced seizure propensity, an in vivo readout of neuronal excitation-inhibition dysbalance, becomes obvious exclusively in female mutants. Magnetic resonance imaging reveals mild prepubertal brain enlargement in both genders, uncoupling enhanced brain dimensions from the primarily female expression of all other autistic phenotypes investigated here. These data support a role of AMBRA1/Ambra1 partial loss-of-function genotypes for female autistic traits. Moreover, they suggest Ambra1 heterozygous mice as a novel multifaceted and construct-valid genetic mouse model for female autism.
Collapse
Affiliation(s)
- M Mitjans
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - M Begemann
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany,Department of Psychiatry and Psychotherapy, UMG, Georg-August-University, Göttingen, Germany
| | - A Ju
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - E Dere
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - L Wüstefeld
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - S Hofer
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - I Hassouna
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - J Balkenhol
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - B Oliveira
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - S van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine, and German Center for Neurodegenerative Diseases (DZNE) Greifswald, Greifswald, Germany
| | - R Tammer
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - K Hammerschmidt
- Cognitive Ethology Laboratory, German Primate Center, Göttingen, Germany
| | - H Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - G Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - F Cecconi
- IRCCS Fondazione Santa Lucia and Department of Biology, University of Rome Tor Vergata, Rome, Italy,Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - K Chowdhury
- Department of Molecular Cell Biology, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | - H Grabe
- Department of Psychiatry and Psychotherapy, University Medicine, and German Center for Neurodegenerative Diseases (DZNE) Greifswald, Greifswald, Germany
| | - J Frahm
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - S Boretius
- Department of Functional Imaging, German Primate Center, Leibniz Institute of Primate Research, Göttingen, Germany
| | - T Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - H Ehrenreich
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany,Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, Göttingen 37075, Germany. E-mail:
| |
Collapse
|
43
|
Löscher W, Ferland RJ, Ferraro TN. The relevance of inter- and intrastrain differences in mice and rats and their implications for models of seizures and epilepsy. Epilepsy Behav 2017; 73. [PMID: 28651171 PMCID: PMC5909069 DOI: 10.1016/j.yebeh.2017.05.040] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is becoming increasingly clear that the genetic background of mice and rats, even in inbred strains, can have a profound influence on measures of seizure susceptibility and epilepsy. These differences can be capitalized upon through genetic mapping studies to reveal genes important for seizures and epilepsy. However, strain background and particularly mixed genetic backgrounds of transgenic animals need careful consideration in both the selection of strains and in the interpretation of results and conclusions. For instance, mice with targeted deletions of genes involved in epilepsy can have profoundly disparate phenotypes depending on the background strain. In this review, we discuss findings related to how this genetic heterogeneity has and can be utilized in the epilepsy field to reveal novel insights into seizures and epilepsy. Moreover, we discuss how caution is needed in regards to rodent strain or even animal vendor choice, and how this can significantly influence seizure and epilepsy parameters in unexpected ways. This is particularly critical in decisions regarding the strain of choice used in generating mice with targeted deletions of genes. Finally, we discuss the role of environment (at vendor and/or laboratory) and epigenetic factors for inter- and intrastrain differences and how such differences can affect the expression of seizures and the animals' performance in behavioral tests that often accompany acute and chronic seizure testing.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States; Department of Neurology, Albany Medical College, Albany, NY, United States
