1
|
Muench NA, Schmitt HM, Schlamp CL, Su AJA, Washington K, Nickells RW. Preservation of Murine Whole Eyes With Supplemented UW Cold Storage Solution: Anatomical Considerations. Transl Vis Sci Technol 2024; 13:24. [PMID: 39560629 DOI: 10.1167/tvst.13.11.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Purpose Retinal ganglion cell (RGC) apoptosis and axon regeneration are the principal obstacles challenging the development of successful whole eye transplantation (WET). The purpose of this study was to create a neuroprotective cocktail that targets early events in the RGC intrinsic apoptotic program to stabilize RGCs in a potential donor eye. Methods University of Wisconsin (UW) solution was augmented with supplements known to protect RGCs. Supplements targeted tyrosine kinase signaling, histone deacetylase activity, K+ ion efflux, macroglial stasis, and provided energy support. Modified UW (mUW) solutions with individual supplements were injected into the vitreous of enucleated mouse eyes, which were then stored in cold UW solution for 24 hours. Histopathology, immunostaining of individual retinal cell types, and analysis of cell-specific messenger RNAs (mRNAs) were used to identify supplements that were combined to create optimal mUW solution. Results UW and mUW solutions reduced ocular edema and focal ischemia in globes stored in cold storage. Two major issues were noted after cold storage, including retinal detachment and reduction in glial fibrillary acidic protein staining in astrocytes. A combination of supplements resolved both these issues and performed better than the individual supplements alone. Cold storage resulted in a reduction in cell-specific mRNAs, even though it preserved the corresponding protein products. Conclusions Eyes treated with optimal mUW solution exhibited preservation of retinal and cellular architecture, but did display a decrease in mRNA levels, suggesting that cold storage induced cellular stasis. Translational Relevance Application of optimal mUW solution lowers an important barrier to the development of a successful whole eye transplantation procedure.
Collapse
Affiliation(s)
- Nicole A Muench
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Heather M Schmitt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Perfuse Therapeutics Inc., Durham, NC, USA
| | - Cassandra L Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - An-Jey A Su
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kia Washington
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- https://orcid.org/0000-0002-2998-5494
| |
Collapse
|
2
|
Maes ME, Donahue RJ, Schlamp CL, Marola OJ, Libby RT, Nickells RW. BAX activation in mouse retinal ganglion cells occurs in two temporally and mechanistically distinct steps. Mol Neurodegener 2023; 18:67. [PMID: 37752598 PMCID: PMC10521527 DOI: 10.1186/s13024-023-00659-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Pro-apoptotic BAX is a central mediator of retinal ganglion cell (RGC) death after optic nerve damage. BAX activation occurs in two stages including translocation of latent BAX to the mitochondrial outer membrane (MOM) and then permeabilization of the MOM to facilitate the release of apoptotic signaling molecules. As a critical component of RGC death, BAX is an attractive target for neuroprotective therapies and an understanding of the kinetics of BAX activation and the mechanisms controlling the two stages of this process in RGCs is potentially valuable in informing the development of a neuroprotective strategy. METHODS The kinetics of BAX translocation were assessed by both static and live-cell imaging of a GFP-BAX fusion protein introduced into RGCs using AAV2-mediated gene transfer in mice. Activation of BAX was achieved using an acute optic nerve crush (ONC) protocol. Live-cell imaging of GFP-BAX was achieved using explants of mouse retina harvested 7 days after ONC. Kinetics of translocation in RGCs were compared to GFP-BAX translocation in 661W tissue culture cells. Permeabilization of GFP-BAX was assessed by staining with the 6A7 monoclonal antibody, which recognizes a conformational change in this protein after MOM insertion. Assessment of individual kinases associated with both stages of activation was made using small molecule inhibitors injected into the vitreous either independently or in concert with ONC surgery. The contribution of the Dual Leucine Zipper-JUN-N-Terminal Kinase cascade was evaluated using mice with a double conditional knock-out of both Mkk4 and Mkk7. RESULTS ONC induces the translocation of GFP-BAX in RGCs at a slower rate and with less intracellular synchronicity than 661W cells, but exhibits less variability among mitochondrial foci within a single cell. GFP-BAX was also found to translocate in all compartments of an RGC including the dendritic arbor and axon. Approximately 6% of translocating RGCs exhibited retrotranslocation of BAX immediately following translocation. Unlike tissue culture cells, which exhibit simultaneous translocation and permeabilization, RGCs exhibited a significant delay between these two stages, similar to detached cells undergoing anoikis. Translocation, with minimal permeabilization could be induced in a subset of RGCs using an inhibitor of Focal Adhesion Kinase (PF573228). Permeabilization after ONC, in a majority of RGCs, could be inhibited with a broad spectrum kinase inhibitor (sunitinib) or a selective inhibitor for p38/MAPK14 (SB203580). Intervention of DLK-JNK axis signaling abrogated GFP-BAX translocation after ONC. CONCLUSIONS A comparison between BAX activation kinetics in tissue culture cells and in cells of a complex tissue environment shows distinct differences indicating that caution should be used when translating findings from one condition to the other. RGCs exhibit both a delay between translocation and permeabilization and the ability for translocated BAX to be retrotranslocated, suggesting several stages at which intervention of the activation process could be exploited in the design of a therapeutic strategy.
Collapse
Affiliation(s)
- Margaret E Maes
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Ryan J Donahue
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Cassandra L Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA
| | - Olivia J Marola
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard T Libby
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA
| | - Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Maes ME, Donahue RJ, Schlamp CL, Marola OJ, Libby RT, Nickells R. BAX activation in mouse retinal ganglion cells occurs in two temporally and mechanistically distinct steps. RESEARCH SQUARE 2023:rs.3.rs-2846437. [PMID: 37292963 PMCID: PMC10246290 DOI: 10.21203/rs.3.rs-2846437/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Pro-apoptotic BAX is a central mediator of retinal ganglion cell (RGC) death after optic nerve damage. BAX activation occurs in two stages including translocation of latent BAX to the mitochondrial outer membrane (MOM) and then permeabilization of the MOM to facilitate the release of apoptotic signaling molecules. As a critical component of RGC death, BAX is an attractive target for neuroprotective therapies and an understanding of the kinetics of BAX activation and the mechanisms controlling the two stages of this process in RGCs is potentially valuable in informing the development of a neuroprotective strategy. Methods The kinetics of BAX translocation were assessed by both static and live-cell imaging of a GFP-BAX fusion protein introduced into RGCs using AAV2-mediated gene transfer in mice. Activation of BAX was achieved using an acute optic nerve crush (ONC) protocol. Live-cell imaging of GFP-BAX was achieved using explants of mouse retina harvested 7 days after ONC. Kinetics of translocation in RGCs were compared to GFP-BAX translocation in 661W tissue culture cells. Permeabilization of GFP-BAX was assessed by staining with the 6A7 monoclonal antibody, which recognizes a conformational change in this protein after MOM insertion. Assessment of individual kinases associated with both stages of activation was made using small molecule inhibitors injected into the vitreous either independently or in concert with ONC surgery. The contribution of the Dual Leucine Zipper-JUN-N-Terminal Kinase cascade was evaluated using mice with a double conditional knock-out of both Mkk4 and Mkk7 . Results ONC induces the translocation of GFP-BAX in RGCs at a slower rate and with less intracellular synchronicity than 661W cells, but exhibits less variability among mitochondrial foci within a single cell. GFP-BAX was also found to translocate in all compartments of an RGC including the dendritic arbor and axon. Approximately 6% of translocating RGCs exhibited retrotranslocation of BAX immediately following translocation. Unlike tissue culture cells, which exhibit simultaneous translocation and permeabilization, RGCs exhibited a significant delay between these two stages, similar to detached cells undergoing anoikis. Translocation, with minimal permeabilization could be induced in a subset of RGCs using an inhibitor of Focal Adhesion Kinase (PF573228). Permeabilization after ONC, in a majority of RGCs, could be inhibited with a broad spectrum kinase inhibitor (sunitinib) or a selective inhibitor for p38/MAPK14 (SB203580). Intervention of DLK-JNK axis signaling abrogated GFP-BAX translocation after ONC. Conclusions A comparison between BAX activation kinetics in tissue culture cells and in cells of a complex tissue environment shows distinct differences indicating that caution should be used when translating findings from one condition to the other. RGCs exhibit both a delay between translocation and permeabilization and the ability for translocated BAX to be retrotranslocated, suggesting several stages at which intervention of the activation process could be exploited in the design of a therapeutic strategy.
Collapse
|
4
|
Rao M, Huang YK, Liu CC, Meadows C, Cheng HC, Zhou M, Chen YC, Xia X, Goldberg JL, Williams AM, Kuwajima T, Chang KC. Aldose reductase inhibition decelerates optic nerve degeneration by alleviating retinal microglia activation. Sci Rep 2023; 13:5592. [PMID: 37019993 PMCID: PMC10076364 DOI: 10.1038/s41598-023-32702-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
As part of the central nervous system (CNS), retinal ganglion cells (RGCs) and their axons are the only neurons in the retina that transmit visual signals from the eye to the brain via the optic nerve (ON). Unfortunately, they do not regenerate upon injury in mammals. In ON trauma, retinal microglia (RMG) become activated, inducing inflammatory responses and resulting in axon degeneration and RGC loss. Since aldose reductase (AR) is an inflammatory response mediator highly expressed in RMG, we investigated if pharmacological inhibition of AR can attenuate ocular inflammation and thereby promote RGC survival and axon regeneration after ON crush (ONC). In vitro, we discovered that Sorbinil, an AR inhibitor, attenuates BV2 microglia activation and migration in the lipopolysaccharide (LPS) and monocyte chemoattractant protein-1 (MCP-1) treatments. In vivo, Sorbinil suppressed ONC-induced Iba1 + microglia/macrophage infiltration in the retina and ON and promoted RGC survival. Moreover, Sorbinil restored RGC function and delayed axon degeneration one week after ONC. RNA sequencing data revealed that Sorbinil protects the retina from ONC-induced degeneration by suppressing inflammatory signaling. In summary, we report the first study demonstrating that AR inhibition transiently protects RGC and axon from degeneration, providing a potential therapeutic strategy for optic neuropathies.
Collapse
Affiliation(s)
- Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Yu-Kai Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, 80145, Taiwan
| | - Chia-Chun Liu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Chandler Meadows
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Hui-Chun Cheng
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Mengli Zhou
- Department of Computational and Systems Biology, Hillman Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Yu-Chih Chen
- Department of Computational and Systems Biology, Hillman Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Xin Xia
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Andrew M Williams
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Takaaki Kuwajima
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA
| | - Kun-Che Chang
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, 203 Lothrop, Pittsburgh, PA, 15213, USA.
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
5
|
MAPK Pathways in Ocular Pathophysiology: Potential Therapeutic Drugs and Challenges. Cells 2023; 12:cells12040617. [PMID: 36831285 PMCID: PMC9954064 DOI: 10.3390/cells12040617] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways represent ubiquitous cellular signal transduction pathways that regulate all aspects of life and are frequently altered in disease. Once activated through phosphorylation, these MAPKs in turn phosphorylate and activate transcription factors present either in the cytoplasm or in the nucleus, leading to the expression of target genes and, as a consequence, they elicit various biological responses. The aim of this work is to provide a comprehensive review focusing on the roles of MAPK signaling pathways in ocular pathophysiology and the potential to influence these for the treatment of eye diseases. We summarize the current knowledge of identified MAPK-targeting compounds in the context of ocular diseases such as macular degeneration, cataract, glaucoma and keratopathy, but also in rare ocular diseases where the cell differentiation, proliferation or migration are defective. Potential therapeutic interventions are also discussed. Additionally, we discuss challenges in overcoming the reported eye toxicity of some MAPK inhibitors.
Collapse
|
6
|
Retinal ganglion cell loss in an ex vivo mouse model of optic nerve cut is prevented by curcumin treatment. Cell Death Discov 2021; 7:394. [PMID: 34911931 PMCID: PMC8674341 DOI: 10.1038/s41420-021-00760-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022] Open
Abstract
Retinal ganglion cell (RGC) loss is a pathologic feature common to several retinopathies associated to optic nerve damage, leading to visual loss and blindness. Although several scientific efforts have been spent to understand the molecular and cellular changes occurring in retinal degeneration, an effective therapy to counteract the retinal damage is still not available. Here we show that eyeballs, enucleated with the concomitant optic nerve cut (ONC), when kept in PBS for 24 h showed retinal and optic nerve degeneration. Examining retinas and optic nerves at different time points in a temporal window of 24 h, we found a thinning of some retinal layers especially RGC's layer, observing a powerful RGC loss after 24 h correlated with an apoptotic, MAPKs and degradative pathways dysfunctions. Specifically, we detected a time-dependent increase of Caspase-3, -9 and pro-apoptotic marker levels, associated with a strong reduction of BRN3A and NeuN levels. Importantly, a powerful activation of JNK, c-Jun, and ERK signaling (MAPKs) were observed, correlated with a significant augmented SUMO-1 and UBC9 protein levels. The degradation signaling pathways was also altered, causing a significant decrease of ubiquitination level and an increased LC3B activation. Notably, it was also detected an augmented Tau protein level. Curcumin, a powerful antioxidant natural compound, prevented the alterations of apoptotic cascade, MAPKs, and SUMO-1 pathways and the degradation system, preserving the RGC survival and the retinal layer thickness. This ex vivo retinal degeneration model could be a useful method to study, in a short time window, the effect of neuroprotective tools like curcumin that could represent a potential treatment to contrast retinal cell death.
