1
|
Kim J, Lee H, Kim HM, Kim JH, Byun S, Lee S, Kim CY, Ryou C. Isolation of Anti-Prion Compounds from Curcuma phaeocaulis Valeton Extract. Molecules 2024; 29:4034. [PMID: 39274884 PMCID: PMC11397528 DOI: 10.3390/molecules29174034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Prion diseases, known as a group of fatal neurodegenerative disorders caused by prions, remain incurable despite extensive research efforts. In a recent study, crude extract from Curcuma phaeocaulis Valeton (Cp) showed promising anti-prion efficacy in in vitro and in vivo models, prompting further investigation into their active compounds. We endeavored to identify the chemical constituents of the Cp extract and discover potential anti-prion agents. With the use of centrifugal partition chromatography (CPC), major constituents were isolated from the n-hexane (HX) fraction of the extract in a single step. Spectroscopic analysis confirmed the presence of curcumenone, curcumenol, and furanodienone. Subsequent efficacy testing in a cell culture model of prion disease identified curcumenol and furanodienone as active compounds. This study underscores the potential of natural products in the search for effective treatments against prion diseases.
Collapse
Affiliation(s)
- Jaehyeon Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Hakmin Lee
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Hye Mi Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Ji Hoon Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Sanghoon Byun
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Sungeun Lee
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Chul Young Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Chongsuk Ryou
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Shete S, Iqbal F, Bhardwaj M, Nandi U, Kumar A, Reddy DS. Sila-CBD Derivatives as Inhibitors of Heme-Induced NLRP3 Inflammasome: Application in Hemolytic Diseases. ACS Med Chem Lett 2023; 14:1716-1723. [PMID: 38116428 PMCID: PMC10726456 DOI: 10.1021/acsmedchemlett.3c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 12/21/2023] Open
Abstract
Synthesis and biological evaluation of silicon-incorporated phytocannabinoids with improved pharmacological properties toward inflammatory diseases are described. The synthesized sila-analogues 15a, 15b, and 15c displayed potent inhibition of pro-inflammatory cytokines, including IL-1β, TNF-α, and IL-6 at 10 μM. Further, the release of heme during the lysis of red blood cells in hemolytic diseases is one of the major reasons for inflammation associated with the pathophysiology of these diseases. Due to scanty literature related to inhibitors of heme-mediated induction of the NLRP3 inflammasome, we decided to test these compounds against it. Compounds 15a and 15c significantly inhibited the heme-mediated induction of the NLRP3 inflammasome at a concentration of 0.1 μM. Interestingly, the sila-CBD derivatives also showed higher metabolic stability in contrast to their carbon analogues. Anti-NLRP3 inflammasome activity of compounds 15a and 15c were further validated in vivo against heme-mediated peritoneal inflammation. The anti-inflammatory activity of these compounds could be useful in treating diseases such as sickle cell anemia and thalassemia involving the hemolysis-mediated activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Sanket
S. Shete
- Division
of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
- Natural
Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Fiza Iqbal
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Mahir Bhardwaj
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Utpal Nandi
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Ajay Kumar
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - D. Srinivasa Reddy
- Division
of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
- Natural
Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Shim KH, Sharma N, An SSA. Prion therapeutics: Lessons from the past. Prion 2022; 16:265-294. [PMID: 36515657 PMCID: PMC9754114 DOI: 10.1080/19336896.2022.2153551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022] Open
Abstract
Prion diseases are a group of incurable zoonotic neurodegenerative diseases (NDDs) in humans and other animals caused by the prion proteins. The abnormal folding and aggregation of the soluble cellular prion proteins (PrPC) into scrapie isoform (PrPSc) in the Central nervous system (CNS) resulted in brain damage and other neurological symptoms. Different therapeutic approaches, including stalling PrPC to PrPSc conversion, increasing PrPSc removal, and PrPC stabilization, for which a spectrum of compounds, ranging from organic compounds to antibodies, have been explored. Additionally, a non-PrP targeted drug strategy using serpin inhibitors has been discussed. Despite numerous scaffolds being screened for anti-prion activity in vitro, only a few were effective in vivo and unfortunately, almost none of them proved effective in the clinical studies, most likely due to toxicity and lack of permeability. Recently, encouraging results from a prion-protein monoclonal antibody, PRN100, were presented in the first human trial on CJD patients, which gives a hope for better future for the discovery of other new molecules to treat prion diseases. In this comprehensive review, we have re-visited the history and discussed various classes of anti-prion agents, their structure, mode of action, and toxicity. Understanding pathogenesis would be vital for developing future treatments for prion diseases. Based on the outcomes of existing therapies, new anti-prion agents could be identified/synthesized/designed with reduced toxicity and increased bioavailability, which could probably be effective in treating prion diseases.
Collapse
Affiliation(s)
- Kyu Hwan Shim
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Niti Sharma
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| |
Collapse
|
4
|
Clayton P, Subah S, Venkatesh R, Hill M, Bogoda N. Palmitoylethanolamide: A Potential Alternative to Cannabidiol. J Diet Suppl 2021; 20:505-530. [PMID: 34842030 DOI: 10.1080/19390211.2021.2005733] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The endocannabinoid system (ECS) is a widespread cell signaling network that maintains homeostasis in response to endogenous and exogenous stressors. This has made the ECS an attractive therapeutic target for various disease states. The ECS is a well-known target of exogenous phytocannabinoids derived from cannabis plants, the most well characterized being Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). However, the therapeutic efficacy of cannabis products comes with a risk of toxicity and high abuse potential due to the psychoactivity of THC. CBD, on the other hand, is reported to have beneficial medicinal properties including analgesic, neuroprotective, anxiolytic, anticonvulsant, and antipsychotic activities, while apparently lacking the toxicity of THC. Nevertheless, not only is the currently available scientific data concerning CBD's efficacy insufficient, there is also ambiguity surrounding its regulatory status and safety in humans that brings inherent risks to manufacturers. There is a demand for alternative compounds combining similar effects with a robust safety profile and regulatory approval. Palmitoylethanolamide (PEA) is an endocannabinoid-like lipid mediator, primarily known for its anti-inflammatory, analgesic and neuroprotective properties. It appears to have a multi-modal mechanism of action, by primarily activating the nuclear receptor PPAR-α while also potentially working through the ECS, thus targeting similar pathways as CBD. With proven efficacy in several therapeutic areas, its safety and tolerability profile and the development of formulations that maximize its bioavailability, PEA is a promising alternative to CBD.
Collapse
Affiliation(s)
- Paul Clayton
- Institute of Food, Brain and Behaviour, Oxford, UK
| | - Silma Subah
- Gencor Pacific Limited, Lantau Island, Hong Kong
| | | | - Mariko Hill
- Gencor Pacific Limited, Lantau Island, Hong Kong
| | | |
Collapse
|
5
|
Kim J, Choi H, Kang EK, Ji GY, Kim Y, Choi IS. In Vitro Studies on Therapeutic Effects of Cannabidiol in Neural Cells: Neurons, Glia, and Neural Stem Cells. Molecules 2021; 26:molecules26196077. [PMID: 34641624 PMCID: PMC8512311 DOI: 10.3390/molecules26196077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/25/2022] Open
Abstract
(‒)-Cannabidiol (CBD) is one of the major phytocannabinoids extracted from the Cannabis genus. Its non-psychoactiveness and therapeutic potential, partly along with some anecdotal—if not scientific or clinical—evidence on the prevention and treatment of neurological diseases, have led researchers to investigate the biochemical actions of CBD on neural cells. This review summarizes the previously reported mechanistic studies of the CBD actions on primary neural cells at the in vitro cell-culture level. The neural cells are classified into neurons, microglia, astrocytes, oligodendrocytes, and neural stem cells, and the CBD effects on each cell type are described. After brief introduction on CBD and in vitro studies of CBD actions on neural cells, the neuroprotective capability of CBD on primary neurons with the suggested operating actions is discussed, followed by the reported CBD actions on glia and the CBD-induced regeneration from neural stem cells. A summary section gives a general overview of the biochemical actions of CBD on neural cells, with a future perspective. This review will provide a basic and fundamental, but crucial, insight on the mechanistic understanding of CBD actions on neural cells in the brain, at the molecular level, and the therapeutic potential of CBD in the prevention and treatment of neurological diseases, although to date, there seem to have been relatively limited research activities and reports on the cell culture-level, in vitro studies of CBD effects on primary neural cells.
Collapse
Affiliation(s)
- Jungnam Kim
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Hyunwoo Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Eunhye K. Kang
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Gil Yong Ji
- Cannabis Medical, Inc., Sandong-ro 433-31, Eumbong-myeon, Asan-si 31418, Korea; (G.Y.J.); (Y.K.)
| | - Youjeong Kim
- Cannabis Medical, Inc., Sandong-ro 433-31, Eumbong-myeon, Asan-si 31418, Korea; (G.Y.J.); (Y.K.)
| | - Insung S. Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
- Correspondence:
| |
Collapse
|
6
|
Prowse N, Hayley S. Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic phenotype. Neurosci Biobehav Rev 2021; 131:135-163. [PMID: 34537262 DOI: 10.1016/j.neubiorev.2021.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
Stressors ranging from psychogenic/social to neurogenic/injury to systemic/microbial can impact microglial inflammatory processes, but less is known regarding their effects on trophic properties of microglia. Recent studies do suggest that microglia can modulate neuronal plasticity, possibly through brain derived neurotrophic factor (BDNF). This is particularly important given the link between BDNF and neuropsychiatric and neurodegenerative pathology. We posit that certain activated states of microglia play a role in maintaining the delicate balance of BDNF release onto neuronal synapses. This focused review will address how different "activators" influence the expression and release of microglial BDNF and address the question of tropomyosin receptor kinase B (TrkB) expression on microglia. We will then assess sex-based differences in microglial function and BDNF expression, and how microglia are involved in the stress response and related disorders such as depression. Drawing on research from a variety of other disorders, we will highlight challenges and opportunities for modulators that can shift microglia to a "trophic" phenotype with a view to potential therapeutics relevant for stressor-related disorders.
