1
|
Chang Y, Lusk S, Chang A, Ward CS, Ray RS. Vglut2-based glutamatergic signaling in central noradrenergic neurons is dispensable for normal breathing and chemosensory reflexes. eLife 2024; 12:RP88673. [PMID: 39287624 PMCID: PMC11407767 DOI: 10.7554/elife.88673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Central noradrenergic (NA) neurons are key constituents of the respiratory homeostatic network. NA dysfunction is implicated in several developmental respiratory disorders including Congenital Central Hyperventilation Syndrome (CCHS), Sudden Infant Death Syndrome (SIDS), and Rett Syndrome. The current unchallenged paradigm in the field, supported by multiple studies, is that glutamate co-transmission in subsets of central NA neurons plays a role in breathing control. If true, NA-glutamate co-transmission may also be mechanistically important in respiratory disorders. However, the requirement of NA-derived glutamate in breathing has not been directly tested and the extent of glutamate co-transmission in the central NA system remains uncharacterized. Therefore, we fully characterized the cumulative fate maps and acute adult expression patterns of all three vesicular glutamate transporters (Slc17a7 (Vglut1), Slc17a6 (Vglut2), and Slc17a8 (Vglut3)) in NA neurons, identifying a novel, dynamic expression pattern for Vglut2 and an undescribed co-expression domain for Vglut3 in the NA system. In contrast to our initial hypothesis that NA-derived glutamate is required to breathing, our functional studies showed that loss of Vglut2 throughout the NA system failed to alter breathing or metabolism under room air, hypercapnia, or hypoxia in unrestrained and unanesthetized mice. These data demonstrate that Vglut2-based glutamatergic signaling within the central NA system is not required for normal baseline breathing and hypercapnic, hypoxic chemosensory reflexes. These outcomes challenge the current understanding of central NA neurons in the control of breathing and suggests that glutamate may not be a critical target to understand NA neuron dysfunction in respiratory diseases.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
| | - Savannah Lusk
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Andersen Chang
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Christopher S Ward
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
| | - Russell S Ray
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
- McNair Medical InstituteHoustonUnited States
| |
Collapse
|
2
|
Elhadi K, Daiwile AP, Cadet JL. Modeling methamphetamine use disorder and relapse in animals: short- and long-term epigenetic, transcriptional., and biochemical consequences in the rat brain. Neurosci Biobehav Rev 2023; 155:105440. [PMID: 38707245 PMCID: PMC11068368 DOI: 10.1016/j.neubiorev.2023.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 05/07/2024]
Abstract
Methamphetamine use disorder (MUD) is a neuropsychiatric disorder characterized by binge drug taking episodes, intervals of abstinence, and relapses to drug use even during treatment. MUD has been modeled in rodents and investigators are attempting to identify its molecular bases. Preclinical experiments have shown that different schedules of methamphetamine self-administration can cause diverse transcriptional changes in the dorsal striatum of Sprague-Dawley rats. In the present review, we present data on differentially expressed genes (DEGs) identified in the rat striatum following methamphetamine intake. These include genes involved in transcription regulation, potassium channel function, and neuroinflammation. We then use the striatal data to discuss the potential significance of the molecular changes induced by methamphetamine by reviewing concordant or discordant data from the literature. This review identified potential molecular targets for pharmacological interventions. Nevertheless, there is a need for more research on methamphetamine-induced transcriptional consequences in various brain regions. These data should provide a more detailed neuroanatomical map of methamphetamine-induced changes and should better inform therapeutic interventions against MUD.
Collapse
Affiliation(s)
- Khalid Elhadi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Atul P. Daiwile
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| |
Collapse
|
3
|
Barcomb K, Ford CP. Alterations in neurotransmitter co-release in Parkinson's disease. Exp Neurol 2023; 370:114562. [PMID: 37802381 PMCID: PMC10842357 DOI: 10.1016/j.expneurol.2023.114562] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Parkinson's disease is a neurological disorder characterized by degeneration of midbrain dopamine neurons, which results in numerous adaptations in basal ganglia circuits. Research over the past twenty-five years has identified that midbrain dopamine neurons of the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) co-release multiple other transmitters including glutamate and GABA, in addition to their canonical transmitter, dopamine. This review summarizes previous work characterizing neurotransmitter co-release from dopamine neurons, work examining potential changes in co-release dynamics that result in animal models of Parkinson's disease, and future opportunities for determining how dysfunction in co-release may contribute to circuit dysfunction in Parkinson's disease.
Collapse
Affiliation(s)
- Kelsey Barcomb
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
4
|
Ma S, Zhong H, Liu X, Wang L. Spatial Distribution of Neurons Expressing Single, Double, and Triple Molecular Characteristics of Glutamatergic, Dopaminergic, or GABAergic Neurons in the Mouse Ventral Tegmental Area. J Mol Neurosci 2023; 73:345-362. [PMID: 37243808 DOI: 10.1007/s12031-023-02121-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
The ventral tegmental area (VTA) is a heterogeneous midbrain area that plays a significant role in diverse neural processes such as reward, aversion, and motivation. The VTA contains three main neuronal populations, namely, dopamine (DA), γ-aminobutyric acid (GABA), and glutamate neurons, but some neurons exhibit combinatorial molecular characteristics of dopaminergic, GABAergic, or glutamatergic neurons. However, little information is available regarding detailed distribution of neurons with single, double, and triple molecular characteristics of glutamatergic, dopaminergic, or GABAergic neurons in mice. We present a topographical distribution map of three main neuronal populations expressing a single molecular characteristic of dopaminergic, GABAergic, or glutamatergic neurons, and four neuronal populations co-expressing double or triple molecular characteristics in combinatorial manners, in the mouse VTA, following analysis of triple fluorescent in situ hybridization for the simultaneous detection of tyrosine hydroxylase (TH, marker for dopaminergic neurons), vesicular glutamate transporter 2 (VGLUT2, marker for glutamatergic neurons), and glutamic acid decarboxylase 2 (GAD2, marker for GABAergic neurons) mRNA. We found that the vast majority of neurons expressed a single type of mRNA, and these neurons were intermingled with neurons co-expressing double or triple combinations of VGLUT2, TH, or GAD2 in the VTA. These seven neuronal populations were differentially distributed in the VTA sub-nuclei across the rostro-caudal and latero-medial axes. This histochemical study will lead to a deeper understanding of the complexity of neuronal molecular characteristics in different VTA sub-nuclei, and potentially facilitate clarification of diverse functions of the VTA.
Collapse
Affiliation(s)
- Shaohua Ma
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hao Zhong
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xuemei Liu
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Liping Wang
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Chuhma N, Oh SJ, Rayport S. The dopamine neuron synaptic map in the striatum. Cell Rep 2023; 42:112204. [PMID: 36867530 PMCID: PMC10657204 DOI: 10.1016/j.celrep.2023.112204] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
Dopamine neurons project to the striatum to control movement, cognition, and motivation via slower volume transmission as well as faster dopamine, glutamate, and GABA synaptic actions capable of conveying the temporal information in dopamine neuron firing. To define the scope of these synaptic actions, recordings of dopamine-neuron-evoked synaptic currents were made in four major striatal neuron types, spanning the entire striatum. This revealed that inhibitory postsynaptic currents are widespread, while excitatory postsynaptic currents are localized to the medial nucleus accumbens and the anterolateral-dorsal striatum, and that all synaptic actions are weak in the posterior striatum. Synaptic actions in cholinergic interneurons are the strongest, variably mediating inhibition throughout the striatum and excitation in the medial accumbens, capable of controlling their activity. This mapping shows that dopamine neuron synaptic actions extend throughout the striatum, preferentially target cholinergic interneurons, and define distinct striatal subregions.
Collapse
Affiliation(s)
- Nao Chuhma
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | - Soo Jung Oh
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Stephen Rayport
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
6
|
Kim MJ, Kaang BK. Distinct cell populations of ventral tegmental area process motivated behavior. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:307-312. [PMID: 36039731 PMCID: PMC9437368 DOI: 10.4196/kjpp.2022.26.5.307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/20/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022]
Affiliation(s)
- Min Jung Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
7
|
Kosillo P, Ahmed KM, Aisenberg EE, Karalis V, Roberts BM, Cragg SJ, Bateup HS. Dopamine neuron morphology and output are differentially controlled by mTORC1 and mTORC2. eLife 2022; 11:e75398. [PMID: 35881440 PMCID: PMC9328766 DOI: 10.7554/elife.75398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/08/2022] [Indexed: 02/07/2023] Open
Abstract
The mTOR pathway is an essential regulator of cell growth and metabolism. Midbrain dopamine neurons are particularly sensitive to mTOR signaling status as activation or inhibition of mTOR alters their morphology and physiology. mTOR exists in two distinct multiprotein complexes termed mTORC1 and mTORC2. How each of these complexes affect dopamine neuron properties, and whether they have similar or distinct functions is unknown. Here, we investigated this in mice with dopamine neuron-specific deletion of Rptor or Rictor, which encode obligatory components of mTORC1 or mTORC2, respectively. We find that inhibition of mTORC1 strongly and broadly impacts dopamine neuron structure and function causing somatodendritic and axonal hypotrophy, increased intrinsic excitability, decreased dopamine production, and impaired dopamine release. In contrast, inhibition of mTORC2 has more subtle effects, with selective alterations to the output of ventral tegmental area dopamine neurons. Disruption of both mTOR complexes leads to pronounced deficits in dopamine release demonstrating the importance of balanced mTORC1 and mTORC2 signaling for dopaminergic function.
Collapse
Affiliation(s)
- Polina Kosillo
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Kamran M Ahmed
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Erin E Aisenberg
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Vasiliki Karalis
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Bradley M Roberts
- Department of Physiology, Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Stephanie J Cragg
- Department of Physiology, Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Chan Zuckerberg Biohub, San FranciscoSan FranciscoUnited States
| |
Collapse
|
8
|
Le N, Sayers S, Mata-Pacheco V, Wagner EJ. The PACAP Paradox: Dynamic and Surprisingly Pleiotropic Actions in the Central Regulation of Energy Homeostasis. Front Endocrinol (Lausanne) 2022; 13:877647. [PMID: 35721722 PMCID: PMC9198406 DOI: 10.3389/fendo.2022.877647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022] Open
Abstract
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP), a pleiotropic neuropeptide, is widely distributed throughout the body. The abundance of PACAP expression in the central and peripheral nervous systems, and years of accompanying experimental evidence, indicates that PACAP plays crucial roles in diverse biological processes ranging from autonomic regulation to neuroprotection. In addition, PACAP is also abundantly expressed in the hypothalamic areas like the ventromedial and arcuate nuclei (VMN and ARC, respectively), as well as other brain regions such as the nucleus accumbens (NAc), bed nucleus of stria terminalis (BNST), and ventral tegmental area (VTA) - suggesting that PACAP is capable of regulating energy homeostasis via both the homeostatic and hedonic energy balance circuitries. The evidence gathered over the years has increased our appreciation for its function in controlling energy balance. Therefore, this review aims to further probe how the pleiotropic actions of PACAP in regulating energy homeostasis is influenced by sex and dynamic changes in energy status. We start with a general overview of energy homeostasis, and then introduce the integral components of the homeostatic and hedonic energy balance circuitries. Next, we discuss sex differences inherent to the regulation of energy homeostasis via these two circuitries, as well as the activational effects of sex steroid hormones that bring about these intrinsic disparities between males and females. Finally, we explore the multifaceted role of PACAP in regulating homeostatic and hedonic feeding through its actions in regions like the NAc, BNST, and in particular the ARC, VMN and VTA that occur in sex- and energy status-dependent ways.
Collapse
Affiliation(s)
- Nikki Le
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Sarah Sayers
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Veronica Mata-Pacheco
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Edward J. Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
9
|
Cai J, Tong Q. Anatomy and Function of Ventral Tegmental Area Glutamate Neurons. Front Neural Circuits 2022; 16:867053. [PMID: 35669454 PMCID: PMC9164627 DOI: 10.3389/fncir.2022.867053] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
The ventral tegmental area (VTA) is well known for regulating reward consumption, learning, memory, and addiction behaviors through mediating dopamine (DA) release in downstream regions. Other than DA neurons, the VTA is known to be heterogeneous and contains other types of neurons, including glutamate neurons. In contrast to the well-studied and established functions of DA neurons, the role of VTA glutamate neurons is understudied, presumably due to their relatively small quantity and a lack of effective means to study them. Yet, emerging studies have begun to reveal the importance of glutamate release from VTA neurons in regulating diverse behavioral repertoire through a complex intra-VTA and long-range neuronal network. In this review, we summarize the features of VTA glutamate neurons from three perspectives, namely, cellular properties, neural connections, and behavioral functions. Delineation of VTA glutamatergic pathways and their interactions with VTA DA neurons in regulating behaviors may reveal previously unappreciated functions of the VTA in other physiological processes.