Collapse
|
7
|
Lucas-Ruiz F, Galindo-Romero C, Albaladejo-García V, Vidal-Sanz M, Agudo-Barriuso M. Mechanisms implicated in the contralateral effect in the central nervous system after unilateral injury: focus on the visual system. Neural Regen Res 2021; 16:2125-2131. [PMID: 33818483 PMCID: PMC8354113 DOI: 10.4103/1673-5374.310670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/21/2020] [Accepted: 01/11/2021] [Indexed: 12/21/2022] Open
Abstract
The retina, as part of the central nervous system is an ideal model to study the response of neurons to injury and disease and to test new treatments. During the last decade is becoming clear that unilateral lesions in bilateral areas of the central nervous system trigger an inflammatory response in the contralateral uninjured site. This effect has been better studied in the visual system where, as a rule, one retina is used as experimental and the other as control. Contralateral retinas in unilateral models of retinal injury show neuronal degeneration and glial activation. The mechanisms by which this adverse response in the central nervous system occurs are discussed in this review, focusing primarily on the visual system.
Collapse
Affiliation(s)
- Fernando Lucas-Ruiz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Caridad Galindo-Romero
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Virginia Albaladejo-García
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| |
Collapse
|
8
|
Sergeeva EG, Rosenberg PA, Benowitz LI. Non-Cell-Autonomous Regulation of Optic Nerve Regeneration by Amacrine Cells. Front Cell Neurosci 2021; 15:666798. [PMID: 33935656 PMCID: PMC8085350 DOI: 10.3389/fncel.2021.666798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Visual information is conveyed from the eye to the brain through the axons of retinal ganglion cells (RGCs) that course through the optic nerve and synapse onto neurons in multiple subcortical visual relay areas. RGCs cannot regenerate their axons once they are damaged, similar to most mature neurons in the central nervous system (CNS), and soon undergo cell death. These phenomena of neurodegeneration and regenerative failure are widely viewed as being determined by cell-intrinsic mechanisms within RGCs or to be influenced by the extracellular environment, including glial or inflammatory cells. However, a new concept is emerging that the death or survival of RGCs and their ability to regenerate axons are also influenced by the complex circuitry of the retina and that the activation of a multicellular signaling cascade involving changes in inhibitory interneurons - the amacrine cells (AC) - contributes to the fate of RGCs. Here, we review our current understanding of the role that interneurons play in cell survival and axon regeneration after optic nerve injury.
Collapse
Affiliation(s)
- Elena G. Sergeeva
- Department of Neurology, Boston Children’s Hospital, Boston, MA, United States
- Kirby Center for Neuroscience, Boston Children’s Hospital, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Paul A. Rosenberg
- Department of Neurology, Boston Children’s Hospital, Boston, MA, United States
- Kirby Center for Neuroscience, Boston Children’s Hospital, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Larry I. Benowitz
- Kirby Center for Neuroscience, Boston Children’s Hospital, Boston, MA, United States
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Neurosurgery, Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Kumar V, Ali Shariati M, Mesentier-Louro L, Jinsook Oh A, Russano K, Goldberg JL, Liao YJ. Dual Specific Phosphatase 14 Deletion Rescues Retinal Ganglion Cells and Optic Nerve Axons after Experimental Anterior Ischemic Optic Neuropathy. Curr Eye Res 2020; 46:710-718. [PMID: 33107352 PMCID: PMC8291381 DOI: 10.1080/02713683.2020.1826976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Understanding molecular changes is essential for designing effective treatments for nonarteritic anterior ischemic optic neuropathy (AION), the most common acute optic neuropathy in adults older than 50 years. We investigated changes in the mitogen-activated protein kinase (MAPK) pathway after experimental AION and focused on dual specificity phosphatase 14 (Dusp14), an atypical MAPK phosphatase that is downstream of Krüppel-like transcription factor (KLF) 9-mediated inhibition of retinal ganglion cell (RGC) survival and axonal regeneration. MATERIALS AND METHODS We induced severe AION in a photochemical thrombosis model in adult C57BL/6 wild-type and Dusp14 knockout mice. For comparison, some studies were performed using an optic nerve crush model. We assessed changes in MAPK pathway molecules using Western blot and immunohistochemistry, measured retinal thickness using optical coherence tomography (OCT), and quantified RGCs and axons using histologic methods. RESULTS Three days after severe AION, there was no change in the retinal protein levels of MAPK ERK1/2, phosphorylated-ERK1/2 (pERK1/2), downstream effector Elk-1 and phosphatase Dusp14 on Western blot. Western blot analysis of purified RGCs after a more severe model using optic nerve crush also showed no change in Dusp14 protein expression. Because of the known importance of the Dusp14 and MAPK pathway in RGCs, we examined changes after AION in Dusp14 knockout mice. Three days after AION, Dusp14 knockout mice had significantly increased pERK1/2+, Brn3A+ RGCs on immunohistochemistry. Three weeks after AION, Dusp14 knockout mice had significantly greater preservation of retinal thickness, increased number of Brn3A+ RGCs on whole mount preparation, and increased number of optic nerve axons compared with wild-type mice. CONCLUSIONS Genetic deletion of Dusp14, a MAPK phosphatase important in KFL9-mediated inhibition of RGC survival, led to increased activation of MAPK ERK1/2 and greater RGC and axonal survival after experimental AION. Inhibiting Dusp14 or activating the MAPK pathway should be examined further as a potential therapeutic approach to treatment of AION. Abbreviations: AION: anterior ischemic optic neuropathy; Dusp14: dual specific phosphatase 14; ERK1/2: extracellular signal-regulated kinases 1/2; Elk-1: ETS Like-1 protein; GCC: ganglion cell complex; GCL: ganglion cell layer; inner nuclear layer; KO: knockout; MAPK: mitogen-activated phosphokinase; OCT: optical coherence tomography; RGC: retinal ganglion cell; RNFL: retinal nerve fiber layer.
Collapse
Affiliation(s)
- Varun Kumar
- Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, California, USA.,Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | | | | | - Angela Jinsook Oh
- Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, California, USA
| | - Kristina Russano
- Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, California, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, California, USA
| | - Yaping Joyce Liao
- Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, California, USA.,Department of Neurology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
10
|
Naik S, Pandey A, Lewis SA, Rao BSS, Mutalik S. Neuroprotection: A versatile approach to combat glaucoma. Eur J Pharmacol 2020; 881:173208. [PMID: 32464192 DOI: 10.1016/j.ejphar.2020.173208] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022]
Abstract
In most retinal diseases, neuronal loss is the main cause of vision loss. Neuroprotection is the alteration of neurons and/or their environment to encourage the survival and function of the neurons, especially in environments that are deleterious to the neuronal health. The area of neuroprotection progresses with a therapeutically-based hope of improving vision and clinical outcomes for patients through the developments in neurotrophic therapy, antioxidative therapy, anti-excitotoxic, anti-ischemic, anti-inflammatory, and anti-apoptotic care. In this review, we summarize the various neuroprotection strategies for the treatment of glaucoma, genetics of glaucoma and the role of various nanoplatforms in the treatment of glaucoma.
Collapse
Affiliation(s)
- Santoshi Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India
| | - Bola Sadashiva Satish Rao
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India.
| |
Collapse
|
11
|
Zhang S, Shuai L, Wang D, Huang T, Yang S, Miao M, Liu F, Xu J. Pim-1 Protects Retinal Ganglion Cells by Enhancing Their Regenerative Ability Following Optic Nerve Crush. Exp Neurobiol 2020; 29:249-272. [PMID: 32624507 PMCID: PMC7344373 DOI: 10.5607/en20019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 11/19/2022] Open
Abstract
Provirus integration site Moloney murine leukemia virus (Pim-1) is a proto-oncogene reported to be associated with cell proliferation, differentiation and survival. This study was to explore the neuroprotective role of Pim-1 in a rat model subjected to optic nerve crush (ONC), and discuss its related molecules in improving the intrinsic regeneration ability of retinal ganglion cells (RGCs). Immunofluorescence staining showed that AAV2- Pim-1 infected 71% RGCs and some amacrine cells in the retina. Real-time PCR and Western blotting showed that retina infection with AAV2- Pim-1 up-regulated the Pim-1 mRNA and protein expressions compared with AAV2-GFP group. Hematoxylin-Eosin (HE) staining, γ-synuclein immunohistochemistry, Cholera toxin B (CTB) tracing and TUNEL showed that RGCs transduction with AAV2-Pim-1 prior to ONC promoted the survival of damaged RGCs and decreased cell apoptosis. RITC anterograde labeling showed that Pim-1 overexpression increased axon regeneration and promoted the recovery of visual function by pupillary light reflex and flash visual evoked potential. Western blotting showed that Pim- 1 overexpression up-regulated the expression of Stat3, p-Stat3, Akt1, p-Akt1, Akt2 and p-Akt2, as well as βIII-tubulin, GAP-43 and 4E-BP1, and downregulated the expression of SOCS1 and SOCS3, Cleaved caspase 3, Bad and Bax. These results demonstrate that Pim-1 exerted a neuroprotective effect by promoting nerve regeneration and functional recovery of RGCs. In addition, it enhanced the intrinsic regeneration capacity of RGCs after ONC by activating Stat3, Akt1 and Akt2 pathways, and inhibiting the mitochondrial apoptosis pathways. These findings suggest that Pim-1 may prove to be a potential therapeutic target for the clinical treatment of optic nerve injury.
Collapse
Affiliation(s)
- Shoumei Zhang
- Department of Anatomy, Second Military Medical University, Shanghai 200433, China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Li Shuai
- Department of Health Administration, Second Military Medical University, Shanghai 200433, China
| | - Dong Wang
- Department of Anatomy, Second Military Medical University, Shanghai 200433, China
| | - Tingting Huang
- Department of Anatomy, Second Military Medical University, Shanghai 200433, China
| | - Shengsheng Yang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai 200433, China
| | - Mingyong Miao
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai 200433, China
| | - Fang Liu
- Department of Anatomy, Second Military Medical University, Shanghai 200433, China
| | - Jiajun Xu
- Department of Anatomy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
12
|
Syc-Mazurek SB, Libby RT. Axon injury signaling and compartmentalized injury response in glaucoma. Prog Retin Eye Res 2019; 73:100769. [PMID: 31301400 DOI: 10.1016/j.preteyeres.2019.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022]
Abstract
Axonal degeneration is an active, highly controlled process that contributes to beneficial processes, such as developmental pruning, but also to neurodegeneration. In glaucoma, ocular hypertension leads to vision loss by killing the output neurons of the retina, the retinal ganglion cells (RGCs). Multiple processes have been proposed to contribute to and/or mediate axonal injury in glaucoma, including: neuroinflammation, loss of neurotrophic factors, dysregulation of the neurovascular unit, and disruption of the axonal cytoskeleton. While the inciting injury to RGCs in glaucoma is complex and potentially heterogeneous, axonal injury is ultimately thought to be the key insult that drives glaucomatous neurodegeneration. Glaucomatous neurodegeneration is a complex process, with multiple molecular signals contributing to RGC somal loss and axonal degeneration. Furthermore, the propagation of the axonal injury signal is complex, with injury triggering programs of degeneration in both the somal and axonal compartment. Further complicating this process is the involvement of multiple cell types that are known to participate in the process of axonal and neuronal degeneration after glaucomatous injury. Here, we review the axonal signaling that occurs after injury and the molecular signaling programs currently known to be important for somal and axonal degeneration after glaucoma-relevant axonal injuries.
Collapse
Affiliation(s)
- Stephanie B Syc-Mazurek
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA; Neuroscience Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard T Libby
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, USA; Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA; The Center for Visual Sciences, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
13
|
Pérez de Lara MJ, Avilés-Trigueros M, Guzmán-Aránguez A, Valiente-Soriano FJ, de la Villa P, Vidal-Sanz M, Pintor J. Potential role of P2X7 receptor in neurodegenerative processes in a murine model of glaucoma. Brain Res Bull 2019; 150:61-74. [PMID: 31102752 DOI: 10.1016/j.brainresbull.2019.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 04/23/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022]
Abstract
Glaucoma is a common cause of visual impairment and blindness, characterized by retinal ganglion cell (RGC) death. The mechanisms that trigger the development of glaucoma remain unknown and have gained significant relevance in the study of this neurodegenerative disease. P2X7 purinergic receptors (P2X7R) could be involved in the regulation of the synaptic transmission and neuronal death in the retina through different pathways. The aim of this study was to characterize the molecular signals underlying glaucomatous retinal injury. The time-course of functional, morphological, and molecular changes in the glaucomatous retina of the DBA/2J mice were investigated. The expression and localization of P2X7R was analysed in relation with retinal markers. Caspase-3, JNK, and p38 were evaluated in control and glaucomatous mice by immunohistochemical and western-blot analysis. Furthermore, electroretinogram recordings (ERG) were performed to assess inner retina dysfunction. Glaucomatous mice exhibited changes in P2X7R expression as long as the pathology progressed. There was P2X7R overexpression in RGCs, the primary injured neurons, which correlated with the loss of function through ERG measurements. All analyzed MAPK and caspase-3 proteins were upregulated in the DBA/2J retinas suggesting a pro-apoptotic cell death. The increase in P2X7Rs presence may contribute, together with other factors, to the changes in retinal functionality and the concomitant death of RGCs. These findings provide evidence of possible intracellular pathways responsible for apoptosis regulation during glaucomatous degeneration.
