1
|
Henriques C, Lopes MM, Silva AC, Lobo DD, Badin RA, Hantraye P, Pereira de Almeida L, Nobre RJ. Viral-based animal models in polyglutamine disorders. Brain 2024; 147:1166-1189. [PMID: 38284949 DOI: 10.1093/brain/awae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/26/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024] Open
Abstract
Polyglutamine disorders are a complex group of incurable neurodegenerative disorders caused by an abnormal expansion in the trinucleotide cytosine-adenine-guanine tract of the affected gene. To better understand these disorders, our dependence on animal models persists, primarily relying on transgenic models. In an effort to complement and deepen our knowledge, researchers have also developed animal models of polyglutamine disorders employing viral vectors. Viral vectors have been extensively used to deliver genes to the brain, not only for therapeutic purposes but also for the development of animal models, given their remarkable flexibility. In a time- and cost-effective manner, it is possible to use different transgenes, at varying doses, in diverse targeted tissues, at different ages, and in different species, to recreate polyglutamine pathology. This paper aims to showcase the utility of viral vectors in disease modelling, share essential considerations for developing animal models with viral vectors, and provide a comprehensive review of existing viral-based animal models for polyglutamine disorders.
Collapse
Affiliation(s)
- Carina Henriques
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel M Lopes
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana C Silva
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Diana D Lobo
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Romina Aron Badin
- CEA, DRF, Institute of Biology François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, Université Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), 92265 Fontenay-aux-Roses, France
| | - Philippe Hantraye
- CEA, DRF, Institute of Biology François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, Université Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), 92265 Fontenay-aux-Roses, France
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rui Jorge Nobre
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
2
|
Ikenoshita S, Matsuo K, Yabuki Y, Kawakubo K, Asamitsu S, Hori K, Usuki S, Hirose Y, Bando T, Araki K, Ueda M, Sugiyama H, Shioda N. A cyclic pyrrole-imidazole polyamide reduces pathogenic RNA in CAG/CTG triplet repeat neurological disease models. J Clin Invest 2023; 133:e164792. [PMID: 37707954 PMCID: PMC10645379 DOI: 10.1172/jci164792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Expansion of CAG and CTG (CWG) triplet repeats causes several inherited neurological diseases. The CWG repeat diseases are thought to involve complex pathogenic mechanisms through expanded CWG repeat-derived RNAs in a noncoding region and polypeptides in a coding region, respectively. However, an effective therapeutic approach has not been established for the CWG repeat diseases. Here, we show that a CWG repeat DNA-targeting compound, cyclic pyrrole-imidazole polyamide (CWG-cPIP), suppressed the pathogenesis of coding and noncoding CWG repeat diseases. CWG-cPIP bound to the hairpin form of mismatched CWG DNA, interfering with transcription elongation by RNA polymerase through a preferential activity toward repeat-expanded DNA. We found that CWG-cPIP selectively inhibited pathogenic mRNA transcripts from expanded CWG repeats, reducing CUG RNA foci and polyglutamine accumulation in cells from patients with myotonic dystrophy type 1 (DM1) and Huntington's disease (HD). Treatment with CWG-cPIP ameliorated behavioral deficits in adeno-associated virus-mediated CWG repeat-expressing mice and in a genetic mouse model of HD, without cytotoxicity or off-target effects. Together, we present a candidate compound that targets expanded CWG repeat DNA independently of its genomic location and reduces both pathogenic RNA and protein levels. CWG-cPIP may be used for the treatment of CWG repeat diseases and improvement of clinical outcomes.
Collapse
Affiliation(s)
- Susumu Ikenoshita
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG)
- Department of Neurology, Graduate School of Medical Sciences
| | - Kazuya Matsuo
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG)
| | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG)
- Graduate School of Pharmaceutical Sciences, and
| | - Kosuke Kawakubo
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG)
- Graduate School of Pharmaceutical Sciences, and
| | - Sefan Asamitsu
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG)
| | - Karin Hori
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG)
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, Japan
| | - Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis and
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Kyoto, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG)
- Graduate School of Pharmaceutical Sciences, and
| |
Collapse
|
3
|
Abulimiti A, Lai MSL, Chang RCC. Applications of adeno-associated virus vector-mediated gene delivery for neurodegenerative diseases and psychiatric diseases: Progress, advances, and challenges. Mech Ageing Dev 2021; 199:111549. [PMID: 34352323 DOI: 10.1016/j.mad.2021.111549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 12/19/2022]
Abstract
Neurodegeneration is the most common disease in the elderly population due to its slowly progressive nature of neuronal deterioration, eventually leading to executive dysfunction. The pathological markers of neurological disorders are relatively well-established, however, detailed molecular mechanisms of progression and therapeutic targets are needed to develop novel treatments in human patients. Treating known therapeutic targets of neurological diseases has been aided by recent advancements in adeno-associated virus (AAV) technology. AAVs are known for their low-immunogenicity, blood-brain barrier (BBB) penetrating ability, selective neuronal tropism, stable transgene expression, and pleiotropy. In addition, the usage of AAVs has enormous potential to be optimized. Therefore, AAV can be a powerful tool used to uncover the underlying pathophysiology of neurological disorders and to increase the success in human gene therapy. This review summarizes different optimization approaches of AAV vectors with their current applications in disease modeling, neural tracing and gene therapy, hence exploring progressive mechanisms of neurodegenerative diseases as well as effective therapy. Lastly, this review discusses the limitations and future perspectives of the AAV-mediated transgene delivery system.
Collapse
Affiliation(s)
- Amina Abulimiti
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Michael Siu-Lun Lai
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
4
|
Brás IC, König A, Outeiro TF. Glycation in Huntington's Disease: A Possible Modifier and Target for Intervention. J Huntingtons Dis 2020; 8:245-256. [PMID: 31322580 PMCID: PMC6839463 DOI: 10.3233/jhd-190366] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glycation is the non-enzymatic reaction between reactive dicarbonyls and amino groups, and gives rise to a variety of different reaction products known as advanced glycation end products (AGEs). Accumulation of AGEs on proteins is inevitable, and is associated with the aging process. Importantly, glycation is highly relevant in diabetic patients that experience periods of hyperglycemia. AGEs also play an important role in neurodegenerative diseases including Alzheimer’s (AD) and Parkinson’s disease (PD). Huntington’s disease (HD) is a hereditary neurodegenerative disease caused by an expansion of a CAG repeat in the huntingtin gene. The resulting expanded polyglutamine stretch in the huntingtin (HTT) protein induces its misfolding and aggregation, leading to neuronal dysfunction and death. HD patients exhibit chorea and psychiatric disturbances, along with abnormalities in glucose and energy homeostasis. Interestingly, an increased prevalence of diabetes mellitus has been reported in HD and in other CAG triplet repeat disorders. However, the mechanisms underlying the connection between glycation and HD progression remain unclear. In this review, we explore the possible connection between glycation and proteostasis imbalances in HD, and posit that it may contribute to disease progression, possibly by accelerating protein aggregation and deposition. Finally, we review therapeutic interventions that might be able to alleviate the negative impact of glycation in HD.
Collapse
Affiliation(s)
- Inês Caldeira Brás
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
5
|
Maxan A, Sciacca G, Alpaugh M, Tao Z, Breger L, Dehay B, Ling Z, Chuan Q, Cisbani G, Masnata M, Salem S, Lacroix S, Oueslati A, Bezard E, Cicchetti F. Use of adeno-associated virus-mediated delivery of mutant huntingtin to study the spreading capacity of the protein in mice and non-human primates. Neurobiol Dis 2020; 141:104951. [PMID: 32439599 DOI: 10.1016/j.nbd.2020.104951] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/20/2020] [Accepted: 05/16/2020] [Indexed: 01/27/2023] Open
Abstract
In order to model various aspects of Huntington's disease (HD) pathology, in particular protein spread, we administered adeno-associated virus (AAV) expressing green fluorescent protein (GFP) or GFP coupled to HTT-Exon1 (19Q or 103Q) to the central nervous system of adult wild-type (WT) mice and non-human primates. All animals underwent behavioral testing and post-mortem analyses to determine the long-term consequences of AAV injection. Both mice and non-human primates demonstrated behavioral changes at 2-3 weeks post-surgery. In mice, these changes were absent after 3 months while in non-human primates, they persisted in the majority of tested animals. Post-mortem analysis revealed that spreading of the aggregates was limited, although the virus did spread between synaptically-connected brain regions. Despite circumscribed spreading, the presence of mHTT generated changes in endogenous huntingtin (HTT) levels in both models. Together, these results suggest that viral expression of mHTTExon1 can induce spreading and seeding of HTT in both mice and non-human primates.