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
44
|
Pöttker B, Stöber F, Hummel R, Angenstein F, Radyushkin K, Goldschmidt J, Schäfer MKE. Traumatic brain injury causes long-term behavioral changes related to region-specific increases of cerebral blood flow. Brain Struct Funct 2017; 222:4005-4021. [DOI: 10.1007/s00429-017-1452-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/27/2017] [Indexed: 12/19/2022]
|
45
|
Cyclooxygenase-2 inhibitors differentially attenuate pentylenetetrazol-induced seizures and increase of pro- and anti-inflammatory cytokine levels in the cerebral cortex and hippocampus of mice. Eur J Pharmacol 2017; 810:15-25. [PMID: 28583427 DOI: 10.1016/j.ejphar.2017.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/24/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022]
Abstract
Seizures increase prostaglandin and cytokine levels in the brain. However, it remains to be determined whether cyclooxygenase-2 (COX-2) derived metabolites play a role in seizure-induced cytokine increase in the brain and whether anticonvulsant activity is shared by all COX-2 inhibitors. In this study we investigated whether three different COX-2 inhibitors alter pentylenetetrazol (PTZ)-induced seizures and increase of interleukin-1β (IL-1β), interleukin-6 (IL-6), interferon-γ (INF-γ), tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) levels in the hippocampus and cerebral cortex of mice. Adult male albino Swiss mice received nimesulide, celecoxib or etoricoxib (0.2, 2 or 20mg/kg in 0.1% carboxymethylcellulose (CMC) in 5% Tween 80, p.o.). Sixty minutes thereafter the animals were injected with PTZ (50mg/kg, i.p.) and the latency to myoclonic jerks and to generalized tonic-clonic seizures were recorded. Twenty minutes after PTZ injection animals were killed and cytokine levels were measured. PTZ increased cytokine levels in the cerebral cortex and hippocampus. While celecoxib and nimesulide attenuated PTZ -induced increase of proinflammatory cytokines in the cerebral cortex, etoricoxib did not. Nimesulide was the only COX-2 inhibitors that attenuated PTZ-induced seizures. This effect coincided with an increase of IL-10 levels in the cerebral cortex and hippocampus, constituting circumstantial evidence that IL-10 increase may be involved in the anticonvulsant effect of nimesulide.
Collapse
|
46
|
Krishnan V, Stoppel DC, Nong Y, Johnson MA, Nadler MJS, Ozkaynak E, Teng BL, Nagakura I, Mohammad F, Silva MA, Peterson S, Cruz TJ, Kasper EM, Arnaout R, Anderson MP. Autism gene Ube3a and seizures impair sociability by repressing VTA Cbln1. Nature 2017; 543:507-512. [PMID: 28297715 PMCID: PMC5364052 DOI: 10.1038/nature21678] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/27/2017] [Indexed: 12/18/2022]
Abstract
Maternally inherited 15q11-13 chromosomal triplications cause a frequent and highly penetrant autism linked to increased gene dosages of UBE3A, which both possesses ubiquitin-ligase and transcriptional co-regulatory functions. Here, using in vivo mouse genetics, we show that increasing UBE3A in the nucleus down-regulates glutamatergic synapse organizer cerebellin-1 (Cbln1) that is needed for sociability in mice. Epileptic seizures also repress Cbln1 and are found to expose sociability impairments in mice with asymptomatic increases of UBE3A. This Ube3a-seizure synergy maps to glutamate neurons of the midbrain ventral tegmental area (VTA) where Cbln1 deletions impair sociability and weaken glutamatergic transmission. We provide preclinical evidence that viral-vector-based chemogenetic activations of, or Cbln1 restorations in VTA glutamatergic neurons rescues sociability deficits induced by Ube3a and/or seizures. Our results suggest a gene × seizure interaction in VTA glutamatergic neurons that impairs sociability by downregulating Cbln1, a key node in the expanding protein interaction network of autism genes.