Collapse
Affiliation(s)
- María J Pérez de Lara
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Complutense University of Madrid, c/Arcos de Jalón 118, E-28037, Madrid, Spain
| | - Marcelino Avilés-Trigueros
- Laboratory of Experimental Ophthalmology, Dept. of Ophthalmology, Faculty of Medicine, University of Murcia and Murcia Institute of Bio-Health Research (IMIB), E-30120, El Palmar, Murcia, Spain
| | - Ana Guzmán-Aránguez
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Complutense University of Madrid, c/Arcos de Jalón 118, E-28037, Madrid, Spain
| | - F Javier Valiente-Soriano
- Laboratory of Experimental Ophthalmology, Dept. of Ophthalmology, Faculty of Medicine, University of Murcia and Murcia Institute of Bio-Health Research (IMIB), E-30120, El Palmar, Murcia, Spain
| | - Pedro de la Villa
- Systems Biology Department, Faculty of Medicine, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Manuel Vidal-Sanz
- Laboratory of Experimental Ophthalmology, Dept. of Ophthalmology, Faculty of Medicine, University of Murcia and Murcia Institute of Bio-Health Research (IMIB), E-30120, El Palmar, Murcia, Spain.
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Complutense University of Madrid, c/Arcos de Jalón 118, E-28037, Madrid, Spain
| |
Collapse
|
14
|
Demyanenko S, Dzreyan V, Uzdensky A. Axotomy-Induced Changes of the Protein Profile in the Crayfish Ventral Cord Ganglia. J Mol Neurosci 2019; 68:667-678. [PMID: 31066008 DOI: 10.1007/s12031-019-01329-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/25/2019] [Indexed: 12/21/2022]
Abstract
We suggest novel experimental model of nerve injury-bilaterally axotomized ganglia of the crayfish ventral nerve cord (VNC). Using proteomic antibody microarrays, we showed upregulation of apoptosis execution proteins (Bcl-10, caspases 3, 6, and 7, SMAC/DIABLO, AIF), proapoptotic signaling proteins and transcription factors (c-Myc, p38, E2F1, p53, GADD153), and multifunctional proteins capable of initiating apoptosis in specific situations (p75, NMDAR2a) in the axotomized VNC ganglia. Simultaneously, anti-apoptotic proteins (p21WAF-1, MDM2, Bcl-x, Mcl-1, MKP1, MAKAPK2, ERK5, APP, calmodulin, estrogen receptor) were overexpressed. Some proteins associated with actin cytoskeleton (α-catenin, catenin p120CTN, cofilin, p35, myosin Vα) were upregulated, whereas other actin-associated proteins (ezrin, distrophin, tropomyosin, spectrin (α + β), phosphorylated Pyk2) were downregulated. Various cytokeratins and βIV-tubulin, components of intermediate filament and microtubule cytoskeletons, were also downregulated that could be the result of tissue destruction. Downregulation of proteins involved in clathrin vesicle formation (AP2α and AP2γ, adaptin (β1 + β2), and syntaxin) indicated impairment of vesicular transport and synaptic processes. The levels of L-DOPA decarboxylase, tyrosine, and tryptophan hydroxylases that mediate synthesis of serotonin, dopamine, norepinephrine, and epinephrine decreased. Overexpression of histone deacetylases HDAC1, HDAC2, and HDAC4 contributed to suppression of transcription and protein synthesis. So, the balance of multidirectional processes aimed either at cell death, or to repair and recovery, determines the cell fate. Present data provide integral, albeit incomplete, view on the nervous tissue response to axotomy. Some of these proteins can be probably potential markers of nerve injury and targets for neuroprotective therapy.
Collapse
Affiliation(s)
- Svetlana Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave, Rostov-on-Don, Russia, 344090
| | - Valentina Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave, Rostov-on-Don, Russia, 344090
| | - Anatoly Uzdensky
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave, Rostov-on-Don, Russia, 344090.
| |
Collapse
|
15
|
Li Y, Ba M, Du Y, Xia C, Tan S, Ng KP, Ma G. Aβ1-42 increases the expression of neural KATP subunits Kir6.2/SUR1 via the NF-κB, p38 MAPK and PKC signal pathways in rat primary cholinergic neurons. Hum Exp Toxicol 2019; 38:665-674. [PMID: 30868916 DOI: 10.1177/0960327119833742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
ATP-sensitive potassium channels (KATP) may mediate a potential neuroprotective role in Alzheimer's disease (AD). Given that exposure to Aβ1-42 in cultured primary cholinergic neurons for 72 h significantly upregulates the expression of KATP subunits Kir6.2/SUR1, we aim to study the underlying signal transduction mechanisms that are involved in Aβ1-42-induced upregulation of KATP subunits Kir6.2/SUR1. In the present study, we first identified the primary cultured rat cortical and hippocampal neurons using immunocytochemistry. 0.5 μM NF-κB inhibitor SN-50, 2 μM p38MAPK inhibitor SB203580 or 2 μM PKC inhibitor Chelerythrine chloride (CTC) were then added in three separate groups, followed by 2 μM Aβ1-42 30 min later in all 3 groups. Western Blot was performed 72 h later to detect the expression of KATP subunits Kir6.2/SUR1. We found that Aβ1-42 significantly increased the level of KATP subunits Kir6.2/SUR1 expression at 72 h when compared with the control group ( p < 0.05). However, when compared with the Aβ1-42 group, the level of KATP subunits Kir6.2/SUR1 expression at 72 h significantly decreased in the SN50 + Aβ1-42 group, SB203580 + Aβ1-42 group, and the CTC + Aβ1-42 group ( p < 0.05). Our findings suggest that the NF-κB, p38 MAPK, and PKC signal pathways are partially involved in the upregulation of KATP subunits Kir6.2/SUR1 expression induced by Aβ1-42 cytotoxicity in neurons, which supports a potential theoretical basis of targeting these signal pathways in the treatment of AD.
Collapse
Affiliation(s)
- Y Li
- 1 Department of Neurology, Provincial Hospital affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - M Ba
- 2 Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong, People's Republic of China
| | - Y Du
- 1 Department of Neurology, Provincial Hospital affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - C Xia
- 1 Department of Neurology, Provincial Hospital affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - S Tan
- 1 Department of Neurology, Provincial Hospital affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - K P Ng
- 3 Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - G Ma
- 4 Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
16
|
Abstract
Many diseases are related to age, among these neurodegeneration is particularly important. Alzheimer's disease Parkinson's and Glaucoma have many common pathogenic events including oxidative damage, Mitochondrial dysfunction, endothelial alterations and changes in the visual field. These are well known in the case of glaucoma, less in the case of neurodegeneration of the brain. Many other molecular aspects are common, such as the role of endoplasmic reticulum autophagy and neuronal apoptosis while others have been neglected due to lack of space such as inflammatory cytokine or miRNA. Moreover, the loss of specific neuronal populations, the induction of similar mechanisms of cell injury and the deposition of protein aggregates in specific anatomical areas are very similar events between these diseases. Intracellular and/or extracellular accumulation of protein aggregates is a key feature of many neurodegenerative disorders. The existence of abnormal protein aggregates has been documented in the RGCs of glaucomatous patients such as the anomalous Tau protein or the β-amyloid accumulations. Intra-cell catabolic processes also appear to be common in both glaucoma and neurodegeneration. They also help us to understand how the basis between these diseases is common and how the visual aspects can be a serious problem for those who are affected.
Collapse
Affiliation(s)
- Sergio Claudio Saccà
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology Unit, Genoa, Italy.
| | - Carlo Alberto Cutolo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Science, University of Genoa, Policlinico San Martino Hospital, Eye Clinic Genoa, Genoa, Italy
| | - Tommaso Rossi
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology Unit, Genoa, Italy
| |
Collapse
|
17
|
Mkk4 and Mkk7 are important for retinal development and axonal injury-induced retinal ganglion cell death. Cell Death Dis 2018; 9:1095. [PMID: 30367030 PMCID: PMC6203745 DOI: 10.1038/s41419-018-1079-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/28/2018] [Accepted: 09/10/2018] [Indexed: 01/25/2023]
Abstract
The mitogen-activated protein kinase (MAPK) pathway has been shown to be involved in both neurodevelopment and neurodegeneration. c-Jun N-terminal kinase (JNK), a MAPK important in retinal development and after optic nerve crush injury, is regulated by two upstream kinases: MKK4 and MKK7. The specific requirements of MKK4 and MKK7 in retinal development and retinal ganglion cell (RGC) death after axonal injury, however, are currently undefined. Optic nerve injury is an important insult in many neurologic conditions including traumatic, ischemic, inflammatory, and glaucomatous optic neuropathies. Mice deficient in Mkk4, Mkk7, and both Mkk4 and Mkk7 were generated. Immunohistochemistry was used to study the distribution and structure of retinal cell types and to assess RGC survival after optic nerve injury (mechanical controlled optic nerve crush (CONC)). Adult Mkk4- and Mkk7-deficient retinas had all retinal cell types, and with the exception of small areas of disrupted photoreceptor lamination in Mkk4-deficient mice, the retinas of both mutants were grossly normal. Deficiency of Mkk4 or Mkk7 reduced JNK signaling in RGCs after axonal injury and resulted in a significantly greater percentage of surviving RGCs 35 days after CONC as compared to wild-type controls (Mkk4: 51.5%, Mkk7: 29.1%, WT: 15.2%; p < 0.001). Combined deficiency of Mkk4 and Mkk7 caused failure of optic nerve formation, irregular retinal axonal trajectories, disruption of retinal lamination, clumping of RGC bodies, and dendritic fasciculation of dopaminergic amacrine cells. These results suggest that MKK4 and MKK7 may serve redundant and unique roles in molecular signaling important for retinal development and injury response following axonal insult.
Collapse
|
18
|
Chakravarthy H, Devanathan V. Molecular Mechanisms Mediating Diabetic Retinal Neurodegeneration: Potential Research Avenues and Therapeutic Targets. J Mol Neurosci 2018; 66:445-461. [PMID: 30293228 DOI: 10.1007/s12031-018-1188-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
Abstract
Diabetic retinopathy (DR) is a devastating complication of diabetes with a prevalence rate of 35%, and no effective treatment options. Since the most visible clinical features of DR are microvascular irregularities, therapeutic interventions often attempt to reduce microvascular injury, but only after permanent retinal damage has ensued. However, recent data suggests that diabetes initially affects retinal neurons, leading to neurodegeneration as an early occurrence in DR, before onset of the more noticeable vascular abnormalities. In this review, we delineate the sequence of initiating events leading to retinal degeneration in DR, considering neuronal dysfunction as a primary event. Key molecular mechanisms and potential biomarkers associated with retinal neuronal degeneration in diabetes are discussed. In addition to glial reactivity and inflammation in the diabetic retina, the contribution of neurotrophic factors, cell adhesion molecules, apoptosis markers, and G protein signaling to neurodegenerative pathways warrants further investigation. These studies could complement recent developments in innovative treatment strategies for diabetic retinopathy, such as targeting retinal neuroprotection, promoting neuronal regeneration, and attempts to re-program other retinal cell types into functional neurons. Indeed, several ongoing clinical trials are currently attempting treatment of retinal neurodegeneration by means of such novel therapeutic avenues. The aim of this article is to highlight the crucial role of neurodegeneration in early retinopathy progression, and to review the molecular basis of neuronal dysfunction as a first step toward developing early therapeutic interventions that can prevent permanent retinal damage in diabetes. ClinicalTrials.gov: NCT02471651, NCT01492400.
Collapse
Affiliation(s)
- Harshini Chakravarthy
- Department of Biology, Indian Institute of Science Education and Research (IISER), Transit campus: C/o. Sree Rama Engineering College Campus, Karakambadi Road, Mangalam, Tirupati, 517507, India
| | - Vasudharani Devanathan
- Department of Biology, Indian Institute of Science Education and Research (IISER), Transit campus: C/o. Sree Rama Engineering College Campus, Karakambadi Road, Mangalam, Tirupati, 517507, India.
| |
Collapse
|
19
|
Extract of the Blood Circulation-Promoting Recipe-84 Can Protect Rat Retinas by Inhibiting the β-Catenin Signaling Pathway. Int J Mol Sci 2018; 19:ijms19092712. [PMID: 30208636 PMCID: PMC6164958 DOI: 10.3390/ijms19092712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/20/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
Extract of the Blood Circulation-Promoting Recipe (EBR-84) from the Chinese Herbal medicine “Blood Circulation Promoting Recipe” could retard retinopathy development. This study investigated whether EBR-84 protects retinas by inhibiting the β-catenin pathway using a rat model of retinopathy and a retinal ganglion cell 5 (RGC-5) cell death model. RGC death was induced by either N-methyl-d-aspartic acid (NMDA) or TWS119 (an activator of the β-catenin pathway). After the corresponding treatment with EBR-84, RGC death and the protein expression levels of β-catenin, cyclooxygenase-2 (COX-2), and vascular endothelial growth factor (VEGF) in rat retinas were examined. β-Catenin accumulated in the retinal ganglion cell layer (GCL) of NMDA-treated rats. EBR-84 (3.9, 7.8, and 15.6 g/kg) significantly attenuated the NMDA-induced RGC loss accompanying the reduction of β-catenin expression. Moreover, the expression levels of COX-2 and VEGF were decreased by EBR-84 in a dose-dependent manner. For the TWS119-treated rats, EBR-84 also ameliorated RGC loss and lowered the expression levels of β-catenin, COX-2, and VEGF. In vitro, EBR-84 increased the viability of NMDA-treated RGC-5 while decreased β-catenin expression. In conclusion, EBR-84 retarded ratretinopathy, and the β-catenin signaling pathway played an important role during this protective process.