Collapse
Affiliation(s)
- Alexander Maxan
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada
| | - Giacomo Sciacca
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada
| | - Melanie Alpaugh
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada
| | - Zhu Tao
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China
| | - Ludivine Breger
- Université de Bordeaux, Institut des maladies neurodégénératives, UMR 5293, CNRS UMR 5293, Bordeaux, France; Centre National de la Recherche Scientifique, Institut des maladies neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Benjamin Dehay
- Université de Bordeaux, Institut des maladies neurodégénératives, UMR 5293, CNRS UMR 5293, Bordeaux, France; Centre National de la Recherche Scientifique, Institut des maladies neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Zhang Ling
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China
| | - Qin Chuan
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China.
| | - Giulia Cisbani
- University of Toronto, Department of Nutritional Sciences, Toronto, ON M5S 1A8, Canada
| | - Maria Masnata
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada
| | - Shireen Salem
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada
| | - Steve Lacroix
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Médicine Moléculaire, Université Laval, Québec, QC G1K 0A6, Canada
| | - Abid Oueslati
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Médicine Moléculaire, Université Laval, Québec, QC G1K 0A6, Canada
| | - Erwan Bezard
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China; Université de Bordeaux, Institut des maladies neurodégénératives, UMR 5293, CNRS UMR 5293, Bordeaux, France; Centre National de la Recherche Scientifique, Institut des maladies neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada.
| |
Collapse
|
6
|
So KH, Choi JH, Islam J, Kc E, Moon HC, Won SY, Kim HK, Kim S, Hyun SH, Park YS. An Optimization of AAV-82Q-Delivered Rat Model of Huntington's Disease. J Korean Neurosurg Soc 2020; 63:579-589. [PMID: 32131152 PMCID: PMC7477157 DOI: 10.3340/jkns.2019.0182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/25/2019] [Indexed: 11/27/2022] Open
Abstract
Objective No optimum genetic rat Huntington model both neuropathological using an adeno-associated virus (AAV-2) vector vector has been reported to date. We investigated whether direct infection of an AAV2 encoding a fragment of mutant huntingtin (AV2-82Q) into the rat striatum was useful for optimizing the Huntington rat model.
Methods We prepared ten unilateral models by injecting AAV2-82Q into the right striatum, as well as ten bilateral models. In each group, five rats were assigned to either the 2×1012 genome copies (GC)/mL of AAV2-82Q (×1, low dose) or 2×1013 GC/mL of AAV2-82Q (×10, high dose) injection model. Ten unilateral and ten bilateral models injected with AAV-empty were also prepared as control groups. We performed cylinder and stepping tests 2, 4, 6, and 8 weeks after injection, tested EM48 positive mutant huntingtin aggregates.
Results The high dose of unilateral and bilateral AAV2-82Q model showed a greater decrease in performance on the stepping and cylinder tests. We also observed more prominent EM48-positive mutant huntingtin aggregates in the medium spiny neurons of the high dose of AAV2-82Q injected group.
Conclusion Based on the results from the present study, high dose of AAV2-82Q is the optimum titer for establishing a Huntington rat model. Delivery of high dose of human AAV2-82Q resulted in the manifestation of Huntington behaviors and optimum expression of the huntingtin protein in vivo.
Collapse
Affiliation(s)
- Kyoung-Ha So
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Jai Ho Choi
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jaisan Islam
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Elina Kc
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Hyeong Cheol Moon
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea.,Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Korea
| | - So Yoon Won
- Department of Biochemistry and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Hyong Kyu Kim
- Department of Biochemistry and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Soochong Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Sang-Hwan Hyun
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Young Seok Park
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea.,Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea.,Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Korea
| |
Collapse
|
7
|
Lavisse S, Williams S, Lecourtois S, van Camp N, Guillermier M, Gipchtein P, Jan C, Goutal S, Eymin L, Valette J, Delzescaux T, Perrier AL, Hantraye P, Aron Badin R. Longitudinal characterization of cognitive and motor deficits in an excitotoxic lesion model of striatal dysfunction in non-human primates. Neurobiol Dis 2019; 130:104484. [PMID: 31132407 DOI: 10.1016/j.nbd.2019.104484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
As research progresses in the understanding of the molecular and cellular mechanisms underlying neurodegenerative diseases like Huntington's disease (HD) and expands towards preclinical work for the development of new therapies, highly relevant animal models are increasingly needed to test new hypotheses and to validate new therapeutic approaches. In this light, we characterized an excitotoxic lesion model of striatal dysfunction in non-human primates (NHPs) using cognitive and motor behaviour assessment as well as functional imaging and post-mortem anatomical analyses. NHPs received intra-striatal stereotaxic injections of quinolinic acid bilaterally in the caudate nucleus and unilaterally in the left sensorimotor putamen. Post-operative MRI scans showed atrophy of the caudate nucleus and a large ventricular enlargement in all 6 NHPs that correlated with post-mortem measurements. Behavioral analysis showed deficits in 2 analogues of the Wisconsin card sorting test (perseverative behavior) and in an executive task, while no deficits were observed in a visual recognition or an episodic memory task at 6 months following surgery. Spontaneous locomotor activity was decreased after lesion and the incidence of apomorphine-induced dyskinesias was significantly increased at 3 and 6 months following lesion. Positron emission tomography scans obtained at end-point showed a major deficit in glucose metabolism and D2 receptor density limited to the lesioned striatum of all NHPs compared to controls. Post-mortem analyses revealed a significant loss of medium-sized spiny neurons in the striatum, a loss of neurons and fibers in the globus pallidus, a unilateral decrease in dopaminergic neurons of the substantia nigra and a loss of neurons in the motor and dorsolateral prefrontal cortex. Overall, we show that this robust NHP model presents specific behavioral (learning, execution and retention of cognitive tests) and metabolic functional deficits that, to the best of our knowledge, are currently not mimicked in any available large animal model of striatal dysfunction. Moreover, we used non-invasive, translational techniques like behavior and imaging to quantify such deficits and found that they correlate to a significant cell loss in the striatum and its main input and output structures. This model can thus significantly contribute to the pre-clinical longitudinal evaluation of the ability of new therapeutic cell, gene or pharmacotherapy approaches in restoring the functionality of the striatal circuitry.
Collapse
Affiliation(s)
- Sonia Lavisse
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Susannah Williams
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Sophie Lecourtois
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Nadja van Camp
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Martine Guillermier
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Pauline Gipchtein
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Caroline Jan
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Sébastien Goutal
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Leopold Eymin
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Julien Valette
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Thierry Delzescaux
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Anselme L Perrier
- Inserm U861, I-STEM, AFM, Corbeil-Essonnes 91100, cedex, France; UEVE U861, I-STEM, AFM, Corbeil-Essonnes 91100, cedex, France.
| | - Philippe Hantraye
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Romina Aron Badin
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| |
Collapse
|
8
|
Jang M, Lee SE, Cho IH. Adeno-Associated Viral Vector Serotype DJ-Mediated Overexpression of N171-82Q-Mutant Huntingtin in the Striatum of Juvenile Mice Is a New Model for Huntington's Disease. Front Cell Neurosci 2018; 12:157. [PMID: 29946240 PMCID: PMC6005874 DOI: 10.3389/fncel.2018.00157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/18/2018] [Indexed: 12/14/2022] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disorder characterized by motor, psychiatric and cognitive symptoms. HD is caused by an expansion of CAG repeats in the huntingtin (HTT) gene in various areas of the brain including striatum. There are few suitable animal models to study the pathogenesis of HD and validate therapeutic strategies. Recombinant adeno-associated viral (AAV) vectors successfully transfer foreign genes to the brain of adult mammalians. In this article, we report a novel mouse model of HD generated by bilateral intrastriatal injection of AAV vector serotype DJ (AAV-DJ) containing N171-82Q mutant HTT (82Q) and N171-18Q wild type HTT (18Q; sham). The AAV-DJ-82Q model displayed motor dysfunctions in pole and rotarod tests beginning 4 weeks after viral infection in juvenile mice (8 weeks after birth). They showed behaviors reflecting neurodegeneration. They also showed increased apoptosis, robust glial activation and upregulated representative inflammatory cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6), mediators (cyclooxygenase-2 and inducible nitric oxide synthase) and signaling pathways (nuclear factor kappa B and signal transducer and activator of transcription 3 (STAT3)) in the striatum at 10 weeks after viral infection (14 weeks after birth) via successful transfection of mutant HTT into neurons, microglia, and astrocytes in the striatum. However, little evidence of any of these events was found in mice infected with the AAV-DJ-18Q expressing construct. Intrastriatal injection of AAV-DJ-82Q might be useful as a novel in vivo model to investigate the biology of truncated N-terminal fragment (N171) in the striatum and to explore the efficacy of therapeutic strategies for HD.
Collapse
Affiliation(s)
- Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Brain Korea 21 Plus Program and Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
9
|
Morigaki R, Goto S. Striatal Vulnerability in Huntington's Disease: Neuroprotection Versus Neurotoxicity. Brain Sci 2017; 7:brainsci7060063. [PMID: 28590448 PMCID: PMC5483636 DOI: 10.3390/brainsci7060063] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 01/18/2023] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat encoding an abnormally long polyglutamine tract (PolyQ) in the huntingtin (Htt) protein. In HD, striking neuropathological changes occur in the striatum, including loss of medium spiny neurons and parvalbumin-expressing interneurons accompanied by neurodegeneration of the striosome and matrix compartments, leading to progressive impairment of reasoning, walking and speaking abilities. The precise cause of striatal pathology in HD is still unknown; however, accumulating clinical and experimental evidence suggests multiple plausible pathophysiological mechanisms underlying striatal neurodegeneration in HD. Here, we review and discuss the characteristic neurodegenerative patterns observed in the striatum of HD patients and consider the role of various huntingtin-related and striatum-enriched proteins in neurotoxicity and neuroprotection.