Collapse
Affiliation(s)
- Jing Cai
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, UTHealth McGovern Medical School, Houston, TX, United States
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, UTHealth McGovern Medical School, Houston, TX, United States
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
10
|
Hobson BD, Choi SJ, Mosharov EV, Soni RK, Sulzer D, Sims PA. Subcellular proteomics of dopamine neurons in the mouse brain. eLife 2022; 11:e70921. [PMID: 35098924 PMCID: PMC8860448 DOI: 10.7554/elife.70921] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/30/2022] [Indexed: 11/13/2022] Open
Abstract
Dopaminergic neurons modulate neural circuits and behaviors via dopamine (DA) release from expansive, long range axonal projections. The elaborate cytoarchitecture of these neurons is embedded within complex brain tissue, making it difficult to access the neuronal proteome using conventional methods. Here, we demonstrate APEX2 proximity labeling within genetically targeted neurons in the mouse brain, enabling subcellular proteomics with cell-type specificity. By combining APEX2 biotinylation with mass spectrometry, we mapped the somatodendritic and axonal proteomes of midbrain dopaminergic neurons. Our dataset reveals the proteomic architecture underlying proteostasis, axonal metabolism, and neurotransmission in these neurons. We find that most proteins encoded by DA neuron-enriched genes are localized within striatal dopaminergic axons, including ion channels with previously undescribed axonal localization. These proteomic datasets provide a resource for neuronal cell biology, and this approach can be readily adapted for study of other neural cell types.
Collapse
Affiliation(s)
- Benjamin D Hobson
- Department of Systems Biology, Columbia University Irving Medical CenterNew YorkUnited States
- Medical Scientist Training Program, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Psychiatry, Columbia University Irving Medical CenterNew YorkUnited States
| | - Se Joon Choi
- Division of Molecular Therapeutics, New York State Psychiatric InstituteNew YorkUnited States
| | - Eugene V Mosharov
- Division of Molecular Therapeutics, New York State Psychiatric InstituteNew YorkUnited States
| | - Rajesh K Soni
- Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical CenterNew YorkUnited States
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical CenterNew YorkUnited States
- Division of Molecular Therapeutics, New York State Psychiatric InstituteNew YorkUnited States
- Department of Neurology, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Pharmacology, Columbia University Irving Medical CenterNew YorkUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical CenterNew YorkUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical CenterNew YorkUnited States
- Sulzberger Columbia Genome Center, Columbia University Irving Medical CenterNew YorkUnited States
| |
Collapse
|
11
|
Serra GP, Guillaumin A, Dumas S, Vlcek B, Wallén-Mackenzie Å. Midbrain Dopamine Neurons Defined by TrpV1 Modulate Psychomotor Behavior. Front Neural Circuits 2021; 15:726893. [PMID: 34858142 PMCID: PMC8632262 DOI: 10.3389/fncir.2021.726893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Dopamine (DA) neurons of the ventral tegmental area (VTA) continue to gain attention as far more heterogeneous than previously realized. Within the medial aspect of the VTA, the unexpected presence of TrpV1 mRNA has been identified. TrpV1 encodes the Transient Receptor Potential cation channel subfamily V member 1, TRPV1, also known as the capsaicin receptor, well recognized for its role in heat and pain processing by peripheral neurons. In contrast, the brain distribution of TrpV1 has been debated. Here, we hypothesized that the TrpV1+ identity defines a distinct subpopulation of VTA DA neurons. To explore these brain TrpV1+ neurons, histological analyses and Cre-driven mouse genetics were employed. TrpV1 mRNA was most strongly detected at the perinatal stage forming a band of scattered neurons throughout the medial VTA, reaching into the posterior hypothalamus. Within the VTA, the majority of TrpV1 co-localized with both Tyrosine hydroxylase (Th) and Vesicular monoamine transporter 2 (Vmat2), confirming a DA phenotype. However, TrpV1 also co-localized substantially with Vesicular glutamate transporter 2 (Vglut2), representing the capacity for glutamate (GLU) release. These TrpV1+/Th+/Vglut2+/Vmat2+ neurons thus constitute a molecularly and anatomically distinct subpopulation of DA-GLU co-releasing neurons. To assess behavioral impact, a TrpV1Cre -driven strategy targeting the Vmat2 gene in mice was implemented. This manipulation was sufficient to alter psychomotor behavior induced by amphetamine. The acute effect of the drug was accentuated above control levels, suggesting super-sensitivity in the drug-na ve state resembling a "pre-sensitized" phenotype. However, no progressive increase with repeated injections was observed. This study identifies a distinct TrpV1+ VTA subpopulation as a critical modulatory component in responsiveness to amphetamine. Moreover, expression of the gene encoding TRPV1 in selected VTA neurons opens up for new possibilities in pharmacological intervention of this heterogeneous, but clinically important, brain area.
Collapse
Affiliation(s)
- Gian Pietro Serra
- Unit of Comparative Physiology, Department of Organism Biology, Uppsala University, Uppsala, Sweden
| | - Adriane Guillaumin
- Unit of Comparative Physiology, Department of Organism Biology, Uppsala University, Uppsala, Sweden
| | | | - Bianca Vlcek
- Unit of Comparative Physiology, Department of Organism Biology, Uppsala University, Uppsala, Sweden
| | - Åsa Wallén-Mackenzie
- Unit of Comparative Physiology, Department of Organism Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Ducrot C, Bourque MJ, Delmas CVL, Racine AS, Guadarrama Bello D, Delignat-Lavaud B, Domenic Lycas M, Fallon A, Michaud-Tardif C, Burke Nanni S, Herborg F, Gether U, Nanci A, Takahashi H, Parent M, Trudeau LE. Dopaminergic neurons establish a distinctive axonal arbor with a majority of non-synaptic terminals. FASEB J 2021; 35:e21791. [PMID: 34320240 DOI: 10.1096/fj.202100201rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Chemical neurotransmission typically occurs through synapses. Previous ultrastructural examinations of monoamine neuron axon terminals often failed to identify a pre- and postsynaptic coupling, leading to the concept of "volume" transmission. Whether this results from intrinsic properties of these neurons remains undefined. We find that dopaminergic neurons in vitro establish a distinctive axonal arbor compared to glutamatergic or GABAergic neurons in both size and propensity of terminals to avoid direct contact with target neurons. While most dopaminergic varicosities are active and contain exocytosis proteins like synaptotagmin 1, only ~20% of these are synaptic. The active zone protein bassoon was found to be enriched in dopaminergic terminals that are in proximity to a target cell. Finally, we found that the proteins neurexin-1αSS4- and neuroligin-1A+B play a critical role in the formation of synapses by dopamine (DA) neurons. Our findings suggest that DA neurons are endowed with a distinctive developmental connectivity program.
Collapse
Affiliation(s)
- Charles Ducrot
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CNS Research Group (GRSNC), Montréal, QC, Canada
| | - Marie-Josée Bourque
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CNS Research Group (GRSNC), Montréal, QC, Canada
| | - Constantin V L Delmas
- Department of Psychiatry and Neurosciences, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - Anne-Sophie Racine
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CNS Research Group (GRSNC), Montréal, QC, Canada
| | - Dainelys Guadarrama Bello
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benoît Delignat-Lavaud
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CNS Research Group (GRSNC), Montréal, QC, Canada
| | - Matthew Domenic Lycas
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, Canada
| | - Aurélie Fallon
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada.,Department of Medicine, Université de Montréal, Montréal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - Charlotte Michaud-Tardif
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CNS Research Group (GRSNC), Montréal, QC, Canada
| | - Samuel Burke Nanni
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CNS Research Group (GRSNC), Montréal, QC, Canada
| | - Freja Herborg
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, Canada
| | - Ulrik Gether
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, Canada
| | - Antonio Nanci
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hideto Takahashi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada.,Department of Medicine, Université de Montréal, Montréal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - Martin Parent
- Department of Psychiatry and Neurosciences, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - Louis-Eric Trudeau
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,CNS Research Group (GRSNC), Montréal, QC, Canada
| |
Collapse
|
13
|
Eskenazi D, Malave L, Mingote S, Yetnikoff L, Ztaou S, Velicu V, Rayport S, Chuhma N. Dopamine Neurons That Cotransmit Glutamate, From Synapses to Circuits to Behavior. Front Neural Circuits 2021; 15:665386. [PMID: 34093138 PMCID: PMC8170480 DOI: 10.3389/fncir.2021.665386] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/16/2021] [Indexed: 11/21/2022] Open
Abstract
Discovered just over 20 years ago, dopamine neurons have the ability to cotransmit both dopamine and glutamate. Yet, the functional roles of dopamine neuron glutamate cotransmission and their implications for therapeutic use are just emerging. This review article encompasses the current body of evidence investigating the functions of dopamine neurons of the ventral midbrain that cotransmit glutamate. Since its discovery in dopamine neuron cultures, further work in vivo confirmed dopamine neuron glutamate cotransmission across species. From there, growing interest has led to research related to neural functioning including roles in synaptic signaling, development, and behavior. Functional connectome mapping reveals robust connections in multiple forebrain regions to various cell types, most notably to cholinergic interneurons in both the medial shell of the nucleus accumbens and the lateral dorsal striatum. Glutamate markers in dopamine neurons reach peak levels during embryonic development and increase in response to various toxins, suggesting dopamine neuron glutamate cotransmission may serve neuroprotective roles. Findings from behavioral analyses reveal prominent roles for dopamine neuron glutamate cotransmission in responses to psychostimulants, in positive valence and cognitive systems and for subtle roles in negative valence systems. Insight into dopamine neuron glutamate cotransmission informs the pathophysiology of neuropsychiatric disorders such as addiction, schizophrenia and Parkinson Disease, with therapeutic implications.
Collapse
Affiliation(s)
- Daniel Eskenazi
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Lauren Malave
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Susana Mingote
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, United States
| | - Leora Yetnikoff
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, United States
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, United States
| | - Samira Ztaou
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Vlad Velicu
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Nao Chuhma
- Department of Psychiatry, Columbia University, New York, NY, United States
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| |
Collapse
|
14
|
Heinrich IA, Freitas AE, Wolin IAV, Nascimento APM, Walz R, Rodrigues ALS, Leal RB. Neuronal activity regulated pentraxin (narp) and GluA4 subunit of AMPA receptor may be targets for fluoxetine modulation. Metab Brain Dis 2021; 36:711-722. [PMID: 33528752 DOI: 10.1007/s11011-021-00675-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/22/2021] [Indexed: 12/28/2022]
Abstract
Fluoxetine is the foremost prescribed antidepressant. Drugs acting on monoaminergic system may also regulate glutamatergic system. Indeed, the investigation of proteins associated with this system, such as Narp (neuronal activity-dependent pentraxin) and GluA4 subunit of AMPA receptor may reveal poorly explored modulations triggered by conventional antidepressants. This study aimed to uncover neurochemical mechanisms underlying the chronic fluoxetine treatment, mainly by evaluating these protein targets in the prefrontal cortex and in the hippocampus. Mice received a daily administration of fluoxetine (0.1, 1 or 10 mg/kg, p.o.) or potable water (vehicle group) for 21 days. These animals were submitted to the forced swim test (FST) to verify antidepressant-like responses and the open-field test (OFT) to assess locomotor activity. Modulation of signaling proteins was analyzed by western blot. Chronic treatment with fluoxetine (1 and 10 mg/kg) was effective, since it reduced the immobility time in the FST, without altering locomotor activity. Fluoxetine 10 mg/kg increased CREB phosphorylation and BDNF expression in the prefrontal cortex and hippocampus. Noteworthy, in the hippocampus fluoxetine also promoted Akt activation and augmented Narp expression. In the prefrontal cortex, a significant decrease in the expression of the GluA4 subunit and Narp were observed following fluoxetine administration (10 mg/kg). The results provide evidence of novel molecular targets potentially involved in the antidepressant effects of fluoxetine, since in mature rodents Narp and GluA4 are mainly expressed in the GABAergic parvalbumin-positive (PV+) interneurons. This may bring new insights into the molecular elements involved in the mechanisms underlying the antidepressant effects of fluoxetine.
