1
|
Romussi S, Giunti S, Andersen N, De Rosa MJ. C. elegans: a prominent platform for modeling and drug screening in neurological disorders. Expert Opin Drug Discov 2024; 19:565-585. [PMID: 38509691 DOI: 10.1080/17460441.2024.2329103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Human neurodevelopmental and neurodegenerative diseases (NDevDs and NDegDs, respectively) encompass a broad spectrum of disorders affecting the nervous system with an increasing incidence. In this context, the nematode C. elegans, has emerged as a benchmark model for biological research, especially in the field of neuroscience. AREAS COVERED The authors highlight the numerous advantages of this tiny worm as a model for exploring nervous system pathologies and as a platform for drug discovery. There is a particular focus given to describing the existing models of C. elegans for the study of NDevDs and NDegDs. Specifically, the authors underscore their strong applicability in preclinical drug development. Furthermore, they place particular emphasis on detailing the common techniques employed to explore the nervous system in both healthy and diseased states. EXPERT OPINION Drug discovery constitutes a long and expensive process. The incorporation of invertebrate models, such as C. elegans, stands as an exemplary strategy for mitigating costs and expediting timelines. The utilization of C. elegans as a platform to replicate nervous system pathologies and conduct high-throughput automated assays in the initial phases of drug discovery is pivotal for rendering therapeutic options more attainable and cost-effective.
Collapse
Affiliation(s)
- Stefano Romussi
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
| | - Sebastián Giunti
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Natalia Andersen
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - María José De Rosa
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
2
|
Donnelly KM, Coleman CM, Fuller ML, Reed VL, Smerina D, Tomlinson DS, Pearce MMP. Hunting for the cause: Evidence for prion-like mechanisms in Huntington’s disease. Front Neurosci 2022; 16:946822. [PMID: 36090278 PMCID: PMC9448931 DOI: 10.3389/fnins.2022.946822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
The hypothesis that pathogenic protein aggregates associated with neurodegenerative diseases spread from cell-to-cell in the brain in a manner akin to infectious prions has gained substantial momentum due to an explosion of research in the past 10–15 years. Here, we review current evidence supporting the existence of prion-like mechanisms in Huntington’s disease (HD), an autosomal dominant neurodegenerative disease caused by expansion of a CAG repeat tract in exon 1 of the huntingtin (HTT) gene. We summarize information gained from human studies and in vivo and in vitro models of HD that strongly support prion-like features of the mutant HTT (mHTT) protein, including potential involvement of molecular features of mHTT seeds, synaptic structures and connectivity, endocytic and exocytic mechanisms, tunneling nanotubes, and nonneuronal cells in mHTT propagation in the brain. We discuss mechanisms by which mHTT aggregate spreading and neurotoxicity could be causally linked and the potential benefits of targeting prion-like mechanisms in the search for new disease-modifying therapies for HD and other fatal neurodegenerative diseases.
Collapse
Affiliation(s)
- Kirby M. Donnelly
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Cevannah M. Coleman
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Madison L. Fuller
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Victoria L. Reed
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Dayna Smerina
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - David S. Tomlinson
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Margaret M. Panning Pearce
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
- Department of Biology, Saint Joseph’s University, Philadelphia, PA, United States
- *Correspondence: Margaret M. Panning Pearce,
| |
Collapse
|
3
|
White A, McGlone A, Gomez-Pastor R. Protein Kinase CK2 and Its Potential Role as a Therapeutic Target in Huntington's Disease. Biomedicines 2022; 10:1979. [PMID: 36009526 PMCID: PMC9406209 DOI: 10.3390/biomedicines10081979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Huntington's Disease (HD) is a devastating neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the HTT gene, for which no disease modifying therapies are currently available. Much of the recent research has focused on developing therapies to directly lower HTT expression, and while promising, these therapies have presented several challenges regarding administration and efficacy. Another promising therapeutic approach is the modulation of HTT post-translational modifications (PTMs) that are dysregulated in disease and have shown to play a key role in HTT toxicity. Among all PTMs, modulation of HTT phosphorylation has been proposed as an attractive therapeutic option due to the possibility of orally administering specific kinase effectors. One of the kinases described to participate in HTT phosphorylation is Protein Kinase CK2. CK2 has recently emerged as a target for the treatment of several neurological and psychiatric disorders, although its role in HD remains controversial. While pharmacological studies in vitro inhibiting CK2 resulted in reduced HTT phosphorylation and increased toxicity, genetic approaches in mouse models of HD have provided beneficial effects. In this review we discuss potential therapeutic approaches related to the manipulation of HTT-PTMs with special emphasis on the role of CK2 as a therapeutic target in HD.
Collapse
Affiliation(s)
| | | | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Podvin S, Rosenthal SB, Poon W, Wei E, Fisch KM, Hook V. Mutant Huntingtin Protein Interaction Map Implicates Dysregulation of Multiple Cellular Pathways in Neurodegeneration of Huntington's Disease. J Huntingtons Dis 2022; 11:243-267. [PMID: 35871359 PMCID: PMC9484122 DOI: 10.3233/jhd-220538] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a genetic neurodegenerative disease caused by trinucleotide repeat (CAG) expansions in the human HTT gene encoding the huntingtin protein (Htt) with an expanded polyglutamine tract. OBJECTIVE HD models from yeast to transgenic mice have investigated proteins interacting with mutant Htt that may initiate molecular pathways of cell death. There is a paucity of datasets of published Htt protein interactions that include the criteria of 1) defining fragments or full-length Htt forms, 2) indicating the number of poly-glutamines of the mutant and wild-type Htt forms, and 3) evaluating native Htt interaction complexes. This research evaluated such interactor data to gain understanding of Htt dysregulation of cellular pathways. METHODS Htt interacting proteins were compiled from the literature that meet our criteria and were subjected to network analysis via clustering, gene ontology, and KEGG pathways using rigorous statistical methods. RESULTS The compiled data of Htt interactors found that both mutant and wild-type Htt interact with more than 2,971 proteins. Application of a community detection algorithm to all known Htt interactors identified significant signal transduction, membrane trafficking, chromatin, and mitochondrial clusters, among others. Binomial analyses of a subset of reported protein interactor information determined that chromatin organization, signal transduction and endocytosis were diminished, while mitochondria, translation and membrane trafficking had enriched overall edge effects. CONCLUSION The data support the hypothesis that mutant Htt disrupts multiple cellular processes causing toxicity. This dataset is an open resource to aid researchers in formulating hypotheses of HD mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, University of California, San Diego, La Jolla, CA, USA
| | - William Poon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Enlin Wei
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kathleen M Fisch
- Center for Computational Biology & Bioinformatics, University of California, San Diego, La Jolla, CA, USA.,Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.,Department of Neuroscience and Dept of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Konopka A, Atkin JD. The Role of DNA Damage in Neural Plasticity in Physiology and Neurodegeneration. Front Cell Neurosci 2022; 16:836885. [PMID: 35813507 PMCID: PMC9259845 DOI: 10.3389/fncel.2022.836885] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Damage to DNA is generally considered to be a harmful process associated with aging and aging-related disorders such as neurodegenerative diseases that involve the selective death of specific groups of neurons. However, recent studies have provided evidence that DNA damage and its subsequent repair are important processes in the physiology and normal function of neurons. Neurons are unique cells that form new neural connections throughout life by growth and re-organisation in response to various stimuli. This “plasticity” is essential for cognitive processes such as learning and memory as well as brain development, sensorial training, and recovery from brain lesions. Interestingly, recent evidence has suggested that the formation of double strand breaks (DSBs) in DNA, the most toxic form of damage, is a physiological process that modifies gene expression during normal brain activity. Together with subsequent DNA repair, this is thought to underlie neural plasticity and thus control neuronal function. Interestingly, neurodegenerative diseases such as Alzheimer’s disease, amyotrophic lateral sclerosis, frontotemporal dementia, and Huntington’s disease, manifest by a decline in cognitive functions, which are governed by plasticity. This suggests that DNA damage and DNA repair processes that normally function in neural plasticity may contribute to neurodegeneration. In this review, we summarize current understanding about the relationship between DNA damage and neural plasticity in physiological conditions, as well as in the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Konopka
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Anna Konopka
| | - Julie D. Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Dahal S, Gour P, Raghuvanshi S, Prasad YK, Saikia D, Ghatani S. Multi-stage transcriptome profiling of the neglected food-borne echinostome Artyfechinostomum sufrartyfex reveal potential diagnostic and drug targets. Acta Trop 2022; 233:106564. [PMID: 35716764 DOI: 10.1016/j.actatropica.2022.106564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Lack of effective surveillance and control methods for neglected helminth diseases particularly in context of rural areas in India is a serious concern in terms of public health. With regard to the emerging food-borne echinostomid Artyfechinostomum sufrartyfex infection in the country, the current study is an in silico attempt to screen for plausible diagnostic and drug targets against the trematode. Transcriptome of adult, encysted and excysted metacercaria stages of the parasite was generated using Illumina sequencing platform. A de-novo assembly strategy utilizing transcriptome data generated from the three lifecycle stages was followed to generate the representative transcripts. Longest open reading frames identified for the transcripts were further conceptually translated into their respective protein sequences. Detailed analysis of this dataset through various bioinformatics pipelines and tools eventually identified 14 credible diagnostic and 10 drug targets along with their FDA-approved and ZINC molecules. Some of the important diagnostic candidates include thioredoxin peroxidase, haemoglobinase, cathepsin L, cathepsin L-like and B-like cysteine proteases. Among the drug targets, uncharacterized sodium dependent transporter and bifunctional protein Aas were identified as top targets exhibiting significant interaction with Rifamycin and ZINC02820058 molecule, respectively. Further, B-cell epitope analysis of the diagnostic targets revealed unique epitopes for 10 of them thus indicating their potential role in specific diagnosis of the parasite. The diagnostic candidates along with a number of lesser known drug targets and their ligand molecules identified in this study provides a reasonable basis for evaluation and development of future intervention strategies against A. sufrartyfex.
