1
|
Piccarducci R, Giacomelli C, Bertilacchi MS, Benito-Martinez A, Di Giorgi N, Daniele S, Signore G, Rocchiccioli S, Vilar M, Marchetti L, Martini C. Apolipoprotein E ε4 triggers neurotoxicity via cholesterol accumulation, acetylcholine dyshomeostasis, and PKCε mislocalization in cholinergic neuronal cells. Biochim Biophys Acta Mol Basis Dis 2023:166793. [PMID: 37336366 DOI: 10.1016/j.bbadis.2023.166793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/28/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
The Apolipoprotein E (ApoE) has been known to regulate cholesterol and β-amyloid (Aβ) production, redistribution, and elimination, in the central nervous system (CNS). The ApoE ε4 polymorphic variant leads to impaired brain cholesterol homeostasis and amyloidogenic pathway, thus representing the major risk factor for Alzheimer's Disease (AD). Currently, less is known about the molecular mechanisms connecting ApoE ε4-related cholesterol metabolism and cholinergic system degeneration, one of the main AD pathological features. Herein, in vitro cholinergic neuron models were developed in order to study ApoE neuronal expression and investigate the possible interplay between cholesterol metabolism and cholinergic pathway impairment prompted by ε4 isoform. Particularly, alterations specifically occurring in ApoE ε4-carrying neurons (i.e. increased intracellular ApoE, amyloid precursor protein (APP), and Aβ levels, elevated apoptosis, and reduced cell survival) were recapitulated. ApoE ε4 expression was found to increase intracellular cholesterol accumulation, by regulating the related gene expression, while reducing cholesterol precursor acetyl-CoA, which in turn fuels the acetylcholine (ACh) synthesis route. In parallel, although the ACh intracellular signalling was activated, as demonstrated by the boosted extracellular ACh as well as increased IP3 and Ca2+, the PKCε activation via membrane translocation was surprisingly suppressed, probably explained by the cholesterol overload in ApoE ε4 neuron-like cells. Consequently, the PKC-dependent anti-apoptotic and neuroprotective roles results impaired, reliably adding to other causes of cell death prompted by ApoE ε4. Overall, the obtained data open the way to further critical considerations of ApoE ε4-dependent cholesterol metabolism dysregulation in the alteration of cholinergic pathway, neurotoxicity, and neuronal death.
Collapse
Affiliation(s)
| | | | | | - Andrea Benito-Martinez
- Instituto de Biomedicina de Valencia-CSIC Spanish National Research Council, 46010 Valencia, Spain
| | | | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | | | - Marçal Vilar
- Instituto de Biomedicina de Valencia-CSIC Spanish National Research Council, 46010 Valencia, Spain
| | - Laura Marchetti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
2
|
Ji Y, Koch D, González Delgado J, Günther M, Witte OW, Kessels MM, Frahm C, Qualmann B. Poststroke dendritic arbor regrowth requires the actin nucleator Cobl. PLoS Biol 2021; 19:e3001399. [PMID: 34898601 PMCID: PMC8699704 DOI: 10.1371/journal.pbio.3001399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/23/2021] [Accepted: 11/16/2021] [Indexed: 01/15/2023] Open
Abstract
Ischemic stroke is a major cause of death and long-term disability. We demonstrate that middle cerebral artery occlusion (MCAO) in mice leads to a strong decline in dendritic arborization of penumbral neurons. These defects were subsequently repaired by an ipsilateral recovery process requiring the actin nucleator Cobl. Ischemic stroke and excitotoxicity, caused by calpain-mediated proteolysis, significantly reduced Cobl levels. In an apparently unique manner among excitotoxicity-affected proteins, this Cobl decline was rapidly restored by increased mRNA expression and Cobl then played a pivotal role in poststroke dendritic arbor repair in peri-infarct areas. In Cobl knockout (KO) mice, the dendritic repair window determined to span day 2 to 4 poststroke in wild-type (WT) strikingly passed without any dendritic regrowth. Instead, Cobl KO penumbral neurons of the primary motor cortex continued to show the dendritic impairments caused by stroke. Our results thereby highlight a powerful poststroke recovery process and identified causal molecular mechanisms critical during poststroke repair. Ischemic stroke is a major cause of death and long-term disability. This study reveals that, in mice, stroke-induced damage to dendritic arborization in the area around an infarct is rapidly repaired via dendritic regrowth; this plasticity requires the actin nucleator Cobl.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
| | - Dennis Koch
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
| | - Jule González Delgado
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
| | - Madlen Günther
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W. Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Michael M. Kessels
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
- * E-mail: (MMK); (CF); (BQ)
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- * E-mail: (MMK); (CF); (BQ)
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
- * E-mail: (MMK); (CF); (BQ)
| |
Collapse
|
3
|
Mprah R, Adzika GK, Gyasi YI, Ndzie Noah ML, Adu-Amankwaah J, Adekunle AO, Duah M, Wowui PI, Weili Q. Glutaminolysis: A Driver of Vascular and Cardiac Remodeling in Pulmonary Arterial Hypertension. Front Cardiovasc Med 2021; 8:667446. [PMID: 33996951 PMCID: PMC8113389 DOI: 10.3389/fcvm.2021.667446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a decimating ailment described by chronic precapillary pulmonary hypertension, an elevated mean pulmonary arterial pressure with a normal pulmonary capillary wedge pressure, and a raised pulmonary vascular resistance resulting in increased right ventricular afterload culminating in heart failure and death. Current PAH treatments regulate the vasodilatory/vasoconstrictory balance of pulmonary vessels. However, these treatment options are unable to stop the progression of, or reverse, an already established disease. Recent studies have advanced a metabolic dysregulation, featuring increased glutamine metabolism, as a mechanism driving PAH progression. Metabolic dysregulation in PAH leads to increased glutaminolysis to produce substrate to meet the high-energy requirement by hyperproliferative and apoptosis-resistant pulmonary vascular cells. This article explores the role of glutamate metabolism in PAH and how it could be targeted as an anti-remodeling therapeutic strategy.
Collapse
Affiliation(s)
- Richard Mprah
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | | | - Yusif I. Gyasi
- Department of Chemistry & Biochemistry, Central Michigan University, Mount Pleasant, TX, United States
| | | | | | | | - Maxwell Duah
- Haematology Department, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | | | - Qiao Weili
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Imbriani P, Tassone A, Meringolo M, Ponterio G, Madeo G, Pisani A, Bonsi P, Martella G. Loss of Non-Apoptotic Role of Caspase-3 in the PINK1 Mouse Model of Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20143407. [PMID: 31336695 PMCID: PMC6678522 DOI: 10.3390/ijms20143407] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022] Open
Abstract
Caspases are a family of conserved cysteine proteases that play key roles in multiple cellular processes, including programmed cell death and inflammation. Recent evidence shows that caspases are also involved in crucial non-apoptotic functions, such as dendrite development, axon pruning, and synaptic plasticity mechanisms underlying learning and memory processes. The activated form of caspase-3, which is known to trigger widespread damage and degeneration, can also modulate synaptic function in the adult brain. Thus, in the present study, we tested the hypothesis that caspase-3 modulates synaptic plasticity at corticostriatal synapses in the phosphatase and tensin homolog (PTEN) induced kinase 1 (PINK1) mouse model of Parkinson’s disease (PD). Loss of PINK1 has been previously associated with an impairment of corticostriatal long-term depression (LTD), rescued by amphetamine-induced dopamine release. Here, we show that caspase-3 activity, measured after LTD induction, is significantly decreased in the PINK1 knockout model compared with wild-type mice. Accordingly, pretreatment of striatal slices with the caspase-3 activator α-(Trichloromethyl)-4-pyridineethanol (PETCM) rescues a physiological LTD in PINK1 knockout mice. Furthermore, the inhibition of caspase-3 prevents the amphetamine-induced rescue of LTD in the same model. Our data support a hormesis-based double role of caspase-3; when massively activated, it induces apoptosis, while at lower level of activation, it modulates physiological phenomena, like the expression of corticostriatal LTD. Exploring the non-apoptotic activation of caspase-3 may contribute to clarify the mechanisms involved in synaptic failure in PD, as well as in view of new potential pharmacological targets.
Collapse
Affiliation(s)
- Paola Imbriani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Graziella Madeo
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Antonio Pisani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy.
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
5
|
Lei Y, Liu K, Hou L, Ding L, Li Y, Liu L. Small chaperons and autophagy protected neurons from necrotic cell death. Sci Rep 2017; 7:5650. [PMID: 28720827 PMCID: PMC5515951 DOI: 10.1038/s41598-017-05995-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/07/2017] [Indexed: 01/22/2023] Open
Abstract
Neuronal necrosis occurs during early phase of ischemic insult. However, our knowledge of neuronal necrosis is still inadequate. To study the mechanism of neuronal necrosis, we previously established a Drosophila genetic model of neuronal necrosis by calcium overloading through expression of a constitutively opened cation channel mutant. Here, we performed further genetic screens and identified a suppressor of neuronal necrosis, CG17259, which encodes a seryl-tRNA synthetase. We found that loss-of-function (LOF) CG17259 activated eIF2α phosphorylation and subsequent up-regulation of chaperons (Hsp26 and Hsp27) and autophagy. Genetically, down-regulation of eIF2α phosphorylation, Hsp26/Hsp27 or autophagy reduced the protective effect of LOF CG17259, indicating they function downstream of CG17259. The protective effect of these protein degradation pathways indicated activation of a toxic protein during neuronal necrosis. Our data indicated that p53 was likely one such protein, because p53 was accumulated in the necrotic neurons and down-regulation of p53 rescued necrosis. In the SH-SY5Y human cells, tunicamycin (TM), a PERK activator, promoted transcription of hsp27; and necrosis induced by glutamate could be rescued by TM, associated with reduced p53 accumulation. In an ischemic stroke model in rats, p53 protein was also increased, and TM treatment could reduce the p53 accumulation and brain damage.