Collapse
Affiliation(s)
- Isabella A Heinrich
- Graduate Program in Neuroscience, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
| | - Andiara E Freitas
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
- Graduate Program in Biochemistry, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
| | - Ingrid A V Wolin
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
- Graduate Program in Biochemistry, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
| | - Ana Paula M Nascimento
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
- Graduate Program in Biochemistry, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
| | - Roger Walz
- Graduate Program in Neuroscience, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
- Department of Clinical Medicine, Center of Health Sciences, University Hospital, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
- Center of Applied Neuroscience (CeNAp), University Hospital, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Graduate Program in Neuroscience, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
- Graduate Program in Biochemistry, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
| | - Rodrigo B Leal
- Graduate Program in Neuroscience, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil.
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil.
- Graduate Program in Biochemistry, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil.
| |
Collapse
|
15
|
Fischer KD, Knackstedt LA, Rosenberg PA. Glutamate homeostasis and dopamine signaling: Implications for psychostimulant addiction behavior. Neurochem Int 2021; 144:104896. [PMID: 33159978 PMCID: PMC8489281 DOI: 10.1016/j.neuint.2020.104896] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
Cocaine, amphetamine, and methamphetamine abuse disorders are serious worldwide health problems. To date, there are no FDA-approved medications for the treatment of these disorders. Elucidation of the biochemical underpinnings contributing to psychostimulant addiction is critical for the development of effective therapies. Excitatory signaling and glutamate homeostasis are well known pathophysiological substrates underlying addiction-related behaviors spanning multiple types of psychostimulants. To alleviate relapse behavior to psychostimulants, considerable interest has focused on GLT-1, the major glutamate transporter in the brain. While many brain regions are implicated in addiction behavior, this review focuses on two regions well known for their role in mediating the effects of cocaine and amphetamines, namely the nucleus accumbens (NAc) and the ventral tegmental area (VTA). In addition, because many investigators have utilized Cre-driver lines to selectively control gene expression in defined cell populations relevant for psychostimulant addiction, we discuss potential off-target effects of Cre-recombinase that should be considered in the design and interpretation of such experiments.
Collapse
Affiliation(s)
- Kathryn D Fischer
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Lori A Knackstedt
- Psychology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Paul A Rosenberg
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Deletion of VGLUT2 in midbrain dopamine neurons attenuates dopamine and glutamate responses to methamphetamine in mice. Pharmacol Biochem Behav 2021; 202:173104. [DOI: 10.1016/j.pbb.2021.173104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/19/2020] [Accepted: 01/04/2021] [Indexed: 01/26/2023]
|
17
|
Amphetamine maintenance therapy during intermittent cocaine self-administration in rats attenuates psychomotor and dopamine sensitization and reduces addiction-like behavior. Neuropsychopharmacology 2021; 46:305-315. [PMID: 32682325 PMCID: PMC7853073 DOI: 10.1038/s41386-020-0773-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022]
Abstract
D-amphetamine maintenance therapy shows promise as a treatment for people with cocaine addiction. Preclinical studies using Long Access (LgA) cocaine self-administration procedures suggest D-amphetamine may act by preventing tolerance to cocaine's effects at the dopamine transporter (DAT). However, Intermittent Access (IntA) cocaine self-administration better reflects human patterns of use, is especially effective in promoting addiction-relevant behaviors, and instead of tolerance, produces psychomotor, incentive, and neural sensitization. We asked, therefore, how D-amphetamine maintenance during IntA influences cocaine use and cocaine's potency at the DAT. Male rats self-administered cocaine intermittently (5 min ON, 25 min OFF x10; 5-h/session) for 14 sessions, with or without concomitant D-amphetamine maintenance therapy during these 14 sessions (5 mg/kg/day via s.c. osmotic minipump). We then assessed responding for cocaine under a progressive ratio schedule, responding under extinction and cocaine-primed reinstatement of drug seeking. We also assessed the ability of cocaine to inhibit dopamine uptake in the nucleus accumbens core using fast scan cyclic voltammetry ex vivo. IntA cocaine self-administration produced psychomotor (locomotor) sensitization, strong motivation to take and seek cocaine, and it increased cocaine's potency at the DAT. D-amphetamine co-administration suppressed the psychomotor sensitization produced by IntA cocaine experience. After cessation of D-amphetamine treatment, the motivation to take and seek cocaine was also reduced, and sensitization of cocaine's actions at the DAT was reversed. Thus, treatment with D-amphetamine might reduce cocaine use by preventing sensitization-related changes in cocaine potency at the DAT, consistent with an incentive-sensitization view of addiction.
Collapse
|
18
|
Kouwenhoven WM, Fortin G, Penttinen AM, Florence C, Delignat-Lavaud B, Bourque MJ, Trimbuch T, Luppi MP, Salvail-Lacoste A, Legault P, Poulin JF, Rosenmund C, Awatramani R, Trudeau LÉ. VGluT2 Expression in Dopamine Neurons Contributes to Postlesional Striatal Reinnervation. J Neurosci 2020; 40:8262-8275. [PMID: 32928885 PMCID: PMC7577590 DOI: 10.1523/jneurosci.0823-20.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/14/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
A subset of adult ventral tegmental area dopamine (DA) neurons expresses vesicular glutamate transporter 2 (VGluT2) and releases glutamate as a second neurotransmitter in the striatum, while only few adult substantia nigra DA neurons have this capacity. Recent work showed that cellular stress created by neurotoxins such as MPTP and 6-hydroxydopamine can upregulate VGluT2 in surviving DA neurons, suggesting the possibility of a role in cell survival, although a high level of overexpression could be toxic to DA neurons. Here we examined the level of VGluT2 upregulation in response to neurotoxins and its impact on postlesional plasticity. We first took advantage of an in vitro neurotoxin model of Parkinson's disease and found that this caused an average 2.5-fold enhancement of Vglut2 mRNA in DA neurons. This could represent a reactivation of a developmental phenotype because using an intersectional genetic lineage-mapping approach, we find that >98% of DA neurons have a VGluT2+ lineage. Expression of VGluT2 was detectable in most DA neurons at embryonic day 11.5 and was localized in developing axons. Finally, compatible with the possibility that enhanced VGluT2 expression in DA neurons promotes axonal outgrowth and reinnervation in the postlesional brain, we observed that DA neurons in female and male mice in which VGluT2 was conditionally removed established fewer striatal connections 7 weeks after a neurotoxin lesion. Thus, we propose here that the developmental expression of VGluT2 in DA neurons can be reactivated at postnatal stages, contributing to postlesional plasticity of dopaminergic axons.SIGNIFICANCE STATEMENT A small subset of dopamine neurons in the adult, healthy brain expresses vesicular glutamate transporter 2 (VGluT2) and thus releases glutamate as a second neurotransmitter in the striatum. This neurochemical phenotype appears to be plastic as exposure to neurotoxins, such as 6-OHDA or MPTP, that model certain aspects of Parkinson's disease pathophysiology, boosts VGluT2 expression in surviving dopamine neurons. Here we show that this enhanced VGluT2 expression in dopamine neurons drives axonal outgrowth and contributes to dopamine neuron axonal plasticity in the postlesional brain. A better understanding of the neurochemical changes that occur during the progression of Parkinson's disease pathology will aid the development of novel therapeutic strategies for this disease.
Collapse
Affiliation(s)
- Willemieke M Kouwenhoven
- Department of Pharmacology and Physiology, Department of Neurosciences, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Guillaume Fortin
- Department of Pharmacology and Physiology, Department of Neurosciences, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Anna-Maija Penttinen
- Department of Pharmacology and Physiology, Department of Neurosciences, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Clélia Florence
- Department of Pharmacology and Physiology, Department of Neurosciences, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Benoît Delignat-Lavaud
- Department of Pharmacology and Physiology, Department of Neurosciences, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Marie-Josée Bourque
- Department of Pharmacology and Physiology, Department of Neurosciences, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Thorsten Trimbuch
- Institut für Neurophysiologie, Charite Universitaetsmedizin, 10117 Berlin, Germany
| | - Milagros Pereira Luppi
- Department of Neurology and the Center for Genetic Medicine, Northwestern University, Chicago, Illinois 60611
| | - Alix Salvail-Lacoste
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Pascale Legault
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Jean-François Poulin
- Department of Neurology and the Center for Genetic Medicine, Northwestern University, Chicago, Illinois 60611
| | - Christian Rosenmund
- Institut für Neurophysiologie, Charite Universitaetsmedizin, 10117 Berlin, Germany
| | - Raj Awatramani
- Department of Neurology and the Center for Genetic Medicine, Northwestern University, Chicago, Illinois 60611
| | - Louis-Éric Trudeau
- Department of Pharmacology and Physiology, Department of Neurosciences, Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
19
|
Fougère M, van der Zouwen CI, Boutin J, Ryczko D. Heterogeneous expression of dopaminergic markers and Vglut2 in mouse mesodiencephalic dopaminergic nuclei A8-A13. J Comp Neurol 2020; 529:1273-1292. [PMID: 32869307 DOI: 10.1002/cne.25020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Co-transmission of glutamate by brain dopaminergic (DA) neurons was recently proposed as a potential factor influencing cell survival in models of Parkinson's disease. Intriguingly, brain DA nuclei are differentially affected in Parkinson's disease. Whether this is associated with different patterns of co-expression of the glutamatergic phenotype along the rostrocaudal brain axis is unknown in mammals. We hypothesized that, as in zebrafish, the glutamatergic phenotype is present preferentially in the caudal mesodiencephalic DA nuclei. Here, we used in mice a cell fate mapping strategy based on reporter protein expression (ZsGreen) consecutive to previous expression of the vesicular glutamate transporter 2 (Vglut2) gene, coupled with immunofluorescence experiments against tyrosine hydroxylase (TH) or dopamine transporter (DAT). We found three expression patterns in DA cells, organized along the rostrocaudal brain axis. The first pattern (TH-positive, DAT-positive, ZsGreen-positive) was found in A8-A10. The second pattern (TH-positive, DAT-negative, ZsGreen-positive) was found in A11. The third pattern (TH-positive, DAT-negative, ZsGreen-negative) was found in A12-A13. These patterns should help to refine the establishment of the homology of DA nuclei between vertebrate species. Our results also uncover that Vglut2 is expressed at some point during cell lifetime in DA nuclei known to degenerate in Parkinson's disease and largely absent from those that are preserved, suggesting that co-expression of the glutamatergic phenotype in DA cells influences their survival in Parkinson's disease.
Collapse
Affiliation(s)
- Maxime Fougère
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Cornelis Immanuel van der Zouwen
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Joël Boutin
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre d'Excellence en Neurosciences de l'Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
20
|
Pytka K, Dawson N, Tossell K, Ungless MA, Plevin R, Brett RR, Bushell TJ. Mitogen-activated protein kinase phosphatase-2 deletion modifies ventral tegmental area function and connectivity and alters reward processing. Eur J Neurosci 2020; 52:2838-2852. [PMID: 31989721 DOI: 10.1111/ejn.14688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/06/2020] [Accepted: 01/17/2020] [Indexed: 11/30/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) regulate normal brain functioning, and their dysfunction is implicated in a number of brain disorders. Thus, there is great interest in understanding the signalling systems that control MAPK functioning. One family of proteins that contribute to this process, the mitogen-activated protein kinase phosphatases (MKPs), directly inactivate MAPKs through dephosphorylation. Recent studies have identified novel functions of MKPs in foetal development, the immune system, cancer and synaptic plasticity and memory. In the present study, we performed an unbiased investigation using MKP-2-/- mice to assess whether MKP-2 plays a global role in modulating brain function. Local cerebral glucose utilization is significantly increased in the ventral tegmental area (VTA) of MKP-2-/- mice, with connectivity analysis revealing alterations in VTA functional connectivity, including a significant reduction in connectivity to the nucleus accumbens and hippocampus. In addition, spontaneous excitatory postsynaptic current frequency, but not amplitude, onto putative dopamine neurons in the VTA is increased in MKP-2-/- mice, which indicates that increased excitatory drive may account for the increased VTA glucose utilization. Consistent with modified VTA function and connectivity, in behavioural tests MKP-2-/- mice exhibited increased sucrose preference and impaired amphetamine-induced hyperlocomotion. Overall, these data reveal that MKP-2 plays a role in modulating VTA function and that its dysfunction may contribute to brain disorders in which altered reward processing is present.
