1
|
Dorogan M, Namballa HK, Harding WW. Natural Product-Inspired Dopamine Receptor Ligands. J Med Chem 2024; 67:12463-12484. [PMID: 39038276 PMCID: PMC11320586 DOI: 10.1021/acs.jmedchem.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Due to their evolutionary bias as ligands for biologically relevant drug targets, natural products offer a unique opportunity as lead compounds in drug discovery. Given the involvement of dopamine receptors in various physiological and behavioral functions, they are linked to numerous diseases and disorders such as Parkinson's disease, schizophrenia, and substance use disorders. Consequently, ligands targeting dopamine receptors hold considerable therapeutic and investigative promise. As this perspective will highlight, dopamine receptor targeting natural products play a pivotal role as scaffolds with unique and beneficial pharmacological properties, allowing for natural product-inspired drug design and lead optimization. As such, dopamine receptor targeting natural products still have untapped potential to aid in the treatment of disorders and diseases related to central nervous system (CNS) and peripheral nervous system (PNS) dysfunction.
Collapse
Affiliation(s)
- Michael Dorogan
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
| | - Hari K. Namballa
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
| | - Wayne W. Harding
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
- Program
in Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United States
- Program
in Chemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United
States
| |
Collapse
|
2
|
Majumdar M, Badwaik H. Trends on Novel Targets and Nanotechnology-Based Drug Delivery System in the Treatment of Parkinson's disease: Recent Advancement in Drug Development. Curr Drug Targets 2024; 25:987-1011. [PMID: 39313872 DOI: 10.2174/0113894501312703240826070530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 09/25/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that impacts a significant portion of the population. Despite extensive research, an effective cure for PD remains elusive, and conventional pharmacological treatments often face limitations in efficacy and management of symptoms. There has been a lot of discussion about using nanotechnology to increase the bioavailability of small- molecule drugs to target cells in recent years. It is possible that PD treatment might become far more effective and have fewer side effects if medication delivery mechanisms were to be improved. Potential alternatives to pharmacological therapy for molecular imaging and treatment of PD may lie in abnormal proteins such as parkin, α-synuclein, leucine-rich repeat serine and threonine protein kinase 2. Published research has demonstrated encouraging outcomes when nanomedicine-based approaches are used to address the challenges of PD therapy. So, to address the present difficulties of antiparkinsonian treatment, this review outlines the key issues and limitations of antiparkinsonian medications, new therapeutic strategies, and the breadth of delivery based on nanomedicine. This review covers a wide range of subjects, including drug distribution in the brain, the efficacy of drug-loaded nano-carriers in crossing the blood-brain barrier, and their release profiles. In PD, the nano-carriers are also used. Novel techniques of pharmaceutical delivery are currently made possible by vesicular carriers, which eliminate the requirement to cross the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Manisha Majumdar
- Department of Pharmacy, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India
| | - Hemant Badwaik
- Department of Pharmacy, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India
| |
Collapse
|
3
|
Liu H, Acharya S, Sudan SK, Hu L, Wu C, Cao Y, Li H, Zhang X. Comparative study of the molecular mechanisms underlying the G protein and β-arrestin-dependent pathways that lead to ERKs activation upon stimulation by dopamine D 2 receptor. FEBS J 2023; 290:5204-5233. [PMID: 37531324 DOI: 10.1111/febs.16921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/09/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
Dopamine D2 receptor (D2 R) has been shown to activate extracellular signal-regulated kinases (ERKs) via distinct pathways dependent on either G-protein or β-arrestin. However, there has not been a systematic study of the regulatory process of D2 R-mediated ERKs activation by G protein- versus β-arrestin-dependent signaling since D2 R stimulation of ERKs reflects the simultaneous action of both pathways. Here, we investigated that differential regulation of D2 R-mediated ERKs activation via these two pathways. Our results showed that G protein-dependent ERKs activation was transient, rapid, reached maximum level at around 2 min, and importantly, the activated ERKs were entirely confined to the cytoplasm. In contrast, β-arrestin-dependent ERKs activation was more sustained, slower, reached maximum level at around 10 min, and phosphorylated ERKs translocated into the nucleus. Src was found to be commonly involved in both the G protein- and β-arrestin-dependent pathway-mediated ERKs activation. Pertussis toxin Gi/o inhibitor, GRK2-CT, AG1478 epidermal growth factor receptor inhibitor, and wortmannin phosphoinositide 3-kinase inhibitor all blocked G protein-dependent ERKs activation. In contrast, GRK2 and β-Arr2 played a main role in β-arrestin-dependent ERKs activation. Receptor endocytosis showed minimal effect on the activation of ERKs mediated by both pathways. Furthermore, we found that the formation of a complex composed of phospho-ERKs, β-Arr2, and importinβ1 promoted the nuclear translocation of activated ERKs. The differential regulation of various cellular components, as well as temporal and spatial patterns of ERKs activation via these two pathways, suggest the existence of distinct physiological outcomes.