Collapse
Affiliation(s)
- Ye Lei
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.,Aging and Disease lab of Xuanwu Hospital and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Kai Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lin Hou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.,Aging and Disease lab of Xuanwu Hospital and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Lianggong Ding
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China.,Aging and Disease lab of Xuanwu Hospital and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Yuhong Li
- Aging and Disease lab of Xuanwu Hospital and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Lei Liu
- Aging and Disease lab of Xuanwu Hospital and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Youanmen, Beijing, 100069, China.
| |
Collapse
|
6
|
Chen J, Li Z, Hatcher JT, Chen QH, Chen L, Wurster RD, Chan SL, Cheng Z. Deletion of TRPC6 Attenuates NMDA Receptor-Mediated Ca 2+ Entry and Ca 2+-Induced Neurotoxicity Following Cerebral Ischemia and Oxygen-Glucose Deprivation. Front Neurosci 2017; 11:138. [PMID: 28400714 PMCID: PMC5368256 DOI: 10.3389/fnins.2017.00138] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/06/2017] [Indexed: 12/21/2022] Open
Abstract
Transient receptor potential canonical 6 (TRPC6) channels are permeable to Na+ and Ca2+ and are widely expressed in the brain. In this study, the role of TRPC6 was investigated following ischemia/reperfusion (I/R) and oxygen-glucose deprivation (OGD). We found that TRPC6 expression was increased in wild-type (WT) mice cortical neurons following I/R and in primary neurons with OGD, and that deletion of TRPC6 reduced the I/R-induced brain infarct in mice and the OGD- /neurotoxin-induced neuronal death. Using live-cell imaging to examine intracellular Ca2+ levels ([Ca2+]i), we found that OGD induced a significant higher increase in glutamate-evoked Ca2+ influx compared to untreated control and such an increase was reduced by TRPC6 deletion. Enhancement of TRPC6 expression using AdCMV-TRPC6-GFP infection in WT neurons increased [Ca2+]i in response to glutamate application compared to AdCMV-GFP control. Inhibition of N-methyl-d-aspartic acid receptor (NMDAR) with MK801 decreased TRPC6-dependent increase of [Ca2+]i in TRPC6 infected cells, indicating that such a Ca2+ influx was NMDAR dependent. Furthermore, TRPC6-dependent Ca2+ influx was blunted by blockade of Na+ entry in TRPC6 infected cells. Finally, OGD-enhanced Ca2+ influx was reduced, but not completely blocked, in the presence of voltage-dependent Na+ channel blocker tetrodotoxin (TTX) and dl-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) blocker CNQX. Altogether, we concluded that I/R-induced brain damage was, in part, due to upregulation of TRPC6 in cortical neurons. We postulate that overexpression of TRPC6 following I/R may induce neuronal death partially through TRPC6-dependent Na+ entry which activated NMDAR, thus leading to a damaging Ca2+ overload. These findings may provide a potential target for future intervention in stroke-induced brain damage.
Collapse
Affiliation(s)
- Jin Chen
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Zhaozhong Li
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Jeffery T Hatcher
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University Houghton, MI, USA
| | - Li Chen
- Department of Clinical Laboratory, The First Central Hospital of Tianjin Tianjin, China
| | - Robert D Wurster
- Department of Cellular and Molecular Physiology, Stritch School of Medicine, Loyola University Maywood, IL, USA
| | - Sic L Chan
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Zixi Cheng
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaOrlando, FL, USA; Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaOrlando, FL, USA
| |
Collapse
|
7
|
Marosi K, Kim SW, Moehl K, Scheibye-Knudsen M, Cheng A, Cutler R, Camandola S, Mattson MP. 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons. J Neurochem 2016; 139:769-781. [PMID: 27739595 DOI: 10.1111/jnc.13868] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022]
Abstract
During fasting and vigorous exercise, a shift of brain cell energy substrate utilization from glucose to the ketone 3-hydroxybutyrate (3OHB) occurs. Studies have shown that 3OHB can protect neurons against excitotoxicity and oxidative stress, but the underlying mechanisms remain unclear. Neurons maintained in the presence of 3OHB exhibited increased oxygen consumption and ATP production, and an elevated NAD+ /NADH ratio. We found that 3OHB metabolism increases mitochondrial respiration which drives changes in expression of brain-derived neurotrophic factor (BDNF) in cultured cerebral cortical neurons. The mechanism by which 3OHB induces Bdnf gene expression involves generation of reactive oxygen species, activation of the transcription factor NF-κB, and activity of the histone acetyltransferase p300/EP300. Because BDNF plays important roles in synaptic plasticity and neuronal stress resistance, our findings suggest cellular signaling mechanisms by which 3OHB may mediate adaptive responses of neurons to fasting, exercise, and ketogenic diets.
Collapse
Affiliation(s)
- Krisztina Marosi
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Sang Woo Kim
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Keelin Moehl
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Aiwu Cheng
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Roy Cutler
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Sharma V, Thakur V, Singh SN, Guleria R. Tumor Necrosis Factor and Alzheimer's Disease: A Cause and Consequence Relationship. ACTA ACUST UNITED AC 2016. [DOI: 10.5455/bcp.20120112064639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Vivek Sharma
- Government College of Pharmacy, Rohru, Distt. Shimla-171207, Himachal Pradesh, India
| | - Vinay Thakur
- Government College of Pharmacy, Rohru, Distt. Shimla-171207, Himachal Pradesh, India
| | - Shesh Nath Singh
- Government College of Pharmacy, Rohru, Distt. Shimla-171207, Himachal Pradesh, India
| | - Rajender Guleria
- Government College of Pharmacy, Rohru, Distt. Shimla-171207, Himachal Pradesh, India
| |
Collapse
|
9
|
Bahar E, Kim H, Yoon H. ER Stress-Mediated Signaling: Action Potential and Ca(2+) as Key Players. Int J Mol Sci 2016; 17:ijms17091558. [PMID: 27649160 PMCID: PMC5037829 DOI: 10.3390/ijms17091558] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 01/24/2023] Open
Abstract
The proper functioning of the endoplasmic reticulum (ER) is crucial for multiple cellular activities and survival. Disturbances in the normal ER functions lead to the accumulation and aggregation of unfolded proteins, which initiates an adaptive response, the unfolded protein response (UPR), in order to regain normal ER functions. Failure to activate the adaptive response initiates the process of programmed cell death or apoptosis. Apoptosis plays an important role in cell elimination, which is essential for embryogenesis, development, and tissue homeostasis. Impaired apoptosis can lead to the development of various pathological conditions, such as neurodegenerative and autoimmune diseases, cancer, or acquired immune deficiency syndrome (AIDS). Calcium (Ca(2+)) is one of the key regulators of cell survival and it can induce ER stress-mediated apoptosis in response to various conditions. Ca(2+) regulates cell death both at the early and late stages of apoptosis. Severe Ca(2+) dysregulation can promote cell death through apoptosis. Action potential, an electrical signal transmitted along the neurons and muscle fibers, is important for conveying information to, from, and within the brain. Upon the initiation of the action potential, increased levels of cytosolic Ca(2+) (depolarization) lead to the activation of the ER stress response involved in the initiation of apoptosis. In this review, we discuss the involvement of Ca(2+) and action potential in ER stress-mediated apoptosis.
Collapse
Affiliation(s)
- Entaz Bahar
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea.
| | - Hyongsuk Kim
- Department of Electronics Engineering, Chonbuk National University, Jeonju 54896, Jeonbuk, Korea.
| | - Hyonok Yoon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea.
| |
Collapse
|
10
|
Wang JG, Wang YL, Xu F, Zhao JX, Zhou SY, Yu Y, Chazot PL, Wang XF, Lu CB. Activity- and development-dependent down-regulation of TARPγ8 and GluA1 in cultured rat hippocampal neurons. Acta Pharmacol Sin 2016; 37:303-11. [PMID: 26725511 DOI: 10.1038/aps.2015.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/26/2015] [Indexed: 01/16/2023]
Abstract
AIM Transmembrane AMPA receptor regulatory proteins (TARPs) regulate the trafficking and expression of AMPA receptors that are essential for the fast excitatory synaptic transmission and plasticity in the brain. This study aimed to investigate the activity-dependent regulation of TARPγ8 in cultured rat hippocampal neurons. METHODS Rat hippocampal neurons cultured for 7-8 DIV or 17-18 DIV were exposed to the AMPA receptor agonist AMPA at a non-toxic concentration (100 μmol/L) for 4 h. The protein levels of TARPγ8 and AMPA receptor subunits (GluA1 and GluA2) were measured using Western blotting analysis. AMPA-induced currents were recorded in the neurons using a whole-cell recording method. RESULTS Four-hour exposure to AMPA significantly decreased the protein levels of TARPγ8 and GluA1 in the neurons at 17-18 DIV, but did not change the protein level of TARPγ8 in the neurons cultured at 7-8 DIV. AMPA-induced down-regulation of TARPγ8 and GluA1 was largely blocked by the calpain inhibitor calpeptin (50 μmol/L), but not affected by the caspase inhibitor zVAD (50 μmol/L). Four-hour exposure to AMPA significantly decreased AMPA-induced currents in the neurons at 17-18 DIV, which was blocked by co-exposure to calpeptin (50 μmol/L). CONCLUSION The down-regulation of TARPγ8 and GluA1 protein levels and AMPA-induced currents in cultured rat hippocampal neurons is activity- and development-dependent, and mediated by endogenous calpain.