Collapse
Affiliation(s)
- Vaishnav Krishnan
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - David C Stoppel
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Program in Neuroscience, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Yi Nong
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Mark A Johnson
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Monica J S Nadler
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Ekim Ozkaynak
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Brian L Teng
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Ikue Nagakura
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Fahim Mohammad
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Michael A Silva
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Sally Peterson
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Tristan J Cruz
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Ekkehard M Kasper
- Department of Surgery, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Ramy Arnaout
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Division of Clinical Informatics, Department of Internal Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02215, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Matthew P Anderson
- Department of Neurology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02115, USA.,Program in Neuroscience, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.,Boston Children's Hospital Intellectual and Developmental Disabilities Research Center, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
47
|
Antidepressant drugs in convulsive seizures: Pre-clinical evaluation of duloxetine in mice. Neurochem Int 2016; 99:62-71. [DOI: 10.1016/j.neuint.2016.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/27/2016] [Accepted: 06/07/2016] [Indexed: 12/23/2022]
|
48
|
Yeo S, Hodgkinson CA, Zhou Z, Jung J, Leung M, Yuan Q, Goldman D. The abundance of cis-acting loci leading to differential allele expression in F1 mice and their relationship to loci harboring genes affecting complex traits. BMC Genomics 2016; 17:620. [PMID: 27515598 PMCID: PMC4982227 DOI: 10.1186/s12864-016-2922-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/07/2016] [Indexed: 12/16/2022] Open
Abstract
Background Genome-wide surveys have detected cis-acting quantitative trait loci altering levels of RNA transcripts (RNA-eQTLs) by associating SNV alleles to transcript levels. However, the sensitivity and specificity of detection of cis- expression quantitative trait loci (eQTLs) by genetic approaches, reliant as it is on measurements of transcript levels in recombinant inbred strains or offspring from arranged crosses, is unknown, as is their relationship to QTL’s for complex phenotypes. Results We used transcriptome-wide differential allele expression (DAE) to detect cis-eQTLs in forebrain and kidney from reciprocal crosses between three mouse inbred strains, 129S1/SvlmJ, DBA/2J, and CAST/EiJ and C57BL/6 J. Two of these crosses were previously characterized for cis-eQTLs and QTLs for various complex phenotypes by genetic analysis of recombinant inbred (RI) strains. 5.4 %, 1.9 % and 1.5 % of genes assayed in forebrain of B6/129SF1, B6/DBAF1, and B6/CASTF1 mice, respectively, showed differential allelic expression, indicative of cis-acting alleles at these genes. Moreover, the majority of DAE QTLs were observed to be tissue-specific with only a small fraction showing cis-effects in both tissues. Comparing DAE QTLs in F1 mice to cis-eQTLs previously mapped in RI strains we observed that many of the cis-eQTLs were not confirmed by DAE. Additionally several novel DAE-QTLs not identified as cis-eQTLs were identified suggesting that there are differences in sensitivity and specificity for QTL detection between the two methodologies. Strain specific DAE QTLs in B6/DBAF1 mice were located in excess at candidate genes for alcohol use disorders, seizures, and angiogenesis previously implicated by genetic linkage in C57BL/6J × DBA/2JF2 mice or BXD RI strains. Conclusions Via a survey for differential allele expression in F1 mice, a substantial proportion of genes were found to have alleles altering expression in cis-acting fashion. Comparing forebrain and kidney, many or most of these alleles were tissue-specific in action. The identification of strain specific DAE QTLs, can assist in assessment of candidate genes located within the large intervals associated with trait QTLs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2922-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seungeun Yeo
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Colin A Hodgkinson
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Zhifeng Zhou
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Jeesun Jung
- Laboratory of Epidemiology and Biometry, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Ming Leung
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Qiaoping Yuan
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - David Goldman
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA.