Collapse
Affiliation(s)
- Ryoma Morigaki
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima University, Tokushima 770-8503, Japan.
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
| | - Satoshi Goto
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima University, Tokushima 770-8503, Japan.
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
| |
Collapse
|
10
|
Comparison of mHTT Antibodies in Huntington's Disease Mouse Models Reveal Specific Binding Profiles and Steady-State Ubiquitin Levels with Disease Development. PLoS One 2016; 11:e0155834. [PMID: 27196694 PMCID: PMC4873140 DOI: 10.1371/journal.pone.0155834] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/04/2016] [Indexed: 11/19/2022] Open
Abstract
Huntington's disease (HD) cellular pathology is characterised by the aggregation of mutant huntingtin (mHTT) protein into inclusion bodies. The present paper compared the sensitivity of five widely used mHTT antibodies (S830; MW8; EM48; 1C2; ubiquitin) against mice from five commonly used HD mouse models (R6/1; YAC128; HdhQ92; B6 HdhQ150; B6 x129/Ola HdhQ150) at two ages to determine: the most sensitive antibodies for each model; whether mHTT antibody binding differed depending on aggregation stage (diffuse versus frank inclusion); the role of ubiquitin during aggregation as the ubiquitin proteosome system has been implicated in disease development. The models demonstrated unique profiles of antibody binding even when the models varied only by background strain (HdhQ150). MW8 was highly sensitive for detecting frank inclusions in all lines whereas EM48, ubiquitin and 1C2 demonstrated consistent staining in all models irrespective of age or form of mHTT. MW8 and S830 were the most sensitive antibodies with 1C2 the least. Ubiquitin levels were stable for each model regardless of age. Ubiquitin was particularly sensitive in young YAC128 mice that demonstrate an absence of inclusions until ~12 months of age suggesting high affinity to mHTT in its diffuse form. The data indicate that generalisations across models regarding the quantification of aggregations may not be valid and that mHTT antibody binding is unique to the mouse model and sensitive to changes in inclusion development.
Collapse
|
11
|
Senut MC, Zhang Y, Liu F, Sen A, Ruden DM, Mao G. Size-Dependent Toxicity of Gold Nanoparticles on Human Embryonic Stem Cells and Their Neural Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:631-46. [PMID: 26676601 PMCID: PMC5033512 DOI: 10.1002/smll.201502346] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/08/2015] [Indexed: 05/17/2023]
Abstract
This study explores the use of human embryonic stem cells (hESCs) for assessing nanotoxicology, specifically, the effect of gold nanoparticles (AuNPs) of different core sizes (1.5, 4, and 14 nm) on the viability, pluripotency, neuronal differentiation, and DNA methylation of hESCs. The hESCs exposed to 1.5 nm thiolate-capped AuNPs exhibit loss of cohesiveness and detachment suggesting ongoing cell death at concentrations as low as 0.1 μg mL(-1). The cells exposed to 1.5 nm AuNPs at this concentration do not form embryoid bodies but rather disintegrate into single cells within 48 h. Cell death caused by 1.5 nm AuNPs also occur in hESC-derived neural progenitor cells. None of the other nanoparticles exhibit toxic effects on the hESCs at concentrations as high as 10 μg mL(-1) during a 19 d neural differentiation period. Thiolate-capped 4 nm AuNPs at 10 μg mL(-1) cause a dramatic decrease in global DNA methylation (5 mC) and a corresponding increase in global DNA hydroxymethylation (5 hmC) of the hESC's DNA in only 24 h. This work identifies a type of AuNPs highly toxic to hESCs and demonstrates the potential of hESCs in predicting nanotoxicity and characterizing their ability to alter the DNA methylation and hydroxymethylation patterns in the cells.
Collapse
Affiliation(s)
- Marie-Claude Senut
- Institute of Environmental Health and Sciences, Wayne State University, 275 East Hancock Road, Detroit, Michigan 48201, USA
| | - Yanhua Zhang
- Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, USA
| | - Fangchao Liu
- Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, USA
| | - Arko Sen
- Institute of Environmental Health and Sciences, Wayne State University, 275 East Hancock Road, Detroit, Michigan 48201, USA
| | - Douglas M. Ruden
- Institute of Environmental Health and Sciences, Wayne State University, 275 East Hancock Road, Detroit, Michigan 48201, USA
| | - Guangzhao Mao
- Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, USA
| |
Collapse
|
12
|
Recombinant Adeno Associated Viral (AAV) vector type 9 delivery of Ex1-Q138-mutant huntingtin in the rat striatum as a short-time model for in vivo studies in drug discovery. Neurobiol Dis 2016; 86:41-51. [DOI: 10.1016/j.nbd.2015.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/30/2015] [Accepted: 11/23/2015] [Indexed: 11/18/2022] Open
|
13
|
Young D. Gene Therapy-Based Modeling of Neurodegenerative Disorders: Huntington's Disease. Methods Mol Biol 2016; 1382:383-95. [PMID: 26611601 DOI: 10.1007/978-1-4939-3271-9_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Huntington's disease is a fatal neurodegenerative disease characterized by impairments in motor control, and cognitive and psychiatric disturbances. In this chapter, viral vector-mediated approaches used in modeling the key neuropathological features of the disease including the production of abnormal intracellular protein aggregates, neuronal dysfunction and degeneration and motor impairments in rodents are described.
Collapse
Affiliation(s)
- Deborah Young
- Department of Pharmacology & Clinical Pharmacology & Centre for Brain Research, School of Medical Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
14
|
Senut MC, Sen A, Cingolani P, Shaik A, Land SJ, Ruden DM. Lead exposure disrupts global DNA methylation in human embryonic stem cells and alters their neuronal differentiation. Toxicol Sci 2014; 139:142-61. [PMID: 24519525 DOI: 10.1093/toxsci/kfu028] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exposure to lead (Pb) during childhood can result in learning disabilities and behavioral problems. Although described in animal models, whether Pb exposure also alters neuronal differentiation in the developing brains of exposed children is unknown. Here, we investigated the effects of physiologically relevant concentrations of Pb (from 0.4 to 1.9μM) on the capacity of human embryonic stem cells (hESCs) to progress to a neuronal fate. We found that neither acute nor chronic exposure to Pb prevented hESCs from generating neural progenitor cells (NPCs). NPCs derived from hESCs chronically exposed to 1.9μM Pb throughout the neural differentiation process generated 2.5 times more TUJ1-positive neurons than those derived from control hESCs. Pb exposure of hESCs during the stage of neural rosette formation resulted in a significant decrease in the expression levels of the neural marker genes PAX6 and MSI1. Furthermore, the resulting NPCs differentiated into neurons with shorter neurites and less branching than control neurons, as assessed by Sholl analysis. DNA methylation studies of control, acutely treated hESCs and NPCs derived from chronically exposed hESCs using the Illumina HumanMethylation450 BeadChip demonstrated that Pb exposure induced changes in the methylation status of genes involved in neurogenetic signaling pathways. In summary, our study shows that exposure to Pb subtly alters the neuronal differentiation of exposed hESCs and that these changes could be partly mediated by modifications in the DNA methylation status of genes crucial to brain development.
Collapse
Affiliation(s)
- Marie-Claude Senut
- Institute of Environmental Health Sciences, C.S. Mott Center for Human Health and Development, Detroit, Michigan 48201
| | | | | | | | | | | |
Collapse
|
15
|
Dong X, Zong S, Witting A, Lindenberg KS, Kochanek S, Huang B. Adenovirus vector-based in vitro neuronal cell model for Huntington's disease with human disease-like differential aggregation and degeneration. J Gene Med 2012; 14:468-81. [PMID: 22700462 DOI: 10.1002/jgm.2641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Neuronal degeneration, in particular in the striatum, and the formation of nuclear and cytoplasmic inclusions are characteristics of Huntington's disease (HD) as a result of the expansion of a polyglutamine tract located close to the N-terminus of huntingtin (htt). Because of the large (10-kb) size of the htt cDNA, expression of full-length htt in primary neurons has proved difficult in the past. METHODS We generated a new chronic in vitro model that is based on high-capacity adenovirus vector-mediated transduction of primary murine striatal and cortical neurons. Because the vector has a large capacity for transport of foreign DNA, it was possible to quantitatively express in these primary cells normal and mutant full-length htt (designed as fusion proteins with enhanced green fluorescent protein) in addition to its truncated versions. Pathological changes caused by mutant htt were characterized. RESULTS The model mimicked several features observed in HD patients: prominent nuclear inclusions in cortical but not in striatal neurons, preferential neuronal degeneration of striatal neurons and neurofilament fragmentation in this cell type. Compared with expressed truncated mutant htt, the expression of full-length mutant htt in neurons resulted in a much slower appearance of pathological changes. Different from cortical neurons, the vast majority of nuclei in striatal cells contained only diffusely distributed N-terminal htt fragments. Cytoplasmic inclusions in both cell types contained full-length mutant htt. CONCLUSIONS This model and the adenovirus vectors used will be valuable for studying the function of htt and the pathogenesis of HD at molecular and cellular levels in different neuronal cell types.