Collapse
|
11
|
Brusco J, Haas K. Interactions between mitochondria and the transcription factor myocyte enhancer factor 2 (MEF2) regulate neuronal structural and functional plasticity and metaplasticity. J Physiol 2015; 593:3471-81. [PMID: 25581818 DOI: 10.1113/jphysiol.2014.282459] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/21/2014] [Indexed: 12/20/2022] Open
Abstract
The classical view of mitochondria as housekeeping organelles acting in the background to simply maintain cellular energy demands has been challenged by mounting evidence of their direct and active participation in synaptic plasticity in neurons. Time-lapse imaging has revealed that mitochondria are motile in dendrites, with their localization and fusion and fission events regulated by synaptic activity. The positioning of mitochondria directly influences function of nearby synapses through multiple pathways including control over local concentrations of ATP, Ca(2+) and reactive oxygen species. Recent studies have also shown that mitochondrial protein cascades, classically associated with apoptosis, are involved in neural plasticity in healthy cells. These findings link mitochondria to the plasticity- and metaplasticity-associated activity-dependent transcription factor myocyte enhancer factor 2 (MEF2), further repositioning mitochondria as potential command centres for regulation of synaptic plasticity. Intriguingly, MEF2 and mitochondrial functions appear to be intricately intertwined, as MEF2 is a target of mitochondrial apoptotic caspases and, in turn, MEF2 regulates mitochondrial genome transcription essential for production of superoxidase and hydrogen peroxidase. Here, we review evidence supporting mitochondria as central organelles controlling the spatiotemporal expression of neuronal plasticity, and attempt to disentangle the MEF2-mitochondria relationship mediating these functions.
Collapse
Affiliation(s)
- Janaina Brusco
- Department of Cellular and Physiological Sciences and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada, V6T2B5
| | - Kurt Haas
- Department of Cellular and Physiological Sciences and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada, V6T2B5
| |
Collapse
|
12
|
Mechanism of Oxidative Stress and Synapse Dysfunction in the Pathogenesis of Alzheimer's Disease: Understanding the Therapeutics Strategies. Mol Neurobiol 2014; 53:648-661. [PMID: 25511446 DOI: 10.1007/s12035-014-9053-6] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/28/2014] [Indexed: 10/24/2022]
Abstract
Synapses are formed by interneuronal connections that permit a neuronal cell to pass an electrical or chemical signal to another cell. This passage usually gets damaged or lost in most of the neurodegenerative diseases. It is widely believed that the synaptic dysfunction and synapse loss contribute to the cognitive deficits in patients with Alzheimer's disease (AD). Although pathological hallmarks of AD are senile plaques, neurofibrillary tangles, and neuronal degeneration which are associated with increased oxidative stress, synaptic loss is an early event in the pathogenesis of AD. The involvement of major kinases such as mitogen-activated protein kinase (MAPK), extracellular receptor kinase (ERK), calmodulin-dependent protein kinase (CaMKII), glycogen synthase-3β (GSK-3β), cAMP response element-binding protein (CREB), and calcineurin is dynamically associated with oxidative stress-mediated abnormal hyperphosphorylation of tau and suggests that alteration of these kinases could exclusively be involved in the pathogenesis of AD. N-methyl-D-aspartate (NMDA) receptor (NMDAR) activation and beta amyloid (Aβ) toxicity alter the synapse function, which is also associated with protein phosphatase (PP) inhibition and tau hyperphosphorylation (two main events of AD). However, the involvement of oxidative stress in synapse dysfunction is poorly understood. Oxidative stress and free radical generation in the brain along with excitotoxicity leads to neuronal cell death. It is inferred from several studies that excitotoxicity, free radical generation, and altered synaptic function encouraged by oxidative stress are associated with AD pathology. NMDARs maintain neuronal excitability, Ca(2+) influx, and memory formation through mechanisms of synaptic plasticity. Recently, we have reported the mechanism of the synapse redox stress associated with NMDARs altered expression. We suggest that oxidative stress mediated through NMDAR and their interaction with other molecules might be a driving force for tau hyperphosphorylation and synapse dysfunction. Thus, understanding the oxidative stress mechanism and degenerating synapses is crucial for the development of therapeutic strategies designed to prevent AD pathogenesis.
Collapse
|
13
|
Non-apoptotic role of caspase-3 in synapse refinement. Neurosci Bull 2014; 30:667-70. [PMID: 25027781 DOI: 10.1007/s12264-014-1454-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/04/2014] [Indexed: 01/19/2023] Open
Abstract
Caspases, a family of cysteine proteases, mediate programmed cell death during early neural development and neurodegeneration, as well as following neurotoxic insults. Notably, accumulating lines of evidence have shown non-apoptotic roles of caspases in the structural and functional plasticity of neuronal circuits under physiological conditions, such as growth-cone dynamics and axonal/dendritic pruning, as well as neuronal excitability and plasticity. Here, we summarize recent progress on the roles of caspases in synaptic refinement.
Collapse
|
14
|
Mourão FAG, Leite HR, de Carvalho LED, Ferreira E Vieira TH, Pinto MCX, de Castro Medeiros D, Andrade ILL, Gonçalves DF, Pereira GS, Dutra Moraes MF, Massensini AR. Neuroprotective effect of exercise in rat hippocampal slices submitted to in vitro ischemia is promoted by decrease of glutamate release and pro-apoptotic markers. J Neurochem 2014; 131:65-73. [PMID: 24903976 DOI: 10.1111/jnc.12786] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/14/2014] [Accepted: 05/30/2014] [Indexed: 01/08/2023]
Abstract
The role of physical exercise as a neuroprotective agent against ischemic injury has been extensively discussed. Nevertheless, the mechanisms underlying the effects of physical exercise on cerebral ischemia remain poorly understood. Here, we investigate the hypothesis that physical exercise increases ischemic tolerance by decreasing the induction of cellular apoptosis and glutamate release. Rats (n = 50) were submitted to a swimming exercise protocol for 8 weeks. Hippocampal slices were then submitted to oxygen and glucose deprivation. Cellular viability, pro-apoptotic markers (Caspase 8, Caspase 9, Caspase 3, and apoptosis-inducing factor), and glutamate release were analyzed. The percentage of cell death, the amount of glutamate release, and the expression of the apoptotic markers were all decreased in the exercise group when compared to the sedentary group after oxygen and glucose deprivation. Our results suggest that physical exercise protects hippocampal slices from the effects of oxygen and glucose deprivation, probably by a mechanism involving both the decrease of glutamatergic excitotoxicity and apoptosis induction.
Collapse
Affiliation(s)
- Flávio Afonso Gonçalves Mourão
- Núcleo de Neurociências (NNC), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Canu N, Ciotti MT, Pollegioni L. Serine racemase: a key player in apoptosis and necrosis. Front Synaptic Neurosci 2014; 6:9. [PMID: 24795622 PMCID: PMC4000995 DOI: 10.3389/fnsyn.2014.00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/28/2014] [Indexed: 12/14/2022] Open
Abstract
A fine balance between cell survival and cell death is required to sculpt the nervous system during development. However, an excess of cell death can occur following trauma, exposure to neurotoxins or alcohol, and some developmental and neurodegenerative diseases, such as Alzheimer's disease (AD). N-Methyl-D-aspartate receptors (NMDARs) support synaptic plasticity and survival of many neuronal populations whereas inappropriate activation may promote various forms of cell death, apoptosis, and necrosis representing the two extremes of a continuum of cell death processes both “in vitro” and “in vivo.” Hence, by identifying the switches controlling pro-survival vs. apoptosis and apoptosis vs. pro-excitotoxic outcome of NMDAR stimulation, NMDAR modulators could be developed that selectively block the cell death enhancing pro-survival signaling or synaptic plasticity mediated by NMDAR. Among these modulators, a role is emerging for the enzyme serine racemase (SR) that synthesizes D-serine, a key co-agonist with glutamate at NMDAR. This review summarizes the experimental evidence from “in vitro” neuronal cultures—with special emphasis on cerebellar granule neurons (CGNs)—and “in vivo” models of neurodegeneration, where the dual role of the SR/D-serine pathway as a master regulator of apoptosis and the apoptosis-necrosis shift will be discussed.