Collapse
|
20
|
Daniel S, Clark AF, McDowell CM. Subtype-specific response of retinal ganglion cells to optic nerve crush. Cell Death Discov 2018; 4:7. [PMID: 30062056 PMCID: PMC6054657 DOI: 10.1038/s41420-018-0069-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/03/2018] [Indexed: 01/09/2023] Open
Abstract
Glaucoma is a neurodegenerative disease with retinal ganglion cell (RGC) loss, optic nerve degeneration and subsequent vision loss. There are about 30 different subtypes of RGCs whose response to glaucomatous injury is not well characterized. The purpose of this study was to evaluate the response of 4 RGC subtypes in a mouse model of optic nerve crush (ONC). In this study, we also evaluated the pattern of axonal degeneration in RGC subtypes after nerve injury. We found that out of the 4 subtypes, transient-Off α RGCs are the most susceptible to injury followed by On-Off direction selective RGCs (DSGC). Non-image forming RGCs are more resilient with ipRGCs exhibiting the most resistance of them all. In contrast, axons degenerate irrespective of their retinal soma after ONC injury. In conclusion, we show that RGCs have subtype specific cell death response to ONC injury and that RGC axons disintegrate in an autonomous fashion undergoing Wallerian degeneration. These discoveries can further direct us towards effective diagnostic and therapeutic approaches to treat optic neuropathies, such as glaucoma.
Collapse
Affiliation(s)
- S. Daniel
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas United States
| | - AF Clark
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas United States
| | - CM McDowell
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas United States
| |
Collapse
|
21
|
Nogo-A inactivation improves visual plasticity and recovery after retinal injury. Cell Death Dis 2018; 9:727. [PMID: 29950598 PMCID: PMC6021388 DOI: 10.1038/s41419-018-0780-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 12/24/2022]
Abstract
Myelin-associated proteins such as Nogo-A are major inhibitors of neuronal plasticity that contribute to permanent neurological impairments in the injured CNS. In the present study, we investigated the influence of Nogo-A on visual recovery after retinal injuries in mice. Different doses of N-methyl-d-aspartate (NMDA) were injected in the vitreous of the left eye to induce retinal neuron death. The visual function was monitored using the optokinetic response (OKR) as a behavior test, and electroretinogram (ERG) and local field potential (LFP) recordings allowed to assess changes in retinal and cortical neuron activity, respectively. Longitudinal OKR follow-ups revealed reversible visual deficits after injection of NMDA ≤ 1 nmole in the left eye and concomitant functional improvement in the contralateral visual pathway of the right eye that was let intact. Irreversible OKR loss observed with NMDA ≥ 2 nmol was correlated with massive retinal cell death and important ERG response decline. Strikingly, the OKR mediated by injured and intact eye stimulation was markedly improved in Nogo-A KO mice compared with WT animals, suggesting that the inactivation of Nogo-A promotes visual recovery and plasticity. Moreover, OKR improvement was associated with shorter latency of the N2 wave of Nogo-A KO LFPs relative to WT animals. Strikingly, intravitreal injection of anti-Nogo-A antibody (11C7) in the injured eye exerted positive effects on cortical LFPs. This study presents the intrinsic ability of the visual system to recover from NMDA-induced retinal injury and its limitations. Nogo-A neutralization may promote visual recovery in retinal diseases such as glaucoma.
Collapse
|
22
|
Mammone T, Chidlow G, Casson RJ, Wood JPM. Expression and activation of mitogen-activated protein kinases in the optic nerve head in a rat model of ocular hypertension. Mol Cell Neurosci 2018; 88:270-291. [PMID: 29408550 DOI: 10.1016/j.mcn.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Glaucoma is a leading cause of irreversible blindness manifesting as an age-related, progressive optic neuropathy with associated retinal ganglion cell (RGC) loss. Mitogen-activated protein kinases (MAPKs: p42/44 MAPK, SAPK/JNK, p38 MAPK) are activated in various retinal disease models and likely contribute to the mechanisms of RGC death. Although MAPKs play roles in the development of retinal pathology, their action in the optic nerve head (ONH), where the initial insult to RGC axons likely resides in glaucoma, remains unexplored. METHODS An experimental paradigm representing glaucoma was established by induction of chronic ocular hypertension (OHT) via laser-induced coagulation of the trabecular meshwork in Sprague-Dawley rats. MAPKs were subsequently investigated over the following days for expression and activity alterations, using RT-PCR, immunohistochemistry and Western immunoblot. RESULTS p42/44 MAPK expression was unaltered after intraocular pressure (IOP) elevation, but there was a significant activation of this enzyme in ONH astrocytes after 6-24 h. Activated SAPK/JNK isoforms were present throughout healthy RGC axons but after IOP elevation or optic nerve crush, they both accumulated at the ONH, likely due to RGC axon transport disruption, and were subject to additional activation. p38 MAPK was expressed by a population of microglia which were significantly more populous following IOP elevation. However it was only significantly activated in microglia after 3 days, and then only in the ONH and optic nerve; in the retina it was solely activated in RGC perikarya. CONCLUSIONS In conclusion, each of the MAPKs showed a specific spatio-temporal expression and activation pattern in the retina, ONH and optic nerve as a result of IOP elevation. These findings likely reflect the roles of the individual enzymes, and the cells in which they reside, in the developing pathology following IOP elevation. These data have implications for understanding the mechanisms of ocular pathology in diseases such as glaucoma.
Collapse
Affiliation(s)
- Teresa Mammone
- Ophthalmic Research Laboratories, Central Adelaide Local Health Network, Level 7 Adelaide Health & Medical Sciences Building, University of Adelaide, Adelaide, South Australia, Australia; Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Glyn Chidlow
- Ophthalmic Research Laboratories, Central Adelaide Local Health Network, Level 7 Adelaide Health & Medical Sciences Building, University of Adelaide, Adelaide, South Australia, Australia; Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Robert J Casson
- Ophthalmic Research Laboratories, Central Adelaide Local Health Network, Level 7 Adelaide Health & Medical Sciences Building, University of Adelaide, Adelaide, South Australia, Australia; Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - John P M Wood
- Ophthalmic Research Laboratories, Central Adelaide Local Health Network, Level 7 Adelaide Health & Medical Sciences Building, University of Adelaide, Adelaide, South Australia, Australia; Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
23
|
Ding Y, Chow SH, Liu GS, Wang B, Lin TW, Hsu HY, Duff AP, Le Brun AP, Shen HH. Annexin V-containing cubosomes for targeted early detection of apoptosis in degenerative retinal tissue. J Mater Chem B 2018; 6:7652-7661. [DOI: 10.1039/c8tb02465k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ANX–PS–Phy cubosomes could be applied as a safe and robust drug delivery vehicle for targeting damaged, apoptotic cells in ocular diseases.
Collapse
Affiliation(s)
- Yue Ding
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University
- Clayton
- Australia
| | - Seong Hoong Chow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University
- Clayton
- Australia
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania
- Australia
- Ophthalmology, Department of Surgery, University of Melbourne
- Victoria
- Australia
| | - Bo Wang
- Infection and Immunity Program, Biomedicine Discovery Institute and Anatomy and Developmental Biology, Monash University
- Clayton
- Australia
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University
- Taichung City
- Taiwan
| | - Hsien-Yi Hsu
- School of Energy and Environment, City University of Hong Kong
- Kowloon Tong
- China
- Shenzhen Research Institute of City University of Hong Kong
- Shenzhen 518057
| | - Anthony P. Duff
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Lucas Heights
- Australia
| | - Anton P. Le Brun
- Australian Nuclear Science and Technology Organisation (ANSTO)
- Lucas Heights
- Australia
| | - Hsin-Hui Shen
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University
- Clayton
- Australia
- Department of Materials Science and Engineering
- Faculty of Engineering
| |
Collapse
|
24
|
Evangelho K, Mogilevskaya M, Losada-Barragan M, Vargas-Sanchez JK. Pathophysiology of primary open-angle glaucoma from a neuroinflammatory and neurotoxicity perspective: a review of the literature. Int Ophthalmol 2017; 39:259-271. [PMID: 29290065 DOI: 10.1007/s10792-017-0795-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/11/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE Glaucoma is the leading cause of blindness in humans, affecting 2% of the population. This disorder can be classified into various types including primary, secondary, glaucoma with angle closure and with open angle. The prevalence of distinct types of glaucoma differs for each particular region of the world. One of the most common types of this disease is primary open-angle glaucoma (POAG), which is a complex inherited disorder characterized by progressive retinal ganglion cell death, optic nerve head excavation and visual field loss. Nowadays, POAG is considered an optic neuropathy, while intraocular pressure is proposed to play a fundamental role in its pathophysiology and especially in optic disk damage. However, the exact mechanism of optic nerve head damage remains a topic of debate. This literature review aims to bring together the information on the pathophysiology of primary open-angle glaucoma, particularly focusing on neuroinflammatory mechanisms leading to the death of the retinal ganglion cell. METHODS A literature search was done on PubMed using key words including primary open-angle glaucoma, retinal ganglion cells, Müller cells, glutamate, glial cells, ischemia, hypoxia, exitotoxicity, neuroinflammation, axotomy and neurotrophic factors. The literature was reviewed to collect the information published about the pathophysiologic mechanisms of RGC death in the POAG, from a neuroinflammatory and neurotoxicity perspective. RESULTS Proposed mechanisms for glaucomatous damage are a result of pressure in RGC followed by ischemia, hypoxia of the ONH, and consequently death due to glutamate-induced excitotoxicity, deprivation of energy and oxygen, increase in levels of inflammatory mediators and alteration of trophic factors flow. These events lead to blockage of anterograde and retrograde axonal transport with ensuing axotomy and eventually blindness. CONCLUSIONS The damage to ganglion cells and eventually glaucomatous injury can occur via various mechanisms including baric trauma, ischemia and impact of metabolic toxins, which triggers an inflammatory process and secondary degeneration in the ONH.
Collapse
Affiliation(s)
- Karine Evangelho
- Grupo de Investigación en Ciencias Biomédicas GRINCIBIO, Facultad de medicina, Sede Bogotá, Universidad Antonio Nariño, Bogotá, Colombia
| | - Maria Mogilevskaya
- Grupo de Investigación en Ingeniería Clínica - Hospital Universitario la Samaritana GINIC-HUS, Sede Bogotá, ECCI, Bogotá, Colombia
| | - Monica Losada-Barragan
- Grupo de Biología Celular y Funcional e Ingeniería de Biomoléculas, Facultad de Ciencias, Sede Bogotá, Universidad Antonio Nariño, Bogotá, Colombia
| | - Jeinny Karina Vargas-Sanchez
- Grupo de Investigación en Ciencias Biomédicas GRINCIBIO, Facultad de medicina, Sede Bogotá, Universidad Antonio Nariño, Bogotá, Colombia.
| |
Collapse
|
25
|
Involvement of the MEK-ERK/p38-CREB/c-fos signaling pathway in Kir channel inhibition-induced rat retinal Müller cell gliosis. Sci Rep 2017; 7:1480. [PMID: 28469203 PMCID: PMC5431154 DOI: 10.1038/s41598-017-01557-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/28/2017] [Indexed: 11/07/2022] Open
Abstract
Our previous studies have demonstrated that activation of group I metabotropic glutamate receptors downregulated Kir channels in chronic ocular hypertension (COH) rats, thus contributing to Müller cell gliosis, characterized by upregulated expression of glial fibrillary acidic protein (GFAP). In the present study, we explored possible signaling pathways linking Kir channel inhibition and GFAP upregulation. In normal retinas, intravitreal injection of BaCl2 significantly increased GFAP expression in Müller cells, which was eliminated by co-injecting mitogen-activated protein kinase (MAPK) inhibitor U0126. The protein levels of phosphorylated extracellular signal-regulated protein kinase1/2 (p-ERK1/2) and its upstream regulator, p-MEK, were significantly increased, while the levels of phosphorylated c-Jun N-terminal kinase (p-JNK) and p38 kinase (p-p38) remained unchanged. Furthermore, the protein levels of phosphorylated cAMP response element binding protein (p-CREB) and c-fos were also increased, which were blocked by co-injecting ERK inhibitor FR180204. In purified cultured rat Müller cells, BaCl2 treatment induced similar changes in these protein levels apart from p-p38 levels and the p-p38:p38 ratio showing significant upregulation. Moreover, intravitreal injection of U0126 eliminated the upregulated GFAP expression in COH retinas. Together, these results suggest that Kir channel inhibition-induced Müller cell gliosis is mediated by the MEK-ERK/p38-CREB/c-fos signaling pathway.