Collapse
Affiliation(s)
- Natalie Prowse
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
7
|
Chrobak W, Pacut DW, Blomgren F, Rodin A, Swenson J, Ermilova I. Component of Cannabis, Cannabidiol, as a Possible Drug against the Cytotoxicity of Aβ(31-35) and Aβ(25-35) Peptides: An Investigation by Molecular Dynamics and Well-Tempered Metadynamics Simulations. ACS Chem Neurosci 2021; 12:660-674. [PMID: 33544587 PMCID: PMC8023578 DOI: 10.1021/acschemneuro.0c00692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
In this work cannabidiol (CBD) was investigated as a possible drug against the cytotoxicity of Aβ(31-35) and Aβ(25-35) peptides with the help of atomistic molecular dynamics (MD) and well-tempered metadynamics simulations. Four interrelated mechanisms of possible actions of CBD are proposed from our computations. This implies that one mechanism can be a cause or/and a consequence of another. CBD is able to decrease the aggregation of peptides at certain concentrations of compounds in water. This particular action is more prominent for Aβ(25-35), since originally Aβ(31-35) did not exhibit aggregation properties in aqueous solutions. Interactions of CBD with the peptides affect secondary structures of the latter ones. Clusters of CBD are seen as possible adsorbents of Aβ(31-35) and Aβ(25-35) since peptides are tending to aggregate around them. And last but not least, CBD exhibits binding to MET35. All four mechanisms of actions can possibly inhibit the Aβ-cytotoxicity as discussed in this paper. Moreover, the amount of water also played a role in peptide clustering: with a growing concentration of peptides in water without a drug, the aggregation of both Aβ(31-35) and Aβ(25-35) increased. The number of hydrogen bonds between peptides and water was significantly higher for simulations with Aβ(25-35) at the higher concentration of peptides, while for Aβ(31-35) that difference was rather insignificant. The presence of CBD did not substantially affect the number of hydrogen bonds in the simulated systems.
Collapse
Affiliation(s)
| | | | | | | | - Jan Swenson
- Department of Physics, Chalmers
University of Technology, 412 96 Gothenburg, Sweden
| | - Inna Ermilova
- Department of Physics, Chalmers
University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
8
|
Dash R, Ali MC, Jahan I, Munni YA, Mitra S, Hannan MA, Timalsina B, Oktaviani DF, Choi HJ, Moon IS. Emerging potential of cannabidiol in reversing proteinopathies. Ageing Res Rev 2021; 65:101209. [PMID: 33181336 DOI: 10.1016/j.arr.2020.101209] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/22/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
The aberrant accumulation of disease-specific protein aggregates accompanying cognitive decline is a pathological hallmark of age-associated neurological disorders, also termed as proteinopathies, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and multiple sclerosis. Along with oxidative stress and neuroinflammation, disruption in protein homeostasis (proteostasis), a network that constitutes protein surveillance system, plays a pivotal role in the pathobiology of these dementia disorders. Cannabidiol (CBD), a non-psychotropic phytocannabinoid of Cannabis sativa, is known for its pleiotropic neuropharmacological effects on the central nervous system, including the ability to abate oxidative stress, neuroinflammation, and protein misfolding. Over the past years, compelling evidence has documented disease-modifying role of CBD in various preclinical and clinical models of neurological disorders, suggesting the potential therapeutic implications of CBD in these disorders. Because of its putative role in the proteostasis network in particular, CBD could be a potent modulator for reversing not only age-associated neurodegeneration but also other protein misfolding disorders. However, the current understanding is insufficient to underpin this proposition. In this review, we discuss the potentiality of CBD as a pharmacological modulator of the proteostasis network, highlighting its neuroprotective and aggregates clearing roles in the neurodegenerative disorders. We anticipate that the current effort will advance our knowledge on the implication of CBD in proteostasis network, opening up a new therapeutic window for aging proteinopathies.
Collapse
|
9
|
Formato M, Crescente G, Scognamiglio M, Fiorentino A, Pecoraro MT, Piccolella S, Catauro M, Pacifico S. (‒)-Cannabidiolic Acid, a Still Overlooked Bioactive Compound: An Introductory Review and Preliminary Research. Molecules 2020; 25:molecules25112638. [PMID: 32517131 PMCID: PMC7321064 DOI: 10.3390/molecules25112638] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
Cannabidiolic acid (CBDA) is the main phytocannabinoid in fiber and seed-oil hemp (Cannabis sativa L.) plants, but its potential health-related capabilities have been masked for years by a greater scientific interest towards its neutral derivative cannabidiol (CBD). This review aims to collect from the literature and critically discuss all the information about this molecule, starting from its biosynthesis, and focusing on its bioactivity, as an anti-inflammatory, anti-emetic, anti-convulsant, and anti-cancerogenic drug. Furthermore, in the awareness that, despite its multiple bioactive effects, currently poor efforts have been made to achieve its reliable purification, herein, we propose a relatively simple, fast, and inexpensive procedure for its recovery from pollen of industrial hemp cultivars. Spectroscopic and spectrometric techniques allowed us to unequivocally identify pure isolated CBDA and to distinguish it from the constitutional isomer tetrahydrocannabinolic acid (THCA-A).
Collapse
Affiliation(s)
- Marialuisa Formato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.F.); (G.C.); (M.S.); (A.F.); (M.T.P.); (S.P.)
| | - Giuseppina Crescente
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.F.); (G.C.); (M.S.); (A.F.); (M.T.P.); (S.P.)
| | - Monica Scognamiglio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.F.); (G.C.); (M.S.); (A.F.); (M.T.P.); (S.P.)
| | - Antonio Fiorentino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.F.); (G.C.); (M.S.); (A.F.); (M.T.P.); (S.P.)
| | - Maria Tommasina Pecoraro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.F.); (G.C.); (M.S.); (A.F.); (M.T.P.); (S.P.)
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.F.); (G.C.); (M.S.); (A.F.); (M.T.P.); (S.P.)
| | - Michelina Catauro
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, I-81031 Aversa, Italy;
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.F.); (G.C.); (M.S.); (A.F.); (M.T.P.); (S.P.)
- Correspondence:
| |
Collapse
|
10
|
Dose-dependent effect of cannabinoid WIN-55,212-2 on myelin repair following a demyelinating insult. Sci Rep 2020; 10:590. [PMID: 31953431 PMCID: PMC6969154 DOI: 10.1038/s41598-019-57290-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/19/2019] [Indexed: 01/25/2023] Open
Abstract
Dysfunctions in the endocannabinoid system have been associated with experimental animal models and multiple sclerosis patients. Interestingly, the endocannabinoid system has been reported to confer neuroprotection against demyelination. The present study aims to assess the effects of the cannabinoid agonist WIN-55,212-2 in cuprizone fed animals on myelin repair capacity. Animals exposed to cuprizone were simultaneously treated withWIN-55,212-2, behaviorally tested and finally the corpus callosum was exhaustively studied by Western blotting, qRT-PCR and a myelin staining procedure. We report that the long-term administration of WIN-55,212-2 reduced the global amount of CB1 protein. Histological analysis revealed clear demyelination after being fed cuprizone for three weeks. However, cuprizone-fed mice subjected to 0.5 mg/Kg of WIN-55,212-2 displayed no differences when compared to controls during demyelination, although there was a robust increase in the myelinated axons during the remyelination phase. These animals displayed better performance on contextual fear conditioning which was in turn non-attributable to an antinociceptive effect. In contrast, a 1 mg/Kg dosage caused a remarkable demyelination accompanied by limited potential for myelin repair. Upon drug administration while mice ongoing demyeliniation, the expression of Aif1 (microglia) and Gfap (astrocytes) followed a dose-dependent manner whereas the expression of both markers was apparently attenuated during remyelination. Treatment with vehicle or 0.5 mg/Kg of the drug during demyelination increased the expression of Pdgfra (oligodendrocyte precursor cells) but this did not occur when 1 mg/Kg was administered. In conclusion, the drug at 0.5 mg/Kg did not alter myelin architecture while 1 mg/Kg had a deleterious effect in this model.
Collapse
|
11
|
Baron EP. Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science. Headache 2019; 58:1139-1186. [PMID: 30152161 DOI: 10.1111/head.13345] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Comprehensive literature reviews of historical perspectives and evidence supporting cannabis/cannabinoids in the treatment of pain, including migraine and headache, with associated neurobiological mechanisms of pain modulation have been well described. Most of the existing literature reports on the cannabinoids Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), or cannabis in general. There are many cannabis strains that vary widely in the composition of cannabinoids, terpenes, flavonoids, and other compounds. These components work synergistically to produce wide variations in benefits, side effects, and strain characteristics. Knowledge of the individual medicinal properties of the cannabinoids, terpenes, and flavonoids is necessary to cross-breed strains to obtain optimal standardized synergistic compositions. This will enable targeting individual symptoms and/or diseases, including migraine, headache, and pain. OBJECTIVE Review the medical literature for the use of cannabis/cannabinoids in the treatment of migraine, headache, facial pain, and other chronic pain syndromes, and for supporting evidence of a potential role in combatting the opioid epidemic. Review the medical literature involving major and minor cannabinoids, primary and secondary terpenes, and flavonoids that underlie the synergistic entourage effects of cannabis. Summarize the individual medicinal benefits of these substances, including analgesic and anti-inflammatory properties. CONCLUSION There is accumulating evidence for various therapeutic benefits of cannabis/cannabinoids, especially in the treatment of pain, which may also apply to the treatment of migraine and headache. There is also supporting evidence that cannabis may assist in opioid detoxification and weaning, thus making it a potential weapon in battling the opioid epidemic. Cannabis science is a rapidly evolving medical sector and industry with increasingly regulated production standards. Further research is anticipated to optimize breeding of strain-specific synergistic ratios of cannabinoids, terpenes, and other phytochemicals for predictable user effects, characteristics, and improved symptom and disease-targeted therapies.