Collapse
Affiliation(s)
- Haiping Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Srijan Acharya
- Mitchell Cancer Institute, School of Medicine, University of South Alabama, Mobile, AL, USA
| | - Sarabjeet Kour Sudan
- Mitchell Cancer Institute, School of Medicine, University of South Alabama, Mobile, AL, USA
| | - Li Hu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Chengyan Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Yongkai Cao
- Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, China
| | - Huijun Li
- Department of Pharmaceuticals, People's Hospital of Zunyi City Bo Zhou District, China
| | - Xiaohan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Costas-Ferreira C, Silva ACDJ, Hage-Melim LIDS, Faro LRF. Role of voltage-dependent calcium channels on the striatal in vivo dopamine release induced by the organophosphorus pesticide glyphosate. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104285. [PMID: 37783442 DOI: 10.1016/j.etap.2023.104285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
In the present study, we investigated the role of voltage-sensitive calcium channels (VSCCs) on the striatal dopamine release induced by the pesticide glyphosate (GLY) using selective VSCC inhibitors. The dopamine levels were measured by in vivo cerebral microdialysis coupled to HPLC-ED. Nicardipine (L-type VSCC antagonist) or ω-conotoxin MVIIC (non-selective P/Q-type antagonist) had no effect on dopamine release induced by 5 mM GLY. In contrast, flunarizine (T-type antagonist) or ω-conotoxin GVIA (neuronal N-type antagonist) significantly reduced GLY-stimulated dopamine release. These results suggest that GLY-induced dopamine release depends on extracellular calcium and its influx through the T- and N-type VSCCs. These findings were corroborated by molecular docking, which allowed us to establish a correlation between the effect of GLY on blocked VSCC with the observed dopamine release. We propose new molecular targets of GLY in the dorsal striatum, which could have important implications for the assessment of pesticide risks in non-target organisms.
Collapse
Affiliation(s)
- Carmen Costas-Ferreira
- Department of Functional Biology and Health sciences, Faculty of Biology, University of Vigo, Spain
| | | | | | - Lilian R Ferreira Faro
- Department of Functional Biology and Health sciences, Faculty of Biology, University of Vigo, Spain.