Collapse
Affiliation(s)
- Suman Dahal
- Department of Zoology, School of Life sciences, Sikkim University, Gangtok, Sikkim, India
| | - Pratibha Gour
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | | | - Dipshikha Saikia
- Department of Zoology, School of Life sciences, Sikkim University, Gangtok, Sikkim, India
| | - Sudeep Ghatani
- Department of Zoology, School of Life sciences, Sikkim University, Gangtok, Sikkim, India.
| |
Collapse
|
7
|
Guerra VI, Haynes G, Byrne M, Hart MW. Selection on genes associated with the evolution of divergent life histories: Gamete recognition or something else? Evol Dev 2021; 23:423-438. [PMID: 34549504 DOI: 10.1111/ede.12392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/17/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022]
Abstract
Gamete compatibility, and fertilization success, is mediated by gamete-recognition genes (GRGs) that are expected to show genetic evidence of a response to sexual selection associated with mating system traits. Changes in the strength of sexual selection can arise from the resolution of sperm competition among males, sexual conflicts of interest between males and females, or other mechanisms of sexual selection. To assess these expectations, we compared patterns of episodic diversifying selection among genes expressed in the gonads of Cryptasterina pentagona and C. hystera, which recently speciated and have evolved different mating systems (gonochoric or hermaphroditic), modes of fertilization (outcrossing or selfing), and dispersal (planktonic larvae or internal brooding). Cryptasterina spp. inhabit the upper intertidal of the coast of Queensland and coral islands of the Great Barrier Reef. We found some evidence for positive selection on a GRG in the outcrossing C. pentagona, and we found evidence of loss of gene function in a GRG of the self-fertilizing C. hystera. The modification or loss of gene functionality may be evidence of relaxed selection on some aspects of gamete interaction in C. hystera. In addition to these genes involved in gamete interactions, we also found genes under selection linked to abiotic stress, chromosomal regulation, polyspermy, and egg-laying. We interpret those results as possible evidence that Cryptasterina spp. with different mating systems may have been adapting in divergent ways to oxidative stress or other factors associated with reproduction in the physiologically challenging environment of the high intertidal. RESEARCH HIGHLIGHTS: Recent speciation between two sea stars was unlikely the result of selection on gamete-recognition genes annotated in this study. Instead, our results point to selection on genes linked to the intertidal environment and reproduction.
Collapse
Affiliation(s)
- Vanessa I Guerra
- Department of Biological Sciences and Crawford Laboratory of Evolutionary Studies, Simon Fraser University, Burnaby, British Columbia, Canada.,Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - Gwilym Haynes
- Department of Biological Sciences and Crawford Laboratory of Evolutionary Studies, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Maria Byrne
- School of Biological Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Michael W Hart
- Department of Biological Sciences and Crawford Laboratory of Evolutionary Studies, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
8
|
Barron JC, Hurley EP, Parsons MP. Huntingtin and the Synapse. Front Cell Neurosci 2021; 15:689332. [PMID: 34211373 PMCID: PMC8239291 DOI: 10.3389/fncel.2021.689332] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Huntington disease (HD) is a monogenic disease that results in a combination of motor, psychiatric and cognitive symptoms. HD is caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene, which results in the production of a pathogenic mutant HTT protein (mHTT). Although there is no cure at present for HD, a number of RNA-targeting therapies have recently entered clinical trials which aim to lower mHTT production through the use of antisense oligonucleotides (ASOs) and RNAi. However, many of these treatment strategies are non-selective in that they cannot differentiate between non-pathogenic wild type HTT (wtHTT) and the mHTT variant. As HD patients are already born with decreased levels of wtHTT, these genetic therapies may result in critically low levels of wtHTT. The consequence of wtHTT reduction in the adult brain is currently under debate, and here we argue that wtHTT loss is not well-tolerated at the synaptic level. Synaptic dysfunction is an extremely sensitive measure of subsequent cell death, and is known to precede neurodegeneration in numerous brain diseases including HD. The present review focuses on the prominent role of wtHTT at the synapse and considers the consequences of wtHTT loss on both pre- and postsynaptic function. We discuss how wtHTT is implicated in virtually all major facets of synaptic neurotransmission including anterograde and retrograde transport of proteins to/from terminal buttons and dendrites, neurotransmitter release, endocytic vesicle recycling, and postsynaptic receptor localization and recycling. We conclude that wtHTT presence is essential for proper synaptic function.
Collapse
Affiliation(s)
- Jessica C Barron
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Emily P Hurley
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Matthew P Parsons
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| |
Collapse
|
9
|
Jiang H, Sandoval Del Prado LE, Leung C, Wang D. Huntingtin-interacting protein family members have a conserved pro-viral function from Caenorhabditis elegans to humans. Proc Natl Acad Sci U S A 2020; 117:22462-22472. [PMID: 32839311 PMCID: PMC7486723 DOI: 10.1073/pnas.2006914117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Huntingtin-interacting protein family members are evolutionarily conserved from yeast to humans, and they are known to be key factors in clathrin-mediated endocytosis. Here we identified the Caenorhabditis elegans protein huntingtin-interacting protein-related 1 (HIPR-1) as a host factor essential for Orsay virus infection of C. elegans Ablation of HIPR-1 resulted in a greater than 10,000-fold reduction in viral RNA, which could be rescued by ectopic expression of HIPR-1. Viral RNA replication from an endogenous transgene replicon system was not affected by lack of HIPR-1, suggesting that HIPR-1 plays a role during an early, prereplication virus life-cycle stage. Ectopic expression of HIPR-1 mutants demonstrated that neither the clathrin light chain-binding domain nor the clathrin heavy chain-binding motif were needed for virus infection, whereas the inositol phospholipid-binding and F-actin-binding domains were essential. In human cell culture, deletion of the human HIP orthologs HIP1 and HIP1R led to decreased infection by Coxsackie B3 virus. Finally, ectopic expression of a chimeric HIPR-1 harboring the human HIP1 ANTH (AP180 N-terminal homology) domain rescued Orsay infection in C. elegans, demonstrating conservation of its function through evolution. Collectively, these findings further our knowledge of cellular factors impacting viral infection in C. elegans and humans.
Collapse
Affiliation(s)
- Hongbing Jiang
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110;
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Luis Enrique Sandoval Del Prado
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Christian Leung
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - David Wang
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110;
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
10
|
Liang JJH, McKinnon IA, Rankin CH. The contribution of C. elegans neurogenetics to understanding neurodegenerative diseases. J Neurogenet 2020; 34:527-548. [DOI: 10.1080/01677063.2020.1803302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Joseph J. H. Liang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Issa A. McKinnon
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Catharine H. Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
Zhu L, Chen L, Xu P, Lu D, Dai S, Zhong L, Han Y, Zhang M, Xiao B, Chang L, Wu Q. Genetic and molecular basis of epilepsy-related cognitive dysfunction. Epilepsy Behav 2020; 104:106848. [PMID: 32028124 DOI: 10.1016/j.yebeh.2019.106848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023]
Abstract
Epilepsy is a common neurological disease characterized by recurrent seizures. About 70 million people were affected by epilepsy or epileptic seizures. Epilepsy is a complicated complex or symptomatic syndromes induced by structural, functional, and genetic causes. Meanwhile, several comorbidities are accompanied by epileptic seizures. Cognitive dysfunction is a long-standing complication associated with epileptic seizures, which severely impairs quality of life. Although the definitive pathogenic mechanisms underlying epilepsy-related cognitive dysfunction remain unclear, accumulating evidence indicates that multiple risk factors are probably involved in the development and progression of cognitive dysfunction in patients with epilepsy. These factors include the underlying etiology, recurrent seizures or status epilepticus, structural damage that induced secondary epilepsy, genetic variants, and molecular alterations. In this review, we summarize several theories that may explain the genetic and molecular basis of epilepsy-related cognitive dysfunction.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lu Chen
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Puying Xu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Di Lu
- Biomedicine Engineering Research Center, Kunming Medical University, 1168 Chun Rong West Road, Kunming, Yunnan 650500, PR China
| | - Shujuan Dai
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lianmei Zhong
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanbing Han
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Lvhua Chang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| |
Collapse
|
12
|
Endocytic Adaptor Proteins in Health and Disease: Lessons from Model Organisms and Human Mutations. Cells 2019; 8:cells8111345. [PMID: 31671891 PMCID: PMC6912373 DOI: 10.3390/cells8111345] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cells need to exchange material and information with their environment. This is largely achieved via cell-surface receptors which mediate processes ranging from nutrient uptake to signaling responses. Consequently, their surface levels have to be dynamically controlled. Endocytosis constitutes a powerful mechanism to regulate the surface proteome and to recycle vesicular transmembrane proteins that strand at the plasma membrane after exocytosis. For efficient internalization, the cargo proteins need to be linked to the endocytic machinery via adaptor proteins such as the heterotetrameric endocytic adaptor complex AP-2 and a variety of mostly monomeric endocytic adaptors. In line with the importance of endocytosis for nutrient uptake, cell signaling and neurotransmission, animal models and human mutations have revealed that defects in these adaptors are associated with several diseases ranging from metabolic disorders to encephalopathies. This review will discuss the physiological functions of the so far known adaptor proteins and will provide a comprehensive overview of their links to human diseases.