Collapse
Affiliation(s)
- Nadia Canu
- Dipartimento di Medicina dei Sistemi, Università degli Studi di Roma Roma, Italy ; Istituto di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche Roma, Italy
| | - Maria Teresa Ciotti
- Istituto di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche Roma, Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria Varese, Italy ; Centro Interuniversitario di Ricerca in Biotecnologie Proteiche "The Protein Factory," Politecnico di Milano, ICRM-CNR Milano and Università degli studi dell'Insubria Milano, Italy
| |
Collapse
|
16
|
Chen M, Sun HY, Hu P, Wang CF, Li BX, Li SJ, Li JJ, Tan HY, Gao TM. Activation of BKCa Channels Mediates Hippocampal Neuronal Death After Reoxygenation and Reperfusion. Mol Neurobiol 2013; 48:794-807. [DOI: 10.1007/s12035-013-8467-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/26/2013] [Indexed: 11/29/2022]
|
17
|
Kang D, Park W, Lee S, Kim JH, Song JJ. Crosstalk from survival to necrotic death coexists in DU-145 cells by curcumin treatment. Cell Signal 2013; 25:1288-300. [DOI: 10.1016/j.cellsig.2013.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/29/2012] [Accepted: 01/07/2013] [Indexed: 12/11/2022]
|
18
|
Puyal J, Ginet V, Clarke PGH. Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Prog Neurobiol 2013; 105:24-48. [PMID: 23567504 DOI: 10.1016/j.pneurobio.2013.03.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 03/05/2013] [Accepted: 03/13/2013] [Indexed: 02/09/2023]
Abstract
There is currently no approved neuroprotective pharmacotherapy for acute conditions such as stroke and cerebral asphyxia. One of the reasons for this may be the multiplicity of cell death mechanisms, because inhibition of a particular mechanism leaves the brain vulnerable to alternative ones. It is therefore essential to understand the different cell death mechanisms and their interactions. We here review the multiple signaling pathways underlying each of the three main morphological types of cell death--apoptosis, autophagic cell death and necrosis--emphasizing their importance in the neuronal death that occurs during cerebral ischemia and hypoxia-ischemia, and we analyze the interactions between the different mechanisms. Finally, we discuss the implications of the multiplicity of cell death mechanisms for the design of neuroprotective strategies.
Collapse
Affiliation(s)
- Julien Puyal
- Département des Neurosciences Fondamentales, Université de Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland.
| | | | | |
Collapse
|
19
|
Spatiotemporal resolution of BDNF neuroprotection against glutamate excitotoxicity in cultured hippocampal neurons. Neuroscience 2013; 237:66-86. [PMID: 23384605 DOI: 10.1016/j.neuroscience.2013.01.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/28/2013] [Indexed: 02/02/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) protects hippocampal neurons from glutamate excitotoxicity as determined by analysis of chromatin condensation, through activation of extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI3-K) signaling pathways. However, it is still unknown whether BDNF also prevents the degeneration of axons and dendrites, and the functional demise of synapses, which would be required to preserve neuronal activity. Herein, we have studied the time-dependent changes in several neurobiological markers, and the regulation of proteolytic mechanisms in cultured rat hippocampal neurons, through quantitative western blot and immunocytochemistry. Calpain activation peaked immediately after the neurodegenerative input, followed by a transient increase in ubiquitin-conjugated proteins and increased abundance of cleaved-caspase-3. Proteasome and calpain inhibition did not reproduce the protective effect of BDNF and caspase inhibition in preventing chromatin condensation. However, proteasome and calpain inhibition did protect the neuronal markers for dendrites (MAP-2), axons (Neurofilament-H) and the vesicular glutamate transporters (VGLUT1-2), whereas caspase inhibition was unable to mimic the protective effect of BDNF on neurites and synaptic markers. BDNF partially prevented the downregulation of synaptic activity measured by the KCl-evoked glutamate release using a Förster (Fluorescence) resonance energy transfer (FRET) glutamate nanosensor. These results translate a time-dependent activation of proteases and spatial segregation of these mechanisms, where calpain activation is followed by proteasome deregulation, from neuronal processes to the soma, and finally by caspase activation in the cell body. Moreover, PI3-K and PLCγ small molecule inhibitors significantly blocked the protective action of BDNF, suggesting an activity-dependent mechanism of neuroprotection. Ultimately, we hypothesize that neuronal repair after a degenerative insult is initiated at the synaptic level.
Collapse
|
20
|
Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 2012; 698:6-18. [PMID: 23123057 DOI: 10.1016/j.ejphar.2012.10.032] [Citation(s) in RCA: 476] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 09/26/2012] [Accepted: 10/06/2012] [Indexed: 12/13/2022]
Abstract
Glutamate is one of the most prominent neurotransmitter in the body, present in over 50% of nervous tissue and plays an important role in neuronal excitation. This neuronal excitation is short-lived and is followed by depression. Multiple abnormal triggers such as energy deficiency, oxidative stress, mitochondrial dysfunction, calcium overload, etc can lead to aberration in neuronal excitation process. Such an aberration, serves as a common pool or bridge between abnormal triggers and deleterious signaling processes with which central neurons cannot cope up, leading to death. Excitotoxicity is the pathological process by which nerve cells are damaged and killed by excessive stimulation by neurotransmitters such as glutamate and similar substances. Such excitotoxic neuronal death has been implicated in spinal cord injury, stroke, traumatic brain injury, hearing loss and in neurodegenerative diseases of the central nervous system such as stroke, epilepsy, multiple sclerosis, Alzheimer disease, Amyltropic lateral sclerosis, Parkinson's disease, Huntington disease and alcohol withdrawal. This review mainly emphasizes the triggering events which sustain neuronal excitation, role of calcium, mitochondrial dysfunction, ROS, NO, chloride homeostasis and eicosanoids pathways. Further, a brief introduction about the recent research occurring in the treatment of various neurodegenerative diseases, including a summary of the presumed physiologic mechanisms behind the pharmacology of these disorders.
Collapse
Affiliation(s)
- Ankita Mehta
- Neuropharmacology Division, ISF College of Pharmacy, Ferozpur Road, Ghal Kalan, Moga 142 001, Punjab, India
| | | | | | | | | |
Collapse
|
21
|
Abstract
Death-mediating proteases such as caspases and caspase-3 in particular, have been implicated in neurodegenerative processes, aging and Alzheimer's disease. However, emerging evidence suggests that in addition to their classical role in cell death, caspases play a key role in modulating synaptic function. It is remarkable that active caspases-3, which can trigger widespread damage and degeneration, aggregates in structures as delicate as synapses and persists in neurons without causing acute cell death. Here, we evaluate this dichotomy, and discuss the hypothesis that caspase-3 may be a bifurcation point in cellular signaling, able to orient the neuronal response to stress down either pathological/apoptotic pathways or towards physiological cellular remodeling. We propose that temporal, spatial and other regulators of caspase activity are key determinants of the ultimate effect of caspase-3 activation in neurons. This concept has implications for differential roles of caspase-3 activation across the lifespan. Specifically, we propose that limited caspase-3 activation is critical for synaptic function in the healthy adult brain while chronic activation is involved in degenerative processes in the aging brain.
Collapse
|
22
|
Abstract
Major psychiatric illnesses such as mood disorders and schizophrenia are chronic, recurrent mental illnesses that affect the lives of millions of individuals. Although these disorders have traditionally been viewed as 'neurochemical diseases', it is now clear that they are associated with impairments of synaptic plasticity and cellular resilience. Although most patients with these disorders do not have classic mitochondrial disorders, there is a growing body of evidence to suggest that impaired mitochondrial function may affect key cellular processes, thereby altering synaptic functioning and contributing to the atrophic changes that underlie the deteriorating long-term course of these illnesses. Enhancing mitochondrial function could represent an important avenue for the development of novel therapeutics and also presents an opportunity for a potentially more efficient drug-development process.
Collapse
|
23
|
Neuronal death by repetitive cortical spreading depression in juvenile rat brain. Exp Neurol 2012; 233:438-46. [DOI: 10.1016/j.expneurol.2011.11.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/13/2011] [Accepted: 11/10/2011] [Indexed: 01/08/2023]
|
24
|
Lobo AC, Gomes JR, Catarino T, Mele M, Fernandez P, Inácio AR, Bahr BA, Santos AE, Wieloch T, Carvalho AL, Duarte CB. Cleavage of the vesicular glutamate transporters under excitotoxic conditions. Neurobiol Dis 2011; 44:292-303. [DOI: 10.1016/j.nbd.2011.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/21/2011] [Accepted: 07/11/2011] [Indexed: 10/17/2022] Open
|
25
|
Zhang Q, Shen M, Ding M, Shen D, Ding F. The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway. Toxicol Appl Pharmacol 2011; 252:62-72. [DOI: 10.1016/j.taap.2011.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/18/2011] [Accepted: 02/04/2011] [Indexed: 01/18/2023]
|
26
|
Li Z, Jo J, Jia JM, Lo SC, Whitcomb DJ, Jiao S, Cho K, Sheng M. Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 2010; 141:859-71. [PMID: 20510932 DOI: 10.1016/j.cell.2010.03.053] [Citation(s) in RCA: 426] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/28/2009] [Accepted: 03/22/2010] [Indexed: 01/05/2023]
Abstract
NMDA receptor-dependent synaptic modifications, such as long-term potentiation (LTP) and long-term depression (LTD), are essential for brain development and function. LTD occurs mainly by the removal of AMPA receptors from the postsynaptic membrane, but the underlying molecular mechanisms remain unclear. Here, we show that activation of caspase-3 via mitochondria is required for LTD and AMPA receptor internalization in hippocampal neurons. LTD and AMPA receptor internalization are blocked by peptide inhibitors of caspase-3 and -9. In hippocampal slices from caspase-3 knockout mice, LTD is abolished whereas LTP remains normal. LTD is also prevented by overexpression of the anti-apoptotic proteins XIAP or Bcl-xL, and by a mutant Akt1 protein that is resistant to caspase-3 proteolysis. NMDA receptor stimulation that induces LTD transiently activates caspase-3 in dendrites, without causing cell death. These data indicate an unexpected causal link between the molecular mechanisms of apoptosis and LTD.