Collapse
Affiliation(s)
- Xiaomin Dong
- Department of Gene Therapy, University of Ulm, Ulm, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Gong B, Kielar C, Morton AJ. Temporal separation of aggregation and ubiquitination during early inclusion formation in transgenic mice carrying the Huntington's disease mutation. PLoS One 2012; 7:e41450. [PMID: 22848498 PMCID: PMC3404089 DOI: 10.1371/journal.pone.0041450] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 06/26/2012] [Indexed: 12/01/2022] Open
Abstract
Abnormal insoluble ubiqitinated protein aggregates are found in the brains of Huntington’s disease (HD) patients and in mice transgenic for the HTT mutation. Here, we describe the earliest stages of visible NII formation in brains of R6/2 mice killed between 2 and 6 weeks of age. We found that huntingtin-positive aggregates formed rapidly (within 24–48 hours) in a spatiotemporal manner similar to that we described previously for ubiquitinated inclusions. However, in most neurons, aggregates are not ubiquitinated when they first form. It has always been assumed that mutant huntingtin is recognised as ‘foreign’ and consequently ubiquitinated and targeted for degradation by the ubiquitin-proteasome system pathway. Our data, however, suggest that aggregation and ubiquitination are separate processes, and that mutant huntingtin fragment is not recognized as ‘abnormal’ by the ubiquitin-proteasome system before aggregation. Rather, mutant Htt appears to aggregate before it is ubiquitinated, and then either aggregated huntingtin is ubiquitinated or ubiquitinated proteins are recruited into aggregates. Our findings have significant implications for the role of the ubiquitin-proteasome system in the formation of aggregates, as they suggest that this system is not involved until after the first aggregates form.
Collapse
Affiliation(s)
- Belvin Gong
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- UC Davis/NIH NeuroMab Facility, Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, United States of America
| | - Catherine Kielar
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - A. Jennifer Morton
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Ghiglieri V, Bagetta V, Calabresi P, Picconi B. Functional interactions within striatal microcircuit in animal models of Huntington's disease. Neuroscience 2012; 211:165-84. [DOI: 10.1016/j.neuroscience.2011.06.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/25/2011] [Accepted: 06/28/2011] [Indexed: 11/17/2022]
|
18
|
Zhang Y, Friedlander RM. Using non-coding small RNAs to develop therapies for Huntington's disease. Gene Ther 2012; 18:1139-49. [PMID: 22158031 DOI: 10.1038/gt.2011.170] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Huntington's disease (HD) is caused by an expansion of CAG triplets at the 5' end of the HD gene, which encodes a pathologically elongated polyglutamine stretch near the N-terminus of huntingtin. HD is an incurable autosomal-dominant neurodegenerative disease characterized by movement disorder, as well as emotional distress and dementia. The newly discovered roles of the non-coding small RNAs in specific degradation or translational suppression of the targeted mRNAs suggest a potential therapeutic approach of post-transcriptional gene silencing that targets the underlying disease etiology rather than the downstream pathological consequences. From pre-clinical trials in different HD animal models to cells from HD patients, small RNA interference has been applied to 'allele-non-specifically or allele-specifically' silence the mutant HD transgene or endogenous mutant HD allele. Silencing the mutant HD transgene significantly inhibits neurodegeneration, improves motor control, and extends survival of HD mice. With future improvement of mutant allele selectivity (preserving the expression of the neuroprotective wild-type allele), target specificity, efficacy and safety, as well as optimization of delivery methods, small non-coding RNA-based therapeutic applications will be a promising approach to treat HD.
Collapse
Affiliation(s)
- Y Zhang
- Department of Neurological Surgery, UPMC Presbyterian Hospital, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
19
|
Wang DB, Gitcho MA, Kraemer BC, Klein RL. Genetic strategies to study TDP-43 in rodents and to develop preclinical therapeutics for amyotrophic lateral sclerosis. Eur J Neurosci 2011; 34:1179-88. [PMID: 21777407 PMCID: PMC3196044 DOI: 10.1111/j.1460-9568.2011.07803.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neuropathological hallmark of the majority of amyotrophic lateral sclerosis (ALS) and a class of frontotemporal lobar degeneration is ubiquitinated cytoplasmic aggregates composed of transactive response DNA binding protein 43 kDa (TDP-43). Genetic manipulation of TDP-43 in animal models has been used to study the protein's role in pathogenesis. Transgenic rodents for TDP-43 have recapitulated key aspects of ALS such as paralysis, loss of spinal motor neurons and muscle atrophy. Viral vectors are an alternate approach to express pathological proteins in animals. Use of the recombinant adeno-associated virus vector serotype 9 has permitted widespread transgene expression throughout the central nervous system after intravenous administration. Expressing TDP-43 in rats with this method produced a phenotype that was consistent with and similar to TDP-43 transgenic lines. Increased levels of TDP-43 in the nucleus are toxic to neurons and sufficient to produce ALS-like symptoms. Animal models based on TDP-43 will address the relationships between TDP-43 expression levels, pathology, neuronal loss, muscle atrophy, motor function and causative mechanisms of disease. New targets that modify TDP-43 function, or targets from previous ALS models and other models of spinal cord diseases, could be tested for efficacy in the recent rodent models of ALS based on TDP-43. The vector approach could be an important therapeutic channel because the entire spinal cord can be affected from a one-time peripheral administration.
Collapse
Affiliation(s)
- David B. Wang
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Michael A. Gitcho
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, WI, USA
| | - Brian C. Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ronald L. Klein
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
20
|
Ruiz M, Déglon N. Viral-mediated overexpression of mutant huntingtin to model HD in various species. Neurobiol Dis 2011; 48:202-11. [PMID: 21889981 DOI: 10.1016/j.nbd.2011.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/11/2011] [Accepted: 08/18/2011] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expansion of CAG repeats in the huntingtin (Htt) gene. Despite intensive efforts devoted to investigating the mechanisms of its pathogenesis, effective treatments for this devastating disease remain unavailable. The lack of suitable models recapitulating the entire spectrum of the degenerative process has severely hindered the identification and validation of therapeutic strategies. The discovery that the degeneration in HD is caused by a mutation in a single gene has offered new opportunities to develop experimental models of HD, ranging from in vitro models to transgenic primates. However, recent advances in viral-vector technology provide promising alternatives based on the direct transfer of genes to selected sub-regions of the brain. Rodent studies have shown that overexpression of mutant human Htt in the striatum using adeno-associated virus or lentivirus vectors induces progressive neurodegeneration, which resembles that seen in HD. This article highlights progress made in modeling HD using viral vector gene transfer. We describe data obtained with of this highly flexible approach for the targeted overexpression of a disease-causing gene. The ability to deliver mutant Htt to specific tissues has opened pathological processes to experimental analysis and allowed targeted therapeutic development in rodent and primate pre-clinical models.
Collapse
Affiliation(s)
- Marta Ruiz
- Atomic Energy Commission (CEA), Institute of Biomedical Imaging (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France
| | | |
Collapse
|
21
|
Bayram-Weston Z, Jones L, Dunnett SB, Brooks SP. Light and electron microscopic characterization of the evolution of cellular pathology in YAC128 Huntington's disease transgenic mice. Brain Res Bull 2011; 88:137-47. [PMID: 21620935 DOI: 10.1016/j.brainresbull.2011.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/21/2011] [Accepted: 05/08/2011] [Indexed: 11/19/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disease caused by the insertion of an expanded polyglutamine sequence within the huntingtin protein. This mutation induces the formation of abnormal protein fragment aggregations and intra-nuclear neuronal inclusions in the brain. The present study aimed to produce a detailed longitudinal characterization of the neuronal pathology in the YAC128 transgenic mouse brain, to determine the similarity of this mouse model to other mouse models and the human condition in the spatial and temporal deposition pattern of the mutant protein fragments. Brain samples were taken from mice aged between 4 and 27 months of age, and assessed using S830 and GFAP immunohistochemistry, stereology and electron microscopy. Four month old mice did not exhibit intra-nuclear or extra-nuclear inclusions using the S830 antibody. Diffuse nuclear staining was present in the cortex, hippocampus and cerebellum from 6 months of age onwards. By 15 months of age, intra-nuclear inclusions were visible in most brain regions including nucleus accumbens, ventral striatum, lateral striatum, motor cortex, sensory cortex and cerebellum. The ventral striatum had a greater density of inclusions than the dorsal striatum. At 15 and 24 months of age, the mice showed increased reactive astrogliosis in the cortex, but no differences were found in the striatum. Necrotic cell death with vacuolation, uneven cell membrane and degenerated Golgi apparatus were detected ultrastructurally at 14 months of age, with some cells showing signs of apoptosis. By 26 months of age, most cells were degenerated in the transgenic animals, with lipofuscin granules being more abundant and larger in these mice than in their wildtype littermates. Our results demonstrate a progressive and widespread neuropathology in the YAC128 mice line that shares some similarity to the human condition. This article is part of a Special Issue entitled 'HD Transgenic Mouse'.