Collapse
|
26
|
Livne-Bar I, Lam S, Chan D, Guo X, Askar I, Nahirnyj A, Flanagan JG, Sivak JM. Pharmacologic inhibition of reactive gliosis blocks TNF-α-mediated neuronal apoptosis. Cell Death Dis 2016; 7:e2386. [PMID: 27685630 PMCID: PMC5059876 DOI: 10.1038/cddis.2016.277] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 01/03/2023]
Abstract
Reactive gliosis is an early pathological feature common to most neurodegenerative diseases, yet its regulation and impact remain poorly understood. Normally astrocytes maintain a critical homeostatic balance. After stress or injury they undergo rapid parainflammatory activation, characterized by hypertrophy, and increased polymerization of type III intermediate filaments (IFs), particularly glial fibrillary acidic protein and vimentin. However, the consequences of IF dynamics in the adult CNS remains unclear, and no pharmacologic tools have been available to target this mechanism in vivo. The mammalian retina is an accessible model to study the regulation of astrocyte stress responses, and their influence on retinal neuronal homeostasis. In particular, our work and others have implicated p38 mitogen-activated protein kinase (MAPK) signaling as a key regulator of glutamate recycling, antioxidant activity and cytokine secretion by astrocytes and related Müller glia, with potent influences on neighboring neurons. Here we report experiments with the small molecule inhibitor, withaferin A (WFA), to specifically block type III IF dynamics in vivo. WFA was administered in a model of metabolic retinal injury induced by kainic acid, and in combination with a recent model of debridement-induced astrocyte reactivity. We show that WFA specifically targets IFs and reduces astrocyte and Müller glial reactivity in vivo. Inhibition of glial IF polymerization blocked p38 MAPK-dependent secretion of TNF-α, resulting in markedly reduced neuronal apoptosis. To our knowledge this is the first study to demonstrate that pharmacologic inhibition of IF dynamics in reactive glia protects neurons in vivo.
Collapse
Affiliation(s)
- Izhar Livne-Bar
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,School of Optometry, University of California at Berkeley, Berkeley, CA, USA
| | - Susy Lam
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Darren Chan
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xiaoxin Guo
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Idil Askar
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Adrian Nahirnyj
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - John G Flanagan
- School of Optometry, University of California at Berkeley, Berkeley, CA, USA
| | - Jeremy M Sivak
- Department of Vision Sciences, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Abstract
Several studies have shown that minocycline, a semisynthetic, second-generation tetracycline derivative, is neuroprotective in animal models of central nervous system trauma and several neurodegenerative diseases. Common to all these reports are the beneficial effects of minocycline in reducing neural inflammation and preventing cell death. Here, the authors review the proposed mechanisms of action of minocycline and suggest that minocycline may inhibit several aspects of the inflammatory response and prevent cell death through the inhibition of the p38 mitogen-activated protein kinase pathway, an important regulator of immune cell function and cell death.
Collapse
Affiliation(s)
- David P Stirling
- ICORD (International Collaboration On Repair Discoveries), University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
28
|
Sapienza A, Raveu AL, Reboussin E, Roubeix C, Boucher C, Dégardin J, Godefroy D, Rostène W, Reaux-Le Goazigo A, Baudouin C, Melik Parsadaniantz S. Bilateral neuroinflammatory processes in visual pathways induced by unilateral ocular hypertension in the rat. J Neuroinflammation 2016; 13:44. [PMID: 26897546 PMCID: PMC4761202 DOI: 10.1186/s12974-016-0509-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glaucoma is one of the leading causes of irreversible blindness in the world. The major risk factor is elevated intraocular pressure (IOP) leading to progressive retinal ganglion cell (RGC) death from the optic nerve (ON) to visual pathways in the brain. Glaucoma has been reported to share mechanisms with neurodegenerative disorders. We therefore hypothesize that neuroinflammatory mechanisms in central visual pathways may contribute to the spread of glaucoma disease. The aim of the present study was to analyze the neuroinflammation processes that occur from the pathological retina to the superior colliculi (SCs) in a rat model of unilateral ocular hypertension induced by episcleral vein cauterization (EVC). RESULTS Six weeks after unilateral (right eye) EVC in male Long-Evans rats, we evaluated both the neurodegenerative process and the neuroinflammatory state in visual pathway tissues. RGCs immunolabeled (Brn3a(+)) in ipsilateral whole flat-mounted retina demonstrated peripheral RGC loss associated with tissue macrophage/microglia activation (CD68(+)). Gene expression analysis of hypertensive and normotensive retinas revealed a significant increase of pro-inflammatory genes such as CCL2, IL-1β, and Nox2 mRNA expression compared to naïve eyes. Importantly, we found an upregulation of pro-inflammatory markers such as IL-1β and TNFα and astrocyte and tissue macrophage/microglia activation in hypertensive and normotensive RGC projection sites in the SCs compared to a naïve SC. To understand how neuroinflammation in the hypertensive retina is sufficient to damage both right and left SCs and the normotensive retina, we used an inflammatory model consisting in an unilateral stereotaxic injection of TNFα (25 ng/μl) in the right SC of naïve rats. Two weeks after TNFα injection, using an optomotor test, we observed that rats had visual deficiency in both eyes. Furthermore, both SCs showed an upregulation of genes and proteins for astrocytes, microglia, and pro-inflammatory cytokines, notably IL-1β. In addition, both retinas exhibited a significant increase of inflammatory markers compared to a naïve retina. CONCLUSIONS All these data evidence the complex role played by the SCs in the propagation of neuroinflammatory events induced by unilateral ocular hypertension and provide a new insight into the spread of neurodegenerative diseases such as glaucoma.
Collapse
Affiliation(s)
- Anaïs Sapienza
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Anne-Laure Raveu
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Elodie Reboussin
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Christophe Roubeix
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Céline Boucher
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Julie Dégardin
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - David Godefroy
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - William Rostène
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Annabelle Reaux-Le Goazigo
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| | - Christophe Baudouin
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC, 28 rue de Charenton, 75012, Paris, France.,Department Ophthalmology, Hopital Ambroise Pare, AP HP, F-92100, Boulogne, France.,University Versailles St Quentin En Yvelines, F-78180, Montigny-Le-Bretonneux, France
| | - Stéphane Melik Parsadaniantz
- Sorbonne Universités, UPMC University of Paris 06, Institut de la Vision, 17 rue Moreau, 75012, Paris, France. .,INSERM U968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France. .,CNRS UMR_7210, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.
| |
Collapse
|
29
|
Wang Y, Cameron EG, Li J, Stiles TL, Kritzer MD, Lodhavia R, Hertz J, Nguyen T, Kapiloff MS, Goldberg JL. Muscle A-Kinase Anchoring Protein-α is an Injury-Specific Signaling Scaffold Required for Neurotrophic- and Cyclic Adenosine Monophosphate-Mediated Survival. EBioMedicine 2015; 2:1880-7. [PMID: 26844267 PMCID: PMC4703706 DOI: 10.1016/j.ebiom.2015.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 10/17/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022] Open
Abstract
Neurotrophic factor and cAMP-dependent signaling promote the survival and neurite outgrowth of retinal ganglion cells (RGCs) after injury. However, the mechanisms conferring neuroprotection and neuroregeneration downstream to these signals are unclear. We now reveal that the scaffold protein muscle A-kinase anchoring protein-α (mAKAPα) is required for the survival and axon growth of cultured primary RGCs. Although genetic deletion of mAKAPα early in prenatal RGC development did not affect RGC survival into adulthood, nor promoted the death of RGCs in the uninjured adult retina, loss of mAKAPα in the adult increased RGC death after optic nerve crush. Importantly, mAKAPα was required for the neuroprotective effects of brain-derived neurotrophic factor and cyclic adenosine-monophosphate (cAMP) after injury. These results identify mAKAPα as a scaffold for signaling in the stressed neuron that is required for RGC neuroprotection after optic nerve injury. mAKAPα is a stress-specific mediator of RGC survival. mAKAP deletion does not affect RGC survival in development or in the uninjured adult retina. mAKAP is downregulated after optic nerve injury, and its further deletion exacerbates RGC death. mAKAP deletion suppresses the neuroprotective effects of cAMP and BDNF after injury.
After injury or in degenerative diseases, neurons of the central nervous system (CNS) fail to regenerate and often die partly due to a lack of pro-survival, trophic signaling. Better understanding of such signaling is important for the development of therapies that enhance survival and regeneration of neurons after injury. Here we identify a critical regulator of such signaling, mAKAPα, a scaffold protein that coordinates pro-survival signaling to enhance survival and regeneration in CNS neurons after injury. The neuroprotective role of mAKAPα will likely lead to further future insights into the detailed nature of survival signaling in adult neurons.
Collapse
Affiliation(s)
- Yan Wang
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Department of Ophthalmology, University of California, San Diego, CA 92093, United States
| | - Evan G Cameron
- Department of Ophthalmology, University of California, San Diego, CA 92093, United States; Byers Eye Institute, Stanford University, Palo Alto, CA 94303, United States
| | - Jinliang Li
- Department of Pediatrics, Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, United States; Department of Medicine, Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, United States
| | - Travis L Stiles
- Department of Ophthalmology, University of California, San Diego, CA 92093, United States
| | - Michael D Kritzer
- Department of Pediatrics, Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, United States; Department of Medicine, Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, United States
| | - Rahul Lodhavia
- Department of Ophthalmology, University of California, San Diego, CA 92093, United States
| | - Jonathan Hertz
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Tu Nguyen
- Department of Ophthalmology, University of California, San Diego, CA 92093, United States
| | - Michael S Kapiloff
- Department of Pediatrics, Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, United States; Department of Medicine, Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, United States
| | - Jeffrey L Goldberg
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Department of Ophthalmology, University of California, San Diego, CA 92093, United States; Byers Eye Institute, Stanford University, Palo Alto, CA 94303, United States
| |
Collapse
|
30
|
Levkovitch-Verbin H. Retinal ganglion cell apoptotic pathway in glaucoma: Initiating and downstream mechanisms. PROGRESS IN BRAIN RESEARCH 2015; 220:37-57. [PMID: 26497784 DOI: 10.1016/bs.pbr.2015.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Apoptosis of retinal ganglion cells (RGCs) in glaucoma causes progressive visual field loss, making it the primary cause of irreversible blindness worldwide. Elevated intraocular pressure and aging, the main risk factors for glaucoma, accelerate RGC apoptosis. Numerous pathways and mechanisms were found to be involved in RGC death in glaucoma. Neurotrophic factors deprivation is an early event. Oxidative stress, mitochondrial dysfunction, inflammation, glial cell dysfunction, and activation of apoptotic pathways and prosurvival pathways play a significant role in RGC death in glaucoma. The most important among the involved pathways are the MAP-kinase pathway, PI-3 kinase/Akt pathway, Bcl-2 family, caspase family, and IAP family.
Collapse
Affiliation(s)
- Hani Levkovitch-Verbin
- Glaucoma Service, Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Hashomer, Israel.
| |
Collapse
|
31
|
Wang W, Chan A, Qin Y, Kwong JMK, Caprioli J, Levinson R, Chen L, Gordon LK. Programmed cell death-1 is expressed in large retinal ganglion cells and is upregulated after optic nerve crush. Exp Eye Res 2015; 140:1-9. [PMID: 26277582 DOI: 10.1016/j.exer.2015.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 07/14/2015] [Accepted: 08/03/2015] [Indexed: 12/27/2022]
Abstract
Programmed cell death-1 (PD-1) is a key negative receptor inducibly expressed on T cells, B cells and dendritic cells. It was discovered on T cells undergoing classical programmed cell death. Studies showed that PD-1 ligation promotes retinal ganglion cell (RGC) death during retinal development. The purpose of this present study is to characterize PD-1 regulation in the retina after optic nerve crush (ONC). C57BL/6 mice were subjected to ONC and RGC loss was monitored by immunolabelling with RNA-binding protein with multiple splicing (Rbpms). Time course of PD-1 mRNA expression was determined by real-time PCR. PD-1 expression was detected with anti-PD-1 antibody on whole mount retinas. PD-1 staining intensity was quantitated. Colocalization of PD-1 and cleaved-caspase-3 after ONC was analyzed. Real-time PCR results demonstrated that PD-1 gene expression was significantly upregulated at day 1, 3, 7, 10 and 14 after ONC. Immunofluorescent staining revealed a dramatic increase of PD-1 expression following ONC. In both control and injured retinas, PD-1 tended to be up-expressed in a subtype of RGCs, whose somata size were significantly larger than others. Compared to control, PD-1 intensity in large RGCs was increased by 82% in the injured retina. None of the large RGCs expressed cleaved-caspase-3 at day 5 after ONC. Our work presents the first evidence of PD-1 induction in RGCs after ONC. This observation supports further investigation into the role of PD-1 expression during RGC death or survival following injury.