| |
Collapse
|
5
|
Franco R, Navarro G, Martínez-Pinilla E. The adenosine A 2A receptor in the basal ganglia: Expression, heteromerization, functional selectivity and signalling. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:49-71. [PMID: 37741696 DOI: 10.1016/bs.irn.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Adenosine is a neuroregulatory nucleoside that acts through four G protein-coupled receptors (GPCRs), A1, A2A, A2B and A3, which are widely expressed in cells of the nervous system. The A2A receptor (A2AR), the GPCR with the highest expression in the striatum, has a similar role to that of receptors for dopamine, one of the main neurotransmitters. Neuronal and glial A2ARs participate in the modulation of dopaminergic transmission and act in almost any action in which the basal ganglia is involved. This chapter revisits the expression of the A2AR in the basal ganglia in health and disease, and describes the diversity of signalling depending on whether the receptors are expressed as monomer or as heteromer. The A2AR can interact with other receptors as adenosine A1, dopamine D2, or cannabinoid CB1 to form heteromers with relevant functions in the basal ganglia. Heteromerization, with these and other GPCRs, provides diversity to A2AR-mediated signalling and to the modulation of neurotransmission. Thus, selective A2AR antagonists have neuroprotective potential acting directly on neurons, but also through modulation of glial cell activation, for example, by decreasing neuroinflammatory events that accompany neurodegenerative diseases. In fact, A2AR antagonists are safe and their potential in the therapy of Parkinson's disease has already led to the approval of one of them, istradefylline, in Japan and United States. The receptor also has a key role in reward circuits and, again, heteromers with dopamine receptors, but also with cannabinoid CB1 receptors, participate in the events triggered by drugs of abuse.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain; School of Chemistry, Universitat de Barcelona, Barcelona, Spain.
| | - Gemma Navarro
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Science Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Eva Martínez-Pinilla
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Asturias, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| |
Collapse
|
6
|
Khan MA, Haider N, Singh T, Bandopadhyay R, Ghoneim MM, Alshehri S, Taha M, Ahmad J, Mishra A. Promising biomarkers and therapeutic targets for the management of Parkinson's disease: recent advancements and contemporary research. Metab Brain Dis 2023; 38:873-919. [PMID: 36807081 DOI: 10.1007/s11011-023-01180-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/04/2023] [Indexed: 02/23/2023]
Abstract
Parkinson's disease (PD) is one of the progressive neurological diseases which affect around 10 million population worldwide. The clinical manifestation of motor symptoms in PD patients appears later when most dopaminergic neurons have degenerated. Thus, for better management of PD, the development of accurate biomarkers for the early prognosis of PD is imperative. The present work will discuss the potential biomarkers from various attributes covering biochemical, microRNA, and neuroimaging aspects (α-synuclein, DJ-1, UCH-L1, β-glucocerebrosidase, BDNF, etc.) for diagnosis, recent development in PD management, and major limitations with current and conventional anti-Parkinson therapy. This manuscript summarizes potential biomarkers and therapeutic targets, based on available preclinical and clinical evidence, for better management of PD.
Collapse
Affiliation(s)
- Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Murtada Taha
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Sila Katamur (Halugurisuk), Kamrup, Changsari, Assam, 781101, India.
| |
Collapse
|
7
|
REAKKAMNUAN CHAYAPORN, CHEAHA DANIA, KUMARNSIT EKKASIT, SAMERPHOB NIFAREEDA. Dopamine Improves Low Gamma Activities in the Dorsal Striatum of Haloperidol-induced Motor Impairment Mice. In Vivo 2023; 37:304-309. [PMID: 36593045 PMCID: PMC9843765 DOI: 10.21873/invivo.13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIM The dorsal striatum is a brain area integrating information for movement output. The local field potentials (LFPs) reflect the neuronal activity that can be used for monitoring brain activities and controlling movement. MATERIALS AND METHODS Rhythmic low gamma power activity (30.1-45 Hz) in the dorsal striatum was monitored according to voluntary motor movement in rotarod and bar tests in 0.5 mg/kg haloperidol-induced mice. RESULTS Haloperidol can effectively induce movement impairment indicated by decreased low gamma LFP with the lessened rotarod test's latency fall, and the enhanced bar test's descending latency. L-DOPA was used for the induction of a dopamine-dependent signal. The results showed that 25 mg/kg of L-DOPA could reverse the effect of haloperidol by enhancing low gamma oscillation concomitantly with the improvement in behavioral movement as fast as 60 min after administration, suggesting that dopamine signaling increases low gamma frequency of LFP in correlation with the improved mice movement. This work supports quantitative LFP assessment as a monitoring tool to track drug action on the nervous system. CONCLUSION In animal models of motor impairment, oral dopaminergic treatment can be effective in restoring motor dysfunction by stimulating low gamma power activity in the dorsal striatum.