Collapse
Affiliation(s)
- Karolina Pytka
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK.,Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Neil Dawson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK.,Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Kyoko Tossell
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Mark A Ungless
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Robin Plevin
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Ros R Brett
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Trevor J Bushell
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
21
|
Dumas S, Wallén-Mackenzie Å. Developmental Co-expression of Vglut2 and Nurr1 in a Mes-Di-Encephalic Continuum Preceeds Dopamine and Glutamate Neuron Specification. Front Cell Dev Biol 2019; 7:307. [PMID: 31850343 PMCID: PMC6892754 DOI: 10.3389/fcell.2019.00307] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022] Open
Abstract
Midbrain dopamine (DA) neurons exist as several subtypes and are found in a heterogeneous environment including GABAergic and glutamatergic neurons as well as various types of co-releasing neurons. Developmental programs underlying this heterogeneity have remained elusive. In this study, combinatorial mRNA analysis was performed at stages when neuronal phenotypes are first specified. Vesicular transporters for dopamine and other monoamines (VMAT2), GABA (VIAAT), and glutamate (VGLUT2) were assessed by systematically applying fluorescent in situ hybridization through the mes-di-encephalon of the mouse embryo at embryonal days (E) 9.5–14.5. The results show that early differentiating dopamine neurons express the gene encoding VGLUT2 before onset of any dopaminergic markers. Prior to its down-regulation in maturing dopamine neurons, Vglut2 mRNA co-localizes extensively with Tyrosine hydroxylase (Th) and Nurr1, commonly used as markers for DA neurons. Further, Vglut2 and Nurr1 mRNAs are shown to overlap substantially in diencephalic neurons that maintain a glutamatergic phenotype. The results suggest that Vglut2/Nurr1-double positive cells give rise both to dopaminergic and glutamatergic neurons within the mes-di-encephalic area. Finally, analysis of markers representing subtypes of dopamine neurons, including the newly described NeuroD6 subtype, shows that certain subtype specifications arise early. Histological findings are outlined in the context of neuroanatomical concepts and the prosomeric model of brain development. The study contributes to the current decoding of the recently discovered heterogeneity among neurons residing along the cephalic flexure.
Collapse
Affiliation(s)
| | - Åsa Wallén-Mackenzie
- Department of Organismal Biology, Unit of Comparative Physiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Bimpisidis Z, Wallén-Mackenzie Å. Neurocircuitry of Reward and Addiction: Potential Impact of Dopamine-Glutamate Co-release as Future Target in Substance Use Disorder. J Clin Med 2019; 8:E1887. [PMID: 31698743 PMCID: PMC6912639 DOI: 10.3390/jcm8111887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022] Open
Abstract
Dopamine-glutamate co-release is a unique property of midbrain neurons primarily located in the ventral tegmental area (VTA). Dopamine neurons of the VTA are important for behavioral regulation in response to rewarding substances, including natural rewards and addictive drugs. The impact of glutamate co-release on behaviors regulated by VTA dopamine neurons has been challenging to probe due to lack of selective methodology. However, several studies implementing conditional knockout and optogenetics technologies in transgenic mice have during the past decade pointed towards a role for glutamate co-release in multiple physiological and behavioral processes of importance to substance use and abuse. In this review, we discuss these studies to highlight findings that may be critical when considering mechanisms of importance for prevention and treatment of substance abuse.
Collapse
|
23
|
Hassani OK, Rymar VV, Nguyen KQ, Huo L, Cloutier JF, Miller FD, Sadikot AF. The noradrenergic system is necessary for survival of vulnerable midbrain dopaminergic neurons: implications for development and Parkinson's disease. Neurobiol Aging 2019; 85:22-37. [PMID: 31734438 DOI: 10.1016/j.neurobiolaging.2019.09.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022]
Abstract
The cause of midbrain dopaminergic (mDA) neuron loss in sporadic Parkinson's disease (PD) is multifactorial, involving cell autonomous factors, cell-cell interactions, and the effects of environmental toxins. Early loss of neurons in the locus coeruleus (LC), the main source of ascending noradrenergic (NA) projections, is an important feature of PD and other neurodegenerative disorders. We hypothesized that NA afferents provide trophic support for vulnerable mDA neurons. We demonstrate that depriving mDA neurons of NA input increases postnatal apoptosis and decreases cell survival in young adult rodents, with relative sparing of calbindin-positive subpopulations known to be resistant to degeneration in PD. As a mechanism, we propose that the neurotrophin brain-derived neurotrophic factor (BDNF) modulates anterograde survival effects of LC inputs to mDA neurons. We demonstrate that the LC is rich in BDNF mRNA in postnatal and young adult brains. Early postnatal NA denervation reduces both BDNF protein and activation of TrkB receptors in the ventral midbrain. Furthermore, overexpression of BDNF in NA afferents in transgenic mice increases mDA neuronal survival. Finally, increasing NA activity in primary cultures of mDA neurons improves survival, an effect that is additive or synergistic in the presence of different concentrations of BDNF. Taken together, our results point to a novel mechanism whereby LC afferents couple BDNF effects and NA activity to provide anterograde trophic support for vulnerable mDA neurons. Early loss of NA activity and anterograde neurotrophin support may contribute to degeneration of vulnerable neurons in PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Oum Kaltoum Hassani
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Vladimir V Rymar
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Khanh Q Nguyen
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Lia Huo
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jean-François Cloutier
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Freda D Miller
- Departments of Medical Genetics, Microbiology & Physiology, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Abbas F Sadikot
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
24
|
Trudeau LE, El Mestikawy S. Glutamate Cotransmission in Cholinergic, GABAergic and Monoamine Systems: Contrasts and Commonalities. Front Neural Circuits 2018; 12:113. [PMID: 30618649 PMCID: PMC6305298 DOI: 10.3389/fncir.2018.00113] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Multiple discoveries made since the identification of vesicular glutamate transporters (VGLUTs) two decades ago revealed that many neuronal populations in the brain use glutamate in addition to their "primary" neurotransmitter. Such a mode of cotransmission has been detected in dopamine (DA), acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE) and surprisingly even in GABA neurons. Interestingly, work performed by multiple groups during the past decade suggests that the use of glutamate as a cotransmitter takes different forms in these different populations of neurons. In the present review, we will provide an overview of glutamate cotransmission in these different classes of neurons, highlighting puzzling differences in: (1) the proportion of such neurons expressing a VGLUT in different brain regions and at different stages of development; (2) the sub-cellular localization of the VGLUT; (3) the localization of the VGLUT in relation to the neurons' other vesicular transporter; and (4) the functional role of glutamate cotransmission.
Collapse
Affiliation(s)
- Louis-Eric Trudeau
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Salah El Mestikawy
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Sorbonne Universités, Université Pierre et Marie Curie UM 119-CNRS UMR 8246-INSERM U1130, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Paris, France
| |
Collapse
|
25
|
Genetic deletion of vesicular glutamate transporter in dopamine neurons increases vulnerability to MPTP-induced neurotoxicity in mice. Proc Natl Acad Sci U S A 2018; 115:E11532-E11541. [PMID: 30442663 PMCID: PMC6298109 DOI: 10.1073/pnas.1800886115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A subset of midbrain dopamine (DA) neurons express vesicular glutamate transporter 2 (VgluT2), which facilitates synaptic vesicle loading of glutamate. Recent studies indicate that such expression can modulate DA-dependent reward behaviors, but little is known about functional consequences of DA neuron VgluT2 expression in neurodegenerative diseases like Parkinson's disease (PD). Here, we report that selective deletion of VgluT2 in DA neurons in conditional VgluT2-KO (VgluT2-cKO) mice abolished glutamate release from DA neurons, reduced their expression of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB), and exacerbated the pathological effects of exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Furthermore, viral rescue of VgluT2 expression in DA neurons of VglutT2-cKO mice restored BDNF/TrkB expression and attenuated MPTP-induced DA neuron loss and locomotor impairment. Together, these findings indicate that VgluT2 expression in DA neurons is neuroprotective. Genetic or environmental factors causing reduced expression or function of VgluT2 in DA neurons may place some individuals at increased risk for DA neuron degeneration. Therefore, maintaining physiological expression and function of VgluT2 in DA neurons may represent a valid molecular target for the development of preventive therapeutic interventions for PD.
Collapse
|
26
|
Papathanou M, Creed M, Dorst MC, Bimpisidis Z, Dumas S, Pettersson H, Bellone C, Silberberg G, Lüscher C, Wallén-Mackenzie Å. Targeting VGLUT2 in Mature Dopamine Neurons Decreases Mesoaccumbal Glutamatergic Transmission and Identifies a Role for Glutamate Co-release in Synaptic Plasticity by Increasing Baseline AMPA/NMDA Ratio. Front Neural Circuits 2018; 12:64. [PMID: 30210305 PMCID: PMC6123381 DOI: 10.3389/fncir.2018.00064] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/31/2018] [Indexed: 12/21/2022] Open
Abstract
Expression of the Vglut2/Slc17a6 gene encoding the Vesicular glutamate transporter 2 (VGLUT2) in midbrain dopamine (DA) neurons enables these neurons to co-release glutamate in the nucleus accumbens (NAc), a feature of putative importance to drug addiction. For example, it has been shown that conditional deletion of Vglut2 gene expression within developing DA neurons in mice causes altered locomotor sensitization to addictive drugs, such as amphetamine and cocaine, in adulthood. Alterations in DA neurotransmission in the mesoaccumbal pathway has been proposed to contribute to these behavioral alterations but the underlying molecular mechanism remains largely elusive. Repeated exposure to cocaine is known to cause lasting adaptations of excitatory synaptic transmission onto medium spiny neurons (MSNs) in the NAc, but the putative contribution of VGLUT2-mediated glutamate co-release from the mesoaccumbal projection has never been investigated. In this study, we implemented a tamoxifen-inducible Cre-LoxP strategy to selectively probe VGLUT2 in mature DA neurons of adult mice. Optogenetics-coupled patch clamp analysis in the NAc demonstrated a significant reduction of glutamatergic neurotransmission, whilst behavioral analysis revealed a normal locomotor sensitization to amphetamine and cocaine. When investigating if the reduced level of glutamate co-release from DA neurons caused a detectable post-synaptic effect on MSNs, patch clamp analysis identified an enhanced baseline AMPA/NMDA ratio in DA receptor subtype 1 (DRD1)-expressing accumbal MSNs which occluded the effect of cocaine on synaptic transmission. We conclude that VGLUT2 in mature DA neurons actively contributes to glutamatergic neurotransmission in the NAc, a finding which for the first time highlights VGLUT2-mediated glutamate co-release in the complex mechanisms of synaptic plasticity in drug addiction.
Collapse
Affiliation(s)
- Maria Papathanou
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Meaghan Creed
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Matthijs C Dorst
- Department of Neuroscience, Karolinska Institutet (KI), Solna, Sweden
| | - Zisis Bimpisidis
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Hanna Pettersson
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Camilla Bellone
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet (KI), Solna, Sweden
| | - Christian Lüscher
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.,Service of Neurology, Geneva University Hospital (HUG), Geneva, Switzerland
| | | |
Collapse
|
27
|
Pérez-López JL, Contreras-López R, Ramírez-Jarquín JO, Tecuapetla F. Direct Glutamatergic Signaling From Midbrain Dopaminergic Neurons Onto Pyramidal Prefrontal Cortex Neurons. Front Neural Circuits 2018; 12:70. [PMID: 30210308 PMCID: PMC6123373 DOI: 10.3389/fncir.2018.00070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/07/2018] [Indexed: 11/13/2022] Open
Abstract
The dopaminergic neurons of the ventral tegmental area (VTA) have been identified with the ability to co-release dopamine and glutamate. This ability was first documented in the nucleus accumbens but showed to be absent in the dorsal striatum. Recently the ability to release glutamate from a subpopulation of the VTA dopaminergic neurons has been shown to control the prefrontal cortex (PFC) excitation through the exclusive innervation of GABAergic fast spiking interneurons. Here, using an optogenetic approach, we expand this view by presenting that the VTA dopaminergic neurons do not only innervate interneurons but also pyramidal PFC neurons. This finding opens the range of possibilities for the VTA dopaminergic neurons to modulate the activity of PFC.