Collapse
|
13
|
Tellone E, Galtieri A, Ficarra S. Reviewing Biochemical Implications of Normal and Mutated Huntingtin in Huntington's Disease. Curr Med Chem 2019; 27:5137-5158. [PMID: 31223078 DOI: 10.2174/0929867326666190621101909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022]
Abstract
Huntingtin (Htt) is a multi-function protein of the brain. Normal Htt shows a common alpha-helical structure but conformational changes in the form with beta strands are the principal cause of Huntington's disease. Huntington's disease is a genetic neurological disorder caused by a repeated expansion of the CAG trinucleotide, causing instability in the N-terminal of the gene coding for the Huntingtin protein. The mutation leads to the abnormal expansion of the production of the polyglutamine tract (polyQ) resulting in the form of an unstable Huntingtin protein commonly referred to as mutant Huntingtin. Mutant Huntingtin is the cause of the complex neurological metabolic alteration of Huntington's disease, resulting in both the loss of all the functions of normal Huntingtin and the genesis of abnormal interactions due to the presence of this mutation. One of the problems arising from the misfolded Huntingtin is the increase in oxidative stress, which is common in many neurological diseases such as Alzheimer's, Parkinson's, Amyotrophic Lateral Sclerosis and Creutzfeldt-Jakob disease. In the last few years, the use of antioxidants had a strong incentive to find valid therapies for defence against neurodegenerations. Although further studies are needed, the use of antioxidant mixtures to counteract neuronal damages seems promising.
Collapse
Affiliation(s)
- Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonio Galtieri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
14
|
Bondarev SA, Antonets KS, Kajava AV, Nizhnikov AA, Zhouravleva GA. Protein Co-Aggregation Related to Amyloids: Methods of Investigation, Diversity, and Classification. Int J Mol Sci 2018; 19:ijms19082292. [PMID: 30081572 PMCID: PMC6121665 DOI: 10.3390/ijms19082292] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 01/04/2023] Open
Abstract
Amyloids are unbranched protein fibrils with a characteristic spatial structure. Although the amyloids were first described as protein deposits that are associated with the diseases, today it is becoming clear that these protein fibrils play multiple biological roles that are essential for different organisms, from archaea and bacteria to humans. The appearance of amyloid, first of all, causes changes in the intracellular quantity of the corresponding soluble protein(s), and at the same time the aggregate can include other proteins due to different molecular mechanisms. The co-aggregation may have different consequences even though usually this process leads to the depletion of a functional protein that may be associated with different diseases. The protein co-aggregation that is related to functional amyloids may mediate important biological processes and change of protein functions. In this review, we survey the known examples of the amyloid-related co-aggregation of proteins, discuss their pathogenic and functional roles, and analyze methods of their studies from bacteria and yeast to mammals. Such analysis allow for us to propose the following co-aggregation classes: (i) titration: deposition of soluble proteins on the amyloids formed by their functional partners, with such interactions mediated by a specific binding site; (ii) sequestration: interaction of amyloids with certain proteins lacking a specific binding site; (iii) axial co-aggregation of different proteins within the same amyloid fibril; and, (iv) lateral co-aggregation of amyloid fibrils, each formed by different proteins.
Collapse
Affiliation(s)
- Stanislav A Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory of Amyloid Biology, St. Petersburg State University, Russia, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| | - Kirill S Antonets
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France.
- Institut de Biologie Computationnelle (IBC), 34095 Montpellier, France.
- University ITMO, Institute of Bioengineering, Kronverksky Pr. 49, St. Petersburg 197101, Russia.
| | - Anton A Nizhnikov
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
- Laboratory of Amyloid Biology, St. Petersburg State University, Russia, Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| |
Collapse
|
15
|
|
16
|
Rudich P, Lamitina T. Models and mechanisms of repeat expansion disorders: a worm's eye view. J Genet 2018; 97:665-677. [PMID: 30027902 PMCID: PMC6482835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The inappropriate genetic expansion of various repetitive DNA sequences underlies over 20 distinct inherited diseases. The genetic context of these repeats in exons, introns and untranslated regions has played a major role in thinking about the mechanisms by which various repeat expansions might cause disease. Repeat expansions in exons are thought to give rise to expanded toxic protein repeats (i.e. polyQ). Repeat expansions in introns and UTRs (i.e. FXTAS) are thought to produce aberrant repeat-bearing RNAs that interact with and sequester a wide variety of essential proteins, resulting in cellular toxicity. However, a new phenomenon termed 'repeat-associated nonAUG dependent (RAN) translation' paints a new and unifying picture of how distinct repeat expansion-bearing RNAs might act as substrates for this noncanonical form of translation, leading to the production of a wide range of repeat sequence-specific-encoded toxic proteins. Here, we review how the model system Caenorhabditis elegans has been utilized to model many repeat disorders and discuss how RAN translation could be a previously unappreciated contributor to the toxicity associated with these different models.
Collapse
Affiliation(s)
- Paige Rudich
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA.
| | | |
Collapse
|
17
|
Abstract
Synapse is the basic structural and functional component for neural communication in the brain. The presynaptic terminal is the structural and functionally essential area that initiates communication and maintains the continuous functional neural information flow. It contains synaptic vesicles (SV) filled with neurotransmitters, an active zone for release, and numerous proteins for SV fusion and retrieval. The structural and functional synaptic plasticity is a representative characteristic; however, it is highly vulnerable to various pathological conditions. In fact, synaptic alteration is thought to be central to neural disease processes. In particular, the alteration of the structural and functional phenotype of the presynaptic terminal is a highly significant evidence for neural diseases. In this review, we specifically describe structural and functional alteration of nerve terminals in several neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD).
Collapse
Affiliation(s)
- Jae Ryul Bae
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Sung Hyun Kim
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
18
|
Puigdellívol M, Saavedra A, Pérez-Navarro E. Cognitive dysfunction in Huntington's disease: mechanisms and therapeutic strategies beyond BDNF. Brain Pathol 2018; 26:752-771. [PMID: 27529673 DOI: 10.1111/bpa.12432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
One of the main focuses in Huntington's disease (HD) research, as well as in most neurodegenerative diseases, is the development of new therapeutic strategies, as currently there is no treatment to delay or prevent the progression of the disease. Neuronal dysfunction and neuronal death in HD are caused by a combination of interrelated pathogenic processes that lead to motor, cognitive and psychiatric symptoms. Understanding how mutant huntingtin impacts on a plethora of cellular functions could help to identify new molecular targets. Although HD has been classically classified as a neurodegenerative disease affecting voluntary movement, lately cognitive dysfunction is receiving increased attention as it is very invalidating for patients. Thus, an ambitious goal in HD research is to find altered molecular mechanisms that contribute to cognitive decline. In this review, we have focused on those findings related to corticostriatal and hippocampal cognitive dysfunction in HD, as well as on the underlying molecular mechanisms, which constitute potential therapeutic targets. These include alterations in synaptic plasticity, transcriptional machinery and neurotrophic and neurotransmitter signaling.
Collapse
Affiliation(s)
- Mar Puigdellívol
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Ana Saavedra
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| |
Collapse
|
19
|
Veldman MB, Yang XW. Molecular insights into cortico-striatal miscommunications in Huntington's disease. Curr Opin Neurobiol 2017; 48:79-89. [PMID: 29125980 DOI: 10.1016/j.conb.2017.10.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022]
Abstract
Huntington's disease (HD), a dominantly inherited neurodegenerative disease, is defined by its genetic cause, a CAG-repeat expansion in the HTT gene, its motor and psychiatric symptomology and primary loss of striatal medium spiny neurons (MSNs). However, the molecular mechanisms from genetic lesion to disease phenotype remain largely unclear. Mouse models of HD have been created that exhibit phenotypes partially recapitulating those in the patient, and specifically, cortico-striatal disconnectivity appears to be a shared pathogenic event shared by HD mouse models and patients. Molecular studies have begun to unveil converging molecular and cellular pathogenic mechanisms that may account for cortico-striatal miscommunication in various HD mouse models. Systems biological approaches help to illuminate synaptic molecular networks as a nexus for HD cortio-striatal pathogenesis, and may offer new candidate targets to modify the disease.
Collapse
Affiliation(s)
- Matthew B Veldman
- Center for Neurobehavioral Genetics and Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - X William Yang
- Center for Neurobehavioral Genetics and Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States.