Collapse
Affiliation(s)
- CHAYAPORN REAKKAMNUAN
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - DANIA CHEAHA
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand,Biosignal Research Center for Health, Prince of Songkla University, Hat Yai, Thailand
| | - EKKASIT KUMARNSIT
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand,Biosignal Research Center for Health, Prince of Songkla University, Hat Yai, Thailand
| | - NIFAREEDA SAMERPHOB
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand,Biosignal Research Center for Health, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
8
|
Li W, Hu B, Liu H, Luan J, Chen L, Wang S, Fan L, Wang J. In silico investigation of the selectivity mechanism of A 1AR and A 2AAR antagonism. NEW J CHEM 2022. [DOI: 10.1039/d2nj03536g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adenosine A1 receptor (A1AR) and adenosine A2A receptor (A2AAR) are AR isoforms that share high homology but play many different roles in terms of regulating arteriolar pressure and urine flow as well as relieving neurodegenerative disorders.
Collapse
Affiliation(s)
- Weixia Li
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Baichun Hu
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Haihan Liu
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jiasi Luan
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Lu Chen
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shizun Wang
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Liye Fan
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
9
|
Ahmad J, Haider N, Khan MA, Md S, Alhakamy NA, Ghoneim MM, Alshehri S, Sarim Imam S, Ahmad MZ, Mishra A. Novel therapeutic interventions for combating Parkinson's disease and prospects of Nose-to-Brain drug delivery. Biochem Pharmacol 2021; 195:114849. [PMID: 34808125 DOI: 10.1016/j.bcp.2021.114849] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative disorder prevalent mainly in geriatric population. While, L-DOPA remains one of the major choices for the therapeutic management of PD, various motor and non-motor manifestations complicate the management of PD. In the last two decades, exhaustive research has been carried out to explore novel therapeutic approaches for mitigating motor and non-motor symptoms of PD. These approaches majorly include receptor-based, anti-inflammatory, stem-cell and nucleic acid based. The major limitations of existing therapeutic interventions (of commonly oral route) are low efficacy due to low brain bioavailability and associated side effects. Nanotechnology has been exploited and has gained wide attention in the recent years as an approach for enhancement of bioavailability of various small molecule drugs in the brain. To address the challenges associated with PD therapy, nose-to-brain delivery utilizing nanomedicine-based approaches has been found to be encouraging in published evidence. Therefore, the present work summarises the major challenges and limitations with antiparkinsonian drugs, novel therapeutic interventions, and scope of nanomedicine-based nose-to-brain delivery in addressing the current challenges of antiparkinsonian therapy. The manuscript tries to sensitize the researchers for designing brain-targeted nanomedicine loaded with natural/synthetic scaffolds, biosimilars, and nucleic acids that can bypass the first-pass effect for the effective management of PD.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia.
| | - Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia.
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia.
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia.
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup Assam-781101, India.