Collapse
Affiliation(s)
- José Luis Pérez-López
- Instituto de Fisiología Celular (IFC), Neuropatología Molecular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rubén Contreras-López
- Instituto de Fisiología Celular (IFC), Neuropatología Molecular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Josué O Ramírez-Jarquín
- Instituto de Fisiología Celular (IFC), Neuropatología Molecular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fatuel Tecuapetla
- Instituto de Fisiología Celular (IFC), Neuropatología Molecular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
28
|
Fortin GM, Ducrot C, Giguère N, Kouwenhoven WM, Bourque MJ, Pacelli C, Varaschin RK, Brill M, Singh S, Wiseman PW, Trudeau LÉ. Segregation of dopamine and glutamate release sites in dopamine neuron axons: regulation by striatal target cells. FASEB J 2018; 33:400-417. [PMID: 30011230 DOI: 10.1096/fj.201800713rr] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Dopamine (DA) is a key regulator of circuits controlling movement and motivation. A subset of midbrain DA neurons has been shown to express the vesicular glutamate transporter (VGLUT)2, underlying their capacity for glutamate release. Glutamate release is found mainly by DA neurons of the ventral tegmental area (VTA) and can be detected at terminals contacting ventral, but not dorsal, striatal neurons, suggesting the possibility that target-derived signals regulate the neurotransmitter phenotype of DA neurons. Whether glutamate can be released from the same terminals that release DA or from a special subset of axon terminals is unclear. Here, we provide in vitro and in vivo data supporting the hypothesis that DA and glutamate-releasing terminals in mice are mostly segregated and that striatal neurons regulate the cophenotype of midbrain DA neurons and the segregation of release sites. Our work unveils a fundamental feature of dual neurotransmission and plasticity of the DA system.-Fortin, G. M., Ducrot, C., Giguère, N., Kouwenhoven, W. M., Bourque, M.-J., Pacelli, C., Varaschin, R. K., Brill, M., Singh, S., Wiseman, P. W., Trudeau, L.-E. Segregation of dopamine and glutamate release sites in dopamine neuron axons: regulation by striatal target cells.
Collapse
Affiliation(s)
- Guillaume M Fortin
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Quebec, Canada
| | - Charles Ducrot
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Quebec, Canada.,Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Giguère
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Quebec, Canada.,Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | | | - Marie-Josée Bourque
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Quebec, Canada
| | - Consiglia Pacelli
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Quebec, Canada
| | | | - Marion Brill
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Quebec, Canada
| | - Sherdeep Singh
- Department of Chemistry, McGill University, Montreal, Quebec, Canada; and
| | - Paul W Wiseman
- Department of Chemistry, McGill University, Montreal, Quebec, Canada; and
| | - Louis-Éric Trudeau
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Quebec, Canada.,Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada.,Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
29
|
Fischer KD, Houston ACW, Desai RI, Doyle MR, Bergman J, Mian M, Mannix R, Sulzer DL, Choi SJ, Mosharov EV, Hodgson NW, Bechtholt A, Miczek KA, Rosenberg PA. Behavioral phenotyping and dopamine dynamics in mice with conditional deletion of the glutamate transporter GLT-1 in neurons: resistance to the acute locomotor effects of amphetamine. Psychopharmacology (Berl) 2018; 235:1371-1387. [PMID: 29468294 PMCID: PMC5999338 DOI: 10.1007/s00213-018-4848-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022]
Abstract
RATIONALE GLT-1 is the major glutamate transporter in the brain and is expressed predominantly in astrocytes but is also present in excitatory axon terminals. To understand the functional significance of GLT-1 expressed in neurons, we generated a conditional GLT-1 knockout mouse and inactivated GLT-1 in neurons using Cre-recombinase expressed under the synapsin 1 promoter, (synGLT-1 KO). OBJECTIVES Abnormalities of glutamate homeostasis have been shown to affect hippocampal-related behaviors including learning and memory as well as responses to drugs of abuse. Here, we asked whether deletion of GLT-1 specifically from neurons would affect behaviors that assessed locomotor activity, cognitive function, sensorimotor gating, social interaction, as well as amphetamine-stimulated locomotor activity. METHODS/RESULTS We found that the neuronal GLT-1 KO mice performed similarly to littermate controls in the behavioral tests we studied. Although performance in open field testing was normal, the acute locomotor response to amphetamine was significantly blunted in the synGLT-1 KO (40% of control). We found no change in amphetamine-stimulated extracellular dopamine in the medial shell of the nucleus accumbens, no change in electrically stimulated or amphetamine-induced dopamine release, and no change in dopamine tissue content. CONCLUSIONS These results support the view that GLT-1 expression in neurons is required for amphetamine-induced behavioral activation, and suggest that this phenotype is not produced through a change in dopamine uptake or release. Although GLT-1 is highly expressed in neurons in the CA3 region of the hippocampus, the tests used in this study were not able to detect a behavioral phenotype referable to hippocampal dysfunction.
Collapse
Affiliation(s)
- Kathryn D Fischer
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Alex C W Houston
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rajeev I Desai
- Preclinical Pharmacology Program, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA
| | - Michelle R Doyle
- Preclinical Pharmacology Program, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA
| | - Jack Bergman
- Preclinical Pharmacology Program, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA
| | - Maha Mian
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - David L Sulzer
- Department of Neurology, Columbia University, New York, NY, 10032, USA
| | - Se Joon Choi
- Department of Neurology, Columbia University, New York, NY, 10032, USA
| | - Eugene V Mosharov
- Department of Neurology, Columbia University, New York, NY, 10032, USA
| | - Nathaniel W Hodgson
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Anita Bechtholt
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Klaus A Miczek
- Departments of Psychiatry, Pharmacology, and Neuroscience, Tufts University, Boston, MA, 02111, USA
| | - Paul A Rosenberg
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA.
- Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
30
|
Edelmann E, Lessmann V. Dopaminergic innervation and modulation of hippocampal networks. Cell Tissue Res 2018; 373:711-727. [PMID: 29470647 DOI: 10.1007/s00441-018-2800-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
The catecholamine dopamine plays an important role in hippocampus-dependent plasticity and related learning and memory processes. Dopamine secretion in the hippocampus is activated by, e.g., salient or novel stimuli, thereby helping to establish and to stabilize hippocampus-dependent memories. Disturbed dopaminergic function in the hippocampus leads to severe pathophysiological conditions. While the role and importance of dopaminergic modulation of hippocampal networks have been unequivocally proven, there is still a lack of detailed molecular and cellular mechanistic understanding of how dopamine orchestrates these hippocampal processes. In this chapter of the special issue "Hippocampal structure and function," we will discuss the current understanding of dopaminergic modulation of basal synaptic transmission and long-lasting, activity-dependent potentiation or depression.
Collapse
Affiliation(s)
- Elke Edelmann
- Institut für Physiologie, Otto-von-Guericke-Universität, Medizinische Fakultät, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - Volkmar Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität, Medizinische Fakultät, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
| |
Collapse
|
31
|
Steinkellner T, Zell V, Farino ZJ, Sonders MS, Villeneuve M, Freyberg RJ, Przedborski S, Lu W, Freyberg Z, Hnasko TS. Role for VGLUT2 in selective vulnerability of midbrain dopamine neurons. J Clin Invest 2018; 128:774-788. [PMID: 29337309 DOI: 10.1172/jci95795] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
Parkinson's disease is characterized by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). DA neurons in the ventral tegmental area are more resistant to this degeneration than those in the SNc, though the mechanisms for selective resistance or vulnerability remain poorly understood. A key to elucidating these processes may lie within the subset of DA neurons that corelease glutamate and express the vesicular glutamate transporter VGLUT2. Here, we addressed the potential relationship between VGLUT expression and DA neuronal vulnerability by overexpressing VGLUT in DA neurons of flies and mice. In Drosophila, VGLUT overexpression led to loss of select DA neuron populations. Similarly, expression of VGLUT2 specifically in murine SNc DA neurons led to neuronal loss and Parkinsonian behaviors. Other neuronal cell types showed no such sensitivity, suggesting that DA neurons are distinctively vulnerable to VGLUT2 expression. Additionally, most DA neurons expressed VGLUT2 during development, and coexpression of VGLUT2 with DA markers increased following injury in the adult. Finally, conditional deletion of VGLUT2 made DA neurons more susceptible to Parkinsonian neurotoxins. These data suggest that the balance of VGLUT2 expression is a crucial determinant of DA neuron survival. Ultimately, manipulation of this VGLUT2-dependent process may represent an avenue for therapeutic development.
Collapse
Affiliation(s)
| | - Vivien Zell
- Department of Neurosciences, UCSD, La Jolla, California, USA
| | - Zachary J Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Michael Villeneuve
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robin J Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Serge Przedborski
- Department of Neurology, and.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas S Hnasko
- Department of Neurosciences, UCSD, La Jolla, California, USA
| |
Collapse
|
32
|
Wang DV, Viereckel T, Zell V, Konradsson-Geuken Å, Broker CJ, Talishinsky A, Yoo JH, Galinato MH, Arvidsson E, Kesner AJ, Hnasko TS, Wallén-Mackenzie Å, Ikemoto S. Disrupting Glutamate Co-transmission Does Not Affect Acquisition of Conditioned Behavior Reinforced by Dopamine Neuron Activation. Cell Rep 2017; 18:2584-2591. [PMID: 28297663 DOI: 10.1016/j.celrep.2017.02.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/12/2017] [Accepted: 02/20/2017] [Indexed: 01/06/2023] Open
Abstract
Dopamine neurons in the ventral tegmental area (VTA) were previously found to express vesicular glutamate transporter 2 (VGLUT2) and to co-transmit glutamate in the ventral striatum (VStr). This capacity may play an important role in reinforcement learning. Although it is known that activation of the VTA-VStr dopamine system readily reinforces behavior, little is known about the role of glutamate co-transmission in such reinforcement. By combining electrode recording and optogenetics, we found that stimulation of VTA dopamine neurons in vivo evoked fast excitatory responses in many VStr neurons of adult mice. Whereas conditional knockout of the gene encoding VGLUT2 in dopamine neurons largely eliminated fast excitatory responses, it had little effect on the acquisition of conditioned responses reinforced by dopamine neuron activation. Therefore, glutamate co-transmission appears dispensable for acquisition of conditioned responding reinforced by DA neuron activation.
Collapse
Affiliation(s)
- Dong V Wang
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Thomas Viereckel
- Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Vivien Zell
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Carl J Broker
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Aleksandr Talishinsky
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ji Hoon Yoo
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Melissa H Galinato
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emma Arvidsson
- Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Andrew J Kesner
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Satoshi Ikemoto
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
33
|
Nigral Glutamatergic Neurons Control the Speed of Locomotion. J Neurosci 2017; 37:9759-9770. [PMID: 28924005 DOI: 10.1523/jneurosci.1810-17.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/08/2017] [Accepted: 08/26/2017] [Indexed: 01/16/2023] Open
Abstract
The mesencephalic locomotor region (MLR) plays a crucial role in locomotor control. In vertebrates, stimulation of the MLR at increasing intensities elicits locomotion of growing speed. This effect has been presumed to result from higher brain inputs activating the MLR like a dimmer switch. Here, we show in lampreys (Petromyzon marinus) of either sex that incremental stimulation of a region homologous to the mammalian substantia nigra pars compacta (SNc) evokes increasing activation of MLR cells with a graded increase in the frequency of locomotor movements. Neurons co-storing glutamate and dopamine were found to project from the primal SNc to the MLR. Blockade of glutamatergic transmission largely diminished MLR cell responses and locomotion. Local blockade of D1 receptors in the MLR decreased locomotor frequency, but did not disrupt the SNc-evoked graded control of locomotion. Our findings revealed the presence of a glutamatergic input to the MLR originating from the primal SNc that evokes graded locomotor movements.SIGNIFICANCE STATEMENT The mesencephalic locomotor region (MLR) plays a crucial role in the control of locomotion. It projects downward to reticulospinal neurons that in turn activate the spinal locomotor networks. Increasing the intensity of MLR stimulation produces a growing activation of reticulospinal cells and a progressive increase in the speed of locomotor movements. Since the discovery of the MLR some 50 years ago, it has been presumed that higher brain regions activate the MLR in a graded fashion, but this has not been confirmed yet. Here, using a combination of techniques from cell to behavior, we provide evidence of a new glutamatergic pathway activating the MLR in a graded fashion, and consequently evoking a progressive increase in locomotor output.