| |
Collapse
|
20
|
Altintas O, Park S, Lee SJV. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep 2016; 49:81-92. [PMID: 26698870 PMCID: PMC4915121 DOI: 10.5483/bmbrep.2016.49.2.261] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 01/08/2023] Open
Abstract
Insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway regulates
aging in many organisms, ranging from simple invertebrates to mammals, including
humans. Many seminal discoveries regarding the roles of IIS in aging and
longevity have been made by using the roundworm Caenorhabditis
elegans and the fruit fly Drosophila melanogaster. In this
review, we describe the mechanisms by which various IIS components regulate
aging in C. elegans and D. melanogaster. We
also cover systemic and tissue-specific effects of the IIS components on the
regulation of lifespan. We further discuss IIS-mediated physiological processes
other than aging and their effects on human disease models focusing on
C. elegans studies. As both C. elegans and
D. melanogaster have been essential for key findings
regarding the effects of IIS on organismal aging in general, these invertebrate
models will continue to serve as workhorses to help our understanding of
mammalian aging. [BMB Reports 2016; 49(2): 81-92]
Collapse
Affiliation(s)
- Ozlem Altintas
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sangsoon Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seung-Jae V Lee
- School of Interdisciplinary Bioscience and Bioengineering, Department of Life Sciences, and Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
21
|
Doktor TK, Hua Y, Andersen HS, Brøner S, Liu YH, Wieckowska A, Dembic M, Bruun GH, Krainer AR, Andresen BS. RNA-sequencing of a mouse-model of spinal muscular atrophy reveals tissue-wide changes in splicing of U12-dependent introns. Nucleic Acids Res 2016; 45:395-416. [PMID: 27557711 PMCID: PMC5224493 DOI: 10.1093/nar/gkw731] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 11/21/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by insufficient levels of the Survival of Motor Neuron (SMN) protein. SMN is expressed ubiquitously and functions in RNA processing pathways that include trafficking of mRNA and assembly of snRNP complexes. Importantly, SMA severity is correlated with decreased snRNP assembly activity. In particular, the minor spliceosomal snRNPs are affected, and some U12-dependent introns have been reported to be aberrantly spliced in patient cells and animal models. SMA is characterized by loss of motor neurons, but the underlying mechanism is largely unknown. It is likely that aberrant splicing of genes expressed in motor neurons is involved in SMA pathogenesis, but increasing evidence indicates that pathologies also exist in other tissues. We present here a comprehensive RNA-seq study that covers multiple tissues in an SMA mouse model. We show elevated U12-intron retention in all examined tissues from SMA mice, and that U12-dependent intron retention is induced upon siRNA knock-down of SMN in HeLa cells. Furthermore, we show that retention of U12-dependent introns is mitigated by ASO treatment of SMA mice and that many transcriptional changes are reversed. Finally, we report on missplicing of several Ca2+ channel genes that may explain disrupted Ca2+ homeostasis in SMA and activation of Cdk5.
Collapse
Affiliation(s)
- Thomas Koed Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Yimin Hua
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Henriette Skovgaard Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Sabrina Brøner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Ying Hsiu Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Anna Wieckowska
- Department of Gamete and Embryo Biology, Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-243 Olsztyn, Poland
| | - Maja Dembic
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Gitte Hoffmann Bruun
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brage Storstein Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark .,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
22
|
Koorman T, Klompstra D, van der Voet M, Lemmens I, Ramalho JJ, Nieuwenhuize S, van den Heuvel S, Tavernier J, Nance J, Boxem M. A combined binary interaction and phenotypic map of C. elegans cell polarity proteins. Nat Cell Biol 2016; 18:337-46. [PMID: 26780296 PMCID: PMC4767559 DOI: 10.1038/ncb3300] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
The establishment of cell polarity is an essential process for the development of multicellular organisms and the functioning of cells and tissues. Here, we combine large-scale protein interaction mapping with systematic phenotypic profiling to study the network of physical interactions that underlies polarity establishment and maintenance in the nematode Caenorhabditis elegans. Using a fragment-based yeast two-hybrid strategy, we identified 439 interactions between 296 proteins, as well as the protein regions that mediate these interactions. Phenotypic profiling of the network resulted in the identification of 100 physically interacting protein pairs for which RNAi-mediated depletion caused a defect in the same polarity-related process. We demonstrate the predictive capabilities of the network by showing that the physical interaction between the RhoGAP PAC-1 and PAR-6 is required for radial polarization of the C. elegans embryo. Our network represents a valuable resource of candidate interactions that can be used to further our insight into cell polarization.
Collapse
Affiliation(s)
- Thijs Koorman
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Diana Klompstra
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, New York 10016, USA
- Department of Cell Biology, NYU School of Medicine, New York, New York 10016, USA
| | - Monique van der Voet
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Irma Lemmens
- Department of Medical Protein Research, VIB, and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - João J. Ramalho
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Susan Nieuwenhuize
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Sander van den Heuvel
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Jan Tavernier
- Department of Medical Protein Research, VIB, and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, New York 10016, USA
- Department of Cell Biology, NYU School of Medicine, New York, New York 10016, USA
| | - Mike Boxem
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
23
|
de Aragão BC, Rodrigues HA, Valadão PAC, Camargo W, Naves LA, Ribeiro FM, Guatimosim C. Changes in structure and function of diaphragm neuromuscular junctions from BACHD mouse model for Huntington's disease. Neurochem Int 2016; 93:64-72. [DOI: 10.1016/j.neuint.2015.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/17/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022]
|
24
|
Yu RL, Guo JF, Wang YQ, Liu ZH, Sun ZF, Su L, Zhang Y, Yan XX, Tang BS. The single nucleotide polymorphism Rs12817488 is associated with Parkinson’s disease in the Chinese population. J Clin Neurosci 2015; 22:1002-4. [DOI: 10.1016/j.jocn.2014.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/19/2014] [Accepted: 11/25/2014] [Indexed: 11/25/2022]
|
25
|
Huntingtin is associated with cytomatrix proteins at the presynaptic terminal. Mol Cell Neurosci 2014; 63:96-100. [DOI: 10.1016/j.mcn.2014.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/29/2014] [Accepted: 10/09/2014] [Indexed: 11/21/2022] Open
|
26
|
Tourette C, Farina F, Vazquez-Manrique RP, Orfila AM, Voisin J, Hernandez S, Offner N, Parker JA, Menet S, Kim J, Lyu J, Choi SH, Cormier K, Edgerly CK, Bordiuk OL, Smith K, Louise A, Halford M, Stacker S, Vert JP, Ferrante RJ, Lu W, Neri C. The Wnt receptor Ryk reduces neuronal and cell survival capacity by repressing FOXO activity during the early phases of mutant huntingtin pathogenicity. PLoS Biol 2014; 12:e1001895. [PMID: 24960609 PMCID: PMC4068980 DOI: 10.1371/journal.pbio.1001895] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 05/15/2014] [Indexed: 12/19/2022] Open
Abstract
The Wnt receptor Ryk is an evolutionary-conserved protein important during neuronal differentiation through several mechanisms, including γ-secretase cleavage and nuclear translocation of its intracellular domain (Ryk-ICD). Although the Wnt pathway may be neuroprotective, the role of Ryk in neurodegenerative disease remains unknown. We found that Ryk is up-regulated in neurons expressing mutant huntingtin (HTT) in several models of Huntington's disease (HD). Further investigation in Caenorhabditis elegans and mouse striatal cell models of HD provided a model in which the early-stage increase of Ryk promotes neuronal dysfunction by repressing the neuroprotective activity of the longevity-promoting factor FOXO through a noncanonical mechanism that implicates the Ryk-ICD fragment and its binding to the FOXO co-factor β-catenin. The Ryk-ICD fragment suppressed neuroprotection by lin-18/Ryk loss-of-function in expanded-polyQ nematodes, repressed FOXO transcriptional activity, and abolished β-catenin protection of mutant htt striatal cells against cell death vulnerability. Additionally, Ryk-ICD was increased in the nucleus of mutant htt cells, and reducing γ-secretase PS1 levels compensated for the cytotoxicity of full-length Ryk in these cells. These findings reveal that the Ryk-ICD pathway may impair FOXO protective activity in mutant polyglutamine neurons, suggesting that neurons are unable to efficiently maintain function and resist disease from the earliest phases of the pathogenic process in HD.
Collapse
Affiliation(s)
- Cendrine Tourette
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
- Assistance Publique-Hopitaux de Paris (AP-HP), Charles Foix Hospital, Functional Exploration Unit, Ivry-sur-Seine, France
| | - Francesca Farina
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Rafael P. Vazquez-Manrique
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Anne-Marie Orfila
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Jessica Voisin
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Sonia Hernandez
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Nicolas Offner
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - J. Alex Parker
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Sophie Menet
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
| | - Jinho Kim
- Neurological Surgery Department, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jungmok Lyu
- University of Southern California Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Los Angeles, California, United States of America
| | - Si Ho Choi
- University of Southern California Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Los Angeles, California, United States of America
| | - Kerry Cormier
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Christina K. Edgerly
- Neurological Surgery Department, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Olivia L. Bordiuk
- Neurological Surgery Department, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Karen Smith
- VA Bedford Geriatric Research Education and Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, Massachusetts, United States of America
| | - Anne Louise
- Pasteur Institute, Cytometry Platform, Paris, France
| | - Michael Halford
- Peter MacCallum Cancer Center, East Melbourne, Victoria, Australia
| | - Steven Stacker
- Peter MacCallum Cancer Center, East Melbourne, Victoria, Australia
| | - Jean-Philippe Vert
- Mines ParisTech, Center for Computational Biology, Fontainebleau, France
- Curie Institute, Research Center, Paris, France
- INSERM, Unit 900, Paris, France
| | - Robert J. Ferrante
- Neurological Surgery Department, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Wange Lu
- University of Southern California Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Los Angeles, California, United States of America
| | - Christian Neri
- CNRS, UMR 8256, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
- Sorbonnes Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
- INSERM, Unit 894, Paris, France
- * E-mail:
| |
Collapse
|
27
|
Li NN, Tan EK, Chang XL, Mao XY, Zhang JH, Zhao DM, Liao Q, Yu WJ, Peng R. Genetic association study between STK39 and CCDC62/HIP1R and Parkinson's disease. PLoS One 2013; 8:e79211. [PMID: 24312176 PMCID: PMC3842305 DOI: 10.1371/journal.pone.0079211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 09/20/2013] [Indexed: 02/05/2023] Open
Abstract
Background The first large-scale meta-analysis of published genome-wide association studies (GWAS) in Parkinson’s disease (PD) identified 5 new genetic loci (ACMSD, STK39, MCCC1/LAMP3, SYT11, and CCDC62/HIP1R). Very recently, a large-scale replication and heterogeneity study also reported that STK39 and CCDC62/HIP1R increased risk of PD in Asian and Caucasian populations. However, their roles still remain unclear in a Han Chinese population from mainland China. Methods We examined genetic associations of STK39 rs2102808 and CCDC62/HIP1R rs12817488 with PD susceptibility in a Han Chinese population of 783 PD patients and 725 controls. We also performed further stratified analyses by the age of onset and accomplished in-depth clinical characteristics analyses between the different genotypes for each locus. Results No significant differences were observed in the minor allele frequency (MAF) among cases and controls at the two loci (STK39 rs2102808: OR = 1.06, 95% CI = 0.91, 1.23, P = 0.467; CCDC62/HIP1R rs12817488: OR = 0.88, 95% CI = 0.76, 1.01, P = 0.072). Subgroup analyses by the age of onset also showed no significant differences among different subgroups of the two loci. In addition, minor allele carriers cannot be distinguished from non-carriers based on their clinical features at the two loci. Conclusions We are unable to demonstrate the association between STK39 and CCDC62/HIP1R and PD susceptibility in a Han Chinese population from mainland China. Additional replication studies in other populations and functional studies are warranted to better validate the role of the two new loci in PD risk.