Collapse
Affiliation(s)
- Zheng Li
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sigma-1 receptors regulate hippocampal dendritic spine formation via a free radical-sensitive mechanism involving Rac1xGTP pathway. Proc Natl Acad Sci U S A 2009; 106:22468-73. [PMID: 20018732 DOI: 10.1073/pnas.0909089106] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sigma-1 receptors (Sig-1Rs) are endoplasmic reticulum (ER)-resident proteins known to be involved in learning and memory. Dendritic spines in hippocampal neurons play important roles in neuroplasticity and learning and memory. This study tested the hypothesis that Sig-1Rs might regulate denritic spine formation in hippocampal neurons and examined potential mechanisms therein. In rat hippocampal primary neurons, the knockdown of Sig-1Rs by siRNAs causes a deficit in the formation of dendritic spines that is unrelated to ER Ca(2+) signaling or apoptosis, but correlates with the mitochondrial permeability transition and cytochrome c release, followed by caspase-3 activation, Tiam1 cleavage, and a reduction in Rac1.GTP. Sig-1R-knockdown neurons contain higher levels of free radicals when compared to control neurons. The activation of superoxide dismutase or the application of the hydroxyl-free radical scavenger N-acetyl cysteine (NAC) to the Sig-1R-knockdown neurons rescues dendritic spines and mitochondria from the deficits caused by Sig-1R siRNA. Further, the caspase-3-resistant TIAM1 construct C1199DN, a stable guanine exchange factor able to constitutively activate Rac1 in the form of Rac1.GTP, also reverses the siRNA-induced dendritic spine deficits. In addition, constitutively active Rac1.GTP reverses this deficit. These results implicate Sig-1Rs as endogenous regulators of hippopcampal dendritic spine formation and suggest a free radical-sensitive ER-mitochondrion-Rac1.GTP pathway in the regulation of dendritic spine formation in the hippocampus.
Collapse
|
28
|
Beretta F, Bassani S, Binda E, Verpelli C, Bello L, Galli R, Passafaro M. The GluR2 subunit inhibits proliferation by inactivating Src-MAPK signalling and induces apoptosis by means of caspase 3/6-dependent activation in glioma cells. Eur J Neurosci 2009; 30:25-34. [PMID: 19558602 DOI: 10.1111/j.1460-9568.2009.06804.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glioblastoma multiforme (GBM) is the most invasive and undifferentiated type of brain tumour, and so surgical interventions are ineffective. We found that GluR2 is absent in fast-growing GBM-derived tumour stem cells and high-grade glioma specimens, but is expressed in slow-growing stem cells and low-grade glioma specimens. More remarkably, GluR2 overexpression in U-87MG cells inhibits proliferation by inactivating extracellular signal-regulated kinase (ERK)1/2-Src phosphorylation and induces apoptosis. Mechanistically, we observed that the scaffold protein GRIP is essential for the effect of GluR2 on ERK-Src inactivation. These findings indicate that the absence of the GluR2 subunit favours malignancy.
Collapse
Affiliation(s)
- Francesca Beretta
- DTI Dulbecco Telethon Institute, Via Vanvitelli 32, Milan 20129, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Delgado-Rubín A, Chowen JA, Argente J, Frago LM. Growth hormone-releasing peptide 6 protection of hypothalamic neurons from glutamate excitotoxicity is caspase independent and not mediated by insulin-like growth factor I. Eur J Neurosci 2009; 29:2115-24. [DOI: 10.1111/j.1460-9568.2009.06770.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
30
|
Mattson MP, Gleichmann M, Cheng A. Mitochondria in neuroplasticity and neurological disorders. Neuron 2009; 60:748-66. [PMID: 19081372 DOI: 10.1016/j.neuron.2008.10.010] [Citation(s) in RCA: 795] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/29/2008] [Accepted: 10/03/2008] [Indexed: 12/12/2022]
Abstract
Mitochondrial electron transport generates the ATP that is essential for the excitability and survival of neurons, and the protein phosphorylation reactions that mediate synaptic signaling and related long-term changes in neuronal structure and function. Mitochondria are highly dynamic organelles that divide, fuse, and move purposefully within axons and dendrites. Major functions of mitochondria in neurons include the regulation of Ca(2+) and redox signaling, developmental and synaptic plasticity, and the arbitration of cell survival and death. The importance of mitochondria in neurons is evident in the neurological phenotypes in rare diseases caused by mutations in mitochondrial genes. Mitochondria-mediated oxidative stress, perturbed Ca(2+) homeostasis, and apoptosis may also contribute to the pathogenesis of prominent neurological diseases including Alzheimer's, Parkinson's, and Huntington's diseases; stroke; amyotrophic lateral sclerosis; and psychiatric disorders. Advances in understanding the molecular and cell biology of mitochondria are leading to novel approaches for the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
31
|
Mattson MP. Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann N Y Acad Sci 2009; 1144:97-112. [PMID: 19076369 DOI: 10.1196/annals.1418.005] [Citation(s) in RCA: 427] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glutamate's role as a neurotransmitter at synapses has been known for 40 years, but glutamate has since been shown to regulate neurogenesis, neurite outgrowth, synaptogenesis, and neuron survival in the developing and adult mammalian nervous system. Cell-surface glutamate receptors are coupled to Ca(2+) influx and release from endoplasmic reticulum stores, which causes rapid (kinase- and protease-mediated) and delayed (transcription-dependent) responses that change the structure and function of neurons. Neurotrophic factors and glutamate interact to regulate developmental and adult neuroplasticity. For example, glutamate stimulates the production of brain-derived neurotrophic factor (BDNF), which, in turn, modifies neuronal glutamate sensitivity, Ca(2+) homeostasis, and plasticity. Neurotrophic factors may modify glutamate signaling directly, by changing the expression of glutamate receptor subunits and Ca(2+)-regulating proteins, and also indirectly by inducing the production of antioxidant enzymes, energy-regulating proteins, and antiapoptotic Bcl-2 family members. Excessive activation of glutamate receptors, under conditions of oxidative and metabolic stress, may contribute to neuronal dysfunction and degeneration in diseases ranging from stroke and Alzheimer's disease to psychiatric disorders. By enhancing neurotrophic factor signaling, environmental factors such as exercise and dietary energy restriction, and chemicals such as antidepressants may optimize glutamatergic signaling and protect against neurological disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA.
| |
Collapse
|
32
|
Abstract
There is a growing consensus that the various forms of cell death (necrosis, apoptosis and autophagy) are not separated by strict boundaries, but rather share molecular effectors and signaling routes. Among the latter, a clear role is played by calcium (Ca(2+)), the ubiquitous second messenger involved in the control of a broad variety of physiological events. Fine tuning of intracellular Ca(2+) homeostasis by anti- and proapoptotic proteins shapes the Ca(2+) signal to which mitochondria and other cellular effectors are exposed, and hence the efficiency of various cell death inducers. Here, we will review: (i) the evidence linking calcium homeostasis to the regulation of apoptotic, and more recently autophagic cell death, (ii) the discussion of mitochondria as a critical, although not unique checkpoint and (iii) the molecular and functional elucidation of ER/mitochondria contacts, corresponding to the mitochondria-associated membrane (MAM) subfraction and proposed to be a specialized signaling microdomain.
Collapse
|
33
|
Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology 2008; 33:2551-65. [PMID: 18235426 DOI: 10.1038/sj.npp.1301671] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bipolar disorder (BPD) has traditionally been conceptualized as a neurochemical disorder, but there is mounting evidence for impairments of cellular plasticity and resilience. Here, we review and synthesize the evidence that critical aspects of mitochondrial function may play an integral role in the pathophysiology and treatment of BPD. Retrospective database searches were performed, including MEDLINE, abstract booklets, and conference proceedings. Articles were also obtained from references therein and personal communications, including original scientific work, reviews, and meta-analyses of the literature. Material regarding the potential role of mitochondrial function included genetic studies, microarray studies, studies of intracellular calcium regulation, neuroimaging studies, postmortem brain studies, and preclinical and clinical studies of cellular plasticity and resilience. We review these data and discuss their implications not only in the context of changing existing conceptualizations regarding the pathophysiology of BPD, but also for the strategic development of improved therapeutics. We have focused on specific aspects of mitochondrial dysfunction that may have major relevance for the pathophysiology and treatment of BPD. Notably, we discuss calcium dysregulation, oxidative phosphorylation abnormalities, and abnormalities in cellular resilience and synaptic plasticity. Accumulating evidence from microarray studies, biochemical studies, neuroimaging, and postmortem brain studies all support the role of mitochondrial dysfunction in the pathophysiology of BPD. We propose that although BPD is not a classic mitochondrial disease, subtle deficits in mitochondrial function likely play an important role in various facets of BPD, and that enhancing mitochondrial function may represent a critical component for the optimal long-term treatment of the disorder.
Collapse
|
34
|
Luvisetto S, Basso E, Petronilli V, Bernardi P, Forte M. Enhancement of anxiety, facilitation of avoidance behavior, and occurrence of adult-onset obesity in mice lacking mitochondrial cyclophilin D. Neuroscience 2008; 155:585-96. [PMID: 18621101 PMCID: PMC3057224 DOI: 10.1016/j.neuroscience.2008.06.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 06/16/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
In this report, we have assessed the behavioral responses of mice missing the Ppif gene (CyPD-KO), encoding mitochondrial cyclophilin D (CyPD). Mitochondrial CyPD is a key modulator of the mitochondrial permeability transition which is involved in the regulation of calcium- and oxidative damage-induced cell death. Behavioral screening of CyPD-KO mice (ranging between 4 and 15 months of age) was accomplished using a battery of behavioral paradigms which included testing of motor functions, exploratory activity, and anxiety/emotionality, as well as learning and memory skills. We found that, compared with wild-type mice, CyPD-KO mice were (i) more anxious and less explorative in open field and elevated plus maze and (ii) performed better in learning and memory of avoidance tasks, such as active and passive avoidance. However, the absence of CyPD did not alter the nociceptive threshold for thermal stimuli. Finally, deletion of CyPD caused also an abnormal accumulation of white adipose tissue resulting in adult-onset obesity, which was not dependent on increased food and/or water intake. Taken together, our results suggest a new fundamental role of mitochondrial CyPD in basal brain functions and body weight homeostasis.