Collapse
|
34
|
Fernández-López B, Sobrido-Cameán D, Anadón R, Rodicio MC, Barreiro-Iglesias A. Restricted co-localization of glutamate and dopamine in neurons of the adult sea lamprey brain. J Anat 2017; 231:776-784. [PMID: 28791699 DOI: 10.1111/joa.12674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2017] [Indexed: 01/04/2023] Open
Abstract
Co-localization of dopamine with other classical neurotransmitters in the same neuron is a common phenomenon in the brain of vertebrates. In mammals, some dopaminergic neurons of the ventral tegmental area and the hypothalamus have a glutamatergic co-phenotype. However, information on the presence of this type of dopaminergic neurons in other vertebrate groups is very scant. Here, we aimed to provide new insights on the evolution of this neuronal co-phenotype by studying the presence of a dual dopaminergic/glutamatergic neuron phenotype in the central nervous system of lampreys. Double immunofluorescence experiments for dopamine and glutamate in adult sea lampreys revealed co-localization of both neurotransmitters in some neurons of the preoptic nucleus, the nucleus of the postoptic commissure, the dorsal hypothalamus and in cerebrospinal fluid-contacting cells of the caudal rhombencephalon and rostral spinal cord. Moreover, co-localization of dopamine and glutamate was found in dopaminergic fibres in a few brain regions including the lateral pallium, striatum, and the preoptic and postoptic areas but not in the brainstem. Our results suggest that the presence of neurons with a dopaminergic/glutamatergic co-phenotype is a primitive character shared by jawless and jawed vertebrates. However, important differences in the distribution of these neurons and fibres were noted among the few vertebrates investigated to date. This study offers an anatomical basis for further work on the role of glutamate in dopaminergic neurons.
Collapse
Affiliation(s)
- B Fernández-López
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - D Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - R Anadón
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - M C Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
35
|
Mingote S, Chuhma N, Kalmbach A, Thomsen GM, Wang Y, Mihali A, Sferrazza C, Zucker-Scharff I, Siena AC, Welch MG, Lizardi-Ortiz J, Sulzer D, Moore H, Gaisler-Salomon I, Rayport S. Dopamine neuron dependent behaviors mediated by glutamate cotransmission. eLife 2017; 6. [PMID: 28703706 PMCID: PMC5599237 DOI: 10.7554/elife.27566] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
Dopamine neurons in the ventral tegmental area use glutamate as a cotransmitter. To elucidate the behavioral role of the cotransmission, we targeted the glutamate-recycling enzyme glutaminase (gene Gls1). In mice with a dopamine transporter (Slc6a3)-driven conditional heterozygous (cHET) reduction of Gls1 in their dopamine neurons, dopamine neuron survival and transmission were unaffected, while glutamate cotransmission at phasic firing frequencies was reduced, enabling a selective focus on the cotransmission. The mice showed normal emotional and motor behaviors, and an unaffected response to acute amphetamine. Strikingly, amphetamine sensitization was reduced and latent inhibition potentiated. These behavioral effects, also seen in global GLS1 HETs with a schizophrenia resilience phenotype, were not seen in mice with an Emx1-driven forebrain reduction affecting most brain glutamatergic neurons. Thus, a reduction in dopamine neuron glutamate cotransmission appears to mediate significant components of the GLS1 HET schizophrenia resilience phenotype, and glutamate cotransmission appears to be important in attribution of motivational salience.
Collapse
Affiliation(s)
- Susana Mingote
- Department of Psychiatry, Columbia University, New York, United States.,Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, United States
| | - Nao Chuhma
- Department of Psychiatry, Columbia University, New York, United States.,Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, United States
| | - Abigail Kalmbach
- Department of Psychiatry, Columbia University, New York, United States.,Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, United States
| | | | - Yvonne Wang
- Department of Psychiatry, Columbia University, New York, United States
| | - Andra Mihali
- Department of Psychiatry, Columbia University, New York, United States
| | | | | | - Anna-Claire Siena
- Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, United States
| | - Martha G Welch
- Department of Psychiatry, Columbia University, New York, United States.,Department of Pediatrics, Columbia University, New York, United States.,Department of Developmental Neuroscience, NYS Psychiatric Institute, New York, United States
| | | | - David Sulzer
- Department of Psychiatry, Columbia University, New York, United States.,Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, United States.,Department of Neurology, Columbia University, New York, United States.,Department of Pharmacology, Columbia University, New York, United States
| | - Holly Moore
- Department of Psychiatry, Columbia University, New York, United States.,Department of Integrative Neuroscience, NYS Psychiatric Institute, New York, United States
| | - Inna Gaisler-Salomon
- Department of Psychiatry, Columbia University, New York, United States.,Department of Psychology, University of Haifa, Haifa, Israel
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York, United States.,Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, United States
| |
Collapse
|
36
|
Chuhma N, Mingote S, Kalmbach A, Yetnikoff L, Rayport S. Heterogeneity in Dopamine Neuron Synaptic Actions Across the Striatum and Its Relevance for Schizophrenia. Biol Psychiatry 2017; 81:43-51. [PMID: 27692238 PMCID: PMC5121049 DOI: 10.1016/j.biopsych.2016.07.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/03/2016] [Accepted: 07/07/2016] [Indexed: 02/06/2023]
Abstract
Brain imaging has revealed alterations in dopamine uptake, release, and receptor levels in patients with schizophrenia that have been resolved on the scale of striatal subregions. However, the underlying synaptic mechanisms are on a finer scale. Dopamine neuron synaptic actions vary across the striatum, involving variations not only in dopamine release but also in dopamine neuron connectivity, cotransmission, modulation, and activity. Optogenetic studies have revealed that dopamine neurons release dopamine in a synaptic signal mode, and that the neurons also release glutamate and gamma-aminobutyric acid as cotransmitters, with striking regional variation. Fast glutamate and gamma-aminobutyric acid cotransmission convey discrete patterns of dopamine neuron activity to striatal neurons. Glutamate may function not only in a signaling role at a subset of dopamine neuron synapses, but also in mediating vesicular synergy, contributing to regional differences in loading of dopamine into synaptic vesicles. Regional differences in dopamine neuron signaling are likely to be differentially involved in the schizophrenia disease process and likely determine the subregional specificity of the action of psychostimulants that exacerbate the disorder, and antipsychotics that ameliorate the disorder. Elucidating dopamine neuron synaptic signaling offers the potential for achieving greater pharmacological specificity through intersectional pharmacological actions targeting subsets of dopamine neuron synapses.
Collapse
Affiliation(s)
- Nao Chuhma
- Department of Psychiatry, Columbia University, New York, New York; Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, New York
| | - Susana Mingote
- Department of Psychiatry, Columbia University, New York, New York; Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, New York
| | - Abigail Kalmbach
- Department of Psychiatry, Columbia University, New York, New York; Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, New York
| | - Leora Yetnikoff
- Department of Psychiatry, Columbia University, New York, New York; Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, New York
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York, New York; Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, New York.
| |
Collapse
|
37
|
Lussier F, Brulé T, Bourque MJ, Ducrot C, Trudeau LÉ, Masson JF. Dynamic SERS nanosensor for neurotransmitter sensing near neurons. Faraday Discuss 2017; 205:387-407. [DOI: 10.1039/c7fd00131b] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Current electrophysiology and electrochemistry techniques have provided unprecedented understanding of neuronal activity. However, these techniques are suited to a small, albeit important, panel of neurotransmitters such as glutamate, GABA and dopamine, and these constitute only a subset of the broader range of neurotransmitters involved in brain chemistry. Surface-enhanced Raman scattering (SERS) provides a unique opportunity to detect a broader range of neurotransmitters in close proximity to neurons. Dynamic SERS (D-SERS) nanosensors based on patch-clamp-like nanopipettes decorated with gold nanoraspberries can be located accurately under a microscope using techniques analogous to those used in current electrophysiology or electrochemistry experiments. In this manuscript, we demonstrate that D-SERS can measure in a single experiment ATP, glutamate (glu), acetylcholine (ACh), GABA and dopamine (DA), among other neurotransmitters, with the potential for detecting a greater number of neurotransmitters. The SERS spectra of these neurotransmitters were identified with a barcoding data processing method and time series of the neurotransmitter levels were constructed. The D-SERS nanosensor was then located near cultured mouse dopaminergic neurons. The detection of neurotransmitters was performed in response to a series of K+depolarisations, and allowed the detection of elevated levels of both ATP and dopamine. Control experiments were also performed near glial cells, showing only very low basal detection neurotransmitter events. This paper demonstrates the potential of D-SERS to detect neurotransmitter secretion events near living neurons, but also constitutes a strong proof-of-concept for the broad application of SERS to the detection of secretion events by neurons or other cell types in order to study normal or pathological cell functions.
Collapse
Affiliation(s)
- Félix Lussier
- Department of Chemistry
- Université de Montréal
- Montreal
- Canada
| | - Thibault Brulé
- Department of Chemistry
- Université de Montréal
- Montreal
- Canada
| | - Marie-Josée Bourque
- Department of Pharmacology and Physiology
- Department of Neurosciences
- Université de Montréal
- Montreal
- Canada
| | - Charles Ducrot
- Department of Pharmacology and Physiology
- Department of Neurosciences
- Université de Montréal
- Montreal
- Canada
| | - Louis-Éric Trudeau
- Department of Pharmacology and Physiology
- Department of Neurosciences
- Université de Montréal
- Montreal
- Canada
| | - Jean-François Masson
- Department of Chemistry
- Université de Montréal
- Montreal
- Canada
- Centre Québécois sur les matériaux fontionnels (CQMF)
| |
Collapse
|
38
|
Yoo JH, Zell V, Gutierrez-Reed N, Wu J, Ressler R, Shenasa MA, Johnson AB, Fife KH, Faget L, Hnasko TS. Ventral tegmental area glutamate neurons co-release GABA and promote positive reinforcement. Nat Commun 2016; 7:13697. [PMID: 27976722 PMCID: PMC5171775 DOI: 10.1038/ncomms13697] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/26/2016] [Indexed: 02/08/2023] Open
Abstract
In addition to dopamine neurons, the ventral tegmental area (VTA) contains GABA-, glutamate- and co-releasing neurons, and recent reports suggest a complex role for the glutamate neurons in behavioural reinforcement. We report that optogenetic stimulation of VTA glutamate neurons or terminals serves as a positive reinforcer on operant behavioural assays. Mice display marked preference for brief over sustained VTA glutamate neuron stimulation resulting in behavioural responses that are notably distinct from dopamine neuron stimulation and resistant to dopamine receptor antagonists. Whole-cell recordings reveal EPSCs following stimulation of VTA glutamate terminals in the nucleus accumbens or local VTA collaterals; but reveal both excitatory and monosynaptic inhibitory currents in the ventral pallidum and lateral habenula, though the net effects on postsynaptic firing in each region are consistent with the observed rewarding behavioural effects. These data indicate that VTA glutamate neurons co-release GABA in a projection-target-dependent manner and that their transient activation drives positive reinforcement.
Ventral tegmental area (VTA) is involved in reward behaviours, but the precise contribution of VTA glutamatergic neurons to this process is not known. Here the authors show that phasic but not sustained optogenetic stimulation of VTA glutamatergic neurons is rewarding and involves co-release of GABA.
Collapse
Affiliation(s)
- Ji Hoon Yoo
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Vivien Zell
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Navarre Gutierrez-Reed
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093, USA
| | - Johnathan Wu
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Reed Ressler
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Mohammad Ali Shenasa
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Alexander B Johnson
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Kathryn H Fife
- Neuroscience Graduate Program, University of California, San Diego, La Jolla, California 92093, USA
| | - Lauren Faget
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
39
|
Milosevic A, Liebmann T, Knudsen M, Schintu N, Svenningsson P, Greengard P. Cell- and region-specific expression of depression-related protein p11 (S100a10) in the brain. J Comp Neurol 2016; 525:955-975. [PMID: 27616678 PMCID: PMC5222728 DOI: 10.1002/cne.24113] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/03/2016] [Accepted: 08/09/2016] [Indexed: 12/20/2022]
Abstract
P11 (S100a10), a member of the S100 family of proteins, has widespread distribution in the vertebrate body, including in the brain, where it has a key role in membrane trafficking, vesicle secretion, and endocytosis. Recently, our laboratory has shown that a constitutive knockout of p11 (p11-KO) in mice results in a depressive-like phenotype. Furthermore, p11 has been implicated in major depressive disorder (MDD) and in the actions of antidepressants. Since depression affects multiple brain regions, and the role of p11 has only been determined in a few of these areas, a detailed analysis of p11 expression in the brain is warranted. Here we demonstrate that, although widespread in the brain, p11 expression is restricted to distinct regions, and specific neuronal and nonneuronal cell types. Furthermore, we provide comprehensive mapping of p11 expression using in situ hybridization, immunocytochemistry, and whole-tissue volume imaging. Overall, expression spans multiple brain regions, structures, and cell types, suggesting a complex role of p11 in depression. J. Comp. Neurol. 525:955-975, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ana Milosevic
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York, USA
| | - Thomas Liebmann
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York, USA
| | - Margarete Knudsen
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York, USA
| | - Nicoletta Schintu
- Section for Translational Neuropharmacology, Department of Clinical Neuroscience, CMM L8:01, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Per Svenningsson
- Section for Translational Neuropharmacology, Department of Clinical Neuroscience, CMM L8:01, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York, USA
| |
Collapse
|
40
|
Midbrain Gene Screening Identifies a New Mesoaccumbal Glutamatergic Pathway and a Marker for Dopamine Cells Neuroprotected in Parkinson's Disease. Sci Rep 2016; 6:35203. [PMID: 27762319 PMCID: PMC5071886 DOI: 10.1038/srep35203] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/26/2016] [Indexed: 11/08/2022] Open
Abstract
The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) of the midbrain are associated with Parkinson’s disease (PD), schizophrenia, mood disorders and addiction. Based on the recently unraveled heterogeneity within the VTA and SNc, where glutamate, GABA and co-releasing neurons have been found to co-exist with the classical dopamine neurons, there is a compelling need for identification of gene expression patterns that represent this heterogeneity and that are of value for development of human therapies. Here, several unique gene expression patterns were identified in the mouse midbrain of which NeuroD6 and Grp were expressed within different dopaminergic subpopulations of the VTA, and TrpV1 within a small heterogeneous population. Optogenetics-coupled in vivo amperometry revealed a previously unknown glutamatergic mesoaccumbal pathway characterized by TrpV1-Cre-expression. Human GRP was strongly detected in non-melanized dopaminergic neurons within the SNc of both control and PD brains, suggesting GRP as a marker for neuroprotected neurons in PD. This study thus unravels markers for distinct subpopulations of neurons within the mouse and human midbrain, defines unique anatomical subregions within the VTA and exposes an entirely new glutamatergic pathway. Finally, both TRPV1 and GRP are implied in midbrain physiology of importance to neurological and neuropsychiatric disorders.