Collapse
Affiliation(s)
- Nan-Nan Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Eng-King Tan
- Department of Neurology, Singapore General Hospital, National Neuroscience Institute, Singapore, Singapore
- Duke–NUS Graduate Medical School, Singapore, Singapore
| | - Xue-Li Chang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xue-Ye Mao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin-Hong Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Internal Medicine, Wangjiang Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dong-Mei Zhao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiao Liao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen-Juan Yu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Peng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
28
|
Antisense therapy in neurology. J Pers Med 2013; 3:144-76. [PMID: 25562650 PMCID: PMC4251390 DOI: 10.3390/jpm3030144] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 12/12/2022] Open
Abstract
Antisense therapy is an approach to fighting diseases using short DNA-like molecules called antisense oligonucleotides. Recently, antisense therapy has emerged as an exciting and promising strategy for the treatment of various neurodegenerative and neuromuscular disorders. Previous and ongoing pre-clinical and clinical trials have provided encouraging early results. Spinal muscular atrophy (SMA), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), Duchenne muscular dystrophy (DMD), Fukuyama congenital muscular dystrophy (FCMD), dysferlinopathy (including limb-girdle muscular dystrophy 2B; LGMD2B, Miyoshi myopathy; MM, and distal myopathy with anterior tibial onset; DMAT), and myotonic dystrophy (DM) are all reported to be promising targets for antisense therapy. This paper focuses on the current progress of antisense therapies in neurology.
Collapse
|
29
|
Hsu F, Mao Y. The Sac domain-containing phosphoinositide phosphatases: structure, function, and disease. FRONTIERS IN BIOLOGY 2013; 8:395-407. [PMID: 24860601 PMCID: PMC4031025 DOI: 10.1007/s11515-013-1258-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Phosphoinositides (PIs) have long been known to have an essential role in cell physiology. Their intracellular localization and concentration must be tightly regulated for their proper function. This spatial and temporal regulation is achieved by a large number of PI kinases and phosphatases that are present throughout eukaryotic species. One family of these enzymes contains a conserved PI phosphatase domain termed Sac. Although the Sac domain is homologous among different Sac domain-containing proteins, all appear to exhibit varied substrate specificity and subcellular localization. Dysfunctions in several members of this family are implicated in a range of human diseases such as cardiac hypertrophy, bipolar disorder, Down's syndrome, Charcot-Marie-Tooth disease (CMT) and Amyotrophic Lateral Sclerosis (ALS). In plant, several Sac domain-containing proteins have been implicated in the stress response, chloroplast function and polarized secretion. In this review, we focus on recent findings in the family of Sac domain-containing PI phosphatases in yeast, mammal and plant, including the structural analysis into the mechanism of enzymatic activity, cellular functions, and their roles in disease pathophysiology.
Collapse
Affiliation(s)
- FoSheng Hsu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
30
|
Hoehndorf R, Schofield PN, Gkoutos GV. An integrative, translational approach to understanding rare and orphan genetically based diseases. Interface Focus 2013; 3:20120055. [PMID: 23853703 PMCID: PMC3638468 DOI: 10.1098/rsfs.2012.0055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 12/07/2012] [Indexed: 01/15/2023] Open
Abstract
PhenomeNet is an approach for integrating phenotypes across species and identifying candidate genes for genetic diseases based on the similarity between a disease and animal model phenotypes. In contrast to ‘guilt-by-association’ approaches, PhenomeNet relies exclusively on the comparison of phenotypes to suggest candidate genes, and can, therefore, be applied to study the molecular basis of rare and orphan diseases for which the molecular basis is unknown. In addition to disease phenotypes from the Online Mendelian Inheritance in Man (OMIM) database, we have now integrated the clinical signs from Orphanet into PhenomeNet. We demonstrate that our approach can efficiently identify known candidate genes for genetic diseases in Orphanet and OMIM. Furthermore, we find evidence that mutations in the HIP1 gene might cause Bassoe syndrome, a rare disorder with unknown genetic aetiology. Our results demonstrate that integration and computational analysis of human disease and animal model phenotypes using PhenomeNet has the potential to reveal novel insights into the pathobiology underlying genetic diseases.
Collapse
Affiliation(s)
- Robert Hoehndorf
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK ; Department of Computer Science, University of Aberystwyth, Old College, King Street, Aberystwyth SY23 2AX, UK
| | | | | |
Collapse
|
31
|
Abstract
Phosphoinositide signalling molecules interact with a plethora of effector proteins to regulate cell proliferation and survival, vesicular trafficking, metabolism, actin dynamics and many other cellular functions. The generation of specific phosphoinositide species is achieved by the activity of phosphoinositide kinases and phosphatases, which phosphorylate and dephosphorylate, respectively, the inositol headgroup of phosphoinositide molecules. The phosphoinositide phosphatases can be classified as 3-, 4- and 5-phosphatases based on their specificity for dephosphorylating phosphates from specific positions on the inositol head group. The SAC phosphatases show less specificity for the position of the phosphate on the inositol ring. The phosphoinositide phosphatases regulate PI3K/Akt signalling, insulin signalling, endocytosis, vesicle trafficking, cell migration, proliferation and apoptosis. Mouse knockout models of several of the phosphoinositide phosphatases have revealed significant physiological roles for these enzymes, including the regulation of embryonic development, fertility, neurological function, the immune system and insulin sensitivity. Importantly, several phosphoinositide phosphatases have been directly associated with a range of human diseases. Genetic mutations in the 5-phosphatase INPP5E are causative of the ciliopathy syndromes Joubert and MORM, and mutations in the 5-phosphatase OCRL result in Lowe's syndrome and Dent 2 disease. Additionally, polymorphisms in the 5-phosphatase SHIP2 confer diabetes susceptibility in specific populations, whereas reduced protein expression of SHIP1 is reported in several human leukaemias. The 4-phosphatase, INPP4B, has recently been identified as a tumour suppressor in human breast and prostate cancer. Mutations in one SAC phosphatase, SAC3/FIG4, results in the degenerative neuropathy, Charcot-Marie-Tooth disease. Indeed, an understanding of the precise functions of phosphoinositide phosphatases is not only important in the context of normal human physiology, but to reveal the mechanisms by which these enzyme families are implicated in an increasing repertoire of human diseases.
Collapse
|
32
|
Kaplan A, Stockwell BR. Therapeutic approaches to preventing cell death in Huntington disease. Prog Neurobiol 2012; 99:262-80. [PMID: 22967354 PMCID: PMC3505265 DOI: 10.1016/j.pneurobio.2012.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/20/2012] [Accepted: 08/17/2012] [Indexed: 12/01/2022]
Abstract
Neurodegenerative diseases affect the lives of millions of patients and their families. Due to the complexity of these diseases and our limited understanding of their pathogenesis, the design of therapeutic agents that can effectively treat these diseases has been challenging. Huntington disease (HD) is one of several neurological disorders with few therapeutic options. HD, like numerous other neurodegenerative diseases, involves extensive neuronal cell loss. One potential strategy to combat HD and other neurodegenerative disorders is to intervene in the execution of neuronal cell death. Inhibiting neuronal cell death pathways may slow the development of neurodegeneration. However, discovering small molecule inhibitors of neuronal cell death remains a significant challenge. Here, we review candidate therapeutic targets controlling cell death mechanisms that have been the focus of research in HD, as well as an emerging strategy that has been applied to developing small molecule inhibitors-fragment-based drug discovery (FBDD). FBDD has been successfully used in both industry and academia to identify selective and potent small molecule inhibitors, with a focus on challenging proteins that are not amenable to traditional high-throughput screening approaches. FBDD has been used to generate potent leads, pre-clinical candidates, and has led to the development of an FDA approved drug. This approach can be valuable for identifying modulators of cell-death-regulating proteins; such compounds may prove to be the key to halting the progression of HD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Anna Kaplan
- Department of Biological Sciences, Columbia University, Northwest Corner Building, MC4846, 550 West 120 Street, New York, NY 10027, USA
| | - Brent R. Stockwell
- Howard Hughes Medical Institute, Columbia University, Northwest Corner Building, MC4846, 550 West 120 Street, New York, NY 10027, USA
- Department of Chemistry, Columbia University, Northwest Corner Building, MC4846, 550 West 120 Street, New York, NY 10027, USA
- Department of Biological Sciences, Columbia University, Northwest Corner Building, MC4846, 550 West 120 Street, New York, NY 10027, USA
| |
Collapse
|
33
|
Tauffenberger A, Chitramuthu BP, Bateman A, Bennett HPJ, Parker JA. Reduction of polyglutamine toxicity by TDP-43, FUS and progranulin in Huntington's disease models. Hum Mol Genet 2012; 22:782-94. [PMID: 23172908 DOI: 10.1093/hmg/dds485] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The DNA/RNA binding proteins TAR DNA-binding protein 43 (TDP-43) and fused-in-sarcoma (FUS) are genetically linked to amyotrophic lateral sclerosis and frontotemporal lobar dementia, while the inappropriate cytoplasmic accumulations of TDP-43 and FUS are observed in a growing number of late-onset pathologies including spinocerebellar ataxia 3, Alzheimer's and Huntington's diseases (HD). To investigate if TDP-43 and FUS contribute to neurodegenerative phenotypes, we turned to a genetically accessible Caenorhabditis elegans model of polyglutamine toxicity. In C. elegans, we observe that genetic loss-of-function mutations for nematode orthologs of TDP-43 or FUS reduced behavioral defects and neurodegeneration caused by huntingtin exon-1 with expanded polyglutamines. Furthermore, using striatal cells from huntingtin knock-in mice we observed that small interfering ribonucleic acid (siRNA) against TDP-43 or FUS reduced cell death caused by mutant huntingtin. Moreover, we found that TDP-43 and the survival factor progranulin (PGRN) genetically interact to regulate polyglutamine toxicity in C. elegans and mammalian cells. Altogether our data point towards a conserved function for TDP-43 and FUS in promoting polyglutamine toxicity and that delivery of PGRN may have therapeutic benefits.