Collapse
Affiliation(s)
- S Luvisetto
- CNR Institute of Neuroscience, Psychobiology and Psychopharmacology, Via del Fosso di Fiorano 64, I-00143 Roma, Italy.
| | | | | | | | | |
Collapse
|
35
|
Juhaszova M, Wang S, Zorov DB, Nuss HB, Gleichmann M, Mattson MP, Sollott SJ. The identity and regulation of the mitochondrial permeability transition pore: where the known meets the unknown. Ann N Y Acad Sci 2008; 1123:197-212. [PMID: 18375592 DOI: 10.1196/annals.1420.023] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The mitochondrial permeability transition (MPT) pore complex is a key participant in the machinery that controls mitochondrial fate and, consequently, cell fate. The quest for the pore identity has been ongoing for several decades and yet the main structure remains unknown. Established "dogma" proposes that the core of the MPT pore is composed of an association of voltage-dependent anion channel (VDAC) and adenine nucleotide translocase (ANT). Recent genetic knockout experiments contradict this commonly accepted interpretation and provide a basis for substantial revision of the MPT pore identity. There is now sufficient evidence to exclude VDAC and ANT as the main pore structural components. Regarding MPT pore regulation, the role of cyclophilin D is confirmed and ANT may still serve some regulatory function, although the involvement of hexokinase II and creatine kinase remains unresolved. When cell protection signaling pathways are activated, we have found that the Bcl-2 family members relay the signal from glycogen synthase kinase-3 beta onto a target at or in close proximity to the pore. Our experimental findings in intact cardiac myocytes and neurons indicate that the current "dogma" related to the role of Ca2+ in MPT induction requires reevaluation. Emerging evidence suggests that after injury-producing stresses, reactive oxygen species (but not Ca2+) are largely responsible for the pore induction. In this article we discuss the current state of knowledge and provide new data related to the MPT pore structure and regulation.
Collapse
Affiliation(s)
- Magdalena Juhaszova
- Laboratory of Cardiovascular Science, Gerontology Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224-6825, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Guo Z, Jiang H, Xu X, Duan W, Mattson MP. Leptin-mediated cell survival signaling in hippocampal neurons mediated by JAK STAT3 and mitochondrial stabilization. J Biol Chem 2007; 283:1754-1763. [PMID: 17993459 DOI: 10.1074/jbc.m703753200] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Leptin plays a pivotal role in the regulation of energy homeostasis and metabolism, primarily by acting on neurons in the hypothalamus that control food intake. However, leptin receptors are more widely expressed in the brain suggesting additional, as yet unknown, functions of leptin. Here we show that both embryonic and adult hippocampal neurons express leptin receptors coupled to activation of STAT3 and phosphatidylinositol 3-kinase-Akt signaling pathways. Leptin protects hippocampal neurons against cell death induced by neurotrophic factor withdrawal and excitotoxic and oxidative insults. The neuroprotective effect of leptin is antagonized by the JAK2-STAT3 inhibitor AG-490, STAT3 decoy DNA, and phosphatidylinositol 3-kinase/Akt inhibitors but not by an inhibitor of MAPK. Leptin induces the production of manganese superoxide dismutase and the anti-apoptotic protein Bcl-xL, and stabilizes mitochondrial membrane potential and lessens mitochondrial oxidative stress. Leptin receptor-deficient mice (db/db mice) are more vulnerable to seizure-induced hippocampal damage, and intraventricular administration of leptin protects neurons against seizures. By enhancing mitochondrial resistance to apoptosis and excitotoxicity, our findings suggest that leptin signaling serves a neurotrophic function in the developing and adult hippocampus.
Collapse
Affiliation(s)
- Zhihong Guo
- Laboratory of Neurosciences and National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Haiyang Jiang
- Laboratory of Neurosciences and National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Xiangru Xu
- Laboratory of Neurosciences and National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Wenzhen Duan
- Laboratory of Neurosciences and National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Mark P Mattson
- Laboratory of Neurosciences and National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224; Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
| |
Collapse
|
37
|
Waataja JJ, Kim HJ, Roloff AM, Thayer SA. Excitotoxic loss of post-synaptic sites is distinct temporally and mechanistically from neuronal death. J Neurochem 2007; 104:364-75. [PMID: 17944868 DOI: 10.1111/j.1471-4159.2007.04973.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dendritic degeneration and loss of synaptic proteins are early events correlated with functional decline in neurodegenerative disease. The temporal and mechanistic relationship between synapse loss and cell death, however, remains unclear. We used confocal microscopy and image processing to count post-synaptic sites on rat hippocampal neurons by expressing post-synaptic density protein 95 fused to green fluorescent protein. Fluorescent puncta co-localized with neurotransmitter release sites, NMDA-induced Ca2+ increases and NMDA receptor immunoreactivity. During excitotoxic neurodegeneration, synaptic sites were lost and synaptic transmission impaired. These changes were mediated by NMDA receptors and required Ca2+-dependent activation of the proteasome pathway. Tracking synapses from the same cell following brief neurotoxic insult revealed transient loss followed by recovery. The time-course, concentration-dependence and mechanism for loss of post-synaptic sites were distinct from those leading to cell death. Cells expressing p14ARF, which inhibits ubiquitination of post-synaptic density protein 95 and prevents loss of synaptic sites, displayed an increased sensitivity to glutamate-induced cell death. Thus, excitotoxic synapse loss may be a disease-modifying process rather than an obligatory step leading to cell death. These results demonstrate the importance of assessing synaptic function independent of neuronal survival during neurodegeneration and indicate that this approach will be useful for identifying toxins that degrade synaptic connections and for screening for agents that protect synaptic function.
Collapse
Affiliation(s)
- Jonathan J Waataja
- Department of Pharmacology and Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
38
|
Huesmann GR, Clayton DF. Dynamic role of postsynaptic caspase-3 and BIRC4 in zebra finch song-response habituation. Neuron 2006; 52:1061-72. [PMID: 17178408 PMCID: PMC1847391 DOI: 10.1016/j.neuron.2006.10.033] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 09/07/2006] [Accepted: 10/30/2006] [Indexed: 02/06/2023]
Abstract
Activation of the protease caspase-3 is commonly thought to cause apoptotic cell death. Here, we show that caspase-3 activity is regulated at postsynaptic sites in brain following stimuli associated with memory (neural activation and subsequent response habituation) instead of cell death. In the zebra finch auditory forebrain, the concentration of caspase-3 active sites increases briefly within minutes after exposure to tape-recorded birdsong. With confocal and immunoelectron microscopy, we localize the activated enzyme to dendritic spines. The activated caspase-3 protein is present even in unstimulated brain but bound to an endogenous inhibitor, BIRC4 (xIAP), suggesting a mechanism for rapid release and sequestering at specific synaptic sites. Caspase-3 activity is necessary to consolidate a persistent physiological trace of the song stimulus, as demonstrated using pharmacological interference and the zenk gene habituation assay. Thus, the brain appears to have adapted a core component of cell death machinery to serve a unique role in learning and memory.
Collapse
Affiliation(s)
- Graham R. Huesmann
- Neuroscience Program, Dept of Cell & Developmental Biology, and the Beckman Institute, University of Illinois, 405 N. Mathews Ave., Urbana, Illinois 61801
| | - David F. Clayton
- Neuroscience Program, Dept of Cell & Developmental Biology, and the Beckman Institute, University of Illinois, 405 N. Mathews Ave., Urbana, Illinois 61801
| |
Collapse
|
39
|
Delgado-Rubín de Célix A, Chowen JA, Argente J, Frago LM. Growth hormone releasing peptide-6 acts as a survival factor in glutamate-induced excitotoxicity. J Neurochem 2006; 99:839-49. [PMID: 17076656 DOI: 10.1111/j.1471-4159.2006.04122.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chronic systemic treatment given to adult male rats with growth hormone releasing peptide-6, an agonist of the ghrelin receptor, increases insulin-like growth factor I levels in various brain regions, including the hypothalamus and cerebellum. Furthermore, intracellular signalling cascades normally associated with anti-apoptotic actions are activated in the same areas and are coincident with decreased basal cell death. Because abnormally high concentrations of glutamate can lead to overexcitation of neurones leading to cell damage and/or death, we investigated whether administration of growth hormone releasing peptide-6 attenuates monosodium glutamate-induced apoptosis in the rat hypothalamus and cerebellum. Glutamate increased activation of caspase 9 followed by cleavage of caspase 7, which in turn fragmented poly(ADP-ribose) polymerase, terminating in cell death in both the hypothalamus and cerebellum. Growth hormone releasing peptide-6 reversed glutamate-induced cell death by decreasing activation of caspases 9 and 7 and poly(ADP-ribose) polymerase fragmentation. These results provide a better understanding of the neuroprotective role of growth hormone secretagogues and the mechanisms involved.