Collapse
Affiliation(s)
- Wei Wang
- Jules Stein Eye Institute, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, United States; Fudan Affiliated Eye and ENT Hospital, Fenyang Road 83#, Shanghai 200031, China
| | - Ann Chan
- Jules Stein Eye Institute, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, United States
| | - Yu Qin
- Jules Stein Eye Institute, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, United States
| | - Jacky M K Kwong
- Jules Stein Eye Institute, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, United States
| | - Joseph Caprioli
- Jules Stein Eye Institute, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, United States
| | - Ralph Levinson
- Jules Stein Eye Institute, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, United States
| | - Ling Chen
- Jules Stein Eye Institute, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, United States; Fudan Affiliated Eye and ENT Hospital, Fenyang Road 83#, Shanghai 200031, China.
| | - Lynn K Gordon
- Jules Stein Eye Institute, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
32
|
Bai J, Zheng Y, Dong L, Cai X, Wang G, Liu P. Inhibition of p38 mitogen-activated protein kinase phosphorylation decreases H₂O₂-induced apoptosis in human lens epithelial cells. Graefes Arch Clin Exp Ophthalmol 2015; 253:1933-40. [PMID: 26143291 DOI: 10.1007/s00417-015-3090-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 06/10/2015] [Accepted: 06/15/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Oxidative damage resulting from ROS is a known causal factor for cataractogenesis. The mitogen-activated protein kinases (MAPK) pathway plays an important role in the apoptosis of HLE cells. The purpose of this study was to investigate the role of phosphorylated p38 mitogen-activated protein kinase in H2O2-induced apoptosis in cultured human lens epithelial (HLE) cells. METHODS The effect of SB203580 on HLE cells treated with H2O2 was determined by various assays. Cell viability was monitored by the MTT assay. The rates of apoptosis and ROS generation were determined by flow cytometric analysis. The numbers of mitotic and apoptotic cell nuclei were determined after staining with Hoechst 33342. The protein level of phospho-p38 was measured using western blot analysis. RESULTS SB203580 reduced H2O2-induced cellular apoptosis and inhibited the generation of reactive oxygen species (ROS); it also delayed the progression of H2O2-induced opacification of lenses. The level of p-p38 was increased when cells were exposed to H2O2 and significantly SB203580-inhibited phosphorylation of p38. The p38MAPK pathway plays an important role in H2O2-induced apoptosis of HLE cells. CONCLUSIONS The study demonstrates that activation of p38MAPK plays an important role in H2O2-induced apoptosis of HLE cells. SB203580 may potentially be exploited as a useful tool for cataract prevention.
Collapse
Affiliation(s)
- Jie Bai
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Road, Harbin, People's Republic of China
| | - Yi Zheng
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Road, Harbin, People's Republic of China
| | - Li Dong
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Road, Harbin, People's Republic of China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Ping Liu
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, 23 Youzheng Road, Harbin, People's Republic of China.
| |
Collapse
|
33
|
Noro T, Namekata K, Kimura A, Guo X, Azuchi Y, Harada C, Nakano T, Tsuneoka H, Harada T. Spermidine promotes retinal ganglion cell survival and optic nerve regeneration in adult mice following optic nerve injury. Cell Death Dis 2015; 6:e1720. [PMID: 25880087 PMCID: PMC4650557 DOI: 10.1038/cddis.2015.93] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/13/2015] [Accepted: 03/02/2015] [Indexed: 12/19/2022]
Abstract
Spermidine acts as an endogenous free radical scavenger and inhibits the action of reactive oxygen species. In this study, we examined the effects of spermidine on retinal ganglion cell (RGC) death in a mouse model of optic nerve injury (ONI). Daily ingestion of spermidine reduced RGC death following ONI and sequential in vivo retinal imaging revealed that spermidine effectively prevented retinal degeneration. Apoptosis signal-regulating kinase-1 (ASK1) is an evolutionarily conserved mitogen-activated protein kinase kinase kinase and has an important role in ONI-induced RGC apoptosis. We demonstrated that spermidine suppresses ONI-induced activation of the ASK1-p38 mitogen-activated protein kinase pathway. Moreover, production of chemokines important for microglia recruitment was decreased with spermidine treatment and, consequently, accumulation of retinal microglia is reduced. In addition, the ONI-induced expression of inducible nitric oxide synthase in the retina was inhibited with spermidine treatment, particularly in microglia. Furthermore, daily spermidine intake enhanced optic nerve regeneration in vivo. Our findings indicate that spermidine stimulates neuroprotection as well as neuroregeneration, and may be useful for treatment of various neurodegenerative diseases including glaucoma.
Collapse
Affiliation(s)
- T Noro
- 1] Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan [2] Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - K Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - A Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - X Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Y Azuchi
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - C Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - T Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - H Tsuneoka
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - T Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
34
|
Sharma TP, Liu Y, Wordinger RJ, Pang IH, Clark AF. Neuritin 1 promotes retinal ganglion cell survival and axonal regeneration following optic nerve crush. Cell Death Dis 2015; 6:e1661. [PMID: 25719245 PMCID: PMC4669798 DOI: 10.1038/cddis.2015.22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 12/11/2014] [Accepted: 01/06/2015] [Indexed: 12/16/2022]
Abstract
Neuritin 1 (Nrn1) is an extracellular glycophosphatidylinositol-linked protein that stimulates axonal plasticity, dendritic arborization and synapse maturation in the central nervous system (CNS). The purpose of this study was to evaluate the neuroprotective and axogenic properties of Nrn1 on axotomized retinal ganglion cells (RGCs) in vitro and on the in vivo optic nerve crush (ONC) mouse model. Axotomized cultured RGCs treated with recombinant hNRN1 significantly increased survival of RGCs by 21% (n=6–7, P<0.01) and neurite outgrowth in RGCs by 141% compared to controls (n=15, P<0.05). RGC transduction with AAV2-CAG–hNRN1 prior to ONC promoted RGC survival (450%, n=3–7, P<0.05) and significantly preserved RGC function by 70% until 28 days post crush (dpc) (n=6, P<0.05) compared with the control AAV2-CAG–green fluorescent protein transduction group. Significantly elevated levels of RGC marker, RNA binding protein with multiple splicing (Rbpms; 73%, n=5–8, P<0.001) and growth cone marker, growth-associated protein 43 (Gap43; 36%, n=3, P<0.01) were observed 28 dpc in the retinas of the treatment group compared with the control group. Significant increase in Gap43 (100%, n=5–6, P<0.05) expression was observed within the optic nerves of the AAV2–hNRN1 group compared to controls. In conclusion, Nrn1 exhibited neuroprotective, regenerative effects and preserved RGC function on axotomized RGCs in vitro and after axonal injury in vivo. Nrn1 is a potential therapeutic target for CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- T P Sharma
- 1] North Texas Eye Research Institute, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA [2] Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Y Liu
- 1] North Texas Eye Research Institute, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA [2] Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - R J Wordinger
- 1] North Texas Eye Research Institute, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA [2] Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - I-H Pang
- 1] North Texas Eye Research Institute, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA [2] Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA
| | - A F Clark
- 1] North Texas Eye Research Institute, University of North Texas Health Science Center, Ft. Worth, TX 76107, USA [2] Department of Cell Biology & Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
35
|
Osborne A, Aldarwesh A, Rhodes JD, Broadway DC, Everitt C, Sanderson J. Hydrostatic pressure does not cause detectable changes in survival of human retinal ganglion cells. PLoS One 2015; 10:e0115591. [PMID: 25635827 PMCID: PMC4312031 DOI: 10.1371/journal.pone.0115591] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/01/2014] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Elevated intraocular pressure (IOP) is a major risk factor for glaucoma. One consequence of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP). The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC) survival in the human retina was investigated. METHODS A chamber was designed to expose cells to increased HP (constant and fluctuating). Accurate pressure control (10-100 mmHg) was achieved using mass flow controllers. Human organotypic retinal cultures (HORCs) from donor eyes (<24 h post mortem) were cultured in serum-free DMEM/HamF12. Increased HP was compared to simulated ischemia (oxygen glucose deprivation, OGD). Cell death and apoptosis were measured by LDH and TUNEL assays, RGC marker expression by qRT-PCR (THY-1) and RGC number by immunohistochemistry (NeuN). Activated p38 and JNK were detected by Western blot. RESULTS Exposure of HORCs to constant (60 mmHg) or fluctuating (10-100 mmHg; 1 cycle/min) pressure for 24 or 48 h caused no loss of structural integrity, LDH release, decrease in RGC marker expression (THY-1) or loss of RGCs compared with controls. In addition, there was no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no increase in apoptosis of RGCs. OGD increased apoptosis, reduced RGC marker expression and RGC number and caused elevated LDH release at 24 h. p38 and JNK phosphorylation remained unchanged in HORCs exposed to fluctuating pressure (10-100 mmHg; 1 cycle/min) for 15, 30, 60 and 90 min durations, whereas OGD (3 h) increased activation of p38 and JNK, remaining elevated for 90 min post-OGD. CONCLUSIONS Directly applied HP had no detectable impact on RGC survival and stress-signalling in HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death. These results show that direct HP does not cause degeneration of RGCs in the ex vivo human retina.
Collapse
Affiliation(s)
- Andrew Osborne
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Amal Aldarwesh
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Jeremy D. Rhodes
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - David C. Broadway
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- Department of Ophthalmology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Claire Everitt
- Pfizer Ltd, Design Centre of Excellence, Granta Park, Great Abington, Cambridge, United Kingdom
| | - Julie Sanderson
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
36
|
Thaler S, Haritoglou C, Schuettauf F, Choragiewicz T, May CA, Gekeler F, Fischer MD, Langhals H, Schatz A. In vivo biocompatibility of a new cyanine dye for ILM peeling. Eye (Lond) 2014; 29:428-35. [PMID: 25523205 DOI: 10.1038/eye.2014.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 10/02/2014] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To investigate the biocompatibility of the new cyanine dye: 3,3'-Di-(4-sulfobutyl)-1,1,1',1'-tetramethyl-di-1H-benz[e]indocarbocyanine (DSS) as a vital dye for intraocular application in an in vivo rat model and to evaluate the effects of this dye on retinal structure and function. METHODS DSS at a concentration of 0.5% was applied via intravitreal injections to adult Brown Norway rats with BSS serving as a control. Retinal toxicity was assessed 7 days later by means of retinal ganglion cell (RGC) counts, light microscopy, optical coherence tomography (OCT), and electroretinography (ERG). RESULTS No significant decrease in RGC numbers was observed. No structural changes of the central retina were observed either in vivo (OCT) or under light microscopy. ERGs detected a temporary reduction of retinal function 7 days after injection; this was no longer evident 14 days after injection. CONCLUSIONS DSS showed good biocompatibility in a well-established experimental in vivo setting and may be usable for intraocular surgery as an alternative to other cyanine dyes. In contrast to indocyanine green, it additionally offers fluorescence in the visual spectrum. Further studies with other animal models are needed before translation into clinical application.
Collapse
Affiliation(s)
- S Thaler
- Eye Clinic and Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - C Haritoglou
- Department of Ophthalmology, Ludwig-Maximilians-University, Munich, Germany
| | - F Schuettauf
- Eye Clinic and Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - T Choragiewicz
- 1] Eye Clinic and Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany [2] 1st Eye Hospital, Medical University of Lublin, Lublin, Poland
| | - C A May
- Department of Anatomy, Medical Faculty 'Carl Gustav Carus', Technical University of Dresden, Dresden, Germany
| | - F Gekeler
- Eye Clinic and Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - M D Fischer
- Eye Clinic and Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - H Langhals
- Department of Chemistry, Ludwig-Maximilians-University, Munich, Germany
| | - A Schatz
- Eye Clinic and Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
37
|
Mesentier-Louro LA, Zaverucha-do-Valle C, da Silva-Junior AJ, Nascimento-dos-Santos G, Gubert F, de Figueirêdo ABP, Torres AL, Paredes BD, Teixeira C, Tovar-Moll F, Mendez-Otero R, Santiago MF. Distribution of mesenchymal stem cells and effects on neuronal survival and axon regeneration after optic nerve crush and cell therapy. PLoS One 2014; 9:e110722. [PMID: 25347773 PMCID: PMC4210195 DOI: 10.1371/journal.pone.0110722] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 09/24/2014] [Indexed: 02/07/2023] Open
Abstract
Bone marrow-derived cells have been used in different animal models of neurological diseases. We investigated the therapeutic potential of mesenchymal stem cells (MSC) injected into the vitreous body in a model of optic nerve injury. Adult (3–5 months old) Lister Hooded rats underwent unilateral optic nerve crush followed by injection of MSC or the vehicle into the vitreous body. Before they were injected, MSC were labeled with a fluorescent dye or with superparamagnetic iron oxide nanoparticles, which allowed us to track the cells in vivo by magnetic resonance imaging. Sixteen and 28 days after injury, the survival of retinal ganglion cells was evaluated by assessing the number of Tuj1- or Brn3a-positive cells in flat-mounted retinas, and optic nerve regeneration was investigated after anterograde labeling of the optic axons with cholera toxin B conjugated to Alexa 488. Transplanted MSC remained in the vitreous body and were found in the eye for several weeks. Cell therapy significantly increased the number of Tuj1- and Brn3a-positive cells in the retina and the number of axons distal to the crush site at 16 and 28 days after optic nerve crush, although the RGC number decreased over time. MSC therapy was associated with an increase in the FGF-2 expression in the retinal ganglion cells layer, suggesting a beneficial outcome mediated by trophic factors. Interleukin-1β expression was also increased by MSC transplantation. In summary, MSC protected RGC and stimulated axon regeneration after optic nerve crush. The long period when the transplanted cells remained in the eye may account for the effect observed. However, further studies are needed to overcome eventually undesirable consequences of MSC transplantation and to potentiate the beneficial ones in order to sustain the neuroprotective effect overtime.