Collapse
|
22
|
|
23
|
Leon R, Bhagavatula N, Ulukpo O, McCollum M, Wei J. BimEL as a possible molecular link between proteasome dysfunction and cell death induced by mutant huntingtin. Eur J Neurosci 2010; 31:1915-25. [PMID: 20497470 DOI: 10.1111/j.1460-9568.2010.07215.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder caused by an expanded polyglutamine repeat within the N-terminus of the huntingtin protein. It is characterized by a selective loss of medium spiny neurons in the striatum. It has been suggested that impaired proteasome function and endoplasmic reticulum (ER) stress play important roles in mutant huntingtin (mHtt)-induced cell death. However, the molecular link involved is poorly understood. In the present study, we identified the essential role of the extra long form of Bim (Bcl-2 interacting mediator of cell death), BimEL, in mHtt-induced cell death. BimEL protein expression level was significantly increased in cell lines expressing the N-terminus of mHtt and in a mouse model of HD. Although quantitative RT-PCR analysis indicated that BimEL mRNA was increased in cells expressing mHtt, we provided evidence showing that, at the post-translational level, phosphorylation of BimEL played a more important role in regulating BimEL expression. Up-regulation of BimEL facilitated the translocation of Bax to the mitochondrial membrane, which further led to cytochrome c release and cell death. On the other hand, knocking down BimEL expression prevented mHtt-induced cell death. Taken together, these findings suggest that BimEL is a key element in regulating mHtt-induced cell death. A model depicting the role of BimEL in linking mHtt-induced ER stress and proteasome dysfunction to cell death is proposed.
Collapse
Affiliation(s)
- Rebecca Leon
- Department of Basic Science, Charles E. Schmidt College of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | | | | | | |
Collapse
|
24
|
Han I, You Y, Kordower JH, Brady ST, Morfini GA. Differential vulnerability of neurons in Huntington's disease: the role of cell type-specific features. J Neurochem 2010; 113:1073-91. [PMID: 20236390 DOI: 10.1111/j.1471-4159.2010.06672.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abnormal expansion of a polyglutamine tract in huntingtin (Htt) protein results in Huntington's disease (HD), an autosomal dominant neurodegenerative disorder involving progressive loss of motor and cognitive function. Contrasting with the ubiquitous tissue expression of polyglutamine-expanded Htt, HD pathology is characterized by the increased vulnerability of specific neuronal populations within the striatum and the cerebral cortex. Morphological, biochemical, and functional characteristics of neurons affected in HD that might render these cells more vulnerable to the toxic effects of polyglutamine-Htt are covered in this review. The differential vulnerability of neurons observed in HD is discussed in the context of various major pathogenic mechanisms proposed to date, and in line with evidence showing a 'dying-back' pattern of degeneration in affected neuronal populations.
Collapse
Affiliation(s)
- Ina Han
- Department of Anatomy and Cell Biology. University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
25
|
Stepanichev MY. Modeling of Alzheimer’s disease using viral vectors. NEUROCHEM J+ 2009. [DOI: 10.1134/s1819712409040035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Versatile somatic gene transfer for modeling neurodegenerative diseases. Neurotox Res 2009; 16:329-42. [PMID: 19669852 DOI: 10.1007/s12640-009-9080-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/26/2009] [Accepted: 06/29/2009] [Indexed: 12/20/2022]
Abstract
A growing variety of technical approaches allow control over the expression of selected genes in living organisms. The ability to deliver functional exogenous genes involved in neurodegenerative diseases has opened pathological processes to experimental analysis and targeted therapeutic development in rodent and primate preclinical models. Biological adaptability, economic animal use, and reduced model development costs complement improved control over spatial and temporal gene expression compared with conventional transgenic models. A review of viral vector studies, typically adeno-associated virus or lentivirus, for expression of three proteins that are central to major neurodegenerative diseases, will illustrate how this approach has powered new advances and opportunities in CNS disease research.
Collapse
|
27
|
Huang B, Schiefer J, Sass C, Kosinski CM, Kochanek S. Inducing huntingtin inclusion formation in primary neuronal cell culture and in vivo by high-capacity adenoviral vectors expressing truncated and full-length huntingtin with polyglutamine expansion. J Gene Med 2008; 10:269-79. [PMID: 18067195 DOI: 10.1002/jgm.1150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Huntington's disease (HD) is an inherited autosomal dominant neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat in exon 1 of the huntingtin (htt) gene. Vector-mediated delivery of N-terminal fragments of mutant htt has been used to study htt function in vitro and to establish HD models in rats. Due to the large size of the htt cDNA vector-mediated delivery of full-length htt has not been achieved so far. METHODS High-capacity adenoviral (HC-Ad) vectors were generated expressing mutant and wild-type versions of N-terminal truncated and full-length htt either in vitro in primary neuronal cells or in the striatum of mice. RESULTS In vitro these vectors were used for transduction of primary neuronal cells isolated from E17 mouse embryos. Expression of mutant htt resulted in the formation of htt inclusions, a surrogate marker of the HD pathology. Kinetics of generation and localization of htt inclusions differed between truncated and full-length htt carrying identical mutations. Following injection into the striatum vector-mediated expression of mutant truncated htt led to prominent accumulation of htt inclusions in cell nuclei, while inclusions formed upon expression of mutant full-length htt localized to the cytoplasm. CONCLUSIONS These results indicate that HC-Ad vector-mediated in vitro and in vivo delivery of truncated and full-length mutant htt results in prominent inclusion formation in neuronal cells but in different cell compartments. These vectors will be useful tools for studying HD and may be used to generate large animal HD models.
Collapse
Affiliation(s)
- Bin Huang
- Division of Gene Therapy, University of Ulm, Helmholtzstrasse 8/1, D-89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
28
|
Klein RL, Dayton RD, Tatom JB, Diaczynsky CG, Salvatore MF. Tau expression levels from various adeno-associated virus vector serotypes produce graded neurodegenerative disease states. Eur J Neurosci 2008; 27:1615-25. [PMID: 18380664 DOI: 10.1111/j.1460-9568.2008.06161.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neurodegenerative diseases involving neurofibrillary tangle pathology are pernicious. By expressing the microtubule-associated protein tau, a major component of tangles, with a viral vector, we induce neuropathological sequelae in rats that are similar to those seen in human tauopathies. We tested several variants of the adeno-associated virus (AAV) vector for tau expression in the nigrostriatal system in order to develop models with graded onset and completeness. Whereas previous studies with AAV2 tau vectors produced partial lesions of the nigrostriatal system, AAV9 or AAV10 tau vectors were more robust. These vectors had formidable efficacy relative to 6-hydroxydopamine for dopamine loss in the striatum. Time-courses for tau transgene expression, dopamine loss and rotational behavior tracked the disease progression with the AAV9 tau vector. There was a nearly complete lesion over a delayed time-course relative to 6-hydroxydopamine, with a sequence of tau expression by 1 week, dopamine loss by 2 weeks and then behavior effect by 3-4 weeks. Relative to AAV2 or AAV8, tau expression from AAV9 or AAV10 peaked earlier and caused more dopamine loss. Varying vector efficiencies produced graded states of disease up to nearly complete. The disease models stemming from the AAV variants AAV9 or AAV10 may be useful for rapid drug screening, particularly for tau diseases that affect the nigrostriatal system, such as progressive supranuclear palsy.
Collapse
Affiliation(s)
- Ronald L Klein
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA.
| | | | | | | | | |
Collapse
|
29
|
Tsirigotis M, Baldwin RM, Tang MY, Lorimer IAJ, Gray DA. Activation of p38MAPK contributes to expanded polyglutamine-induced cytotoxicity. PLoS One 2008; 3:e2130. [PMID: 18461158 PMCID: PMC2330164 DOI: 10.1371/journal.pone.0002130] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 03/27/2008] [Indexed: 01/30/2023] Open
Abstract
Background The signaling pathways that may modulate the pathogenesis of diseases induced by expanded polyglutamine proteins are not well understood. Methodologies/Principal Findings Herein we demonstrate that expanded polyglutamine protein cytotoxicity is mediated primarily through activation of p38MAPK and that the atypical PKC iota (PKCι) enzyme antagonizes polyglutamine-induced cell death through induction of the ERK signaling pathway. We show that pharmacological blockade of p38MAPK rescues cells from polyglutamine-induced cell death whereas inhibition of ERK recapitulates the sensitivity observed in cells depleted of PKCι by RNA interference. We provide evidence that two unrelated proteins with expanded polyglutamine repeats induce p38MAPK in cultured cells, and demonstrate induction of p38MAPK in an in vivo model of neurodegeneration (spinocerebellar ataxia 1, or SCA-1). Conclusions/Significance Taken together, our data implicate activated p38MAPK in disease progression and suggest that its inhibition may represent a rational strategy for therapeutic intervention in the polyglutamine disorders.
Collapse
Affiliation(s)
- Maria Tsirigotis
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | - R. Mitchell Baldwin
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Matthew Y. Tang
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ian A. J. Lorimer
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Douglas A. Gray
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
30
|
Franich NR, Fitzsimons HL, Fong DM, Klugmann M, During MJ, Young D. AAV vector-mediated RNAi of mutant huntingtin expression is neuroprotective in a novel genetic rat model of Huntington's disease. Mol Ther 2008; 16:947-56. [PMID: 18388917 PMCID: PMC3793641 DOI: 10.1038/mt.2008.50] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We report the characterization of a new rapid-onset model of Huntington's disease (HD) generated by adeno-associated virus (AAV) vector-mediated gene transfer of N-terminal huntingtin (htt) constructs into the rat striatum. Expression of exon 1 of mutant htt containing 70 CAG repeats rapidly led to neuropathological features associated with HD. In addition, we report novel data relating to neuronal transduction of AAV vectors that modulated the phenotype observed in this model. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) revealed that AAV vector-mediated expression in the striatum increased by >100-fold as compared to the endogenous htt level. Moreover, AAV vectors exhibited nonuniform transduction patterns in striatal neuronal populations, as well as axonal transport leading to transduction and neuronal cell death in the globus pallidus and substantia nigra (SN). These findings may inform future studies that utilize AAV vectors for neurodegenerative disease modeling. Further, RNA interference (RNAi) of mutant htt expression mediated by virus vector delivery of short hairpin RNAs (shRNAs) ameliorates early-stage disease phenotypes in transgenic mouse models of HD. However, it has not been reported whether shRNA-mediated knockdown of mutant htt expression is neuroprotective. AAV-shRNA was shown to mediate a dramatic knockdown of HD70 expression, preventing striatal neurodegeneration and concomitant motor behavioral impairment. These results provide further support for the use of AAV vector-mediated RNAi as a therapeutic strategy for HD.