Collapse
Affiliation(s)
- Arancha Delgado-Rubín de Célix
- Universidad Autónoma de Madrid. Departament of Pediatrics. Hospital Infantil Universitario Niño Jesús, Departament of Endocrinology, Madrid, Spain
| | | | | | | |
Collapse
|
40
|
Supnet C, Grant J, Kong H, Westaway D, Mayne M. Amyloid-beta-(1-42) increases ryanodine receptor-3 expression and function in neurons of TgCRND8 mice. J Biol Chem 2006; 281:38440-7. [PMID: 17050533 DOI: 10.1074/jbc.m606736200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Disruption of intracellular calcium homeostasis precedes the neurodegeneration that occurs in Alzheimer disease (AD). Of the many neuronal calcium-regulating proteins, we focused on endoplasmic reticulum (ER)-resident ryanodine receptors (RyRs) because they are increased in the hippocampus of mice expressing mutant presenilin-1 and are associated with neurotoxicity. Others have observed that ryanodine binding is elevated in human postmortem hippocampal regions suggesting that RyR(s) are involved in AD pathogenesis. Here we report that extracellular amyloid-beta(Abeta)-(1-42) specifically increased RyR-3, but not RyR-1 or RyR-2, gene expression in cortical neurons from C57Bl6 mice. Furthermore, endogenously produced Abeta-(1-42) increased RyR-3 mRNA and protein in cortical neurons from transgenic (Tg)CRND8 mice, a mouse model of AD. Increased RyR-3 mRNA and protein was also observed in brain tissue from 4- to 4.5-month-old Tg animals compared with non-Tg littermate controls. In experiments performed in nominal extracellular calcium, neurons from Tg mice had significant increases in intracellular calcium following ryanodine or glutamate treatment compared with littermate controls, which was abolished by treatment with small interfering RNA directed to RyR-3, indicating that the higher levels of calcium originated from RyR-3-regulated stores. Taken together, these observations suggest that Abeta-(1-42)-mediated changes in intracellular calcium homeostasis is regulated in part through a direct increase of RyR-3 expression and function.
Collapse
Affiliation(s)
- Charlene Supnet
- Institute for Nutrisciences and Health, National Research Council of Canada, 93 Mount Edward Road, Charlottetown, Prince Edward Island C1A 5T1
| | | | | | | | | |
Collapse
|
41
|
Mattson MP. Mitochondrial regulation of neuronal plasticity. Neurochem Res 2006; 32:707-15. [PMID: 17024568 DOI: 10.1007/s11064-006-9170-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 09/13/2006] [Indexed: 01/16/2023]
Abstract
The structure and function of neurons is dynamic during development and in adaptive responses of the adult nervous system to environmental demands. The mechanisms that regulate neuronal plasticity are poorly understood, but are believed to involve neurotransmitter and neurotrophic factor signaling pathways. In the present article, I review emerging evidence that mitochondria play important roles in regulating developmental and adult neuroplasticity. In neurons, mitochondria are located in axons, dendrites, growth cones and pre- and post-synaptic terminals where their movements and functions are regulated by local signals such as neurotrophic factors and calcium influx. Mitochondria play important roles in fundamental developmental processes including the establishment of axonal polarity and the regulation of neurite outgrowth, and are also involved in synaptic plasticity in the mature nervous system. Abnormalities in mitochondria are associated with neurodegenerative and psychiatric disorders, suggesting a therapeutic potential for approaches that target mitochondrial mechanisms.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| |
Collapse
|
42
|
Zayas R, Lasalde-Dominicci J, Gomez CM. Macroscopic properties of spontaneous mutations in slow-channel syndrome: correlation by domain and disease severity. Synapse 2006; 60:441-9. [PMID: 16881075 DOI: 10.1002/syn.20317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The slow-channel syndrome (SCS) is a neuromuscular disorder characterized by fatigability, progressive weakness, and degeneration of the neuromuscular junction. The SCS is caused by missense mutations in the four subunits of the skeletal muscle acetylcholine receptor (AChR), which leads to altered channel gating, prolonged neuromuscular postsynaptic currents, and impaired neuromuscular transmission. Although a diverse set of mutations in different functional domains of the AChR appear to be associated with symptoms of widely ranging severity, there is as yet no mutant channel property or combination that explains the variations in disease severity. By observing the recovery time of AChR from desensitization, the authors determined that this process is significantly enhanced in SCS channels. In addition, as expected, the authors found that SCS macroscopic decay currents in transfected HEK293 cells are slower than wild type currents. While slight differences in relative Ca(2+) permeability between some SCS mutations were identified, they did not correlate with apparent disease severity. These results suggest that of the different AChR kinetic features studied, only recovery from desensitization and slow postsynaptic currents correlate with the severity observed in the different mutations of this syndrome.
Collapse
Affiliation(s)
- Roberto Zayas
- Department of Neuroscience and Neurology, University of Minnesota, Minneapolis, 55455, USA
| | | | | |
Collapse
|
43
|
Zhang A, Lorke DE, Wu SX, Yew DT. Caspase-3 immunoreactivity in different cortical areas of young and aging macaque (Macaca mulatta) monkeys. Neurosignals 2006; 15:64-73. [PMID: 16847399 DOI: 10.1159/000094602] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 06/06/2006] [Indexed: 12/26/2022] Open
Abstract
It has been shown that cytochrome-c-dependent caspase-3 activation is significantly elevated in the aging macaque brain. To assess the underlying age-related changes in the cellular distribution of caspase-3, we have examined the motor cortex, cerebellum and hippocampus of young (4-year-old, n = 4) and old (20-year-old, n = 4)rhesus monkeys by immunohistochemistry. Western blot analyses of brain homogenate showed that the antibody reacted only with inactive 32-kDa procaspase and its active 20- and 17-kDa subunits, formed after granzyme B exposure. In the motor cortex, pyramidal cells of layers III and V were moderately labeled; the underlying white matter contained weakly stained astrocytes. In the hippocampus, hilar neurons and pyramidal cells in CA3 showed the strongest immunoreaction, pyramidal cells in CA1 and granule cells of the dentate gyrus were also strongly labeled. In contrast, CA2 pyramidal cells were only weakly stained, and neurons of the molecular layer were unlabeled. Weak caspase-3 immunoreaction of CA2 neurons parallels known decreased susceptibility to apoptosis. In the cerebellar cortex, clusters of strongly labeled Purkinje cells were observed next to groups of weakly and unstained cells; granule cells were generally unstained. The brains of aging monkeys displayed a similar pattern of caspase-3 immunoreactivity. In neocortical layer V, however, scattered very strongly labeled pyramidal cells were regularly detected, which were not observed in younger animals. This clustering of caspase-3 indicates increased vulnerability of a subset of pyramidal cells in the aging brain.
Collapse
Affiliation(s)
- Aiqun Zhang
- Department of Anatomy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | | | | | | |
Collapse
|
44
|
Jia YH, Zhu X, Li SY, Ni JH, Jia HT. Kainate exposure suppresses activation of GluR2 subunit promoter in primary cultured cerebral cortical neurons through induction of RE1-silencing transcription factor. Neurosci Lett 2006; 403:103-8. [PMID: 16701950 DOI: 10.1016/j.neulet.2006.04.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 04/18/2006] [Accepted: 04/19/2006] [Indexed: 11/24/2022]
Abstract
The AMPA receptor subunit GluR2 is downregulated in neurons following a wide range of neurological insults. Here we report that suppression of GluR2 gene promoter activity is associated with kainate (KA)-induced downregulation of GluR2 subunit levels in primary cultured cortical neurons. RT-PCR and Northern blotting showed a significant decrease in GluR2 mRNA in cultured neurons after KA exposure. Transfection of cultured neurons with an expression vector pGL3-GluR2(-298/+283), where the reporter gene firefly luciferase was driven by the GluR2 promoter, revealed that KA exposure suppressed the transcriptional activation of the GluR2 promoter. Furthermore, the expression of the RE1-silencing transcription factor (REST) was increased in KA-exposed cortical neurons; enhanced binding of REST to RE1-like silencer element in the proximal promoter of the GluR2 subunit gene was evidenced by electrophoresis mobility shift assay. Chromatin immunoprecipitation showed that suppressed activity of the GluR2 promoter in cultured neurons after KA exposure was related to deacetylation of histone H4. These results indicate that REST as a crucial factor binds to RE1-like silencer element in the GluR2 promoter, suppressing transcription of the GluR2 subunit gene during KA exposure. Our data suggest that transcriptional suppression of the GluR2 subunit gene may contribute at least in part to downregulation of GluR2 subunit protein in neurons during KA exposure. Because our experiments showed a reduction of glutamate release in KA-exposed cortical neurons, REST may play a latent role in delayed neuronal death or in seizure-induced tolerance.