| |
Collapse
|
10
|
Toval A, Garrigos D, Kutsenko Y, Popović M, Do-Couto BR, Morales-Delgado N, Tseng KY, Ferran JL. Dopaminergic Modulation of Forced Running Performance in Adolescent Rats: Role of Striatal D1 and Extra-striatal D2 Dopamine Receptors. Mol Neurobiol 2021; 58:1782-1791. [PMID: 33394335 PMCID: PMC7932989 DOI: 10.1007/s12035-020-02252-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022]
Abstract
Improving exercise capacity during adolescence impacts positively on cognitive and motor functions. However, the neural mechanisms contributing to enhance physical performance during this sensitive period remain poorly understood. Such knowledge could help to optimize exercise programs and promote a healthy physical and cognitive development in youth athletes. The central dopamine system is of great interest because of its role in regulating motor behavior through the activation of D1 and D2 receptors. Thus, the aim of the present study is to determine whether D1 or D2 receptor signaling contributes to modulate the exercise capacity during adolescence and if this modulation takes place through the striatum. To test this, we used a rodent model of forced running wheel that we implemented recently to assess the exercise capacity. Briefly, rats were exposed to an 8-day period of habituation in the running wheel before assessing their locomotor performance in response to an incremental exercise test, in which the speed was gradually increased until exhaustion. We found that systemic administration of D1-like (SCH23390) and/or D2-like (raclopride) receptor antagonists prior to the incremental test reduced the duration of forced running in a dose-dependent manner. Similarly, locomotor activity in the open field was decreased by the dopamine antagonists. Interestingly, this was not the case following intrastriatal infusion of an effective dose of SCH23390, which decreased motor performance during the incremental test without disrupting the behavioral response in the open field. Surprisingly, intrastriatal delivery of raclopride failed to impact the duration of forced running. Altogether, these results indicate that the level of locomotor response to incremental loads of forced running in adolescent rats is dopamine dependent and mechanistically linked to the activation of striatal D1 and extra-striatal D2 receptors.
Collapse
Affiliation(s)
- Angel Toval
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Daniel Garrigos
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Yevheniy Kutsenko
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Miroljub Popović
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Bruno Ribeiro Do-Couto
- Department of Human Anatomy and Psychobiology, Faculty of Psychology, University of Murcia, Murcia, Spain
| | - Nicanor Morales-Delgado
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Department of Histology and Anatomy, Faculty of Medicine, University Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.
| |
Collapse
|
11
|
Jenner P, Mori A, Aradi SD, Hauser RA. Istradefylline - a first generation adenosine A 2A antagonist for the treatment of Parkinson's disease. Expert Rev Neurother 2021; 21:317-333. [PMID: 33507105 DOI: 10.1080/14737175.2021.1880896] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction It is now accepted that Parkinson's disease (PD) is not simply due to dopaminergic dysfunction, and there is interest in developing non-dopaminergic approaches to disease management. Adenosine A2A receptor antagonists represent a new way forward in the symptomatic treatment of PD.Areas covered In this narrative review, we summarize the literature supporting the utility of adenosine A2A antagonists in PD with a specific focus on istradefylline, the most studied and only adenosine A2A antagonist currently in clinical use.Expert opinion: At this time, the use of istradefylline in the treatment of PD is limited to the management of motor fluctuations as supported by the results of randomized clinical trials and evaluation by Japanese and USA regulatory authorities. The relatively complicated clinical development of istradefylline was based on classically designed studies conducted in PD patients with motor fluctuations on an optimized regimen of levodopa plus adjunctive dopaminergic medications. In animal models, there is consensus that a more robust effect of istradefylline in improving motor function is produced when combined with low or threshold doses of levodopa rather than with high doses that produce maximal dopaminergic improvement. Exploration of istradefylline as a 'levodopa sparing' strategy in earlier PD would seem warranted.