Collapse
|
34
|
Abstract
Nutrient availability influences an organism’s life history with profound effects on metabolism and lifespan. The association between a healthy lifespan and metabolism is incompletely understood, but a central factor is glucose metabolism. Although glucose is an important cellular energy source, glucose restriction is associated with extended lifespan in simple animals and a reduced incidence of age-dependent pathologies in humans. We report here that glucose enrichment delays mutant polyglutamine, TDP-43, FUS, and amyloid-β toxicity in Caenorhabditis elegans models of neurodegeneration by reducing protein misfolding. Dysregulated metabolism is common to neurodegeneration and we show that glucose enrichment is broadly protective against proteotoxicity.
Collapse
Affiliation(s)
- Arnaud Tauffenberger
- CRCHUM
- Centre of Excellence in Neuromics
- Département de Pathologie et Biologie Cellulaire
| | - Alexandra Vaccaro
- CRCHUM
- Centre of Excellence in Neuromics
- Département de Pathologie et Biologie Cellulaire
| | - Anais Aulas
- CRCHUM
- Centre of Excellence in Neuromics
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Christine Vande Velde
- CRCHUM
- Centre of Excellence in Neuromics
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - J. Alex Parker
- CRCHUM
- Centre of Excellence in Neuromics
- Département de Pathologie et Biologie Cellulaire
| |
Collapse
|
35
|
Delaying aging and the aging-associated decline in protein homeostasis by inhibition of tryptophan degradation. Proc Natl Acad Sci U S A 2012; 109:14912-7. [PMID: 22927396 DOI: 10.1073/pnas.1203083109] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Toxicity of aggregation-prone proteins is thought to play an important role in aging and age-related neurological diseases like Parkinson and Alzheimer's diseases. Here, we identify tryptophan 2,3-dioxygenase (tdo-2), the first enzyme in the kynurenine pathway of tryptophan degradation, as a metabolic regulator of age-related α-synuclein toxicity in a Caenorhabditis elegans model. Depletion of tdo-2 also suppresses toxicity of other heterologous aggregation-prone proteins, including amyloid-β and polyglutamine proteins, and endogenous metastable proteins that are sensors of normal protein homeostasis. This finding suggests that tdo-2 functions as a general regulator of protein homeostasis. Analysis of metabolite levels in C. elegans strains with mutations in enzymes that act downstream of tdo-2 indicates that this suppression of toxicity is independent of downstream metabolites in the kynurenine pathway. Depletion of tdo-2 increases tryptophan levels, and feeding worms with extra L-tryptophan also suppresses toxicity, suggesting that tdo-2 regulates proteotoxicity through tryptophan. Depletion of tdo-2 extends lifespan in these worms. Together, these results implicate tdo-2 as a metabolic switch of age-related protein homeostasis and lifespan. With TDO and Indoleamine 2,3-dioxygenase as evolutionarily conserved human orthologs of TDO-2, intervening with tryptophan metabolism may offer avenues to reducing proteotoxicity in aging and age-related diseases.
Collapse
|
36
|
Steinert JR, Campesan S, Richards P, Kyriacou CP, Forsythe ID, Giorgini F. Rab11 rescues synaptic dysfunction and behavioural deficits in a Drosophila model of Huntington's disease. Hum Mol Genet 2012; 21:2912-22. [PMID: 22466800 PMCID: PMC3373239 DOI: 10.1093/hmg/dds117] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/22/2012] [Accepted: 03/24/2012] [Indexed: 11/13/2022] Open
Abstract
Synapse abnormalities in Huntington's disease (HD) patients can precede clinical diagnosis and neuron loss by decades. The polyglutamine expansion in the huntingtin (htt) protein that underlies this disorder leads to perturbations in many cellular pathways, including the disruption of Rab11-dependent endosomal recycling. Impairment of the small GTPase Rab11 leads to the defective formation of vesicles in HD models and may thus contribute to the early stages of the synaptic dysfunction in this disorder. Here, we employ transgenic Drosophila melanogaster models of HD to investigate anomalies at the synapse and the role of Rab11 in this pathology. We find that the expression of mutant htt in the larval neuromuscular junction decreases the presynaptic vesicle size, reduces quantal amplitudes and evoked synaptic transmission and alters larval crawling behaviour. Furthermore, these indicators of early synaptic dysfunction are reversed by the overexpression of Rab11. This work highlights a potential novel HD therapeutic strategy for early intervention, prior to neuronal loss and clinical manifestation of disease.
Collapse
Affiliation(s)
- Joern R Steinert
- MRC Toxicology Unit, University of Leicester, Hodgkin Building, Lancaster Road, Leicester, UK
| | | | | | | | | | | |
Collapse
|
37
|
Lejeune FX, Mesrob L, Parmentier F, Bicep C, Vazquez-Manrique RP, Parker JA, Vert JP, Tourette C, Neri C. Large-scale functional RNAi screen in C. elegans identifies genes that regulate the dysfunction of mutant polyglutamine neurons. BMC Genomics 2012; 13:91. [PMID: 22413862 PMCID: PMC3331833 DOI: 10.1186/1471-2164-13-91] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 03/13/2012] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND A central goal in Huntington's disease (HD) research is to identify and prioritize candidate targets for neuroprotective intervention, which requires genome-scale information on the modifiers of early-stage neuron injury in HD. RESULTS Here, we performed a large-scale RNA interference screen in C. elegans strains that express N-terminal huntingtin (htt) in touch receptor neurons. These neurons control the response to light touch. Their function is strongly impaired by expanded polyglutamines (128Q) as shown by the nearly complete loss of touch response in adult animals, providing an in vivo model in which to manipulate the early phases of expanded-polyQ neurotoxicity. In total, 6034 genes were examined, revealing 662 gene inactivations that either reduce or aggravate defective touch response in 128Q animals. Several genes were previously implicated in HD or neurodegenerative disease, suggesting that this screen has effectively identified candidate targets for HD. Network-based analysis emphasized a subset of high-confidence modifier genes in pathways of interest in HD including metabolic, neurodevelopmental and pro-survival pathways. Finally, 49 modifiers of 128Q-neuron dysfunction that are dysregulated in the striatum of either R/2 or CHL2 HD mice, or both, were identified. CONCLUSIONS Collectively, these results highlight the relevance to HD pathogenesis, providing novel information on the potential therapeutic targets for neuroprotection in HD.
Collapse
|
38
|
Koch M, Holt M. Coupling exo- and endocytosis: an essential role for PIP₂ at the synapse. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1114-32. [PMID: 22387937 DOI: 10.1016/j.bbalip.2012.02.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 02/12/2012] [Accepted: 02/13/2012] [Indexed: 12/24/2022]
Abstract
Chemical synapses are specialist points of contact between two neurons, where information transfer takes place. Communication occurs through the release of neurotransmitter substances from small synaptic vesicles in the presynaptic terminal, which fuse with the presynaptic plasma membrane in response to neuronal stimulation. However, as neurons in the central nervous system typically only possess ~200 vesicles, high levels of release would quickly lead to a depletion in the number of vesicles, as well as leading to an increase in the area of the presynaptic plasma membrane (and possible misalignment with postsynaptic structures). Hence, synaptic vesicle fusion is tightly coupled to a local recycling of synaptic vesicles. For a long time, however, the exact molecular mechanisms coupling fusion and subsequent recycling remained unclear. Recent work now indicates a unique role for the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP(2)), acting together with the vesicular protein synaptotagmin, in coupling these two processes. In this work, we review the evidence for such a mechanism and discuss both the possible advantages and disadvantages for vesicle recycling (and hence signal transduction) in the nervous system. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
Affiliation(s)
- Marta Koch
- Laboratory of Neurogenetics, VIB Center for the Biology of Disease and K.U. Leuven Center for Human Genetics, O&N4 Herestraat 49, 3000 Leuven, Belgium
| | | |
Collapse
|
39
|
Chen X, Burgoyne RD. Identification of common genetic modifiers of neurodegenerative diseases from an integrative analysis of diverse genetic screens in model organisms. BMC Genomics 2012; 13:71. [PMID: 22333271 PMCID: PMC3292922 DOI: 10.1186/1471-2164-13-71] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/14/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND An array of experimental models have been developed in the small model organisms C. elegans, S. cerevisiae and D. melanogaster for the study of various neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and expanded polyglutamine diseases as exemplified by Huntington's disease (HD) and related ataxias. Genetic approaches to determine the nature of regulators of the disease phenotypes have ranged from small scale to essentially whole genome screens. The published data covers distinct models in all three organisms and one important question is the extent to which shared genetic factors can be uncovered that affect several or all disease models. Surprisingly it has appeared that there may be relatively little overlap and that many of the regulators may be organism or disease-specific. There is, however, a need for a fully integrated analysis of the available genetic data based on careful comparison of orthologues across the species to determine the real extent of overlap. RESULTS We carried out an integrated analysis using C. elegans as the baseline model organism since this is the most widely studied in this context. Combination of data from 28 published studies using small to large scale screens in all three small model organisms gave a total of 950 identifications of genetic regulators. Of these 624 were separate genes with orthologues in C. elegans. In addition, 34 of these genes, which all had human orthologues, were found to overlap across studies. Of the common genetic regulators some such as chaperones, ubiquitin-related enzymes (including the E3 ligase CHIP which directly links the two pathways) and histone deacetylases were involved in expected pathways whereas others such as the peroxisomal acyl CoA-oxidase suggest novel targets for neurodegenerative disease therapy CONCLUSIONS We identified a significant number of overlapping regulators of neurodegenerative disease models. Since the diseases have, as an underlying feature, protein aggregation phenotypes it was not surprising that some of the overlapping genes encode proteins involved in protein folding and protein degradation. Interestingly, however, some of the overlapping genes encode proteins that have not previously featured in targeted studies of neurodegeneration and this information will form a useful resource to be exploited in further studies of potential drug-targets.