Collapse
Affiliation(s)
- Eric P Baron
- Department of Neurology, Center for Neurological Restoration - Headache and Chronic Pain Medicine, Cleveland Clinic Neurological Institute, Cleveland, OH, 44195, USA
| |
Collapse
|
12
|
da S. Hage-Melim LI, Ferreira JV, de Oliveira NK, Correia LC, Almeida MR, Poiani JG, Taft CA, de Paula da Silva CH. The Impact of Natural Compounds on the Treatment of Neurodegenerative Diseases. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190327100418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDDs) are characterized by a progressive deterioration of the motor and/or cognitive function, that are often accompanied by psychiatric disorders, caused by a selective loss of neurons in the central nervous system. Among the NDDs we can mention Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), spinocerebellar ataxia 3 (SCA3), spinal and bulbar muscular atrophy (SBMA) and Creutzfeldt-Jakob disease (CJD). AD and HD are characterized mainly by massive neuronal loss. PD, ALS, SCA3 and SBMA are agerelated diseases which have characteristic motor symptoms. CJD is an NDD caused by prion proteins. With increasing life expectancy, elderly populations tend to have more health problems, such as chronic diseases related to age and disability. Therefore, the development of therapeutic strategies to treat or prevent multiple pathophysiological conditions in the elderly can improve the expectation and quality of life. The attention of researchers has been focused on bioactive natural compounds that represent important resources in the discovery and development of drug candidates against NDDs. In this review, we discuss the pathogenesis, symptoms, potential targets, treatment and natural compounds effective in the treatment of AD, PD, HD, ALS, SCA3, SBMA and CJD.
Collapse
Affiliation(s)
- Lorane I. da S. Hage-Melim
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Jaderson V. Ferreira
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Nayana K.S. de Oliveira
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Lenir C. Correia
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Marcos R.S. Almeida
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - João G.C. Poiani
- Laboratorio Computacional de Química Farmaceutica, Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Carlton A. Taft
- Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos H.T. de Paula da Silva
- Laboratorio Computacional de Química Farmaceutica, Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
13
|
Borgonetti V, Governa P, Montopoli M, Biagi M. Cannabis sativa L. Constituents and Their Role in Neuroinflammation. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1573407214666180703130525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interest in Cannabis sativa L. phytocomplex as a medicinal tool is a recently-emerging topic. Neurodegenerative diseases represent a promising field of application for cannabis and its preparations, as most of this pathologic conditions relies on an inflammatory etiology. Several cannabis constituents display anti-inflammatory effects targeting multiple pathways. In this review, a comprehensive overview of the available literature on C. sativa constituents activities in neuroinflammation is given. On the basis that the anti-inflammatory activity of cannabis is not attributable to only a single constituent, we discuss the possible advantages of administering the whole phytocomplex in order to fully exploit the “entourage effect” in neuroinflammatory-related conditions.
Collapse
Affiliation(s)
| | | | | | - Marco Biagi
- SIFITLab, Via Laterina 8, 53100 Siena, Italy
| |
Collapse
|
14
|
Cannabis sativa L. and Nonpsychoactive Cannabinoids: Their Chemistry and Role against Oxidative Stress, Inflammation, and Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1691428. [PMID: 30627539 PMCID: PMC6304621 DOI: 10.1155/2018/1691428] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 01/17/2023]
Abstract
In the last decades, a lot of attention has been paid to the compounds present in medicinal Cannabis sativa L., such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), and their effects on inflammation and cancer-related pain. The National Cancer Institute (NCI) currently recognizes medicinal C. sativa as an effective treatment for providing relief in a number of symptoms associated with cancer, including pain, loss of appetite, nausea and vomiting, and anxiety. Several studies have described CBD as a multitarget molecule, acting as an adaptogen, and as a modulator, in different ways, depending on the type and location of disequilibrium both in the brain and in the body, mainly interacting with specific receptor proteins CB1 and CB2. CBD is present in both medicinal and fibre-type C. sativa plants, but, unlike Δ9-THC, it is completely nonpsychoactive. Fibre-type C. sativa (hemp) differs from medicinal C. sativa, since it contains only few levels of Δ9-THC and high levels of CBD and related nonpsychoactive compounds. In recent years, a number of preclinical researches have been focused on the role of CBD as an anticancer molecule, suggesting CBD (and CBD-like molecules present in the hemp extract) as a possible candidate for future clinical trials. CBD has been found to possess antioxidant activity in many studies, thus suggesting a possible role in the prevention of both neurodegenerative and cardiovascular diseases. In animal models, CBD has been shown to inhibit the progression of several cancer types. Moreover, it has been found that coadministration of CBD and Δ9-THC, followed by radiation therapy, causes an increase of autophagy and apoptosis in cancer cells. In addition, CBD is able to inhibit cell proliferation and to increase apoptosis in different types of cancer models. These activities seem to involve also alternative pathways, such as the interactions with TRPV and GRP55 receptor complexes. Moreover, the finding that the acidic precursor of CBD (cannabidiolic acid, CBDA) is able to inhibit the migration of breast cancer cells and to downregulate the proto-oncogene c-fos and the cyclooxygenase-2 (COX-2) highlights the possibility that CBDA might act on a common pathway of inflammation and cancer mechanisms, which might be responsible for its anticancer activity. In the light of all these findings, in this review we explore the effects and the molecular mechanisms of CBD on inflammation and cancer processes, highlighting also the role of minor cannabinoids and noncannabinoids constituents of Δ9-THC deprived hemp.
Collapse
|
15
|
Poleggi A, van der Lee S, Capellari S, Puopolo M, Ladogana A, De Pascali E, Lia D, Formato A, Bartoletti-Stella A, Parchi P, van Duijn C, Pocchiari M. Age at onset of genetic (E200K) and sporadic Creutzfeldt-Jakob diseases is modulated by the CYP4X1 gene. J Neurol Neurosurg Psychiatry 2018; 89:1243-1249. [PMID: 30032116 DOI: 10.1136/jnnp-2018-318756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 01/29/2023]
Abstract
OBJECTIVES The Glu to Lys change at codon 200 (E200K) of the PRNP gene is the most frequent mutation associated to genetic Creutzfeldt-Jakob disease (CJD) and the only one responsible for geographical clusters. Patients carrying this mutation develop disease at different ages and show variable clinical phenotypes that are not affected by the methione/valine polymorphism at codon 129 of the PRNP gene suggesting the influence of other factors. The objective of this study is to look for genes other than PRNP that might be responsible of this variability. METHODS We searched for other genes by performing genome-wide analyses (GWA) on 19 patients with genetic CJD and 18 healthy subjects carrying the E200K mutation of PRNP and belonging to the Calabrian cluster in Italy. We then validate this result in 32 patients with E200K CJD from non-cluster areas and 259 patients with sporadic CJD referred to the Italian CJD national registry. RESULTS AND CONCLUSIONS We identified two single nucleotide polymorphisms on the CYP4X1 gene locus as candidate disease modifiers in patients with E200K CJD of the cluster area and confirmed this finding in 32 patients with E200K CJD from non-cluster areas and 259 patients with sporadic CJD. Our results indicate that the CYP4X1 gene modulates the onset of disease in patients with E200K genetic and sporadic CJD. This finding improves our understanding on the pathogenesis of CJD, suggests new targets for developing novel therapeutic strategies and might be useful for the stratification of patients in future preventive treatment trials.
Collapse
Affiliation(s)
- Anna Poleggi
- Department of Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | - Sven van der Lee
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sabina Capellari
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Maria Puopolo
- Department of Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | - Anna Ladogana
- Department of Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | | | - Debora Lia
- Department of Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | - Alessia Formato
- Department of Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | - Anna Bartoletti-Stella
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Piero Parchi
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy.,Department of Diagnostic Experimental and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Cornelia van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.,Translational Epidemiology, Faculty Science, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
16
|
Melis M, Frau R, Kalivas PW, Spencer S, Chioma V, Zamberletti E, Rubino T, Parolaro D. New vistas on cannabis use disorder. Neuropharmacology 2017; 124:62-72. [PMID: 28373077 DOI: 10.1016/j.neuropharm.2017.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 02/06/2023]
Abstract
Cannabis sativa preparations are the most consumed illicit drugs for recreational purposes worldwide, and the number of people seeking treatment for cannabis use disorder has dramatically increased in the last decades. Due to the recent decriminalization or legalization of cannabis use in the Western Countries, we may predict that the number of people suffering from cannabis use disorder will increase. Despite the increasing number of cannabis studies over the past two decades, we have gaps of scientific knowledge pertaining to the neurobiological consequences of long-term cannabis use. Moreover, no specific treatments for cannabis use disorders are currently available. In this review, we explore new research that may help fill these gaps. We discuss and provide a solution to the experimental limitation of a lack of rodent models of THC self-administration, and the importance this model can play in understanding the neurobiology of relapse and in providing a biological rationale for potential therapeutic targets. We also focus our attention on glial cells, commenting on recent preclinical evidence suggesting that alterations in microglia and astrocytes might contribute to the detrimental effects associated with cannabis abuse. Finally, due to the worrisome prevalence rates of cannabis use during pregnancy, we highlight the associations between cannabis use disorders during pregnancy and congenital disorders, describing the possible neuronal basis of vulnerability at molecular and circuit level. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Miriam Melis
- Dept. of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Roberto Frau
- Dept. of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, SC, USA
| | - Sade Spencer
- Department of Neuroscience, Medical University of South Carolina, SC, USA
| | - Vivian Chioma
- Department of Neuroscience, Medical University of South Carolina, SC, USA
| | - Erica Zamberletti
- Dept. of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio (VA), Italy
| | - Tiziana Rubino
- Dept. of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio (VA), Italy
| | - Daniela Parolaro
- Dept. of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio (VA), Italy; Zardi Gori Foundation, Milan, Italy.
| |
Collapse
|
17
|
Pisanti S, Malfitano AM, Ciaglia E, Lamberti A, Ranieri R, Cuomo G, Abate M, Faggiana G, Proto MC, Fiore D, Laezza C, Bifulco M. Cannabidiol: State of the art and new challenges for therapeutic applications. Pharmacol Ther 2017; 175:133-150. [PMID: 28232276 DOI: 10.1016/j.pharmthera.2017.02.041] [Citation(s) in RCA: 379] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the past years, several lines of evidence support a therapeutic potential of Cannabis derivatives and in particular phytocannabinoids. Δ9-THC and cannabidiol (CBD) are the most abundant phytocannabinoids in Cannabis plants and therapeutic application for both compounds have been suggested. However, CBD is recently emerging as a therapeutic agent in numerous pathological conditions since devoid of the psychoactive side effects exhibited instead by Δ9-THC. In this review, we highlight the pharmacological activities of CBD, its cannabinoid receptor-dependent and -independent action, its biological effects focusing on immunomodulation, angiogenetic properties, and modulation of neuronal and cardiovascular function. Furthermore, the therapeutic potential of cannabidiol is also highlighted, in particular in nuerological diseases and cancer.