Collapse
Affiliation(s)
- Nicholas R Franich
- 1Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
31
|
Gong B, Lim M, Wanderer J, Wyttenbach A, Morton A. Time-lapse analysis of aggregate formation in an inducible PC12 cell model of Huntington's disease reveals time-dependent aggregate formation that transiently delays cell death. Brain Res Bull 2008; 75:146-57. [DOI: 10.1016/j.brainresbull.2007.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 08/07/2007] [Accepted: 08/16/2007] [Indexed: 11/25/2022]
|
32
|
Rajanikant GK, Zemke D, Senut MC, Frenkel MB, Chen AF, Gupta R, Majid A. Carnosine is neuroprotective against permanent focal cerebral ischemia in mice. Stroke 2007; 38:3023-31. [PMID: 17916766 DOI: 10.1161/strokeaha.107.488502] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Carnosine is a naturally occurring dipeptide with multiple neuroprotective properties. In addition, it is well tolerated in high doses with minimal side effects. The purposes of this study were to determine whether carnosine is neuroprotective in permanent focal cerebral ischemia and to determine potential mechanisms of neuroprotection. METHODS We investigated the efficacy of carnosine in a mouse model of permanent focal cerebral ischemia. The effects of carnosine were investigated with respect to neuronal damage and infarct formation, endogenous antioxidant status, and matrix metalloproteinase activity. RESULTS Carnosine significantly decreased infarct size and neuronal damage when administered at time points both before and after the induction of ischemia. Carnosine also decreased reactive oxygen species levels in the ischemic brain, preserved normal glutathione levels, and decreased matrix metalloproteinase protein levels and activity. CONCLUSIONS Carnosine is neuroprotective in focal cerebral ischemia and appears to influence deleterious pathological processes that are activated after the onset of ischemia.
Collapse
Affiliation(s)
- G K Rajanikant
- Department of Neurology and Ophthalmology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Kwon I, Schaffer DV. Designer gene delivery vectors: molecular engineering and evolution of adeno-associated viral vectors for enhanced gene transfer. Pharm Res 2007; 25:489-99. [PMID: 17763830 PMCID: PMC2265771 DOI: 10.1007/s11095-007-9431-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/03/2007] [Indexed: 12/23/2022]
Abstract
Gene delivery vectors based on adeno-associated virus (AAV) are highly promising due to several desirable features of this parent virus, including a lack of pathogenicity, efficient infection of dividing and non-dividing cells, and sustained maintenance of the viral genome. However, several problems should be addressed to enhance the utility of AAV vectors, particularly those based on AAV2, the best characterized AAV serotype. First, altering viral tropism would be advantageous for broadening its utility in various tissue or cell types. In response to this need, vector pseudotyping, mosaic capsids, and targeting ligand insertion into the capsid have shown promise for altering AAV specificity. In addition, library selection and directed evolution have recently emerged as promising approaches to modulate AAV tropism despite limited knowledge of viral structure-function relationships. Second, pre-existing immunity to AAV must be addressed for successful clinical application of AAV vectors. "Shielding" polymers, site-directed mutagenesis, and alternative AAV serotypes have shown success in avoiding immune neutralization. Furthermore, directed evolution of the AAV capsid is a high throughput approach that has yielded vectors with substantial resistance to neutralizing antibodies. Molecular engineering and directed evolution of AAV vectors therefore offer promise for generating 'designer' gene delivery vectors with enhanced properties.
Collapse
Affiliation(s)
- Inchan Kwon
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, 201 Gilman Hall, Berkeley, California 94720-1462 USA
| | - David V. Schaffer
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, 201 Gilman Hall, Berkeley, California 94720-1462 USA
| |
Collapse
|
34
|
Wang LH, Qin ZH. Animal models of Huntington's disease: implications in uncovering pathogenic mechanisms and developing therapies. Acta Pharmacol Sin 2006; 27:1287-302. [PMID: 17007735 DOI: 10.1111/j.1745-7254.2006.00410.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, which is caused by an abnormal expansion of Cytosine Adenine Guanine (CAG) trinucleotide repeat in the gene making huntingtin (Htt). Despite intensive research efforts devoted to investigate molecular mechanisms of pathogenesis, effective therapy for this devastating disease is still not available at present. The development of various animal models of HD has offered alternative approaches in the study of HD molecular pathology. Many HD models, including chemical-induced models and genetic models, mimic some aspects of HD symptoms and pathology. To date, however, there is no ideal model which replicates all of the essential features of neuropathology and progressive motor and cognitive impairments of human HD. As a result, our understanding of molecular mechanisms of pathogenesis in HD is still limited. A new model is needed in order to uncover the pathogenesis and to develop novel therapies for HD. In this review we discussed usefulness and limitations of various animal and cellular models of HD in uncovering molecular mechanisms of pathogenesis and developing novel therapies for HD.
Collapse
Affiliation(s)
- Lin-hui Wang
- Department of Physiology, Soochow University School of Medicine, Suzhou 215123, China
| | | |
Collapse
|
35
|
Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa S, Kaufman RJ, Kominami E, Momoi T. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 2006; 14:230-9. [PMID: 16794605 DOI: 10.1038/sj.cdd.4401984] [Citation(s) in RCA: 750] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Expanded polyglutamine 72 repeat (polyQ72) aggregates induce endoplasmic reticulum (ER) stress-mediated cell death with caspase-12 activation and vesicular formation (autophagy). We examined this relationship and the molecular mechanism of autophagy formation. Rapamycin, a stimulator of autophagy, inhibited the polyQ72-induced cell death with caspase-12 activation. PolyQ72, but not polyQ11, stimulated Atg5-Atg12-Atg16 complex-dependent microtubule-associated protein 1 (MAP1) light chain 3 (LC3) conversion from LC3-I to -II, which plays a key role in autophagy. The eucaryotic translation initiation factor 2 alpha (eIF2alpha) A/A mutation, a knock-in to replace a phosphorylatable Ser51 with Ala51, and dominant-negative PERK inhibited polyQ72-induced LC3 conversion. PolyQ72 as well as ER stress stimulators upregulated Atg12 mRNA and proteins via eIF2alpha phosphorylation. Furthermore, Atg5 deficiency as well as the eIF2alpha A/A mutation increased the number of cells showing polyQ72 aggregates and polyQ72-induced caspase-12 activation. Thus, autophagy formation is a cellular defense mechanism against polyQ72-induced ER-stress-mediated cell death by degrading polyQ72 aggregates, with PERK/eIF2alpha phosphorylation being involved in polyQ72-induced LC3 conversion.
Collapse
Affiliation(s)
- Y Kouroku
- Division of Development, National Institute of Neuroscience, 4-1-1 Ogawahigashi-machi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hong CS, Goins WF, Goss JR, Burton EA, Glorioso JC. Herpes simplex virus RNAi and neprilysin gene transfer vectors reduce accumulation of Alzheimer's disease-related amyloid-β peptide in vivo. Gene Ther 2006; 13:1068-79. [PMID: 16541122 DOI: 10.1038/sj.gt.3302719] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Accumulation of insoluble aggregates of amyloid-beta peptide (Abeta), a cleavage product of amyloid precursor protein (APP), is thought to be central to the pathogenesis of Alzheimer's disease (AD). Consequently, downregulation of APP, or enhanced clearance of Abeta, represent possible therapeutic strategies for AD. We generated replication-defective herpes simplex virus (HSV) vectors that inhibit Abeta accumulation, both in vitro and in vivo. In cell culture, HSV vectors expressing either (i) short hairpin RNA directed to the APP transcript (HSV-APP/shRNA), or (ii) neprilysin, an endopeptidase that degrades Abeta (HSV-neprilysin), substantially inhibited accumulation of Abeta. To determine whether these vectors showed similar activity in vivo, we developed a novel mouse model, in which overexpression of a mutant form of APP in the hippocampus, using a lentiviral vector (LV-APP(Sw)), resulted in rapid Abeta accumulation. Co-inoculation of LV-APP(Sw) with each of the HSV vectors showed that either HSV-APP/shRNA or HSV-neprilysin inhibited Abeta accumulation in this model, whereas an HSV control vector did not. These studies demonstrate the utility of HSV vectors for reducing Abeta accumulation in the brain, thus providing useful tools to clarify the role of Abeta in AD that may facilitate the development of novel therapies for this important disease.