Collapse
Affiliation(s)
- Louise Alessandra Mesentier-Louro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Camila Zaverucha-do-Valle
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Almir Jordão da Silva-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Gabriel Nascimento-dos-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Fernanda Gubert
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Ana Beatriz Padilha de Figueirêdo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Ana Luiza Torres
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Bruno D. Paredes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Camila Teixeira
- National Center of Structural Biology and Bioimaging (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Tovar-Moll
- National Center of Structural Biology and Bioimaging (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Institute of Biomedical Sciences (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
| | - Marcelo F. Santiago
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, INBEB, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
38
|
Semba K, Namekata K, Kimura A, Harada C, Katome T, Yoshida H, Mitamura Y, Harada T. Dock3 overexpression and p38 MAPK inhibition synergistically stimulate neuroprotection and axon regeneration after optic nerve injury. Neurosci Lett 2014; 581:89-93. [PMID: 25172145 DOI: 10.1016/j.neulet.2014.08.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
The dedicator of cytokinesis 3 (Dock3) is an atypical guanine nucleotide exchange factor that is predominantly expressed in the CNS. Dock3 exerts neuroprotective effects and stimulates optic nerve regeneration. The p38 mitogen-activated protein kinase acts downstream of apoptosis signal-regulating kinase 1 (ASK1) signaling and plays an important role in neural cell death. We assessed a therapeutic efficacy of Dock3 stimulation and p38 inhibition in retinal degeneration induced by optic nerve injury (ONI). In vivo retinal imaging using optical coherence tomography revealed that ONI-induced retinal degeneration was ameliorated in SB203580 (a p38 inhibitor)-treated WT mice and PBS-treated Dock3 overexpressing (Dock3 Tg) mice, and SB203580 further stimulated retinal protection in Dock3 Tg mice. In addition, SB203580 increased the number of regenerating axons after ONI in both WT and Dock3 Tg mice. ONI-induced phosphorylation of ASK1, p38 and the N-methyl-d-aspartate receptor 2B subunit were suppressed in the retina of Dock3 Tg mice. Inhibition of the ASK1 pathway in Dock3 Tg mice suggests that Dock3 may have an antioxidant-like property. These results indicate that overexpression of Dock3 and pharmacological interruption of p38 have synergistic effects for both neuroprotection and axon regeneration, thus combined application may be beneficial for the treatment of ONI.
Collapse
Affiliation(s)
- Kentaro Semba
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Katome
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Hiroshi Yoshida
- Department of Neuro-ophthalmology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Yoshinori Mitamura
- Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan; Department of Neuro-ophthalmology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan.
| |
Collapse
|
39
|
Galan A, Dergham P, Escoll P, de-la-Hera A, D'Onofrio PM, Magharious MM, Koeberle PD, Frade JM, Saragovi HU. Neuronal injury external to the retina rapidly activates retinal glia, followed by elevation of markers for cell cycle re-entry and death in retinal ganglion cells. PLoS One 2014; 9:e101349. [PMID: 24983470 PMCID: PMC4077807 DOI: 10.1371/journal.pone.0101349] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 06/05/2014] [Indexed: 11/22/2022] Open
Abstract
Retinal ganglion cells (RGCs) are neurons that relay visual signals from the retina to the brain. The RGC cell bodies reside in the retina and their fibers form the optic nerve. Full transection (axotomy) of the optic nerve is an extra-retinal injury model of RGC degeneration. Optic nerve transection permits time-kinetic studies of neurodegenerative mechanisms in neurons and resident glia of the retina, the early events of which are reported here. One day after injury, and before atrophy of RGC cell bodies was apparent, glia had increased levels of phospho-Akt, phospho-S6, and phospho-ERK1/2; however, these signals were not detected in injured RGCs. Three days after injury there were increased levels of phospho-Rb and cyclin A proteins detected in RGCs, whereas these signals were not detected in glia. DNA hyperploidy was also detected in RGCs, indicative of cell cycle re-entry by these post-mitotic neurons. These events culminated in RGC death, which is delayed by pharmacological inhibition of the MAPK/ERK pathway. Our data show that a remote injury to RGC axons rapidly conveys a signal that activates retinal glia, followed by RGC cell cycle re-entry, DNA hyperploidy, and neuronal death that is delayed by preventing glial MAPK/ERK activation. These results demonstrate that complex and variable neuro-glia interactions regulate healthy and injured states in the adult mammalian retina.
Collapse
Affiliation(s)
- Alba Galan
- Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada
| | - Pauline Dergham
- Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada
| | - Pedro Escoll
- Department of Medicine, Molecular Medicine Institute (IMMPA CSIC/UAH), School of Medicine, Alcalá University, Alcalá de Henares, Madrid, Spain
| | - Antonio de-la-Hera
- Department of Medicine, Molecular Medicine Institute (IMMPA CSIC/UAH), School of Medicine, Alcalá University, Alcalá de Henares, Madrid, Spain
| | - Philippe M. D'Onofrio
- Graduate Department of Rehabilitation Sciences, University of Toronto, Toronto, ON, Canada
| | - Mark M. Magharious
- Graduate Department of Rehabilitation Sciences, University of Toronto, Toronto, ON, Canada
| | | | - José María Frade
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, CSIC, Madrid, Spain
| | - H. Uri Saragovi
- Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Oncology and the Cancer Center, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
40
|
Sharma TP, McDowell CM, Liu Y, Wagner AH, Thole D, Faga BP, Wordinger RJ, Braun TA, Clark AF. Optic nerve crush induces spatial and temporal gene expression patterns in retina and optic nerve of BALB/cJ mice. Mol Neurodegener 2014; 9:14. [PMID: 24767545 PMCID: PMC4113182 DOI: 10.1186/1750-1326-9-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/18/2014] [Indexed: 12/18/2022] Open
Abstract
Background Central nervous system (CNS) trauma and neurodegenerative disorders trigger a cascade of cellular and molecular events resulting in neuronal apoptosis and regenerative failure. The pathogenic mechanisms and gene expression changes associated with these detrimental events can be effectively studied using a rodent optic nerve crush (ONC) model. The purpose of this study was to use a mouse ONC model to: (a) evaluate changes in retina and optic nerve (ON) gene expression, (b) identify neurodegenerative pathogenic pathways and (c) discover potential new therapeutic targets. Results Only 54% of total neurons survived in the ganglion cell layer (GCL) 28 days post crush. Using Bayesian Estimation of Temporal Regulation (BETR) gene expression analysis, we identified significantly altered expression of 1,723 and 2,110 genes in the retina and ON, respectively. Meta-analysis of altered gene expression (≥1.5, ≤-1.5, p < 0.05) using Partek and DAVID demonstrated 28 up and 20 down-regulated retinal gene clusters and 57 up and 41 down-regulated optic nerve clusters. Regulated gene clusters included regenerative change, synaptic plasticity, axonogenesis, neuron projection, and neuron differentiation. Expression of selected genes (Vsnl1, Syt1, Synpr and Nrn1) from retinal and ON neuronal clusters were quantitatively and qualitatively examined for their relation to axonal neurodegeneration by immunohistochemistry and qRT-PCR. Conclusion A number of detrimental gene expression changes occur that contribute to trauma-induced neurodegeneration after injury to ON axons. Nrn1 (synaptic plasticity gene), Synpr and Syt1 (synaptic vesicle fusion genes), and Vsnl1 (neuron differentiation associated gene) were a few of the potentially unique genes identified that were down-regulated spatially and temporally in our rodent ONC model. Bioinformatic meta-analysis identified significant tissue-specific and time-dependent gene clusters associated with regenerative changes, synaptic plasticity, axonogenesis, neuron projection, and neuron differentiation. These ONC induced neuronal loss and regenerative failure associated clusters can be extrapolated to changes occurring in other forms of CNS trauma or in clinical neurodegenerative pathological settings. In conclusion, this study identified potential therapeutic targets to address two key mechanisms of CNS trauma and neurodegeneration: neuronal loss and regenerative failure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Abbot F Clark
- North Texas Eye Research Institute, Ft, Worth, TX USA.
| |
Collapse
|
41
|
Nahirnyj A, Livne-Bar I, Guo X, Sivak JM. ROS detoxification and proinflammatory cytokines are linked by p38 MAPK signaling in a model of mature astrocyte activation. PLoS One 2013; 8:e83049. [PMID: 24376630 PMCID: PMC3871647 DOI: 10.1371/journal.pone.0083049] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/08/2013] [Indexed: 01/10/2023] Open
Abstract
Astrocytes are the most abundant glial cell in the retinal nerve fiber layer (NFL) and optic nerve head (ONH), and perform essential roles in maintaining retinal ganglion cell (RGC) detoxification and homeostasis. Mature astrocytes are relatively quiescent, but rapidly undergo a phenotypic switch in response to insult, characterized by upregulation of intermediate filament proteins, loss of glutamate buffering, secretion of pro-inflammatory cytokines, and increased antioxidant production. These changes result in both positive and negative influences on RGCs. However, the mechanism regulating these responses is still unclear, and pharmacologic strategies to modulate select aspects of this switch have not been thoroughly explored. Here we describe a system for rapid culture of mature astrocytes from the adult rat retina that remain relatively quiescent, but respond robustly when challenged with oxidative damage, a key pathogenic stress associated with inner retinal injury. When primary astrocytes were exposed to reactive oxygen species (ROS) we consistently observed characteristic changes in activation markers, along with increased expression of detoxifying genes, and secretion of proinflammatory cytokines. This in vitro model was then used for a pilot chemical screen to target specific aspects of this switch. Increased activity of p38α and β Mitogen Activated Protein Kinases (MAPKs) were identified as a necessary signal regulating expression of MnSOD, and heme oxygenase 1 (HO-1), with consequent changes in ROS-mediated injury. Additionally, multiplex cytokine profiling detected p38 MAPK-dependent secretion of IL-6, MCP-1, and MIP-2α, which are proinflammatory signals recently implicated in damage to the inner retina. These data provide a mechanism to link increased oxidative stress to proinflammatory signaling by astrocytes, and establish this assay as a useful model to further dissect factors regulating the reactive switch.
Collapse
Affiliation(s)
- Adrian Nahirnyj
- Department of Vision Sciences, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Izhar Livne-Bar
- Department of Vision Sciences, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xiaoxin Guo
- Department of Vision Sciences, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jeremy M. Sivak
- Department of Vision Sciences, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
42
|
Khoshneviszadeh M, Ghahremani MH, Foroumadi A, Miri R, Firuzi O, Madadkar-Sobhani A, Edraki N, Parsa M, Shafiee A. Design, synthesis and biological evaluation of novel anti-cytokine 1,2,4-triazine derivatives. Bioorg Med Chem 2013; 21:6708-17. [DOI: 10.1016/j.bmc.2013.08.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 08/05/2013] [Accepted: 08/05/2013] [Indexed: 11/27/2022]
|
43
|
Sugiyama T, Lee SY, Horie T, Oku H, Takai S, Tanioka H, Kuriki Y, Kojima S, Ikeda T. P2X₇ receptor activation may be involved in neuronal loss in the retinal ganglion cell layer after acute elevation of intraocular pressure in rats. Mol Vis 2013; 19:2080-91. [PMID: 24146541 PMCID: PMC3786454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 09/26/2013] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To investigate whether the P2X₇ receptor is involved in retinal ganglion cell (RGC) death after the intraocular pressure (IOP) is elevated in rats. METHODS After the IOP was elevated to 90 mmHg for 1 h, the rats were subsequently administered oxidized adenosine triphosphate (OxATP) and brilliant blue G (BBG) as P2X₇ antagonists. The rats were euthanized 7 days after IOP elevation for histologic evaluation and at 1, 3, and 7 days after IOP elevation to immunostain for the P2X₇ receptor and neuron-specific class III β-tubulin in the retina. Changes in P2X₇ receptor expression were measured in total retina extracts using western blot analysis. Quantitative real-time PCR was also performed using the entire retina to determine whether the P2X₇ receptor is involved in upregulating tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 at 1, 2, and 3 days after the IOP was elevated. RESULTS RGC density and the inner plexiform layer thickness significantly decreased 7 days after IOP elevation, but were dose-dependently preserved when treated with OxATP or BBG. P2X₇ immunoreactivity in the RGCs increased after IOP elevation, with the peak occurring from day 1 through day 3. Protein levels of P2X₇ receptor were significantly increased 1, 2, and 3 days after IOP elevation. The messenger ribonucleic acid expression of the P2X₇ receptor, TNF-α, IL-1β, and IL-6 was significantly upregulated in the retina after IOP elevation, and was suppressed by treatment with OxATP. CONCLUSIONS These results suggest the expression of the P2X₇ receptor is upregulated in the retina after IOP elevation, leading to RGC death. Upregulation of TNF-α, IL-1β, and IL-6 might be involved in this mechanism of RGC death. Furthermore, P2X₇ antagonists may prevent RGC death after IOP elevation.