Collapse
Affiliation(s)
- Simona Pisanti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy.
| | - Anna Maria Malfitano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Anna Lamberti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Roberta Ranieri
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Gaia Cuomo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Mario Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Giorgio Faggiana
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | | | | | | | - Maurizio Bifulco
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy; Corporea, Fondazione Idis-Città della Scienza, Naples, Italy.
| |
Collapse
|
18
|
Mecha M, Carrillo-Salinas F, Feliú A, Mestre L, Guaza C. Microglia activation states and cannabinoid system: Therapeutic implications. Pharmacol Ther 2016; 166:40-55. [DOI: 10.1016/j.pharmthera.2016.06.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
|
19
|
Fernández-Ruiz J, Romero J, Ramos JA. Endocannabinoids and Neurodegenerative Disorders: Parkinson's Disease, Huntington's Chorea, Alzheimer's Disease, and Others. Handb Exp Pharmacol 2015; 231:233-59. [PMID: 26408163 DOI: 10.1007/978-3-319-20825-1_8] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review focuses on the role of the endocannabinoid signaling system in controlling neuronal survival, an extremely important issue to be considered when developing new therapies for neurodegenerative disorders. First, we will describe the cellular and molecular mechanisms, and the signaling pathways, underlying these neuroprotective properties, including the control of glutamate homeostasis, calcium influx, the toxicity of reactive oxygen species, glial activation and other inflammatory events; and the induction of autophagy. We will then concentrate on the preclinical studies and the few clinical trials that have been carried out targeting endocannabinoid signaling in three important chronic progressive neurodegenerative disorders (Parkinson's disease, Huntington's chorea, and Alzheimer's disease), as well as in other less well-studied disorders. We will end by offering some ideas and proposals for future research that should be carried out to optimize endocannabinoid-based treatments for these disorders. Such studies will strengthen the possibility that these therapies will be investigated in the clinical scenario and licensed for their use in specific disorders.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Facultad de Medicina, Departamento de Bioquímica y Biología Molecular III, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Ciudad Universitaria s/n, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Julián Romero
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Madrid, Spain
- Departamento de Ciencias Biosanitarias, Universidad Francisco de Vitoria, Madrid, Spain
| | - José A Ramos
- Facultad de Medicina, Departamento de Bioquímica y Biología Molecular III, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Ciudad Universitaria s/n, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
20
|
Mecha M, Feliú A, Carrillo-Salinas FJ, Rueda-Zubiaurre A, Ortega-Gutiérrez S, de Sola RG, Guaza C. Endocannabinoids drive the acquisition of an alternative phenotype in microglia. Brain Behav Immun 2015; 49:233-45. [PMID: 26086345 DOI: 10.1016/j.bbi.2015.06.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/02/2015] [Accepted: 06/02/2015] [Indexed: 12/16/2022] Open
Abstract
The ability of microglia to acquire diverse states of activation, or phenotypes, reflects different features that are determinant for their contribution to homeostasis in the adult CNS, and their activity in neuroinflammation, repair or immunomodulation. Despite the widely reported immunomodulatory effects of cannabinoids in both the peripheral immune system and the CNS, less is known about how the endocannabinoid signaling system (eCBSS) influence the microglial phenotype. The general aim of the present study was to investigate the role of endocannabinoids in microglia polarization by using microglia cell cultures. We show that alternative microglia (M2a) and acquired deactivated microglia (M2c) exhibit changes in the eCB machinery that favor the selective synthesis of 2-AG and AEA, respectively. Once released, these eCBs might be able to act through CB1 and/or CB2 receptors in order to influence the acquisition of an M2 phenotype. We present three lines of evidence that the eCBSS is critical for the acquisition of the M2 phenotype: (i) M2 polarization occurs on exposure to the two main endocannabinoids 2-AG and AEA in microglia cultures; (ii) cannabinoid receptor antagonists block M2 polarization; and (iii) M2 polarization is dampened in microglia from CB2 receptor knockout mice. Taken together, these results indicate the interest of eCBSS for the regulation of microglial activation in normal and pathological conditions.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/metabolism
- Cell Polarity
- Cells, Cultured
- Endocannabinoids/metabolism
- Glycerides/metabolism
- Lipoprotein Lipase/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/metabolism
- Microglia/physiology
- Phenotype
- Polyunsaturated Alkamides/metabolism
- Rats, Wistar
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- M Mecha
- Department of Functional and Systems Neurobiology, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain.
| | - A Feliú
- Department of Functional and Systems Neurobiology, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| | - F J Carrillo-Salinas
- Department of Functional and Systems Neurobiology, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| | - A Rueda-Zubiaurre
- Department of Organic Chemistry, Chemistry Faculty, University Complutense of Madrid, Spain
| | - S Ortega-Gutiérrez
- Department of Organic Chemistry, Chemistry Faculty, University Complutense of Madrid, Spain
| | - R García de Sola
- Clinical Neurophysiology Service, Hospital Universitario la Princesa, Madrid, Spain
| | - C Guaza
- Department of Functional and Systems Neurobiology, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| |
Collapse
|
21
|
Chiurchiù V, Leuti A, Maccarrone M. Cannabinoid Signaling and Neuroinflammatory Diseases: A Melting pot for the Regulation of Brain Immune Responses. J Neuroimmune Pharmacol 2015; 10:268-80. [PMID: 25601726 DOI: 10.1007/s11481-015-9584-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/12/2015] [Indexed: 12/21/2022]
Abstract
The concept of the central nervous system (CNS) as an immune-privileged site, essentially due to the presence of the blood brain barrier, appears to be overly simplistic. Indeed, within healthy CNS immune activities are permitted and are required for neuronal function and host defense, not only due to the presence of the resident innate immune cells of the brain, but also by virtue of a complex cross-talk of the CNS with peripheral immune cells. Nonetheless, long-standing and persisting neuroinflammatory responses are most often detrimental and characterize several neuroinflammatory diseases, including multiple sclerosis, Alzheimer's disease and amyotrophic lateral sclerosis. A growing body of evidence suggests that Cannabis sativa-derived phytocannabinoids, as well as synthetic cannabinoids, are endowed with significant immunoregulatory and anti-inflammatory properties, both in peripheral tissues and in the CNS, through the activation of cannabinoid receptors. In this review, the immunomodulatory effects of cannabinoid signaling on the most relevant brain immune cells will be discussed. In addition, the impact of cannabinoid regulation on the overall integration of the manifold brain immune responses will also be highlighted, along with the implication of these compounds as potential agents for the management of neuroinflammatory disorders.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- School of Medicine and Center of Integrated Research, Campus Bio-Medico University of Rome, via Alvaro del Portillo 21, 00128, Rome, Italy
| | | | | |
Collapse
|
22
|
Protective effects of cannabidiol on lesion-induced intervertebral disc degeneration. PLoS One 2014; 9:e113161. [PMID: 25517414 PMCID: PMC4269422 DOI: 10.1371/journal.pone.0113161] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/20/2014] [Indexed: 01/08/2023] Open
Abstract
Disc degeneration is a multifactorial process that involves hypoxia, inflammation, neoinnervation, accelerated catabolism, and reduction in water and glycosaminoglycan content. Cannabidiol is the main non-psychotropic component of the Cannabis sativa with protective and anti-inflammatory properties. However, possible therapeutic effects of cannabidiol on intervertebral disc degeneration have not been investigated yet. The present study investigated the effects of cannabidiol intradiscal injection in the coccygeal intervertebral disc degeneration induced by the needle puncture model using magnetic resonance imaging (MRI) and histological analyses. Disc injury was induced in the tail of male Wistar rats via a single needle puncture. The discs selected for injury were punctured percutaneously using a 21-gauge needle. MRI and histological evaluation were employed to assess the results. The effects of intradiscal injection of cannabidiol (30, 60 or 120 nmol) injected immediately after lesion were analyzed acutely (2 days) by MRI. The experimental group that received cannabidiol 120 nmol was resubmitted to MRI examination and then to histological analyses 15 days after lesion/cannabidiol injection. The needle puncture produced a significant disc injury detected both by MRI and histological analyses. Cannabidiol significantly attenuated the effects of disc injury induced by the needle puncture. Considering that cannabidiol presents an extremely safe profile and is currently being used clinically, these results suggest that this compound could be useful in the treatment of intervertebral disc degeneration.
Collapse
|
23
|
Janefjord E, Mååg JLV, Harvey BS, Smid SD. Cannabinoid effects on β amyloid fibril and aggregate formation, neuronal and microglial-activated neurotoxicity in vitro. Cell Mol Neurobiol 2014; 34:31-42. [PMID: 24030360 PMCID: PMC11488945 DOI: 10.1007/s10571-013-9984-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/02/2013] [Indexed: 12/21/2022]
Abstract
Cannabinoid (CB) ligands have demonstrated neuroprotective properties. In this study we compared the effects of a diverse set of CB ligands against β amyloid-mediated neuronal toxicity and activated microglial-conditioned media-based neurotoxicity in vitro, and compared this with a capacity to directly alter β amyloid (Aβ) fibril or aggregate formation. Neuroblastoma (SH-SY5Y) cells were exposed to Aβ1-42 directly or microglial (BV-2 cells) conditioned media activated with lipopolysaccharide (LPS) in the presence of the CB1 receptor-selective agonist ACEA, CB2 receptor-selective agonist JWH-015, phytocannabinoids Δ(9)-THC and cannabidiol (CBD), the endocannabinoids 2-arachidonoyl glycerol (2-AG) and anandamide or putative GPR18/GPR55 ligands O-1602 and abnormal-cannabidiol (Abn-CBD). TNF-α and nitrite production was measured in BV-2 cells to compare activation via LPS or albumin with Aβ1-42. Aβ1-42 evoked a concentration-dependent loss of cell viability in SH-SY5Y cells but negligible TNF-α and nitrite production in BV-2 cells compared to albumin or LPS. Both albumin and LPS-activated BV-2 conditioned media significantly reduced neuronal cell viability but were directly innocuous to SH-SY5Y cells. Of those CB ligands tested, only 2-AG and CBD were directly protective against Aβ-evoked SH-SY5Y cell viability, whereas JWH-015, THC, CBD, Abn-CBD and O-1602 all protected SH-SY5Y cells from BV-2 conditioned media activated via LPS. While CB ligands variably altered the morphology of Aβ fibrils and aggregates, there was no clear correlation between effects on Aβ morphology and neuroprotective actions. These findings indicate a neuroprotective action of CB ligands via actions at microglial and neuronal cells.