| |
Collapse
|
49
|
Kawahara K, Hirata H, Ohbuchi K, Nishi K, Maeda A, Kuniyasu A, Yamada D, Maeda T, Tsuji A, Sawada M, Nakayama H. The novel monoclonal antibody 9F5 reveals expression of a fragment of GPNMB/osteoactivin processed by furin-like protease(s) in a subpopulation of microglia in neonatal rat brain. Glia 2016; 64:1938-61. [PMID: 27464357 PMCID: PMC5129557 DOI: 10.1002/glia.23034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 07/02/2016] [Accepted: 07/07/2016] [Indexed: 12/19/2022]
Abstract
To differentiate subtypes of microglia (MG), we developed a novel monoclonal antibody, 9F5, against one subtype (type 1) of rat primary MG. The 9F5 showed high selectivity for this cell type in Western blot and immunocytochemical analyses and no cross-reaction with rat peritoneal macrophages (Mφ). We identified the antigen molecule for 9F5: the 50- to 70-kDa fragments of rat glycoprotein nonmetastatic melanoma protein B (GPNMB)/osteoactivin, which started at Lys(170) . In addition, 9F5 immunoreactivity with GPNMB depended on the activity of furin-like protease(s). More important, rat type 1 MG expressed the GPNMB fragments, but type 2 MG and Mφ did not, although all these cells expressed mRNA and the full-length protein for GPNMB. These results suggest that 9F5 reactivity with MG depends greatly on cleavage of GPNMB and that type 1 MG, in contrast to type 2 MG and Mφ, may have furin-like protease(s) for GPNMB cleavage. In neonatal rat brain, amoeboid 9F5+ MG were observed in specific brain areas including forebrain subventricular zone, corpus callosum, and retina. Double-immunοstaining with 9F5 antibody and anti-Iba1 antibody, which reacts with MG throughout the CNS, revealed that 9F5+ MG were a portion of Iba1+ MG, suggesting that MG subtype(s) exist in vivo. We propose that 9F5 is a useful tool to discriminate between rat type 1 MG and other subtypes of MG/Mφ and to reveal the role of the GPNMB fragments during developing brain. GLIA 2016;64:1938-1961.
Collapse
Affiliation(s)
- Kohichi Kawahara
- Department of Molecular Cell Function, Faculty of Life Sciences, Kumamoto University, 5-1 Ohe-Honmachi, Kumamoto, 862-0973, Japan. .,Department of Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Niigata, 956-8603, Japan.
| | - Hiroshi Hirata
- Department of Molecular Cell Function, Faculty of Life Sciences, Kumamoto University, 5-1 Ohe-Honmachi, Kumamoto, 862-0973, Japan
| | - Kengo Ohbuchi
- Department of Molecular Cell Function, Faculty of Life Sciences, Kumamoto University, 5-1 Ohe-Honmachi, Kumamoto, 862-0973, Japan
| | - Kentaro Nishi
- Department of Molecular Cell Function, Faculty of Life Sciences, Kumamoto University, 5-1 Ohe-Honmachi, Kumamoto, 862-0973, Japan
| | - Akira Maeda
- Department of Molecular Cell Function, Faculty of Life Sciences, Kumamoto University, 5-1 Ohe-Honmachi, Kumamoto, 862-0973, Japan
| | - Akihiko Kuniyasu
- Department of Molecular Cell Pharmacology, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto, 860-0082, Japan
| | - Daisuke Yamada
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Niigata, 956-8603, Japan
| | - Takehiko Maeda
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Niigata, 956-8603, Japan
| | - Akihiko Tsuji
- Department of Biological Science and Technology, the University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima, 770-8506, Japan
| | - Makoto Sawada
- Department of Brain Functions, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Hitoshi Nakayama
- Department of Molecular Cell Function, Faculty of Life Sciences, Kumamoto University, 5-1 Ohe-Honmachi, Kumamoto, 862-0973, Japan.
| |
Collapse
|
50
|
Royes LFF, Gabbi P, Ribeiro LR, Della-Pace ID, Rodrigues FS, de Oliveira Ferreira AP, da Silveira Junior MEP, da Silva LRH, Grisólia ABA, Braga DV, Dobrachinski F, da Silva AMHO, Soares FAA, Marchesan S, Furian AF, Oliveira MS, Fighera MR. A neuronal disruption in redox homeostasis elicited by ammonia alters the glycine/glutamate (GABA) cycle and contributes to MMA-induced excitability. Amino Acids 2016; 48:1373-89. [DOI: 10.1007/s00726-015-2164-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/24/2015] [Indexed: 12/28/2022]
|