Collapse
|
41
|
Schweizer N, Viereckel T, Smith-Anttila CJ, Nordenankar K, Arvidsson E, Mahmoudi S, Zampera A, Wärner Jonsson H, Bergquist J, Lévesque D, Konradsson-Geuken Å, Andersson M, Dumas S, Wallén-Mackenzie Å. Reduced Vglut2/Slc17a6 Gene Expression Levels throughout the Mouse Subthalamic Nucleus Cause Cell Loss and Structural Disorganization Followed by Increased Motor Activity and Decreased Sugar Consumption. eNeuro 2016; 3:ENEURO.0264-16.2016. [PMID: 27699212 PMCID: PMC5041164 DOI: 10.1523/eneuro.0264-16.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 12/24/2022] Open
Abstract
The subthalamic nucleus (STN) plays a central role in motor, cognitive, and affective behavior. Deep brain stimulation (DBS) of the STN is the most common surgical intervention for advanced Parkinson's disease (PD), and STN has lately gained attention as target for DBS in neuropsychiatric disorders, including obsessive compulsive disorder, eating disorders, and addiction. Animal studies using STN-DBS, lesioning, or inactivation of STN neurons have been used extensively alongside clinical studies to unravel the structural organization, circuitry, and function of the STN. Recent studies in rodent STN models have exposed different roles for STN neurons in reward-related functions. We have previously shown that the majority of STN neurons express the vesicular glutamate transporter 2 gene (Vglut2/Slc17a6) and that reduction of Vglut2 mRNA levels within the STN of mice [conditional knockout (cKO)] causes reduced postsynaptic activity and behavioral hyperlocomotion. The cKO mice showed less interest in fatty rewards, which motivated analysis of reward-response. The current results demonstrate decreased sugar consumption and strong rearing behavior, whereas biochemical analyses show altered dopaminergic and peptidergic activity in the striatum. The behavioral alterations were in fact correlated with opposite effects in the dorsal versus the ventral striatum. Significant cell loss and disorganization of the STN structure was identified, which likely accounts for the observed alterations. Rare genetic variants of the human VGLUT2 gene exist, and this study shows that reduced Vglut2/Slc17a6 gene expression levels exclusively within the STN of mice is sufficient to cause strong modifications in both the STN and the mesostriatal dopamine system.
Collapse
Affiliation(s)
- Nadine Schweizer
- Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Thomas Viereckel
- Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden
- Department of Neuroscience, Uppsala University, SE-751 24 Uppsala, Sweden
| | | | - Karin Nordenankar
- Department of Neuroscience, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Emma Arvidsson
- Department of Organismal Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Souha Mahmoudi
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | | | - Hanna Wärner Jonsson
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry, BMC - Analytical Chemistry and Neurochemistry, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Daniel Lévesque
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | | | - Malin Andersson
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
42
|
Voisin AN, Mnie-Filali O, Giguère N, Fortin GM, Vigneault E, El Mestikawy S, Descarries L, Trudeau LÉ. Axonal Segregation and Role of the Vesicular Glutamate Transporter VGLUT3 in Serotonin Neurons. Front Neuroanat 2016; 10:39. [PMID: 27147980 PMCID: PMC4828685 DOI: 10.3389/fnana.2016.00039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/21/2016] [Indexed: 11/13/2022] Open
Abstract
A subset of monoamine neurons releases glutamate as a cotransmitter due to presence of the vesicular glutamate transporters VGLUT2 or VGLUT3. In addition to mediating vesicular loading of glutamate, it has been proposed that VGLUT3 enhances serotonin (5-HT) vesicular loading by the vesicular monoamine transporter (VMAT2) in 5-HT neurons. In dopamine (DA) neurons, glutamate appears to be released from specialized subsets of terminals and it may play a developmental role, promoting neuronal growth and survival. The hypothesis of a similar developmental role and axonal localization of glutamate co-release in 5-HT neurons has not been directly examined. Using postnatal mouse raphe neurons in culture, we first observed that in contrast to 5-HT itself, other phenotypic markers of 5-HT axon terminals such as the 5-HT reuptake transporter (SERT) show a more restricted localization in the axonal arborization. Interestingly, only a subset of SERT- and 5-HT-positive axonal varicosities expressed VGLUT3, with SERT and VGLUT3 being mostly segregated. Using VGLUT3 knockout mice, we found that deletion of this transporter leads to reduced survival of 5-HT neurons in vitro and also decreased the density of 5-HT-immunoreactivity in terminals in the dorsal striatum and dorsal part of the hippocampus in the intact brain. Our results demonstrate that raphe 5-HT neurons express SERT and VGLUT3 mainly in segregated axon terminals and that VGLUT3 regulates the vulnerability of these neurons and the neurochemical identity of their axonal domain, offering new perspectives on the functional connectivity of a cell population involved in anxiety disorders and depression.
Collapse
Affiliation(s)
- Aurore N. Voisin
- Department of Pharmacology, Faculty of Medicine, GRSNC, Université de MontréalMontreal, QC, Canada
| | - Ouissame Mnie-Filali
- Department of Neurosciences, Faculty of Medicine, GRSNC, Université de MontréalMontreal, QC, Canada
| | - Nicolas Giguère
- Department of Pharmacology, Faculty of Medicine, GRSNC, Université de MontréalMontreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, GRSNC, Université de MontréalMontreal, QC, Canada
| | - Guillaume M. Fortin
- Department of Pharmacology, Faculty of Medicine, GRSNC, Université de MontréalMontreal, QC, Canada
| | - Erika Vigneault
- Department of Psychiatry, Douglas Hospital Research Center, McGill UniversityMontreal, QC, Canada
| | - Salah El Mestikawy
- Department of Psychiatry, Douglas Hospital Research Center, McGill UniversityMontreal, QC, Canada
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S 1130Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8246Paris, France
- Institut de Biologie Paris-Seine (IBPS), Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris, UM119 Neuroscience Paris SeineParis, France
| | - Laurent Descarries
- Department of Neurosciences, Faculty of Medicine, GRSNC, Université de MontréalMontreal, QC, Canada
| | - Louis-Éric Trudeau
- Department of Pharmacology, Faculty of Medicine, GRSNC, Université de MontréalMontreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, GRSNC, Université de MontréalMontreal, QC, Canada
| |
Collapse
|
43
|
Anderegg A, Poulin JF, Awatramani R. Molecular heterogeneity of midbrain dopaminergic neurons--Moving toward single cell resolution. FEBS Lett 2015; 589:3714-26. [PMID: 26505674 DOI: 10.1016/j.febslet.2015.10.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/19/2015] [Accepted: 10/19/2015] [Indexed: 12/31/2022]
Abstract
Since their discovery, midbrain dopamine (DA) neurons have been researched extensively, in part because of their diverse functions and involvement in various neuropsychiatric disorders. Over the last few decades, reports have emerged that midbrain DA neurons were not a homogeneous group, but that DA neurons located in distinct anatomical locations within the midbrain had distinctive properties in terms of physiology, function, and vulnerability. Accordingly, several studies focused on identifying heterogeneous gene expression across DA neuron clusters. Here we review the importance of understanding DA neuron heterogeneity at the molecular level, previous studies detailing heterogeneous gene expression in DA neurons, and finally recent work which brings together previous heterogeneous gene expression profiles in a coordinated manner, at single cell resolution.
Collapse
Affiliation(s)
- Angela Anderegg
- Department of Neurology and Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Jean-Francois Poulin
- Department of Neurology and Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Rajeshwar Awatramani
- Department of Neurology and Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, United States
| |
Collapse
|
44
|
Apuschkin M, Stilling S, Rahbek-Clemmensen T, Sørensen G, Fortin G, Herborg Hansen F, Eriksen J, Trudeau LE, Egerod K, Gether U, Rickhag M. A novel dopamine transporter transgenic mouse line for identification and purification of midbrain dopaminergic neurons reveals midbrain heterogeneity. Eur J Neurosci 2015; 42:2438-54. [PMID: 26286107 DOI: 10.1111/ejn.13046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 01/29/2023]
Abstract
Midbrain dopaminergic (DAergic) neurons are a heterogeneous cell group, composed of functionally distinct cell populations projecting to the basal ganglia, prefrontal cortex and limbic system. Despite their functional significance, the midbrain population of DAergic neurons is sparse, constituting only 20 000-30 000 neurons in mice, and development of novel tools to identify these cells is warranted. Here, a bacterial artificial chromosome mouse line [Dat1-enhanced green fluorescent protein (eGFP)] from the Gene Expression Nervous System Atlas (GENSAT) that expresses eGFP under control of the dopamine transporter (DAT) promoter was characterized. Confocal microscopy analysis of brain sections showed strong eGFP signal reporter in midbrain regions and striatal terminals that co-localized with the DAergic markers DAT and tyrosine hydroxylase (TH). Thorough quantification of co-localization of the eGFP reporter signal with DAT and TH in the ventral midbrain showed that a vast majority of eGFP-expressing neurons are DAergic. Importantly, expression profiles also revealed DAergic heterogeneity when comparing substantia nigra and ventral tegmental area. Dat1-eGFP mice showed neither change in synaptosomal DA uptake nor altered levels of DAT and TH in both striatum and midbrain. No behavioural difference between Dat1-eGFP and wild-type was found, suggesting that the strain is not aberrant. Finally, cell populations highly enriched in DAergic neurons can be obtained from postnatal mice by fluorescence-activated cell sorting and the sorted neurons can be cultured in vitro. The current investigation demonstrates that eGFP expression in this mouse line is selective for DAergic neurons, suggesting that the Dat1-eGFP mouse strain constitutes a promising tool for delineating new aspects of DA biology.