Collapse
Affiliation(s)
- Peter Jenner
- Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Akihisa Mori
- Medical Affairs Department, Kyowa Kirin Co Ltd, Otemachi, Chiyoda-ku, Tokyo, Japan
| | - Stephen D Aradi
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| | - Robert A Hauser
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
12
|
Prasad K, de Vries EFJ, Elsinga PH, Dierckx RAJO, van Waarde A. Allosteric Interactions between Adenosine A 2A and Dopamine D 2 Receptors in Heteromeric Complexes: Biochemical and Pharmacological Characteristics, and Opportunities for PET Imaging. Int J Mol Sci 2021; 22:ijms22041719. [PMID: 33572077 PMCID: PMC7915359 DOI: 10.3390/ijms22041719] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Adenosine and dopamine interact antagonistically in living mammals. These interactions are mediated via adenosine A2A and dopamine D2 receptors (R). Stimulation of A2AR inhibits and blockade of A2AR enhances D2R-mediated locomotor activation and goal-directed behavior in rodents. In striatal membrane preparations, adenosine decreases both the affinity and the signal transduction of D2R via its interaction with A2AR. Reciprocal A2AR/D2R interactions occur mainly in striatopallidal GABAergic medium spiny neurons (MSNs) of the indirect pathway that are involved in motor control, and in striatal astrocytes. In the nucleus accumbens, they also take place in MSNs involved in reward-related behavior. A2AR and D2R co-aggregate, co-internalize, and co-desensitize. They are at very close distance in biomembranes and form heteromers. Antagonistic interactions between adenosine and dopamine are (at least partially) caused by allosteric receptor–receptor interactions within A2AR/D2R heteromeric complexes. Such interactions may be exploited in novel strategies for the treatment of Parkinson’s disease, schizophrenia, substance abuse, and perhaps also attention deficit-hyperactivity disorder. Little is known about shifting A2AR/D2R heteromer/homodimer equilibria in the brain. Positron emission tomography with suitable ligands may provide in vivo information about receptor crosstalk in the living organism. Some experimental approaches, and strategies for the design of novel imaging agents (e.g., heterobivalent ligands) are proposed in this review.
Collapse
Affiliation(s)
- Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| | - Erik F. J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Department of Diagnostic Sciences, Ghent University Faculty of Medicine and Health Sciences, C.Heymanslaan 10, 9000 Gent, Belgium
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| |
Collapse
|
13
|
LeWitt PA, Aradi SD, Hauser RA, Rascol O. The challenge of developing adenosine A 2A antagonists for Parkinson disease: Istradefylline, preladenant, and tozadenant. Parkinsonism Relat Disord 2020; 80 Suppl 1:S54-S63. [PMID: 33349581 DOI: 10.1016/j.parkreldis.2020.10.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 11/28/2022]
Abstract
Laboratory and clinical experience have pointed to the value of targeting motor pathways emerging from the striatum to treat problems arising in advanced Parkinson's disease (PD). These pathways are selectively populated with a subtype of adenosine binding sites (A2A receptors) that offer a target for improving PD symptomatology. Several compounds were developed that possess high selectivity and potency for blocking this receptor. Three of these compounds - istradefylline, preladenant, and tozadenant - were chosen for clinical development programs that culminated in Phase 3 multicenter randomized clinical trials. Each of these drugs exert virtually no off-target neurochemical effects. Clinical trials with these drugs focused upon reducing OFF time when administered adjunctly to levodopa and other antiparkinsonian medications. Despite promising Phase 2 data, preladenant did not show efficacy when tested in a randomized placebo-controlled Phase 3 clinical trial. Reports of hematological toxicity necessitated ceasing an ongoing Phase 3 investigation of tozadenant. Following a challenging approval process, based on the results of randomized clinical trials carried out in the U.S. and Japan, istradefylline received approval in these countries for treatment of OFF episodes.
Collapse
Affiliation(s)
- Peter A LeWitt
- Department of Neurology, Wayne State University School of Medicine, USA; Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
| | - Stephen D Aradi
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Robert A Hauser
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Olivier Rascol
- Clinical Investigation Center CIC1436, Department of Pharmacology and Neurosciences, Toulouse Parkinson Expert Center, NS-Park/FCRIN Network and NeuroToul COEN Center, University Hospital of Toulouse, INSERM and University of Toulouse 3, Toulouse, France
| |
Collapse
|
14
|
Mori A. How do adenosine A 2A receptors regulate motor function? Parkinsonism Relat Disord 2020; 80 Suppl 1:S13-S20. [PMID: 33349575 DOI: 10.1016/j.parkreldis.2020.09.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/17/2023]
Abstract
Adenosine A2A receptor antagonism is a new therapeutic strategy in the symptomatic treatment of Parkinson's disease (PD). This review addresses how adenosine A2A receptors are involved with the control of motor function via the basal ganglia-thalamocortical circuit, and considers the anatomical localization and physiological function of the receptor, along with its ultrastructural localization in critical areas/neurons of the circuit. Based on this understanding of the functional significance of the adenosine A2A receptor in the basal ganglia, the mode of action of A2A receptor antagonists is explored in terms of the dynamic functioning of the basal ganglia and the activity of the internal circuits of the striatum in PD. Finally, the pathophysiological differences between the normal and PD states are examined to emphasize the importance of the adenosine A2A receptor.