Collapse
Affiliation(s)
- Xi Chen
- Department of Cellular and Molecular Physiology, Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool L69 3BX, UK
| | | |
Collapse
|
40
|
Dyson JM, Fedele CG, Davies EM, Becanovic J, Mitchell CA. Phosphoinositide phosphatases: just as important as the kinases. Subcell Biochem 2012; 58:215-279. [PMID: 22403078 DOI: 10.1007/978-94-007-3012-0_7] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phosphoinositide phosphatases comprise several large enzyme families with over 35 mammalian enzymes identified to date that degrade many phosphoinositide signals. Growth factor or insulin stimulation activates the phosphoinositide 3-kinase that phosphorylates phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] to form phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)], which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) to PtdIns(4,5)P(2), or by the 5-phosphatases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). 5-phosphatases also hydrolyze PtdIns(4,5)P(2) forming PtdIns(4)P. Ten mammalian 5-phosphatases have been identified, which regulate hematopoietic cell proliferation, synaptic vesicle recycling, insulin signaling, and embryonic development. Two 5-phosphatase genes, OCRL and INPP5E are mutated in Lowe and Joubert syndrome respectively. SHIP [SH2 (Src homology 2)-domain inositol phosphatase] 2, and SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) negatively regulate insulin signaling and glucose homeostasis. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. SHIP1 controls hematopoietic cell proliferation and is mutated in some leukemias. The inositol polyphosphate 4-phosphatases, INPP4A and INPP4B degrade PtdIns(3,4)P(2) to PtdIns(3)P and regulate neuroexcitatory cell death, or act as a tumor suppressor in breast cancer respectively. The Sac phosphatases degrade multiple phosphoinositides, such as PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P(2) to form PtdIns. Mutation in the Sac phosphatase gene, FIG4, leads to a degenerative neuropathy. Therefore the phosphatases, like the lipid kinases, play major roles in regulating cellular functions and their mutation or altered expression leads to many human diseases.
Collapse
Affiliation(s)
- Jennifer M Dyson
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, 3800, Clayton, Australia
| | | | | | | | | |
Collapse
|
41
|
Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, Saad M, Simón-Sánchez J, Schulte C, Lesage S, Sveinbjörnsdóttir S, Stefánsson K, Martinez M, Hardy J, Heutink P, Brice A, Gasser T, Singleton AB, Wood NW. Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet 2011; 377:641-9. [PMID: 21292315 PMCID: PMC3696507 DOI: 10.1016/s0140-6736(10)62345-8] [Citation(s) in RCA: 776] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Genome-wide association studies (GWAS) for Parkinson's disease have linked two loci (MAPT and SNCA) to risk of Parkinson's disease. We aimed to identify novel risk loci for Parkinson's disease. METHODS We did a meta-analysis of datasets from five Parkinson's disease GWAS from the USA and Europe to identify loci associated with Parkinson's disease (discovery phase). We then did replication analyses of significantly associated loci in an independent sample series. Estimates of population-attributable risk were calculated from estimates from the discovery and replication phases combined, and risk-profile estimates for loci identified in the discovery phase were calculated. FINDINGS The discovery phase consisted of 5333 case and 12 019 control samples, with genotyped and imputed data at 7 689 524 SNPs. The replication phase consisted of 7053 case and 9007 control samples. We identified 11 loci that surpassed the threshold for genome-wide significance (p<5×10(-8)). Six were previously identified loci (MAPT, SNCA, HLA-DRB5, BST1, GAK and LRRK2) and five were newly identified loci (ACMSD, STK39, MCCC1/LAMP3, SYT11, and CCDC62/HIP1R). The combined population-attributable risk was 60·3% (95% CI 43·7-69·3). In the risk-profile analysis, the odds ratio in the highest quintile of disease risk was 2·51 (95% CI 2·23-2·83) compared with 1·00 in the lowest quintile of disease risk. INTERPRETATION These data provide an insight into the genetics of Parkinson's disease and the molecular cause of the disease and could provide future targets for therapies. FUNDING Wellcome Trust, National Institute on Aging, and US Department of Defense.
Collapse
|
42
|
Ramocki MB, Bartnik M, Szafranski P, Kołodziejska KE, Xia Z, Bravo J, Miller GS, Rodriguez DL, Williams CA, Bader PI, Szczepanik E, Mazurczak T, Antczak-Marach D, Coldwell JG, Akman CI, McAlmon K, Cohen MP, McGrath J, Roeder E, Mueller J, Kang SHL, Bacino CA, Patel A, Bocian E, Shaw CA, Cheung SW, Mazurczak T, Stankiewicz P. Recurrent distal 7q11.23 deletion including HIP1 and YWHAG identified in patients with intellectual disabilities, epilepsy, and neurobehavioral problems. Am J Hum Genet 2010; 87:857-65. [PMID: 21109226 DOI: 10.1016/j.ajhg.2010.10.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 10/12/2010] [Accepted: 10/22/2010] [Indexed: 11/19/2022] Open
Abstract
We report 26 individuals from ten unrelated families who exhibit variable expression and/or incomplete penetrance of epilepsy, learning difficulties, intellectual disabilities, and/or neurobehavioral abnormalities as a result of a heterozygous microdeletion distally adjacent to the Williams-Beuren syndrome region on chromosome 7q11.23. In six families with a common recurrent ∼1.2 Mb deletion that includes the Huntingtin-interacting protein 1 (HIP1) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG) genes and that is flanked by large complex low-copy repeats, we identified sites for nonallelic homologous recombination in two patients. There were no cases of this ∼1.2 Mb distal 7q11.23 deletion copy number variant identified in over 20,000 control samples surveyed. Three individuals with smaller, nonrecurrent deletions (∼180-500 kb) that include HIP1 but not YWHAG suggest that deletion of HIP1 is sufficient to cause neurological disease. Mice with targeted mutation in the Hip1 gene (Hip1⁻(/)⁻) develop a neurological phenotype characterized by failure to thrive, tremor, and gait ataxia. Overall, our data characterize a neurodevelopmental and epilepsy syndrome that is likely caused by recurrent and nonrecurrent deletions, including HIP1. These data do not exclude the possibility that YWHAG loss of function is also sufficient to cause neurological phenotypes. Based on the current knowledge of Hip1 protein function and its proposed role in AMPA and NMDA ionotropic glutamate receptor trafficking, we believe that HIP1 haploinsufficiency in humans will be amenable to rational drug design for improved seizure control and cognitive and behavioral function.
Collapse
Affiliation(s)
- Melissa B Ramocki
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zuccato C, Valenza M, Cattaneo E. Molecular Mechanisms and Potential Therapeutical Targets in Huntington's Disease. Physiol Rev 2010; 90:905-81. [DOI: 10.1152/physrev.00041.2009] [Citation(s) in RCA: 626] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the gene encoding for huntingtin protein. A lot has been learned about this disease since its first description in 1872 and the identification of its causative gene and mutation in 1993. We now know that the disease is characterized by several molecular and cellular abnormalities whose precise timing and relative roles in pathogenesis have yet to be understood. HD is triggered by the mutant protein, and both gain-of-function (of the mutant protein) and loss-of-function (of the normal protein) mechanisms are involved. Here we review the data that describe the emergence of the ancient huntingtin gene and of the polyglutamine trait during the last 800 million years of evolution. We focus on the known functions of wild-type huntingtin that are fundamental for the survival and functioning of the brain neurons that predominantly degenerate in HD. We summarize data indicating how the loss of these beneficial activities reduces the ability of these neurons to survive. We also review the different mechanisms by which the mutation in huntingtin causes toxicity. This may arise both from cell-autonomous processes and dysfunction of neuronal circuitries. We then focus on novel therapeutical targets and pathways and on the attractive option to counteract HD at its primary source, i.e., by blocking the production of the mutant protein. Strategies and technologies used to screen for candidate HD biomarkers and their potential application are presented. Furthermore, we discuss the opportunities offered by intracerebral cell transplantation and the likely need for these multiple routes into therapies to converge at some point as, ideally, one would wish to stop the disease process and, at the same time, possibly replace the damaged neurons.