Collapse
MESH Headings
- Acetylation
- Animals
- Blotting, Northern
- Cells, Cultured
- Cerebral Cortex/cytology
- Cerebral Cortex/metabolism
- Chromatin Immunoprecipitation
- Down-Regulation
- Electrophoretic Mobility Shift Assay
- Genes, Reporter
- Histones/metabolism
- Kainic Acid/metabolism
- Kainic Acid/toxicity
- Luciferases, Firefly/antagonists & inhibitors
- Luciferases, Firefly/genetics
- Neurons/drug effects
- Neurons/metabolism
- Promoter Regions, Genetic
- Protein Subunits/antagonists & inhibitors
- Protein Subunits/genetics
- RNA, Messenger/antagonists & inhibitors
- Rats
- Rats, Sprague-Dawley
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/genetics
- Repressor Proteins/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Silencer Elements, Transcriptional
- Transcription Factors/biosynthesis
Collapse
Affiliation(s)
- Yu-Hong Jia
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Xue Yuan Road 38, Beijing 100083, PR China
| | | | | | | | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW A role for apoptosis in schizophrenia has long been hypothesized, but only recently have studies begun to examine this issue. This paper will review studies of apoptotic regulatory proteins, DNA fragmentation, and gene microarrays to highlight the potential role of apoptosis in the pathophysiology and treatment of schizophrenia. RECENT FINDINGS Although several studies indicate a possible increase in apoptotic susceptibility, accumulating evidence suggests that apoptotic activity may actually be downregulated in chronic schizophrenia. Furthermore, antipsychotics produce complex effects on apoptotic regulation in the central nervous system, activating both proapoptotic and antiapoptotic signaling pathways. SUMMARY Somewhat paradoxically, apoptosis appears to be downregulated in cortex of patients with chronic schizophrenia. This could reflect either a pathophysiological failure to mount an effective response to an apoptotic insult or an appropriate compensatory response to an earlier insult. The former could account for evidence indicating reduced neuronal viability without large-scale neuronal death in schizophrenia. The latter could reflect an earlier period of increased apoptotic activity in response to one or more proapoptotic insults. Antipsychotic treatment can modify the apoptotic response. This suggests implications for treatment, especially if future studies indicate that gray matter loss occurs via apoptotic mechanisms.
Collapse
Affiliation(s)
- L Fredrik Jarskog
- Department of Psychiatry, Schizophrenia Research Center, University of North Carolina, Chapel Hill 27599-7160, USA.
| |
Collapse
|
46
|
Bravarenko NI, Onufriev MV, Stepanichev MY, Ierusalimsky VN, Balaban PM, Gulyaeva NV. Caspase-like activity is essential for long-term synaptic plasticity in the terrestrial snail Helix. Eur J Neurosci 2006; 23:129-40. [PMID: 16420423 DOI: 10.1111/j.1460-9568.2005.04549.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although caspase activity in the nervous system of mollusks has not been described before, we suggested that these cysteine proteases might be involved in the phenomena of neuroplasticity in mollusks. We directly measured caspase-3 (DEVDase) activity in the Helix lucorum central nervous system (CNS) using a fluorometrical approach and showed that the caspase-3-like immunoreactivity is present in the central neurons of Helix. Western blots revealed the presence of caspase-3-immunoreactive proteins with a molecular mass of 29 kDa. Staurosporin application, routinely used to induce apoptosis in mammalian neurons through the activating cleavage of caspase-3, did not result in the appearance of a smaller subunit corresponding to the active caspase in the snail. However, it did increase the enzyme activity in the snail CNS. This suggests differences in the regulation of caspase-3 activity in mammals and snails. In the snail CNS, the caspase homolog seems to possess an active center without activating cleavage typical for mammals. In electrophysiological experiments with identified snail neurons, selective blockade of the caspase-3 with the irreversible and cell-permeable inhibitor of caspase-3 N-benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp-(OMe)-fluoro-methylketone prevented development of the long-term stage of synaptic input sensitization, suggesting that caspase is necessary for normal synaptic plasticity in snails. The results of our study give the first direct evidence that the caspase-3-like activity is essential for long-term plasticity in the invertebrate neurons. This activity is presumably involved in removing inhibitory constraints on the storage of long-term memory.
Collapse
Affiliation(s)
- N I Bravarenko
- Institute of Higher Nervous Activity and Neurophysiology, Butlerova 5A, Moscow 117485, Russia
| | | | | | | | | | | |
Collapse
|
47
|
Lu C, Wang Y, Furukawa K, Fu W, Ouyang X, Mattson MP. Evidence that caspase-1 is a negative regulator of AMPA receptor-mediated long-term potentiation at hippocampal synapses. J Neurochem 2006; 97:1104-10. [PMID: 16573645 DOI: 10.1111/j.1471-4159.2006.03800.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Best known for their pivotal role in a form of programmed cell death called apoptosis, caspases may also function in more subtle physiological processes. Caspases are present in synapses and dendrites of neurons where they can be activated in response to glutamate receptor stimulation and calcium influx. Here we tested the hypothesis that caspase-1 plays a role in modulating long-term potentiation (LTP) at hippocampal synapses. We provide evidence that caspase-1 plays a role in regulating alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated calcium influx and synaptic plasticity in the hippocampus. LTP of excitatory postsynaptic potentials at CA1 synapses was significantly enhanced when hippocampal slices were treated with either a pan-caspase inhibitor or a selective inhibitor of caspase-1, but not by an inhibitor of caspase-6. Inhibition of caspase-1 significantly enhanced the AMPA current-mediated component of LTP without affecting the N-methyl-D-aspartate current-mediated component. Calcium responses to AMPA were enhanced in hippocampal neurons treated with a caspase-1 inhibitor suggesting that caspase-1 normally functions to reduce AMPA receptor-mediated calcium influx. These findings suggest that, by selectively reducing AMPA currents and calcium influx, caspase-1 functions as a negative regulator of LTP at hippocampal synapses.
Collapse
Affiliation(s)
- Chengbiao Lu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
48
|
Hong SH, Park SK, Cho YS, Lee HS, Kim KR, Kim MG, Chung WH. Gentamicin induced nitric oxide-related oxidative damages on vestibular afferents in the guinea pig. Hear Res 2005; 211:46-53. [PMID: 16289993 DOI: 10.1016/j.heares.2005.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 08/29/2005] [Indexed: 11/29/2022]
Abstract
Gentamicin is a well-known ototoxic aminoglycoside. However, the mechanism underlying this ototoxicity remains unclear. One of the mechanisms which may be responsible for this ototoxicity is excitotoxic damage to hair cells. The overstimulation of the N-methyl-d-aspartate (NMDA) receptors increases the production of nitric oxide (NO), which induces oxidative stress on hair cells. In order to determine the mechanism underlying this excitotoxicity, we treated guinea pigs with gentamicin by placing gentamicin (0.5 mg) pellets into a round window niche. After the sacrifice of the animals, which occurred at 3, 7 and 14 days after the treatment, the numbers of hair cells in the animals were counted with a scanning electron microscope. We then performed immunostaining using neuronal nitric oxide synthase (nNOS), inducible NOS (iNOS) and nitrotyrosine antibodies. The number of hair cells in the animals was found to decrease significantly after 7 days. nNOS and iNOS expression levels were observed to have increased 3 days after treatment. Nitrotyrosine was expressed primarily at the calyceal afferents of the type I hair cells 3 days after treatment. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining revealed positive hair cells 3 days after treatment. Our results suggest that inner ear treatment with gentamicin may upregulate nNOS and iNOS to induce oxidative stress in the calyceal afferents of type I hair cells, via nitric oxide overproduction.
Collapse
Affiliation(s)
- Sung Hwa Hong
- Department of Otolaryngology and Head & Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon Dong Kangnam Ku, Seoul 135-710, South Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Caspase activation has been frequently viewed as synonymous with apoptotic cell death; however, caspases can also contribute to processes that do not culminate in cell demise. Moreover, inhibition of caspases can have cytoprotective effects. In a number of different models, caspase inhibition does not maintain cellular viability and instead shifts the morphology of death from apoptosis to nonapoptotic pathways. Here, we explore the contribution of caspases to cell death, either as upstream signals or as downstream effectors contributing to apoptotic morphology, as well as alternative strategies for cell death inhibition. Such alternative strategies may either target catabolic hydrolases or be aimed at preventing mitochondrial membrane permeabilization and its upstream triggers.
Collapse
Affiliation(s)
- Guido Kroemer
- Centre National de la Recherche Scientifique, UMR8125, Institut Gustave Roussy, 39 rue Camille-Desmoulins, F-94805 Villejuif, France.
| | | |
Collapse
|
50
|
Lee H, Jang YH, Lee SR. Protective Effect of Propofol Against Kainic Acid-Induced Lipid Peroxidation in Mouse Brain Homogenates. J Neurosurg Anesthesiol 2005; 17:144-8. [PMID: 16037735 DOI: 10.1097/01.ana.0000167143.67673.53] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study compared the effectiveness of propofol with that of trolox and melatonin for reduction of lipid peroxidation in vitro. Lipid peroxidation was induced by addition of kainic acid (KA; 10 mM), hydrogen peroxide (H2O2; 10 mM), or ferrous ammonium sulfate (5 microM) to mouse brain homogenate, and thiobarbituric acid-reactive substances (TBA-RS) were used as a marker of lipid peroxidation. Propofol, trolox, and melatonin reduced KA-, H2O2-, and ferrous ammonium sulfate-induced lipid peroxidation in a concentration-dependent manner. In reducing KA-induced lipid peroxidation, 50% inhibitory concentration (IC50) values of antioxidants were as follows: propofol (11.33 mM), trolox (4.00 mM), and melatonin (9.72 mM). In reducing H2O2-induced lipid peroxidation, IC50 values of antioxidants were as follows: propofol (56.86 mM), trolox (33.34 mM), and melatonin (26.63 mM). In reducing ferrous ion-induced lipid peroxidation, IC50 values of antioxidants were as follows: propofol (49.57 mM), trolox (60.35 mM), and melatonin (22.02 mM). Under the in vitro conditions of this experiment, propofol was an excellent and a very potent antioxidant in inhibiting KA-, H2O2-, and ferrous ion-induced lipid peroxidation in mouse brain homogenates. We conclude that the antioxidant properties of propofol at clinically relevant anesthetic concentrations may have a neuroprotective effect.
Collapse
Affiliation(s)
- Hyung Lee
- Department of Neurology, School of Medicine, Keimyung University, Taegu, South Korea
| | | | | |
Collapse
|