Collapse
Affiliation(s)
- C-S Hong
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, PA 15261, USA
| | | | | | | | | |
Collapse
|
37
|
Mandel RJ, Manfredsson FP, Foust KD, Rising A, Reimsnider S, Nash K, Burger C. Recombinant adeno-associated viral vectors as therapeutic agents to treat neurological disorders. Mol Ther 2006; 13:463-83. [PMID: 16412695 DOI: 10.1016/j.ymthe.2005.11.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 11/12/2005] [Accepted: 11/13/2005] [Indexed: 12/11/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) is derived from a small human parvovirus with an excellent safety profile. In addition, this viral vector efficiently transduces and supports long-term transgene expression in the nervous system. These properties make rAAV a reasonable candidate vector for treating neurological disorders. Indeed, rAAV is currently being used in five early stage clinical trials for various neurodegenerative disorders. Therefore, we will review the currently available preclinical data using rAAV in animal models of central nervous system (CNS) disorders. Moreover, potential caveats for rAAV-based gene therapy in the CNS are also presented.
Collapse
Affiliation(s)
- Ronald J Mandel
- Department of Neuroscience, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Brouillet E, Jacquard C, Bizat N, Blum D. 3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington's disease. J Neurochem 2005; 95:1521-40. [PMID: 16300642 DOI: 10.1111/j.1471-4159.2005.03515.x] [Citation(s) in RCA: 271] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a mutation in the gene encoding Huntingtin. The mechanisms underlying the preferential degeneration of the striatum, the most striking neuropathological change in HD, are unknown. Of those probably involved, mitochondrial defects might play an important role. The behavioural and anatomical similarities found between HD and models using the mitochondrial toxin 3-nitropropionic acid (3NP) in rats and primates support this hypothesis. Here, we discuss the recently identified mechanisms of 3NP-induced striatal degeneration. Two types of important factor have been identified. The first are the 'executioner' components that have direct roles in cell death, such as c-Jun N-terminal kinase and Ca2+-activated protease calpains. The second are 'environmental' factors, such as glutamate, dopamine and adenosine, which modulate the striatal degeneration induced by 3NP. Interestingly, these recent studies support the hypothesis that 3NP and mutated Huntingtin have certain mechanisms of toxicity in common, suggesting that the use of 3NP might give new insights into the pathogenesis of HD. Research on 3NP provides additional proof that the neurochemical environment of a given neurone can determine its preferential vulnerability in neurodegenerative diseases.
Collapse
Affiliation(s)
- Emmanuel Brouillet
- Centre Nationale de la Recherche Scientifique 2210, Service Hospitalier Frédéric Joliot, Départment de Recherches Médicales, Direction des Sciences du Vivant, CEA, Orsay France.
| | | | | | | |
Collapse
|
39
|
Sin M, Walker PD, Bouhamdan M, Quinn JP, Bannon MJ. Preferential expression of an AAV-2 construct in NOS-positive interneurons following intrastriatal injection. ACTA ACUST UNITED AC 2005; 141:74-82. [PMID: 16153741 DOI: 10.1016/j.molbrainres.2005.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 08/02/2005] [Accepted: 08/03/2005] [Indexed: 11/26/2022]
Abstract
Most CNS studies using recombinant adeno-associated virus type 2 (rAAV-2) vectors have focused on gene delivery for the purpose of gene therapy. In the present study, we examined the feasibility of using rAAV-2 vectors to study the regulation of preprotachykinin-A (PPT-A) promoter activity in striatal medium spiny projection neurons. An rAAV-2 vector incorporating a PPT promoter fragment (shown previously to confer some cell-specificity of expression in vitro) coupled to a green fluorescent protein (GFP) reporter gene was stereotaxically injected into the rat striatum. Since medium spiny projection neurons represent the predominant neuronal type (90-95%) in the striatum, we predicted that the vast majority of GFP-expressing cells would be of this phenotype. Surprisingly, the transgene was actually expressed in a similar number of medium spiny projection neurons and interneurons, while glial expression of GFP was not observed. A preponderance of GFP-expressing interneurons was immunoreactive for the marker neuronal nitric oxide synthase (nNOS). Our results suggest that viral vector-related events that occur during transduction are the determining factor in the pattern of transgene expression observed, while the influence of the transgene promoter appears to be secondary, at least under the conditions employed.
Collapse
Affiliation(s)
- Mihaela Sin
- Cellular and Clinical Neurobiology Program, Department of Psychiatry and Behavioral Neurosciences, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
40
|
Déglon N, Hantraye P. Viral vectors as tools to model and treat neurodegenerative disorders. J Gene Med 2005; 7:530-9. [PMID: 15651039 DOI: 10.1002/jgm.707] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The identification of disease-causing genes in familial forms of neurodegenerative disorders and the development of genetic models closely replicating human central nervous system (CNS) pathologies have drastically changed our understanding of the molecular events leading to neuronal cell death. If these achievements open new opportunities of therapeutic interventions, including gene-based therapies, the presence of the blood-brain barrier and the post-mitotic and poor regenerative nature of the target cells constitute important challenges. Efficient delivery systems taking into account the specificity of the CNS are required to administer potential therapeutic candidates. In addition, genetic models in large animals that replicate the late stages of the diseases are in most cases not available for pre-clinical studies. The present review summarizes the potential of viral vectors as tools to create new genetic models of CNS disorders in various species including primates and the recent progress toward viral gene therapy clinical trials for the administration of therapeutic candidates into the brain.
Collapse
Affiliation(s)
- N Déglon
- Commissariat à l'Energie Atomique (CEA) CNRS URA2210, Service Hospitalier Frédéric Joliot and ImaGene Program, Orsay Cedex, France.
| | | |
Collapse
|
41
|
Kim WY, Horbinski C, Sigurdson W, Higgins D. Proteasome inhibitors suppress formation of polyglutamine-induced nuclear inclusions in cultured postmitotic neurons. J Neurochem 2004; 91:1044-56. [PMID: 15569248 DOI: 10.1111/j.1471-4159.2004.02788.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At least nine neurodegenerative disorders are caused by expansion of polyglutamine repeats in various genes. This expansion induces the formation of nuclear inclusions (NI) within various cell types. In this study, we developed a model for polyglutamine diseases using primary cultures of sympathetic neurons from the superior cervical ganglia of prenatal rat pups. Transfection with a plasmid encoding 127 glutamine repeats causes NI to develop in approximately 70% of the sympathetic neurons within 6 days. In addition, it causes somatic atrophy and inhibits dendritic growth. The NIs contain ubiquitinated proteins and sequester the molecular chaperone heat shock protein 70 (Hsp70). We found that two specific proteasome inhibitors, lactacystin and CEP1612, suppress thezformation of polyglutamine-induced NI. In addition, lactacystin treatment induced the removal of preexisting NI. Western blotting and immunocytochemistry revealed that lactacystin and CEP1612 strongly induce the expression of Hsp70, whereas less specific proteasome inhibitor such as N-acetyl-Leu-Leu-Norleucinal does not. Coexpression of 127 glutamines with a plasmid encoding wild-type Hsp70 gene resulted in a marked reduction of the percentage of neurons containing NI. In addition, transfection with plasmids encoding mutant Hsp70 blocked the effects of lactacystin. These findings further implicate Hsp70 as a neuroprotective molecule and they suggest the potential utility of certain proteasome inhibitors in the treatment of polyglutamine diseases.
Collapse
Affiliation(s)
- Woo-Yang Kim
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
42
|
Armandola E. Lentiviral vectors for the central nervous system. MEDGENMED : MEDSCAPE GENERAL MEDICINE 2004; 6:17. [PMID: 15520640 PMCID: PMC1435627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
|
43
|
Kirik D, Björklund A. Modeling CNS neurodegeneration by overexpression of disease-causing proteins using viral vectors. Trends Neurosci 2003; 26:386-92. [PMID: 12850435 DOI: 10.1016/s0166-2236(03)00164-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Defective handling of proteins is a central feature of major neurodegenerative diseases. The discovery that neuronal dysfunction or degeneration can be caused by mutations in single cellular proteins has given new opportunities to model the underlying disease processes by genetic modification of cells in vitro or by generation of transgenic animals carrying the disease-causing gene. Recent developments in recombinant viral-vector technology have opened up an interesting alternative possibility, based on direct gene transfer to selected subregions or subsets of neurons in the brain. Using the highly efficient adeno-associated virus or lentivirus vectors, recent reports have shown that overexpression of mutated human huntingtin or alpha-synuclein in neurons in the striatum or substantia nigra induces progressive neuropathology and neurodegeneration, similar to that seen in Huntington's and Parkinson's diseases. Targeted overexpression of disease-causing genes by recombinant viral vectors provides a new and highly flexible approach for in vivo modeling of neurodegenerative diseases, not only in mice and rats but also in primates.