Collapse
Affiliation(s)
- Emelie Janefjord
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
| | - Jesper L. V. Mååg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Benjamin S. Harvey
- Discipline of Pharmacology, Faculty of Health Sciences, School of Medical Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Scott D. Smid
- Discipline of Pharmacology, Faculty of Health Sciences, School of Medical Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| |
Collapse
|
24
|
Lopez-Rodriguez AB, Siopi E, Finn DP, Marchand-Leroux C, Garcia-Segura LM, Jafarian-Tehrani M, Viveros MP. CB1 and CB2 Cannabinoid Receptor Antagonists Prevent Minocycline-Induced Neuroprotection Following Traumatic Brain Injury in Mice. Cereb Cortex 2013; 25:35-45. [DOI: 10.1093/cercor/bht202] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
25
|
Oumata N, Nguyen PH, Beringue V, Soubigou F, Pang Y, Desban N, Massacrier C, Morel Y, Paturel C, Contesse MA, Bouaziz S, Sanyal S, Galons H, Blondel M, Voisset C. The toll-like receptor agonist imiquimod is active against prions. PLoS One 2013; 8:e72112. [PMID: 23977222 PMCID: PMC3745460 DOI: 10.1371/journal.pone.0072112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/11/2013] [Indexed: 12/11/2022] Open
Abstract
Using a yeast-based assay, a previously unsuspected antiprion activity was found for imiquimod (IQ), a potent Toll-like receptor 7 (TLR7) agonist already used for clinical applications. The antiprion activity of IQ was first detected against yeast prions [PSI+] and [URE3], and then against mammalian prion both ex vivo in a cell-based assay and in vivo in a transgenic mouse model for prion diseases. In order to facilitate structure-activity relationship studies, we conducted a new synthetic pathway which provides a more efficient means of producing new IQ chemical derivatives, the activity of which was tested against both yeast and mammalian prions. The comparable antiprion activity of IQ and its chemical derivatives in the above life forms further emphasizes the conservation of prion controlling mechanisms throughout evolution. Interestingly, this study also demonstrated that the antiprion activity of IQ and IQ-derived compounds is independent from their ability to stimulate TLRs. Furthermore, we found that IQ and its active chemical derivatives inhibit the protein folding activity of the ribosome (PFAR) in vitro.
Collapse
Affiliation(s)
- Nassima Oumata
- Laboratoire de Chimie Organique 2, INSERM U1022, Université Paris Descartes, Paris, France
| | - Phu hai Nguyen
- Institut National de la Sante et de la recherche Medicale UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé ; Etablissement Français du Sang (EFS) Bretagne ; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Vincent Beringue
- Virologie Immunologie Moléculaires, UR892, Institut National de la Recherche Agronomique (INRA), Jouy-en-Josas, France
| | - Flavie Soubigou
- Institut National de la Sante et de la recherche Medicale UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé ; Etablissement Français du Sang (EFS) Bretagne ; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Yanhong Pang
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | - Nathalie Desban
- Protein Phosphorylation & Disease Laboratory, CNRS UPS2682, Roscoff, France
| | | | | | | | - Marie-Astrid Contesse
- Institut National de la Sante et de la recherche Medicale UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé ; Etablissement Français du Sang (EFS) Bretagne ; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Serge Bouaziz
- UMR 8015 CNRS, Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, Paris, France
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden
| | - Hervé Galons
- Laboratoire de Chimie Organique 2, INSERM U1022, Université Paris Descartes, Paris, France
| | - Marc Blondel
- Institut National de la Sante et de la recherche Medicale UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé ; Etablissement Français du Sang (EFS) Bretagne ; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
- * E-mail: (CV); (MB)
| | - Cécile Voisset
- Institut National de la Sante et de la recherche Medicale UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé ; Etablissement Français du Sang (EFS) Bretagne ; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
- * E-mail: (CV); (MB)
| |
Collapse
|
26
|
Falsig J, Sonati T, Herrmann US, Saban D, Li B, Arroyo K, Ballmer B, Liberski PP, Aguzzi A. Prion pathogenesis is faithfully reproduced in cerebellar organotypic slice cultures. PLoS Pathog 2012; 8:e1002985. [PMID: 23133383 PMCID: PMC3486912 DOI: 10.1371/journal.ppat.1002985] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/07/2012] [Indexed: 11/27/2022] Open
Abstract
Prions cause neurodegeneration in vivo, yet prion-infected cultured cells do not show cytotoxicity. This has hampered mechanistic studies of prion-induced neurodegeneration. Here we report that prion-infected cultured organotypic cerebellar slices (COCS) experienced progressive spongiform neurodegeneration closely reproducing prion disease, with three different prion strains giving rise to three distinct patterns of prion protein deposition. Neurodegeneration did not occur when PrP was genetically removed from neurons, and a comprehensive pharmacological screen indicated that neurodegeneration was abrogated by compounds known to antagonize prion replication. Prion infection of COCS and mice led to enhanced fodrin cleavage, suggesting the involvement of calpains or caspases in pathogenesis. Accordingly, neurotoxicity and fodrin cleavage were prevented by calpain inhibitors but not by caspase inhibitors, whereas prion replication proceeded unimpeded. Hence calpain inhibition can uncouple prion replication from its neurotoxic sequelae. These data validate COCS as a powerful model system that faithfully reproduces most morphological hallmarks of prion infections. The exquisite accessibility of COCS to pharmacological manipulations was instrumental in recognizing the role of calpains in neurotoxicity, and significantly extends the collection of tools necessary for rigorously dissecting prion pathogenesis.
Collapse
Affiliation(s)
- Jeppe Falsig
- Institute of Neuropathology, Zürich, Switzerland
| | | | | | - Dino Saban
- Institute of Neuropathology, Zürich, Switzerland
| | - Bei Li
- Institute of Neuropathology, Zürich, Switzerland
| | | | | | - Pawel P. Liberski
- Laboratory of Electron Microscopy and Neuropathology, Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
27
|
Iwamaru Y, Takenouchi T, Murayama Y, Okada H, Imamura M, Shimizu Y, Hashimoto M, Mohri S, Yokoyama T, Kitani H. Anti-prion activity of Brilliant Blue G. PLoS One 2012; 7:e37896. [PMID: 22693582 PMCID: PMC3365075 DOI: 10.1371/journal.pone.0037896] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/30/2012] [Indexed: 12/11/2022] Open
Abstract
Background Prion diseases are fatal neurodegenerative disorders with no effective therapy currently available. Accumulating evidence has implicated over-activation of P2X7 ionotropic purinergic receptor (P2X7R) in the progression of neuronal loss in several neurodegenerative diseases. This has led to the speculation that simultaneous blockade of this receptor and prion replication can be an effective therapeutic strategy for prion diseases. We have focused on Brilliant Blue G (BBG), a well-known P2X7R antagonist, possessing a chemical structure expected to confer anti-prion activity and examined its inhibitory effect on the accumulation of pathogenic isoforms of prion protein (PrPres) in a cellular and a mouse model of prion disease in order to determine its therapeutic potential. Principal Findings BBG prevented PrPres accumulation in infected MG20 microglial and N2a neural cells at 50% inhibitory concentrations of 14.6 and 3.2 µM, respectively. Administration of BBG in vivo also reduced PrPres accumulation in the brains of mice with prion disease. However, it did not appear to alleviate the disease progression compared to the vehicle-treated controls, implying a complex role of P2X7R on the neuronal degeneration in prion diseases. Significance These results provide novel insights into the pathophysiology of prion diseases and have important implications for the treatment.
Collapse
Affiliation(s)
- Yoshifumi Iwamaru
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Takato Takenouchi
- Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Yuichi Murayama
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Okada
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Morikazu Imamura
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Yoshihisa Shimizu
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Makoto Hashimoto
- Division of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Shirou Mohri
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Takashi Yokoyama
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Hiroshi Kitani
- Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
28
|
Memory-rescuing effects of cannabidiol in an animal model of cognitive impairment relevant to neurodegenerative disorders. Psychopharmacology (Berl) 2012; 219:1133-40. [PMID: 21870037 DOI: 10.1007/s00213-011-2449-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 08/07/2011] [Indexed: 12/22/2022]
Abstract
RATIONALE Cannabidiol, the main nonpsychotropic constituent of Cannabis sativa, possesses a large number of pharmacological effects including anticonvulsive, sedative, hypnotic, anxiolytic, antipsychotic, anti-inflammatory, and neuroprotective, as demonstrated in clinical and preclinical studies. Many neurodegenerative disorders involve cognitive deficits, and this has led to interest in whether cannabidiol could be useful in the treatment of memory impairment associated to these diseases. OBJECTIVES We used an animal model of cognitive impairment induced by iron overload in order to test the effects of cannabidiol in memory-impaired rats. METHODS Rats received vehicle or iron at postnatal days 12-14. At the age of 2 months, they received an acute intraperitoneal injection of vehicle or cannabidiol (5.0 or 10.0 mg/kg) immediately after the training session of the novel object recognition task. In order to investigate the effects of chronic cannabidiol, iron-treated rats received daily intraperitoneal injections of cannabidiol for 14 days. Twenty-four hours after the last injection, they were submitted to object recognition training. Retention tests were performed 24 h after training. RESULTS A single acute injection of cannabidiol at the highest dose was able to recover memory in iron-treated rats. Chronic cannabidiol improved recognition memory in iron-treated rats. Acute or chronic cannabidiol does not affect memory in control rats. CONCLUSIONS The present findings provide evidence suggesting the potential use of cannabidiol for the treatment of cognitive decline associated with neurodegenerative disorders. Further studies, including clinical trials, are warranted to determine the usefulness of cannabidiol in humans suffering from neurodegenerative disorders.