Collapse
Affiliation(s)
- Chiara Zuccato
- Department of Pharmacological Sciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Marta Valenza
- Department of Pharmacological Sciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Elena Cattaneo
- Department of Pharmacological Sciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
44
|
Dimitriadi M, Hart AC. Neurodegenerative disorders: insights from the nematode Caenorhabditis elegans. Neurobiol Dis 2010; 40:4-11. [PMID: 20493260 DOI: 10.1016/j.nbd.2010.05.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/06/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022] Open
Abstract
Neurodegenerative diseases impose a burden on society, yet for the most part, the mechanisms underlying neuronal dysfunction and death in these disorders remain unclear despite the identification of relevant disease genes. Given the molecular conservation in neuronal signaling pathways across vertebrate and invertebrate species, many researchers have turned to the nematode Caenorhabditis elegans to identify the mechanisms underlying neurodegenerative disease pathology. C. elegans can be engineered to express human proteins associated with neurodegeneration; additionally, the function of C. elegans orthologs of human neurodegenerative disease genes can be dissected. Herein, we examine major C. elegans neurodegeneration models that recapitulate many aspects of human neurodegenerative disease and we survey the screens that have identified modifier genes. This review highlights how the C. elegans community has used this versatile organism to model several aspects of human neurodegeneration and how these studies have contributed to our understanding of human disease.
Collapse
Affiliation(s)
- Maria Dimitriadi
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | | |
Collapse
|
45
|
Abstract
HD (Huntington's disease) is produced by the expression of mutant forms of the protein htt (huntingtin) containing a pathologically expanded poly-glutamine repeat. For unknown reasons, in HD patients and HD mouse models, neurons from the striatum and cerebral cortex degenerate and lead to motor dysfunction and dementia. Synaptic transmission in those neurons becomes progressively altered during the course of the disease. However, the relationship between synaptic dysfunction and neurodegeneration in HD is not yet clear. Are there early specific functional synaptic changes preceding symptoms and neurodegeneration? What is the role of those changes in neuronal damage? Recent experiments in a Drosophila model of HD have showed that abnormally increased neurotransmitter release might be a leading cause of neurodegeneration. In the present review, we summarize recently described synaptic alterations in HD animal models and discuss potential underlying molecular mechanisms.
Collapse
|
46
|
The Sla2p/HIP1/HIP1R family: similar structure, similar function in endocytosis? Biochem Soc Trans 2010; 38:187-91. [DOI: 10.1042/bst0380187] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HIP1 (huntingtin interacting protein 1) has two close relatives: HIP1R (HIP1-related) and yeast Sla2p. All three members of the family have a conserved domain structure, suggesting a common function. Over the past decade, a number of studies have characterized these proteins using a combination of biochemical, imaging, structural and genetic techniques. These studies provide valuable information on binding partners, structure and dynamics of HIP1/HIP1R/Sla2p. In general, all suggest a role in CME (clathrin-mediated endocytosis) for the three proteins, though some differences have emerged. In this mini-review we summarize the current views on the roles of these proteins, while emphasizing the unique attributes of each family member.
Collapse
|
47
|
Teschendorf D, Link CD. What have worm models told us about the mechanisms of neuronal dysfunction in human neurodegenerative diseases? Mol Neurodegener 2009; 4:38. [PMID: 19785750 PMCID: PMC2762972 DOI: 10.1186/1750-1326-4-38] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Accepted: 09/28/2009] [Indexed: 11/13/2022] Open
Abstract
The nematode worm Caenorhabditis elegans has become an intensely studied model organism, and worm studies have made significant contributions to developmental biology and other fields. The experimental advantages of C. elegans, particularly its simple anatomy, optical transparency, short lifespan, and facile genetics, have also led researchers to use this model to investigate neuronal cell degeneration and death. Worm studies of neurodegeneration can be divided into two general classes: studies in which mutations of C. elegans genes lead to neuronal dysfunction and death, and studies in which external manipulations (e.g., chemical treatments or introduction of engineered transgenes) are used to induce neurodegeneration. For both types of studies the primary approach has been to use forward genetic, reverse genetic, or candidate gene approaches to identify genes that modify neurodegeneration. The ease and relatively low cost of C. elegans propagation also suggests a role for these C. elegans models for compound screening. An excellent review has been previously published that summarizes much of the work done on mutationally-induced neuronal death in C. elegans [1]. This review focuses on studies that have attempted to model specific human neurodegenerative diseases using transgenic approaches. These studies have given us a variety of insights into the specific disruptions of cellular processes that may underlie human neurodegenerative diseases.
Collapse
Affiliation(s)
- Dawn Teschendorf
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA.
| | | |
Collapse
|
48
|
The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem J 2009; 419:29-49. [PMID: 19272022 DOI: 10.1042/bj20081673] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phosphoinositides are membrane-bound signalling molecules that regulate cell proliferation and survival, cytoskeletal reorganization and vesicular trafficking by recruiting effector proteins to cellular membranes. Growth factor or insulin stimulation induces a canonical cascade resulting in the transient phosphorylation of PtdIns(4,5)P(2) by PI3K (phosphoinositide 3-kinase) to form PtdIns(3,4,5)P(3), which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) back to PtdIns(4,5)P(2), or by the 5-ptases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). The 5-ptases also hydrolyse PtdIns(4,5)P(2), forming PtdIns4P. Ten mammalian 5-ptases have been identified, which share a catalytic mechanism similar to that of the apurinic/apyrimidinic endonucleases. Gene-targeted deletion of 5-ptases in mice has revealed that these enzymes regulate haemopoietic cell proliferation, synaptic vesicle recycling, insulin signalling, endocytosis, vesicular trafficking and actin polymerization. Several studies have revealed that the molecular basis of Lowe's syndrome is due to mutations in the 5-ptase OCRL (oculocerebrorenal syndrome of Lowe). Futhermore, the 5-ptases SHIP [SH2 (Src homology 2)-domain-containing inositol phosphatase] 2, SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) and 72-5ptase (72 kDa 5-ptase)/Type IV/Inpp5e (inositol polyphosphate 5-phosphatase E) are implicated in negatively regulating insulin signalling and glucose homoeostasis in specific tissues. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. Gene profiling studies have identified changes in the expression of various 5-ptases in specific cancers. In addition, 5-ptases such as SHIP1, SHIP2 and 72-5ptase/Type IV/Inpp5e regulate macrophage phagocytosis, and SHIP1 also controls haemopoietic cell proliferation. Therefore the 5-ptases are a significant family of signal-modulating enzymes that govern a plethora of cellular functions by regulating the levels of specific phosphoinositides. Emerging studies have implicated their loss or gain of function in human disease.
Collapse
|
49
|
Marsh JL, Lukacsovich T, Thompson LM. Animal models of polyglutamine diseases and therapeutic approaches. J Biol Chem 2008; 284:7431-5. [PMID: 18957429 DOI: 10.1074/jbc.r800065200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The dominant gain-of-function polyglutamine repeat diseases, in which the initiating mutation is known, allow development of models that recapitulate many aspects of human disease. To the extent that pathology is a consequence of disrupted fundamental cellular activities, one can effectively study strategies to ameliorate or protect against these cellular insults. Model organisms allow one to identify pathways that affect disease onset and progression, to test and screen for pharmacological agents that affect pathogenic processes, and to validate potential targets genetically as well as pharmacologically. Here, we describe polyglutamine repeat diseases that have been modeled in a variety of organisms, including worms, flies, mice, and non-human primates, and discuss examples of how they have broadened the therapeutic landscape.
Collapse
Affiliation(s)
- J Lawrence Marsh
- Developmental Biology Center and the Department of Developmental and Cell Biology, University of California, Irvine, California 92697, USA.
| | | | | |
Collapse
|
50
|
Moores JN, Roy S, Nicholson DW, Staveley BE. Huntingtin interacting protein 1 can regulate neurogenesis in Drosophila. Eur J Neurosci 2008; 28:599-609. [PMID: 18702731 DOI: 10.1111/j.1460-9568.2008.06359.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Huntington's disease (HD) is associated with a range of cellular consequences including selective neuronal death and decreased levels of neurogenesis. Ultimately, these altered processes are dependent upon proteins that interact with Huntingtin (Htt) such as the Huntingtin-interacting protein 1 (Hip1) which has a reduced binding preference to expanded Htt. These effects are similar to those observed with modified Notch signal transduction. As Hip1 plays a key role in endocytosis and intracellular transport, and activation of the Notch signal requires both, we investigated putative links between Hip1 and Notch signaling in flies. We have identified two forms of Hip1 that may be produced through the use of alternative first exons: a version of Hip1 with a lipid-binding ANTH domain and Hip1DeltaANTH lacking this domain. The directed expression of Hip1 decreases, while expression of Hip1DeltaANTH increases, the density of sensory microchaetae on the dorsal notum, a classical model of neurogenesis. A reduction in microchaetae density associated with Notch(Microchaetae Deficient (MCD)) (N(MCD) ) alleles is sensitive to both Hip1 and Hip1DeltaANTH levels, as are the bristle phenotypes generated by misexpression of deltex, a key mediator of Notch signaling. Genetic studies further demonstrate that the observed effects of Hip1 and of Hip1DeltaANTH are sensitive to achaete gene dosage while insensitive to the levels of E(Spl), suggesting a non-canonical Notch neurogenic signal through a deltex-dependent pathway. The novel role we describe for Hip1 in Notch-mediated neurogenesis provides a functional link between Notch signaling and proteins related to HD.
Collapse
Affiliation(s)
- Justin N Moores
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland, Labrador, Canada
| | | | | | | |
Collapse
|