Collapse
Affiliation(s)
- Deniz Kirik
- Wallenberg Neuroscience Center, Department of Physiological Sciences, Lund University, BMC A11, 22184 Lund, Sweden.
| | | |
Collapse
|
44
|
Agius LM. Dysregulatory dysequilibrium of gene transcription and of nuclear transport in polyglutamine neuro-degeneration. Med Hypotheses 2003; 60:869-73. [PMID: 12699716 DOI: 10.1016/s0306-9877(03)00068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polyglutamine neurodegeneration as an essential expansion mutation of the CAG-trinucleotide repeat encoding glutamine would appear to constitute an integral process of aggregation/accumulation that self-propagates a secondary process of possible nuclear sequestration. Within such a scheme of progressive expansion of polyglutamine stretches in strict parallel correlation with increased CAG trinucleotide repeats in genes such as ataxin-7 and its messenger RNA, it would appear that a fundamental relationship of accumulation directly inducing biophysical disruption between nuclear/nucleolar and cytoplasmic protein machineries would constitute a dysfunctional dysequilibrium accounting for self-progressive neuronal degeneration with atrophy of the cerebral cortex and ganglia such as the caudate, that is limited often to specific population groups of neurons. It is for example in terms of Huntington's disease as an autosomal dominant disorder with high penetrance on a background of onset of dementia mainly in the fourth and fifth decades of life that one might conceive of polyglutamine neurodegeneration as fundamentally a developmental disturbance affecting neuronal maturation that accounts for abnormal neurophysiological and biochemical aspects of interaction of nucleus with cytoplasm. Polyglutamine expansion and trinucleotide repeats as both progressive processes of accumulation and synthesis would constitute a complex interplay of inducing and induced effects that both contribute in probably multiple ways to the self-progressive nature of a nuclear sequestration process.
Collapse
Affiliation(s)
- Lawrence M Agius
- Department of Pathology, St. Luke's Hospital, University of Malta, Malta.
| |
Collapse
|
45
|
Goellner GM, Rechsteiner M. Are Huntington's and polyglutamine-based ataxias proteasome storage diseases? Int J Biochem Cell Biol 2003; 35:562-71. [PMID: 12672449 DOI: 10.1016/s1357-2725(02)00388-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To date, 10 neurological diseases, including Huntington's and several ataxias, are caused by a lengthening of glutamine (Q) tracts in various proteins. Even though the Q expansions arise in unrelated proteins, the diseases share three striking features: (1) 35 contiguous glutamines constitutes the pathological threshold for 9 of the 10 diseases; (2) the Q-expanded proteins are expressed in many tissues, yet pathology is largely restricted to neurons; and (3) the Q-expanded proteins or fragments thereof form nuclear inclusions that also contain ubiquitin, proteasomes and chaperones. Our studies of the proteasome activator REGgamma suggest a possible explanation for these shared properties. REGgamma is highly expressed in brain, located in the nucleus and actually suppresses the proteasome active sites principally responsible for cleaving glutamine-MCA bonds. These observations coupled with reports that peptides longer than 35 residues, the polyQ pathology threshold, are unable to diffuse out of the proteasome suggest the following hypothesis. Proteins containing long glutamine tracts are efficiently pumped into REGgamma-capped 26S proteasomes, but REGgamma suppression of cleavage after glutamine produces polyQ fragments too long to diffuse out of the 20S proteolytic core thereby inactivating the 26S proteasome. In effect, we hypothesize that the polyQ pathologies may be proteasomal storage diseases analogous to disorders of lysosome catabolism.
Collapse
Affiliation(s)
- Geoffrey M Goellner
- Department of Biochemistry, University of Utah, 50 N Medical Drive, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
46
|
Abstract
Huntington's disease (HD) is an autosomal dominant, fatal disorder. Patients display increasing motor, psychiatric and cognitive impairment and at autopsy, late-stage patient brains show extensive striatal (caudate and putamen), pallidal and cortical atrophy. The initial and primary target of degeneration in HD is the striatal medium spiny GABAergic neuron, and by end stages of the disease up to 95% of these neurons are lost [J. Neuropathol. Exp. Neurol. 57 (1998) 369]. The disease is caused by an elongation of a polyglutamine tract in the N-terminal of the huntingtin gene, but it is not known how this mutation leads to such extensive, but selective, cell death [Cell 72 (1993) 971]. There is substantial evidence from in vitro studies that connects apoptotic pathways and apoptosis with the mutant protein, and theories linking apoptosis to neuronal death in HD have existed for several years. Despite this, evidence of apoptotic neuronal death in HD is scarce. It may be that the processes involved in apoptosis, rather than apoptosis per se, are more important for HD pathogenesis. Upregulation of the proapoptotic proteins could lead to cleavage of huntingtin and as recent data has shown, the consequent toxic fragment may itself elicit toxic effects on the cell by disrupting transcription. In addition, the increased levels of proapoptotic proteins could contribute to slowly developing cell death in HD, selective for the striatal medium spiny GABAergic neurons and later spreading to other areas. Here we review the evidence supporting these mechanisms of pathogenesis in HD.
Collapse
Affiliation(s)
- Miriam A Hickey
- Department of Neurology, Reed Neurological Research Center, B114, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, 90095, Los Angeles, CA, USA
| | | |
Collapse
|
47
|
Janson CG, McPhee SW, Leone P, Freese A, During MJ. Viral-based gene transfer to the mammalian CNS for functional genomic studies. Trends Neurosci 2001; 24:706-12. [PMID: 11718875 DOI: 10.1016/s0166-2236(00)01954-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A fundamental problem in neuroscience has been the creation of suitable in vivo model systems to study basic neurological phenomena and pathology of the central nervous system (CNS). Somatic cell genetic engineering with viral vectors provides a versatile tool to model normal brain physiology and a variety of neurological diseases.
Collapse
Affiliation(s)
- C G Janson
- CNG Gene Therapy Center, Jefferson Medical College, 1025 Walnut Street, Suite 511, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
48
|
Berthelier V, Hamilton JB, Chen S, Wetzel R. A microtiter plate assay for polyglutamine aggregate extension. Anal Biochem 2001; 295:227-36. [PMID: 11488626 DOI: 10.1006/abio.2001.5217] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyglutamine (polyGln) aggregates are neuropathological markers of expanded CAG repeat disorders, and may also play a critical role in the development of these diseases. We have established a highly sensitive, fast, reproducible, and specific assay capable of monitoring aggregate-dependent deposition of polyglutamine peptides. This assay allows detailed studies on various aspects of aggregation kinetics, and also makes possible the detection and quantitation of low levels of "extension-competent" aggregates. In the simplest form of this assay, polyGln aggregates are made from chemically synthesized peptides and immobilized onto microplate wells. These wells are incubated for different times with low concentrations of a soluble biotinylated polyGln peptide. Europium-streptavidin complexation of the immobilized biotin, followed by time-resolved fluorescence detection of the deposited europium, allows us to calculate the rate (fmol/h) of incorporation of polyGln peptides into polyGln aggregates. This assay will make possible basic studies on the assembly mechanism of polyGln aggregates and on critical features of the reaction, such as polyGln length dependence. The assay also will be a valuable tool for screening and characterizing anti-aggregation inhibitors. It will also be useful for detection and quantitation of aggregation-competent polyGln aggregates in biological materials, which may prove to be of critical importance in understanding the disease mechanism.
Collapse
Affiliation(s)
- V Berthelier
- Graduate School of Medicine, University of Tennessee Medical Center, 1925 Alcoa Highway, Knoxville, TN 37920, USA
| | | | | | | |
Collapse
|
49
|
Suhr ST, Senut MC, Whitelegge JP, Faull KF, Cuizon DB, Gage FH. Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. J Cell Biol 2001; 153:283-94. [PMID: 11309410 PMCID: PMC2169460 DOI: 10.1083/jcb.153.2.283] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2000] [Accepted: 02/05/2001] [Indexed: 01/10/2023] Open
Abstract
Proteins with expanded polyglutamine (polyQ) tracts have been linked to neurodegenerative diseases. One common characteristic of expanded-polyQ expression is the formation of intracellular aggregates (IAs). IAs purified from polyQ-expressing cells were dissociated and studied by protein blot assay and mass spectrometry to determine the identity, condition, and relative level of several proteins sequestered within aggregates. Most of the sequestered proteins comigrated with bands from control extracts, indicating that the sequestered proteins were intact and not irreversibly bound to the polyQ polymer. Among the proteins found sequestered at relatively high levels in purified IAs were ubiquitin, the cell cycle-regulating proteins p53 and mdm-2, HSP70, the global transcriptional regulator Tata-binding protein/TFIID, cytoskeleton proteins actin and 68-kD neurofilament, and proteins of the nuclear pore complex. These data reveal that IAs are highly complex structures with a multiplicity of contributing proteins.
Collapse
Affiliation(s)
- S T Suhr
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
50
|
Wigley WC, Stidham RD, Smith NM, Hunt JF, Thomas PJ. Protein solubility and folding monitored in vivo by structural complementation of a genetic marker protein. Nat Biotechnol 2001; 19:131-6. [PMID: 11175726 DOI: 10.1038/84389] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein misfolding is the basis of a number of human diseases and presents an obstacle to the production of soluble recombinant proteins. We present a general method to assess the solubility and folding of proteins in vivo. The basis of this assay is structural complementation between the alpha- and omega- fragments of beta-galactosidase (beta-gal). Fusions of the alpha-fragment to the C terminus of target proteins with widely varying in vivo folding yield and/or solubility levels, including the Alzheimer's amyloid beta (A beta) peptide and a non-amyloidogenic mutant thereof, reveal an unambiguous correlation between beta-gal activity and the solubility/folding of the target. Thus, structural complementation provides a means of monitoring protein solubility/misfolding in vivo, and should find utility in the screening for compounds that influence the pathological consequences of these processes.
Collapse
Affiliation(s)
- W C Wigley
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75235, USA
| | | | | | | | | |
Collapse
|