Collapse
|
29
|
Russo EB. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br J Pharmacol 2012; 163:1344-64. [PMID: 21749363 DOI: 10.1111/j.1476-5381.2011.01238.x] [Citation(s) in RCA: 916] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expressing high titres of each component for future study. This review will explore another echelon of phytotherapeutic agents, the cannabis terpenoids: limonene, myrcene, α-pinene, linalool, β-caryophyllene, caryophyllene oxide, nerolidol and phytol. Terpenoids share a precursor with phytocannabinoids, and are all flavour and fragrance components common to human diets that have been designated Generally Recognized as Safe by the US Food and Drug Administration and other regulatory agencies. Terpenoids are quite potent, and affect animal and even human behaviour when inhaled from ambient air at serum levels in the single digits ng·mL(-1) . They display unique therapeutic effects that may contribute meaningfully to the entourage effects of cannabis-based medicinal extracts. Particular focus will be placed on phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new therapeutic products is possible from this venerable plant. http://dx.doi.org/10.1111/bph.2011.163.issue-7.
Collapse
|
30
|
Smid SD, Maag JL, Musgrave IF. Dietary polyphenol-derived protection against neurotoxic β-amyloid protein: from molecular to clinical. Food Funct 2012; 3:1242-50. [DOI: 10.1039/c2fo30075c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
31
|
Réus GZ, Stringari RB, Ribeiro KF, Luft T, Abelaira HM, Fries GR, Aguiar BW, Kapczinski F, Hallak JE, Zuardi AW, Crippa JA, Quevedo J. Administration of cannabidiol and imipramine induces antidepressant-like effects in the forced swimming test and increases brain-derived neurotrophic factor levels in the rat amygdala. Acta Neuropsychiatr 2011; 23:241-8. [PMID: 25379896 DOI: 10.1111/j.1601-5215.2011.00579.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Réus GZ, Stringari RB, Ribeiro KF, Luft T, Abelaira HM, Fries GR, Aguiar BW, Kapczinski F, Hallak JE, Zuardi AW, Crippa JA, Quevedo J. Administration of cannabidiol and imipramine induces antidepressant-like effects in the forced swimming test and increases brain-derived neurotrophic factor levels in the rat amygdala.Objective:Cannabidiol is a chemical constituent fromCannabis sativaand it has multiple mechanisms of action, including antidepressant effects. The main objective of the present study was to evaluate behavioural and molecular effects induced by administration of cannabidiol and imipramine in rats.Methods:In the present study, rats were acutely or chronically treated for 14 days once a day with saline, cannabidiol (15, 30 and 60 mg/kg) or imipramine (30 mg/kg) and the animals behaviour was assessed in forced swimming and open-field tests. Afterwards, the prefrontal cortex, hippocampus and amygdala brain-derived neurotrophic factor (BDNF) levels were assessed by enzyme-linked immunosorbent sandwich assay.Results:We observed that both acute and chronic treatments with imipramine at the dose of 30 mg/kg and cannabidiol at the dose of 30 mg/kg reduced immobility time and increased swimming time; climbing time was increased only with imipramine at the dose of 30 mg/kg, without affecting locomotor activity. In addition, chronic treatment with cannabidiol at the dose of 15 mg/kg and imipramine at the dose of 30 mg/kg increased BDNF levels in the rat amygdala.Conclusion:In conclusion, our results indicate that cannabidiol has an antidepressant-like profile and could be a new pharmacological target for the treatment of major depression.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Roberto B Stringari
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Karine F Ribeiro
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Tatiana Luft
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Helena M Abelaira
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gabriel R Fries
- Laboratório de Psiquiatria Molecular and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Centro de Pesquisas, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Bianca W Aguiar
- Laboratório de Psiquiatria Molecular and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Centro de Pesquisas, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Flávio Kapczinski
- Laboratório de Psiquiatria Molecular and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Centro de Pesquisas, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jaime E Hallak
- Departamento de Neurociências e Ciências do Comportamento and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Antônio W Zuardi
- Departamento de Neurociências e Ciências do Comportamento and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - José A Crippa
- Departamento de Neurociências e Ciências do Comportamento and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - João Quevedo
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
32
|
Russo EB. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br J Pharmacol 2011. [PMID: 21749363 DOI: 10.1111/bph.2011.163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expressing high titres of each component for future study. This review will explore another echelon of phytotherapeutic agents, the cannabis terpenoids: limonene, myrcene, α-pinene, linalool, β-caryophyllene, caryophyllene oxide, nerolidol and phytol. Terpenoids share a precursor with phytocannabinoids, and are all flavour and fragrance components common to human diets that have been designated Generally Recognized as Safe by the US Food and Drug Administration and other regulatory agencies. Terpenoids are quite potent, and affect animal and even human behaviour when inhaled from ambient air at serum levels in the single digits ng·mL(-1) . They display unique therapeutic effects that may contribute meaningfully to the entourage effects of cannabis-based medicinal extracts. Particular focus will be placed on phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new therapeutic products is possible from this venerable plant. http://dx.doi.org/10.1111/bph.2011.163.issue-7.
Collapse
|
33
|
Maccarrone M, Bernardi G, Agrò AF, Centonze D. Cannabinoid receptor signalling in neurodegenerative diseases: a potential role for membrane fluidity disturbance. Br J Pharmacol 2011; 163:1379-90. [PMID: 21323908 PMCID: PMC3165948 DOI: 10.1111/j.1476-5381.2011.01277.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/13/2011] [Accepted: 01/24/2011] [Indexed: 11/30/2022] Open
Abstract
Type-1 cannabinoid receptor (CB(1)) is the most abundant G-protein-coupled receptor (GPCR) in the brain. CB(1) and its endogenous agonists, the so-called 'endocannabinoids (eCBs)', belong to an ancient neurosignalling system that plays important functions in neurodegenerative and neuroinflammatory disorders like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis. For this reason, research on the therapeutic potential of drugs modulating the endogenous tone of eCBs is very intense. Several GPCRs reside within subdomains of the plasma membranes that contain high concentrations of cholesterol: the lipid rafts. Here, the hypothesis that changes in membrane fluidity alter function of the endocannabinoid system, as well as progression of particular neurodegenerative diseases, is described. To this end, the impact of membrane cholesterol on membrane properties and hence on neurodegenerative diseases, as well as on CB(1) signalling in vitro and on CB(1) -dependent neurotransmission within the striatum, is discussed. Overall, present evidence points to the membrane environment as a critical regulator of signal transduction triggered by CB(1) , and calls for further studies aimed at better clarifying the contribution of membrane lipids to eCBs signalling. The results of these investigations might be exploited also for the development of novel therapeutics able to combat disorders associated with abnormal activity of CB(1).
Collapse
Affiliation(s)
- M Maccarrone
- Department of Biomedical Sciences, University of Teramo, Teramo 64100, Italy.
| | | | | | | |
Collapse
|
34
|
Russo EB. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br J Pharmacol 2011. [PMID: 21749363 DOI: 10.1111/j.1476-5381.2011.01238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expressing high titres of each component for future study. This review will explore another echelon of phytotherapeutic agents, the cannabis terpenoids: limonene, myrcene, α-pinene, linalool, β-caryophyllene, caryophyllene oxide, nerolidol and phytol. Terpenoids share a precursor with phytocannabinoids, and are all flavour and fragrance components common to human diets that have been designated Generally Recognized as Safe by the US Food and Drug Administration and other regulatory agencies. Terpenoids are quite potent, and affect animal and even human behaviour when inhaled from ambient air at serum levels in the single digits ng·mL(-1) . They display unique therapeutic effects that may contribute meaningfully to the entourage effects of cannabis-based medicinal extracts. Particular focus will be placed on phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new therapeutic products is possible from this venerable plant. http://dx.doi.org/10.1111/bph.2011.163.issue-7.
Collapse
|
35
|
Kozela E, Lev N, Kaushansky N, Eilam R, Rimmerman N, Levy R, Ben-Nun A, Juknat A, Vogel Z. Cannabidiol inhibits pathogenic T cells, decreases spinal microglial activation and ameliorates multiple sclerosis-like disease in C57BL/6 mice. Br J Pharmacol 2011; 163:1507-19. [PMID: 21449980 PMCID: PMC3165959 DOI: 10.1111/j.1476-5381.2011.01379.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabis extracts and several cannabinoids have been shown to exert broad anti-inflammatory activities in experimental models of inflammatory CNS degenerative diseases. Clinical use of many cannabinoids is limited by their psychotropic effects. However, phytocannabinoids like cannabidiol (CBD), devoid of psychoactive activity, are, potentially, safe and effective alternatives for alleviating neuroinflammation and neurodegeneration. EXPERIMENTAL APPROACH We used experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein (MOG) in C57BL/6 mice, as a model of multiple sclerosis. Using immunocytochemistry and cell proliferation assays we evaluated the effects of CBD on microglial activation in MOG-immunized animals and on MOG-specific T-cell proliferation. KEY RESULTS Treatment with CBD during disease onset ameliorated the severity of the clinical signs of EAE. This effect of CBD was accompanied by diminished axonal damage and inflammation as well as microglial activation and T-cell recruitment in the spinal cord of MOG-injected mice. Moreover, CBD inhibited MOG-induced T-cell proliferation in vitro at both low and high concentrations of the myelin antigen. This effect was not mediated via the known cannabinoid CB(1) and CB(2) receptors. CONCLUSIONS AND IMPLICATIONS CBD, a non-psychoactive cannabinoid, ameliorates clinical signs of EAE in mice, immunized against MOG. Suppression of microglial activity and T-cell proliferation by CBD appeared to contribute to these beneficial effects.