Collapse
Affiliation(s)
- Tetsuya Sugiyama
- Department of Ophthalmology, Osaka Medical College, Takatsuki, Osaka, Japan
| | | | - Taeko Horie
- Department of Ophthalmology, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Shinji Takai
- Department of Pharmacology, Osaka Medical College, Osaka, Japan
| | - Hidetoshi Tanioka
- Nara Research and Development Center, Santen Pharmaceutical Co. Ltd., Takayama-cho, Ikoma-shi, Nara, Japan
| | - Yumi Kuriki
- Nara Research and Development Center, Santen Pharmaceutical Co. Ltd., Takayama-cho, Ikoma-shi, Nara, Japan
| | - Shota Kojima
- Department of Ophthalmology, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical College, Takatsuki, Osaka, Japan
| |
Collapse
|
44
|
Stamler JS. Redox pioneer: Professor Stuart A. Lipton. Antioxid Redox Signal 2013; 19:757-64. [PMID: 23815466 PMCID: PMC3749706 DOI: 10.1089/ars.2013.5388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/14/2013] [Accepted: 07/01/2013] [Indexed: 11/12/2022]
Abstract
[Figure: see text] Stuart A. Lipton, M.D., Ph.D. is recognized here as a Redox Pioneer because of his publication of four articles that have been cited more than 1000 times, and 96 reports which have been cited more than 100 times. In the redox field, Dr. Lipton is best known for his work on the regulation by S-nitrosylation of the NMDA-subtype of neuronal glutamate receptor, which provided early evidence for in situ regulation of protein activity by S-nitrosylation and a prototypic model of allosteric control by this post-translational modification. Over the past several years, Lipton's group has pioneered the discovery of aberrant protein nitrosylation that may contribute to a number of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis (Lou Gehrig's disease). In particular, the phenotypic effects of rare genetic mutations may be understood to be enhanced or mimicked by nitrosative (and oxidative) modifications of cysteines and thereby help explain common sporadic forms of disease. Thus, Lipton has contributed in a major way to the understanding that nitrosative stress may result from modifications of specific proteins and may operate in conjunction with genetic mutation to create disease phenotype. Lipton (collaborating with Jonathan S. Stamler) has also employed the concept of targeted S-nitrosylation to produce novel neuroprotective drugs that act at allosteric sites in the NMDA receptor. Lipton has won a number of awards, including the Ernst Jung Prize in Medicine, and is an elected fellow of the AAAS. Antioxid. Redox Signal. 19, 757-764.
Collapse
Affiliation(s)
- Jonathan S Stamler
- Institute for Transformative Molecular Medicine and Harrington Discovery Institute, Case Western Reserve University and University Hospital Case Medical Center, Cleveland, Ohio 44106, USA.
| |
Collapse
|
45
|
Agca C, Gubler A, Traber G, Beck C, Imsand C, Ail D, Caprara C, Grimm C. p38 MAPK signaling acts upstream of LIF-dependent neuroprotection during photoreceptor degeneration. Cell Death Dis 2013; 4:e785. [PMID: 24008729 PMCID: PMC3789181 DOI: 10.1038/cddis.2013.323] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/09/2013] [Accepted: 07/15/2013] [Indexed: 12/31/2022]
Abstract
In many blinding diseases of the retina, loss of function and thus severe visual impairment results from apoptotic cell death of damaged photoreceptors. In an attempt to survive, injured photoreceptors generate survival signals to induce intercellular protective mechanisms that eventually may rescue photoreceptors from entering an apoptotic death pathway. One such endogenous survival pathway is controlled by leukemia inhibitory factor (LIF), which is produced by a subset of Muller glia cells in response to photoreceptor injury. In the absence of LIF, survival components are not activated and photoreceptor degeneration is accelerated. Although LIF is a crucial factor for photoreceptor survival, the detailed mechanism of its induction in the retina has not been elucidated. Here, we show that administration of tumor necrosis factor-alpha (TNF) was sufficient to fully upregulate Lif expression in Muller cells in vitro and the retina in vivo. Increased Lif expression depended on p38 mitogen-activated protein kinase (MAPK) since inhibition of its activity abolished Lif expression in vitro and in vivo. Inhibition of p38 MAPK activity reduced the Lif expression also in the model of light-induced retinal degeneration and resulted in increased cell death in the light-exposed retina. Thus, expression of Lif in the injured retina and activation of the endogenous survival pathway involve signaling through p38 MAPK.
Collapse
Affiliation(s)
- C Agca
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich 8091, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Dapper JD, Crish SD, Pang IH, Calkins DJ. Proximal inhibition of p38 MAPK stress signaling prevents distal axonopathy. Neurobiol Dis 2013; 59:26-37. [PMID: 23859799 DOI: 10.1016/j.nbd.2013.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/04/2013] [Indexed: 12/21/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) isoforms are phosphorylated by a variety of stress stimuli in neurodegenerative disease and act as upstream activators of myriad pathogenic processes. Thus, p38 MAPK inhibitors are of growing interest as possible therapeutic interventions. Axonal dysfunction is an early component of most neurodegenerative disorders, including the most prevalent optic neuropathy, glaucoma. Sensitivity to intraocular pressure at an early stage disrupts anterograde transport along retinal ganglion cell (RGC) axons to projection targets in the brain with subsequent degeneration of the axons themselves; RGC body loss is much later. Here we show that elevated ocular pressure in rats increases p38 MAPK activation in retina, especially in RGC bodies. Topical eye-drop application of a potent and selective inhibitor of the p38 MAPK catalytic domain (Ro3206145) prevented both the degradation of anterograde transport to the brain and degeneration of axons in the optic nerve. Ro3206145 reduced in the retina phosphorylation of tau and heat-shock protein 27, both down-stream targets of p38 MAPK activation implicated in glaucoma, as well as expression of two inflammatory responses. We also observed increased p38 MAPK activation in mouse models. Thus, inhibition of p38 MAPK signaling in the retina may represent a therapeutic target for preventing early pathogenesis in optic neuropathies.
Collapse
Affiliation(s)
- Jason D Dapper
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|
47
|
Cheng G, Kong RH, Zhang LM, Zhang JN. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol 2013; 167:699-719. [PMID: 23003569 DOI: 10.1111/j.1476-5381.2012.02025.x] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a major health and socioeconomic problem throughout the world. It is a complicated pathological process that consists of primary insults and a secondary insult characterized by a set of biochemical cascades. The imbalance between a higher energy demand for repair of cell damage and decreased energy production led by mitochondrial dysfunction aggravates cell damage. At the cellular level, the main cause of the secondary deleterious cascades is cell damage that is centred in the mitochondria. Excitotoxicity, Ca(2+) overload, reactive oxygen species (ROS), Bcl-2 family, caspases and apoptosis inducing factor (AIF) are the main participants in mitochondria-centred cell damage following TBI. Some preclinical and clinical results of mitochondria-targeted therapy show promise. Mitochondria- targeted multipotential therapeutic strategies offer new hope for the successful treatment of TBI and other acute brain injuries.
Collapse
Affiliation(s)
- Gang Cheng
- Neurosurgical Department, PLA Navy General Hospital, Beijing, China
| | | | | | | |
Collapse
|
48
|
Katome T, Namekata K, Guo X, Semba K, Kittaka D, Kawamura K, Kimura A, Harada C, Ichijo H, Mitamura Y, Harada T. Inhibition of ASK1-p38 pathway prevents neural cell death following optic nerve injury. Cell Death Differ 2012; 20:270-80. [PMID: 22976835 DOI: 10.1038/cdd.2012.122] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Optic nerve injury (ONI) induces retinal ganglion cell (RGC) death and optic nerve atrophy that lead to visual loss. Apoptosis signal-regulating kinase 1 (ASK1) is an evolutionarily conserved mitogen-activated protein kinase (MAPK) kinase kinase and has an important role in stress-induced RGC apoptosis. In this study, we found that ONI-induced p38 activation and RGC loss were suppressed in ASK1-deficient mice. Sequential in vivo retinal imaging revealed that post-ONI treatment with a p38 inhibitor into the eyeball was effective for RGC protection. ONI-induced monocyte chemotactic protein-1 production in RGCs and microglial accumulation around RGCs were suppressed in ASK1-deficient mice. In addition, the productions of tumor necrosis factor and inducible nitric oxide synthase in microglia were decreased when the ASK1-p38 pathway was blocked. These results suggest that ASK1 activation in both neural and glial cells is involved in neural cell death, and that pharmacological interruption of ASK1-p38 pathways could be beneficial in the treatment of ONI.
Collapse
Affiliation(s)
- T Katome
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jiang SY, Zou YY, Wang JT. p38 mitogen-activated protein kinase-induced nuclear factor kappa-light-chain-enhancer of activated B cell activity is required for neuroprotection in retinal ischemia/reperfusion injury. Mol Vis 2012; 18:2096-106. [PMID: 22876136 PMCID: PMC3413424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 07/21/2012] [Indexed: 11/24/2022] Open
Abstract
PURPOSE In our previous study, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) played a neuroprotective role in retinal ischemia/reperfusion (I/R) injury in rats. However, the mechanism of NF-κB neuroprotection is still unclear. We hypothesize that p38 mitogen-activated protein kinase (MAPK) is expressed and NF-κB activity induced by p38 MAPK plays a neuroprotective role through antiapoptotic genes (B-cell lymphoma [Bcl]-2 and Bcl-XL) in retinal cells in retinal I/R injury. METHODS Retinal ischemia was induced by elevating intraocular pressure in rats. After retinal I/R, the p38 MAPK, NF-κB p65, Bcl-2, and Bcl-XL mRNA levels were measured with real-time polymerase chain reaction. NF-κB p65 activity was assessed with NF-κB enzyme-linked immunosorbent assay in retinal I/R injury and after application of the p38 MAPK inhibitor (SB203580). Furthermore, SB203580 and NF-κB p65 short interfering RNA (siRNA) were used in retinal I/R injury to examine the effects on Bcl-2 and Bcl-XL levels and nucleosome release in the retina and cell survival in the ganglion cell layer. RESULTS The mRNA levels of NF-κB p65 and p38 MAPK reached a peak at 6 h after retinal I/R and then decreased gradually. The mRNA levels of Bcl-2 and Bcl-XL significantly increased at 2, 4, and 6 h, peaked at 8 h, and decreased gradually, but remained at a higher level compared with the normal control, which was accompanied by an increase in NF-κB p65 in nuclear extracts. After application of SB203580, the increase in the NF-κB p65 levels in the nucleus induced with I/R was completely abolished, and the mRNA expression of Bcl-2 and Bcl-XL decreased significantly compared with the I/R controls. In addition, NF-κB p65 siRNA inhibited Bcl-2 and Bcl-XL expression. Inhibition of the p38 MAPK-NF-κB pathway (using SB203580 or NF-κB p65 siRNA) increased retinal nucleosome release and decreased the number of ganglion cells. CONCLUSIONS These findings provide evidence of crosstalk between p38 MAPK and NF-κB p65 and demonstrate a possible neuroprotective role for the p38 MAPK-NF-κB pathway through Bcl-2 and Bcl-XL in retinal I/R injury in rats.
Collapse
Affiliation(s)
- Shao-Yun Jiang
- School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Yuan-Yuan Zou
- Eye Center, Tianjin Medical University, Tianjin, China
| | - Jian-Tao Wang
- Eye Center, Tianjin Medical University, Tianjin, China,Dohney Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
50
|
Agthong S, Kaewsema A, Chentanez V. Inhibition of p38 MAPK reduces loss of primary sensory neurons after nerve transection. Neurol Res 2012; 34:714-20. [PMID: 22776617 DOI: 10.1179/1743132812y.0000000070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE p38 member of mitogen-activated protein kinase (MAPK) family has been shown to participate in neuropathic pain and axonal regeneration after nerve injury. However, its role in axotomy-induced neuronal apoptosis remains unclear. This study was aimed to examine p38 phosphorylation in the dorsal root ganglia (DRG) and its role in DRG neuronal loss after axotomy. METHODS Left sciatic nerve transection was performed in all rats. For the temporal study of p38 phosphorylation, the rats were sacrificed at 1 day, 2 weeks, and 2 months after injury. In the second experiment, the rats were divided into control and inhibitor groups receiving vehicle and p38 inhibitor (SB203580, 200 μg/kg/day intraperitoneally once daily), respectively, for 2 weeks. RESULTS The p38 phosphorylation was increased in L4/5 DRG at 2 weeks after transection. Immunoreactivity of phospho-p38 was mainly observed in the cytoplasm of small neurons with additional nuclear localization in the axotomized neurons at 2 weeks. SB203580 could reduce the phosphorylation of p38 and its substrate, ATF2, including the upregulation of total caspase-3 expression in the DRG. Moreover, count of L4/5 DRG neurons revealed significantly decreased cell loss in the inhibitor than control groups (17·4% versus 32·5%). CONCLUSION These data suggest the role of p38 in sensory neuronal loss after nerve transection. Future studies should be done to confirm the apoptotic role of p38 in this condition.
Collapse
Affiliation(s)
- Sithiporn Agthong
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University Bangkok, Thailand.
| | | | | |
Collapse
|