Collapse
Affiliation(s)
- Mia Apuschkin
- Department of Neuroscience and Pharmacology, Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara Stilling
- Department of Neuroscience and Pharmacology, Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Troels Rahbek-Clemmensen
- Department of Neuroscience and Pharmacology, Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar Sørensen
- Department of Neuroscience and Pharmacology, Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Neuroscience and Pharmacology, Laboratory of Neuropsychiatry, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Guillaume Fortin
- Department of Pharmacology and Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Freja Herborg Hansen
- Department of Neuroscience and Pharmacology, Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Eriksen
- Department of Neuroscience and Pharmacology, Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louis-Eric Trudeau
- Department of Pharmacology and Groupe de Recherche sur le Système Nerveux Central, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Kristoffer Egerod
- Department of Neuroscience and Pharmacology, Molecular Pharmacology Laboratory, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Gether
- Department of Neuroscience and Pharmacology, Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mattias Rickhag
- Department of Neuroscience and Pharmacology, Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Holloway BB, Viar KE, Stornetta RL, Guyenet PG. The retrotrapezoid nucleus stimulates breathing by releasing glutamate in adult conscious mice. Eur J Neurosci 2015; 42:2271-82. [PMID: 26096172 DOI: 10.1111/ejn.12996] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 11/30/2022]
Abstract
The retrotrapezoid nucleus (RTN) is a bilateral cluster of neurons located at the ventral surface of the brainstem below the facial nucleus. The RTN is activated by hypercapnia and stabilises arterial Pco2 by adjusting lung ventilation in a feedback manner. RTN neurons contain vesicular glutamate transporter-2 (Vglut2) transcripts (Slc17a6), and their synaptic boutons are Vglut2-immunoreactive. Here, we used optogenetics to test whether the RTN increases ventilation in conscious adult mice by releasing glutamate. Neurons located below the facial motor nucleus were transduced unilaterally to express channelrhodopsin-2 (ChR2)-enhanced yellow fluorescent protein, with lentiviral vectors that employ the Phox2b-activated artificial promoter PRSx8. The targeted population consisted of two types of Phox2b-expressing neuron: non-catecholaminergic neurons (putative RTN chemoreceptors) and catecholaminergic (C1) neurons. Opto-activation of a mix of ChR2-expressing RTN and C1 neurons produced a powerful stimulus frequency-dependent (5-15 Hz) stimulation of breathing in control conscious mice. Respiratory stimulation was comparable in mice in which dopamine-β-hydroxylase (DβH)-positive neurons no longer expressed Vglut2 (DβH(C) (re/0);;Vglut2(fl/fl)). In a third group of mice, i.e. DβH(+/+);;Vglut2(fl/fl) mice, we injected a mixture of PRSx8-Cre lentiviral vector and Cre-dependent ChR2 adeno-associated virus 2 unilaterally into the RTN; this procedure deleted Vglut2 from ChR2-expressing neurons regardless of whether or not they were catecholaminergic. The ventilatory response elicited by photostimulation of ChR2-positive neurons was almost completely absent in these mice. Resting ventilatory parameters were identical in the three groups of mice, and their brains contained similar numbers of ChR2-positive catecholaminergic and non-catecholaminergic neurons. From these results, we conclude that RTN neurons increase breathing in conscious adult mice by releasing glutamate.
Collapse
Affiliation(s)
- Benjamin B Holloway
- Department of Pharmacology, University of Virginia Health System, P.O. Box 800735, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908-0735, USA
| | - Kenneth E Viar
- Department of Pharmacology, University of Virginia Health System, P.O. Box 800735, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908-0735, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia Health System, P.O. Box 800735, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908-0735, USA
| | - Patrice G Guyenet
- Department of Pharmacology, University of Virginia Health System, P.O. Box 800735, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908-0735, USA
| |
Collapse
|
46
|
Cre-driven optogenetics in the heterogeneous genetic panorama of the VTA. Trends Neurosci 2015; 38:375-86. [PMID: 25962754 DOI: 10.1016/j.tins.2015.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 11/24/2022]
Abstract
The selectivity of optogenetics commonly relies on genetic promoters to manipulate specific populations of neurons through the use of Cre-driver lines. All studies performed in the ventral tegmental area (VTA) so far have utilized promoters present in groups of cells that release dopamine (DA), GABA, or glutamate. However, neurons that co-release neurotransmitters and variabilities within groups of neurons that release the same neurotransmitter present challenges when evaluating the results. Further complexity is introduced by ectopic expression patterns often occurring in transgenic Cre-drivers. New perspectives could be unfolded by identifying and selecting different types of promoter for driving the Cre recombinase. Here, we discuss some promising candidates and highlight the advantages or disadvantages of different methods for creating novel transgenic lines.
Collapse
|
47
|
Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor. Brain Struct Funct 2015; 221:2093-107. [PMID: 25782435 DOI: 10.1007/s00429-015-1029-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 03/06/2015] [Indexed: 10/23/2022]
Abstract
Striatal medium spiny neurons (MSNs) are contacted by glutamatergic axon terminals originating from cortex, thalamus and other regions. The striatum is also innervated by dopaminergic (DAergic) terminals, some of which release glutamate as a co-transmitter. Despite evidence for functional DA release at birth in the striatum, the role of DA in the establishment of striatal circuitry is unclear. In light of recent work suggesting activity-dependent homeostatic regulation of glutamatergic terminals on MSNs expressing the D2 DA receptor (D2-MSNs), we used primary co-cultures to test the hypothesis that stimulation of DA and glutamate receptors regulates the homeostasis of glutamatergic synapses on MSNs. Co-culture of D2-MSNs with mesencephalic DA neurons or with cortical neurons produced an increase in spines and functional glutamate synapses expressing VGLUT2 or VGLUT1, respectively. The density of VGLUT2-positive terminals was reduced by the conditional knockout of this gene from DA neurons. In the presence of both mesencephalic and cortical neurons, the density of synapses reached the same total, compatible with the possibility of a homeostatic mechanism capping excitatory synaptic density. Blockade of D2 receptors increased the density of cortical and mesencephalic glutamatergic terminals, without changing MSN spine density or mEPSC frequency. Combined blockade of AMPA and NMDA glutamate receptors increased the density of cortical terminals and decreased that of mesencephalic VGLUT2-positive terminals, with no net change in total excitatory terminal density or in mEPSC frequency. These results suggest that DA and glutamate signaling regulate excitatory inputs to striatal D2-MSNs at both the pre- and postsynaptic level, under the influence of a homeostatic mechanism controlling functional output of the circuit.
Collapse
|
48
|
Yamaguchi T, Qi J, Wang HL, Zhang S, Morales M. Glutamatergic and dopaminergic neurons in the mouse ventral tegmental area. Eur J Neurosci 2015; 41:760-72. [PMID: 25572002 PMCID: PMC4363208 DOI: 10.1111/ejn.12818] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022]
Abstract
The ventral tegmental area (VTA) comprises dopamine (DA), γ-aminobutyric acid (GABA) and glutamate (Glu) neurons. Some rat VTA Glu neurons, expressing vesicular glutamate transporter 2 (VGluT2), co-express tyrosine hydroxylase (TH). While transgenic mice are now being used in attempts to determine the role of VGluT2/TH neurons in reward and neuronal signaling, such neurons have not been characterized in mouse tissue. By cellular detection of VGluT2 mRNA and TH immunoreactivity (TH-IR), we determined the cellular expression of VGluT2 mRNA within VTA TH-IR neurons in the mouse. We found that some mouse VGluT2 neurons coexpressed TH-IR, but their frequency was lower than in the rat. To determine whether low expression of TH mRNA or TH-IR accounts for this low frequency, we evaluated VTA cellular coexpression of TH transcripts and TH protein. Within the medial aspects of the VTA, some neurons expressed TH mRNA but lacked TH-IR; among them a subset coexpressed VGluT2 mRNA. To determine if lack of VTA TH-IR was due to TH trafficking, we tagged VTA TH neurons by Cre-inducible expression of mCherry in TH::Cre mice. By dual immunofluorescence, we detected axons containing mCherry, but lacking TH-IR, in the lateral habenula, indicating that low frequency of VGluT2 mRNA (+)/TH-IR (+) neurons in the mouse is due to lack of synthesis of TH protein, rather than TH protein trafficking. In conclusion, VGluT2 neurons are present in the rat and mouse VTA, but they differ in the populations of VGluT2/TH and TH neurons. Under normal conditions, the translation of TH protein is suppressed in the mouse mesohabenular TH neurons.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- TY. Current address, Department of Histology and Neurobiology, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293 JAPAN,
| | | | - Hui-Ling Wang
- National Institutes of Health. National Institute on Drug Abuse, Intramural Research Program. Neuronal Networks Section. 251 Bayview Boulevard, Baltimore, MD 21224
| | - Shiliang Zhang
- National Institutes of Health. National Institute on Drug Abuse, Intramural Research Program. Neuronal Networks Section. 251 Bayview Boulevard, Baltimore, MD 21224
| | - Marisela Morales
- National Institutes of Health. National Institute on Drug Abuse, Intramural Research Program. Neuronal Networks Section. 251 Bayview Boulevard, Baltimore, MD 21224
| |
Collapse
|
49
|
Filippi A, Mueller T, Driever W. vglut2 and gad expression reveal distinct patterns of dual GABAergic versus glutamatergic cotransmitter phenotypes of dopaminergic and noradrenergic neurons in the zebrafish brain. J Comp Neurol 2015; 522:2019-37. [PMID: 24374659 PMCID: PMC4288968 DOI: 10.1002/cne.23524] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 01/22/2023]
Abstract
Throughout the vertebrate lineage, dopaminergic neurons form important neuromodulatory systems that influence motor behavior, mood, cognition, and physiology. Studies in mammals have established that dopaminergic neurons often use γ-aminobutyric acid (GABA) or glutamatergic cotransmission during development and physiological function. Here, we analyze vglut2, gad1b and gad2 expression in combination with tyrosine hydroxylase immunoreactivity in 4-day-old larval and 30-day-old juvenile zebrafish brains to determine which dopaminergic and noradrenergic groups may use GABA or glutamate as a second transmitter. Our results show that most dopaminergic neurons also express GABAergic markers, including the dopaminergic groups of the olfactory bulb (homologous to mammalian A16) and the subpallium, the hypothalamic groups (A12, A14), the prethalamic zona incerta group (A13), the preoptic groups (A15), and the pretectal group. Thus, the majority of catecholaminergic neurons are gad1b/2-positive and coexpress GABA. A very few gad1/2-negative dopaminergic groups, however, express vglut2 instead and use glutamate as a second transmitter. These glutamatergic dual transmitter phenotypes are the Orthopedia transcription factor–dependent, A11-type dopaminergic neurons of the posterior tuberculum. All together, our results demonstrate that all catecholaminergic groups in zebrafish are either GABAergic or glutamatergic. Thus, cotransmission of dopamine and noradrenaline with either GABA or glutamate appears to be a regular feature of zebrafish catecholaminergic systems. We compare our results with those that have been described for mammalian systems, discuss the phenomenon of transmitter dualism in the context of developmental specification of GABAergic and glutamatergic regions in the brain, and put this phenomenon in an evolutionary perspective. J. Comp. Neurol. 522:2019–2037, 2014.
Collapse
Affiliation(s)
- Alida Filippi
- Developmental Biology, Institute of Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | | | | |
Collapse
|
50
|
Nordenankar K, Bergfors A, Wallén-Mackenzie Å. Targeted deletion of Vglut2 expression in the embryonal telencephalon promotes an anxiolytic phenotype of the adult mouse. Ups J Med Sci 2015; 120:144-56. [PMID: 25857802 PMCID: PMC4526870 DOI: 10.3109/03009734.2015.1032454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Anxiety is a natural emotion experienced by all individuals. However, when anxiety becomes excessive, it contributes to the substantial group of anxiety disorders that affect one in three people and thus are among the most common psychiatric disorders. Anxiolysis, the reduction of anxiety, is mediated via several large groups of therapeutical compounds, but the relief is often only temporary, and increased knowledge of the neurobiology underlying anxiety is needed in order to improve future therapies. AIM We previously demonstrated that mice lacking forebrain expression of the Vesicular glutamate transporter 2 (Vglut2) from adolescence showed a strong anxiolytic behaviour as adults. In the current study, we wished to analyse if removal of Vglut2 expression already from mid-gestation of the mouse embryo would give rise to similar anxiolysis in the adult mouse. METHODS We produced transgenic mice lacking Vglut2 from mid-gestation and analysed their affective behaviour, including anxiety, when they had reached adulthood. RESULTS The transgenic mice lacking Vglut2 expression from mid-gestation showed certain signs of anxiolytic behaviour, but this phenotype was not as prominent as when Vglut2 was removed during adolescence. CONCLUSION Our results suggest that both embryonal and adolescent forebrain expression of Vglut2 normally contributes to balancing the level of anxiety. As the neurobiological basis for anxiety is similar across species, our results in mice may help improve the current understanding of the neurocircuitry of anxiety, and hence anxiolysis, also in humans.
Collapse
Affiliation(s)
- Karin Nordenankar
- Department of Neuroscience, Unit of Functional Neurobiology and Unit of Developmental Genetics, Uppsala University, Box 593, S-75214 Uppsala, Sweden
| | - Assar Bergfors
- Department of Neuroscience, Unit of Functional Neurobiology and Unit of Developmental Genetics, Uppsala University, Box 593, S-75214 Uppsala, Sweden
| | - Åsa Wallén-Mackenzie
- Department of Neuroscience, Unit of Functional Neurobiology and Unit of Developmental Genetics, Uppsala University, Box 593, S-75214 Uppsala, Sweden
| |
Collapse
|