Collapse
Affiliation(s)
- Ewa Kozela
- The Dr. Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Physiology and Pharmacology Department, Sackler School of Medicine, Tel Aviv UniversityTel Aviv, Israel
| | - Nirit Lev
- Neurology Department, Rabin Medical Center, Sackler School of Medicine, Tel Aviv UniversityTel Aviv, Israel
| | | | - Raya Eilam
- Histology Department, Weizmann Institute of ScienceRehovot, Israel
| | - Neta Rimmerman
- Neurobiology Department, Weizmann Institute of ScienceRehovot, Israel
| | - Rivka Levy
- Neurobiology Department, Weizmann Institute of ScienceRehovot, Israel
| | - Avraham Ben-Nun
- Immunology Department, Weizmann Institute of ScienceRehovot, Israel
| | - Ana Juknat
- The Dr. Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Physiology and Pharmacology Department, Sackler School of Medicine, Tel Aviv UniversityTel Aviv, Israel
| | - Zvi Vogel
- The Dr. Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Physiology and Pharmacology Department, Sackler School of Medicine, Tel Aviv UniversityTel Aviv, Israel
- Neurobiology Department, Weizmann Institute of ScienceRehovot, Israel
| |
Collapse
|
36
|
Petrosino S, Ménard B, Zsürger N, Di Marzo V, Chabry J. Alteration of the endocannabinoid system in mouse brain during prion disease. Neuroscience 2011; 177:292-7. [DOI: 10.1016/j.neuroscience.2010.12.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 12/22/2010] [Accepted: 12/24/2010] [Indexed: 01/04/2023]
|
37
|
Joyner PM, Cichewicz RH. Bringing natural products into the fold – exploring the therapeutic lead potential of secondary metabolites for the treatment of protein-misfolding-related neurodegenerative diseases. Nat Prod Rep 2011; 28:26-47. [DOI: 10.1039/c0np00017e] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Stella N. Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia 2010; 58:1017-30. [PMID: 20468046 DOI: 10.1002/glia.20983] [Citation(s) in RCA: 384] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
CB1 and CB2 receptors are activated by a plethora of cannabinoid compounds, be they endogenously-produced, plant-derived or synthetic. These receptors are expressed by microglia, astrocytes and astrocytomas, and their activation regulates these cells' differentiation, functions and viability. Recent studies show that glial cells also express cannabinoid-like receptors, and that their activation regulates different cell functions, but also control cell viability. This review summarizes this evidence, and discusses how selective compounds targeting cannabinoid-like receptors constitute promising therapeutics to manage neuroinflammation and eradicate malignant astrocytomas. Importantly, the selective targeting of cannabinoid-like receptors should provide therapeutic relieve without inducing the typical psychotropic effects and possible addictive properties associated with the use of Delta9-tetrahydrocannabinol, the main psychotropic ingredient produced by the plant Cannabis sativa.
Collapse
Affiliation(s)
- Nephi Stella
- Department of Pharmacology, Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195-7280, USA.
| |
Collapse
|
39
|
Singh N, Singh A, Das D, Mohan ML. Redox control of prion and disease pathogenesis. Antioxid Redox Signal 2010; 12:1271-94. [PMID: 19803746 PMCID: PMC2864664 DOI: 10.1089/ars.2009.2628] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 09/22/2009] [Accepted: 10/03/2009] [Indexed: 11/12/2022]
Abstract
Imbalance of brain metal homeostasis and associated oxidative stress by redox-active metals like iron and copper is an important trigger of neurotoxicity in several neurodegenerative conditions, including prion disorders. Whereas some reports attribute this to end-stage disease, others provide evidence for specific mechanisms leading to brain metal dyshomeostasis during disease progression. In prion disorders, imbalance of brain-iron homeostasis is observed before end-stage disease and worsens with disease progression, implicating iron-induced oxidative stress in disease pathogenesis. This is an unexpected observation, because the underlying cause of brain pathology in all prion disorders is PrP-scrapie (PrP(Sc)), a beta-sheet-rich conformation of a normal glycoprotein, the prion protein (PrP(C)). Whether brain-iron dyshomeostasis occurs because of gain of toxic function by PrP(Sc) or loss of normal function of PrP(C) remains unclear. In this review, we summarize available evidence suggesting the involvement of oxidative stress in prion-disease pathogenesis. Subsequently, we review the biology of PrP(C) to highlight its possible role in maintaining brain metal homeostasis during health and the contribution of PrP(Sc) in inducing brain metal imbalance with disease progression. Finally, we discuss possible therapeutic avenues directed at restoring brain metal homeostasis and alleviating metal-induced oxidative stress in prion disorders.
Collapse
Affiliation(s)
- Neena Singh
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The transmissible spongiform encephalopathies are rapidly progressive and invariably fatal neurodegenerative diseases for which there are no proven efficacious treatments. Many approaches have been undertaken to find ways to prevent, halt, or reverse these prion diseases, with limited success to date. However, as both our understanding of pathogenesis and our ability to detect early disease increases, so do our potential therapeutic targets and our chances of finding effective drugs. There is increasing pressure to find effective decontaminants for blood supplies, as variant Creutzfeldt Jakob Disease (vCJD) has been shown to be transmissible by blood, and to find non-toxic preventative therapies, with ongoing cases of Bovine Spongiform Encephalopathy (BSE) and the spread of Chronic Wasting Disease (CWD). Within the realm of chemotherapeutic approaches, much research has focussed on blocking the conversion of the normal form of prion protein (PrP(c)) to its abnormal counterpart (PrP(res)). Structurally, these chemotherapeutic agents are often polyanionic or polycyclic and may directly bind PrP(c) or PrP(res), or act by redistributing, sequestering, or down-regulating PrP(c), thus preventing its conversion. There are also some polycationic compounds which proport to enhance the clearance of PrP(res). Other targets include accessory molecules such as the laminin receptor precursor which influences conversion, or cell signalling molecules which may be required for pathogenesis. Of recent interest are the possible neuroprotective effects of some drugs. Importantly, there is evidence that combining compounds may provide synergistic responses. This review provides an update on current testing methods, therapeutic targets, and promising candidates for chemical-based therapy.
Collapse
Affiliation(s)
- Valerie L Sim
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | | |
Collapse
|
41
|
Romero-Sandoval EA, Horvath R, Landry RP, DeLeo JA. Cannabinoid receptor type 2 activation induces a microglial anti-inflammatory phenotype and reduces migration via MKP induction and ERK dephosphorylation. Mol Pain 2009; 5:25. [PMID: 19476641 PMCID: PMC2704199 DOI: 10.1186/1744-8069-5-25] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 05/28/2009] [Indexed: 12/30/2022] Open
Abstract
Background Cannabinoid receptor type 2 (CBR2) inhibits microglial reactivity through a molecular mechanism yet to be elucidated. We hypothesized that CBR2 activation induces an anti-inflammatory phenotype in microglia by inhibiting extracellular signal-regulated kinase (ERK) pathway, via mitogen-activated protein kinase-phosphatase (MKP) induction. MKPs regulate mitogen activated protein kinases, but their role in the modulation of microglial phenotype is not fully understood. Results JWH015 (a CBR2 agonist) increased MKP-1 and MKP-3 expression, which in turn reduced p-ERK1/2 in LPS-stimulated primary microglia. These effects resulted in a significant reduction of tumor necrosis factor-α (TNF) expression and microglial migration. We confirmed the causative link of these findings by using MKP inhibitors. We found that the selective inhibition of MKP-1 by Ro-31-8220 and PSI2106, did not affect p-ERK expression in LPS+JWH015-treated microglia. However, the inhibition of both MKP-1 and MKP-3 by triptolide induced an increase in p-ERK expression and in microglial migration using LPS+JWH015-treated microglia. Conclusion Our results uncover a cellular microglial pathway triggered by CBR2 activation. These data suggest that the reduction of pro-inflammatory factors and microglial migration via MKP-3 induction is part of the mechanism of action of CBR2 agonists. These findings may have clinical implications for further drug development.
Collapse
Affiliation(s)
- Edgar Alfonso Romero-Sandoval
- Department of Anesthesiology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Dartmouth College, Lebanon, New Hampshire 03756-1000, USA.
| | | | | | | |
Collapse
|
42
|
Petit-Paitel A, Brau F, Cazareth J, Chabry J. Involvment of cytosolic and mitochondrial GSK-3beta in mitochondrial dysfunction and neuronal cell death of MPTP/MPP-treated neurons. PLoS One 2009; 4:e5491. [PMID: 19430525 PMCID: PMC2675062 DOI: 10.1371/journal.pone.0005491] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 04/14/2009] [Indexed: 11/18/2022] Open
Abstract
Aberrant mitochondrial function appears to play a central role in dopaminergic neuronal loss in Parkinson's disease (PD). 1-methyl-4-phenylpyridinium iodide (MPP+), the active metabolite of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is a selective inhibitor of mitochondrial complex I and is widely used in rodent and cell models to elicit neurochemical alterations associated with PD. Recent findings suggest that Glycogen Synthase Kinase-3β (GSK-3β), a critical activator of neuronal apoptosis, is involved in the dopaminergic cell death. In this study, the role of GSK-3β in modulating MPP+-induced mitochondrial dysfunction and neuronal death was examined in vivo, and in two neuronal cell models namely primary cultured and immortalized neurons. In both cell models, MPTP/MPP+ treatment caused cell death associated with time- and concentration-dependent activation of GSK-3β, evidenced by the increased level of the active form of the kinase, i.e. GSK-3β phosphorylated at tyrosine 216 residue. Using immunocytochemistry and subcellular fractionation techniques, we showed that GSK-3β partially localized within mitochondria in both neuronal cell models. Moreover, MPP+ treatment induced a significant decrease of the specific phospho-Tyr216-GSK-3β labeling in mitochondria concomitantly with an increase into the cytosol. Using two distinct fluorescent probes, we showed that MPP+ induced cell death through the depolarization of mitochondrial membrane potential. Inhibition of GSK-3β activity using well-characterized inhibitors, LiCl and kenpaullone, and RNA interference, prevented MPP+-induced cell death by blocking mitochondrial membrane potential changes and subsequent caspase-9 and -3 activation. These results indicate that GSK-3β is a critical mediator of MPTP/MPP+-induced neurotoxicity through its ability to regulate mitochondrial functions. Inhibition of GSK-3β activity might provide protection against mitochondrial stress-induced cell death.
Collapse
Affiliation(s)
- Agnès Petit-Paitel
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6097, Valbonne, France.
| | | | | | | |
Collapse
|
43
|
Iuvone T, Esposito G, De Filippis D, Scuderi C, Steardo L. Cannabidiol: a promising drug for neurodegenerative disorders? CNS Neurosci Ther 2009; 15:65-75. [PMID: 19228180 DOI: 10.1111/j.1755-5949.2008.00065.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Neurodegenerative diseases represent, nowadays, one of the main causes of death in the industrialized country. They are characterized by a loss of neurons in particular regions of the nervous system. It is believed that this nerve cell loss underlies the subsequent decline in cognitive and motor function that patients experience in these diseases. A range of mutant genes and environmental toxins have been implicated in the cause of neurodegenerative disorders but the mechanism remains largely unknown. At present, inflammation, a common denominator among the diverse list of neurodegenerative diseases, has been implicated as a critical mechanism that is responsible for the progressive nature of neurodegeneration. Since, at present, there are few therapies for the wide range of neurodegenerative diseases, scientists are still in search of new therapeutic approaches to the problem. An early contribution of neuroprotective and antiinflammatory strategies for these disorders seems particularly desirable because isolated treatments cannot be effective. In this contest, marijuana derivatives have attracted special interest, although these compounds have always raised several practical and ethical problems for their potential abuse. Nevertheless, among Cannabis compounds, cannabidiol (CBD), which lacks any unwanted psychotropic effect, may represent a very promising agent with the highest prospect for therapeutic use.
Collapse
Affiliation(s)
- Teresa Iuvone
- Department of Experimental Pharmacology, Faculty of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples, Italy.
| | | | | | | | | |
Collapse
|
44
|
Zuardi AW. Cannabidiol: from an inactive cannabinoid to a drug with wide spectrum of action. BRAZILIAN JOURNAL OF PSYCHIATRY 2008; 30:271-80. [DOI: 10.1590/s1516-44462008000300015] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 04/17/2008] [Indexed: 01/14/2023]
Abstract
OBJECTIVE: The aim of this review is to describe the historical development of research on cannabidiol. METHOD: This review was carried out on reports drawn from Medline, Web of Science and SciELO. DISCUSSION: After the elucidation of the chemical structure of cannabidiol in 1963, the initial studies showed that cannabidiol was unable to mimic the effects of Cannabis. In the 1970's the number of publications on cannabidiol reached a first peak, having the research focused mainly on the interaction with delta9-THC and its antiepileptic and sedative effects. The following two decades showed lower degree of interest, and the potential therapeutic properties of cannabidiol investigated were mainly the anxiolytic, antipsychotic and on motor diseases effects. The last five years have shown a remarkable increase in publications on cannabidiol mainly stimulated by the discovery of its anti-inflammatory, anti-oxidative and neuroprotective effects. These studies have suggested a wide range of possible therapeutic effects of cannabidiol on several conditions, including Parkinson's disease, Alzheimer's disease, cerebral ischemia, diabetes, rheumatoid arthritis, other inflammatory diseases, nausea and cancer. CONCLUSION: In the last 45 years it has been possible to demonstrate that CBD has a wide range of pharmacological effects, many of which being of great therapeutic interest, but still waiting to be confirmed by clinical trials.
Collapse
|
45
|
Stella N. Endocannabinoid signaling in microglial cells. Neuropharmacology 2008; 56 Suppl 1:244-53. [PMID: 18722389 DOI: 10.1016/j.neuropharm.2008.07.037] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/21/2008] [Accepted: 07/28/2008] [Indexed: 11/26/2022]
Abstract
The endocannabinoid signaling system (eCBSS) is composed of cannabinoid (CB) receptors, their endogenous ligands (the endocannabinoids, eCB) and the enzymes that produce and inactivate these ligands. Neurons use this signaling system to communicate with each other and Delta9-tetrahydrocannabinol (THC), the main psychotropic ingredient of Cannabis sativa, induces profound behavioral effects by impinging on this communication. Evidence now shows that microglia, the macrophages of the brain, also express a functional eCBSS and that activation of CB receptors expressed by activated microglia controls their immune-related functions. This review summarizes this evidence, discusses how microglia might use the eCBSS to communicate with each other and neighboring cells, and argues that compounds selectively targeting the eCBSS expressed by microglia constitute valuable therapeutics to manage acute and chronic neuroinflammation, without inducing the psychotropic effects and underlying addictive properties commonly associated with THC.
Collapse
Affiliation(s)
- Nephi Stella
- Department of Pharmacology, Psychiatry and Behavioral Sciences, 1959 NE Pacific Street, University of Washington, Seattle, WA 98195-7280, USA.
| |
Collapse
|
46
|
Temporary depletion of CD11c+ dendritic cells delays lymphoinvasion after intraperitonal scrapie infection. J Virol 2008; 82:8933-6. [PMID: 18579603 DOI: 10.1128/jvi.02440-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The involvement of immune cells in prion capture and transport to lymphoid tissues still remains unclear. To investigate the role of dendritic cells (DC), we used DTR(+/+) mice, a transgenic model designed to trigger short-term ablation of DC. Transient depletion of DC around the time of intraperitoneal infection delayed prion replication in the spleen, as followed by PrPsc amount, a specific hallmark of prion diseases. Consequently, neuroinvasion and incubation time of prion disease were delayed. In contrast, no differences were observed after oral infection. These results suggest that DC act as vectors for prions from the peripheral entry site to the spleen.
Collapse
|
47
|
Cannabidiol, extracted from Cannabis sativa, selectively inhibits inflammatory hypermotility in mice. Br J Pharmacol 2008; 154:1001-8. [PMID: 18469842 DOI: 10.1038/bjp.2008.177] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabidiol is a Cannabis-derived non-psychotropic compound that exerts a plethora of pharmacological actions, including anti-inflammatory, neuroprotective and antitumour effects, with potential therapeutic interest. However, the actions of cannabidiol in the digestive tract are largely unexplored. In the present study, we investigated the effect of cannabidiol on intestinal motility in normal (control) mice and in mice with intestinal inflammation. EXPERIMENTAL APPROACH Motility in vivo was measured by evaluating the distribution of an orally administered fluorescent marker along the small intestine; intestinal inflammation was induced by the irritant croton oil; contractility in vitro was evaluated by stimulating the isolated ileum, in an organ bath, with ACh. KEY RESULTS In vivo, cannabidiol did not affect motility in control mice, but normalized croton oil-induced hypermotility. The inhibitory effect of cannabidiol was counteracted by the cannabinoid CB1 receptor antagonist rimonabant, but not by the cannabinoid CB2 receptor antagonist SR144528 (N-[-1S-endo-1,3,3-trimethyl bicyclo [2.2.1] heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide), by the opioid receptor antagonist naloxone or by the alpha2-adrenergic antagonist yohimbine. Cannabidiol did not reduce motility in animals treated with the fatty acid amide hydrolase (FAAH) inhibitor N-arachidonoyl-5-hydroxytryptamine, whereas loperamide was still effective. In vitro, cannabidiol inhibited ACh-induced contractions in the isolated ileum from both control and croton oil-treated mice. CONCLUSIONS AND IMPLICATIONS Cannabidiol selectively reduces croton oil-induced hypermotility in mice in vivo and this effect involves cannabinoid CB1 receptors and FAAH. In view of its low toxicity in humans, cannabidiol may represent a good candidate to normalize motility in patients with inflammatory bowel disease.
Collapse
|
48
|
Dicou E. Cannabidiol: A prion therapy for mice? J Neurosci Res 2008; 86:1417-8. [DOI: 10.1002/jnr.21694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Tribouillard-Tanvier D, Béringue V, Desban N, Gug F, Bach S, Voisset C, Galons H, Laude H, Vilette D, Blondel M. Antihypertensive drug guanabenz is active in vivo against both yeast and mammalian prions. PLoS One 2008; 3:e1981. [PMID: 18431471 PMCID: PMC2291559 DOI: 10.1371/journal.pone.0001981] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 03/10/2008] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Prion-based diseases are incurable transmissible neurodegenerative disorders affecting animals and humans. METHODOLOGY/PRINCIPAL FINDINGS Here we report the discovery of the in vivo antiprion activity of Guanabenz (GA), an agonist of alpha2-adrenergic receptors routinely used in human medicine as an antihypertensive drug. We isolated GA in a screen for drugs active in vivo against two different yeast prions using a previously described yeast-based two steps assay. GA was then shown to promote ovine PrP(Sc) clearance in a cell-based assay. These effects are very specific as evidenced by the lack of activity of some GA analogues that we generated. GA antiprion activity does not involve its agonist activity on alpha2-adrenergic receptors as other chemically close anti-hypertensive agents possessing related mechanism of action were found inactive against prions. Finally, GA showed activity in a transgenic mouse-based in vivo assay for ovine prion propagation, prolonging slightly but significantly the survival of treated animals. CONCLUSION/SIGNIFICANCE GA thus adds to the short list of compounds active in vivo in animal models for the treatment of prion-based diseases. Because it has been administrated for many years to treat hypertension on a daily basis, without major side-effects, our results suggest that it could be evaluated in human as a potential treatment for prion-based diseases.
Collapse
Affiliation(s)
- Déborah Tribouillard-Tanvier
- INSERM U613, Brest, France
- Univ Brest, Faculté de Médecine et des Sciences de la Santé, UMR-S613, Brest, France
- Etablissement Français du Sang (EFS) Bretagne, Brest, France
- CHU Brest, Hop Morvan, Laboratoire de Génétique Moléculaire, Brest, France
- CNRS UPS2682, Station Biologique, Protein Phosphorylation and Disease Laboratory, Place Georges Teissier, Roscoff, France
| | - Vincent Béringue
- Institut National de la Recherche Agronomique (INRA), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Nathalie Desban
- CNRS UPS2682, Station Biologique, Protein Phosphorylation and Disease Laboratory, Place Georges Teissier, Roscoff, France
| | - Fabienne Gug
- INSERM U648, Laboratoire de Chimie Organique 2, Université Paris Descartes, Paris, France
| | - Stéphane Bach
- CNRS UPS2682, Station Biologique, Protein Phosphorylation and Disease Laboratory, Place Georges Teissier, Roscoff, France
| | - Cécile Voisset
- INSERM U613, Brest, France
- Univ Brest, Faculté de Médecine et des Sciences de la Santé, UMR-S613, Brest, France
- Etablissement Français du Sang (EFS) Bretagne, Brest, France
- CHU Brest, Hop Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Hervé Galons
- INSERM U648, Laboratoire de Chimie Organique 2, Université Paris Descartes, Paris, France
| | - Hubert Laude
- Institut National de la Recherche Agronomique (INRA), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Didier Vilette
- Institut National de la Recherche Agronomique (INRA), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Marc Blondel
- INSERM U613, Brest, France
- Univ Brest, Faculté de Médecine et des Sciences de la Santé, UMR-S613, Brest, France
- Etablissement Français du Sang (EFS) Bretagne, Brest, France
- CHU Brest, Hop Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| |
Collapse
|