Collapse
|
15
|
Glaser T, Andrejew R, Oliveira-Giacomelli Á, Ribeiro DE, Bonfim Marques L, Ye Q, Ren WJ, Semyanov A, Illes P, Tang Y, Ulrich H. Purinergic Receptors in Basal Ganglia Diseases: Shared Molecular Mechanisms between Huntington's and Parkinson's Disease. Neurosci Bull 2020; 36:1299-1314. [PMID: 33026587 PMCID: PMC7674528 DOI: 10.1007/s12264-020-00582-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/30/2020] [Indexed: 12/22/2022] Open
Abstract
Huntington's (HD) and Parkinson's diseases (PD) are neurodegenerative disorders caused by the death of GABAergic and dopaminergic neurons in the basal ganglia leading to hyperkinetic and hypokinetic symptoms, respectively. We review here the participation of purinergic receptors through intracellular Ca2+ signaling in these neurodegenerative diseases. The adenosine A2A receptor stimulates striatopallidal GABAergic neurons, resulting in inhibitory actions on GABAergic neurons of the globus pallidus. A2A and dopamine D2 receptors form functional heteromeric complexes inducing allosteric inhibition, and A2A receptor activation results in motor inhibition. Furthermore, the A2A receptor physically and functionally interacts with glutamate receptors, mainly with the mGlu5 receptor subtype. This interaction facilitates glutamate release, resulting in NMDA glutamate receptor activation and an increase of Ca2+ influx. P2X7 receptor activation also promotes glutamate release and neuronal damage. Thus, modulation of purinergic receptor activity, such as A2A and P2X7 receptors, and subsequent aberrant Ca2+ signaling, might present interesting therapeutic potential for HD and PD.
Collapse
Affiliation(s)
- Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Ágatha Oliveira-Giacomelli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Deidiane Elisa Ribeiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Lucas Bonfim Marques
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Qing Ye
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, 610075, China
| | - Wen-Jing Ren
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, 610075, China
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, 04107, Germany
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Sechenov First Moscow State Medical University, Moscow, 119992, Russia
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, 04107, Germany
- International Collaborative Centre on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yong Tang
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, 610075, China
- International Collaborative Centre on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
16
|
Allard B, Allard D, Buisseret L, Stagg J. The adenosine pathway in immuno-oncology. Nat Rev Clin Oncol 2020; 17:611-629. [PMID: 32514148 DOI: 10.1038/s41571-020-0382-2] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
Cancer immunotherapy based on immune-checkpoint inhibition or adoptive cell therapy has revolutionized cancer care. Nevertheless, a large proportion of patients do not benefit from such treatments. Over the past decade, remarkable progress has been made in the development of 'next-generation' therapeutics in immuno-oncology, with inhibitors of extracellular adenosine (eADO) signalling constituting an expanding class of agents. Induced by tissue hypoxia, inflammation, tissue repair and specific oncogenic pathways, the adenosinergic axis is a broadly immunosuppressive pathway that regulates both innate and adaptive immune responses. Inhibition of eADO-generating enzymes and/or eADO receptors can promote antitumour immunity through multiple mechanisms, including enhancement of T cell and natural killer cell function, suppression of the pro-tumourigenic effects of myeloid cells and other immunoregulatory cells, and promotion of antigen presentation. With several clinical trials currently evaluating inhibitors of the eADO pathway in patients with cancer, we herein review the pathophysiological function of eADO with a focus on effects on antitumour immunity. We also discuss the treatment opportunities, potential limitations and biomarker-based strategies related to adenosine-targeted therapy in oncology.
Collapse
Affiliation(s)
- Bertrand Allard
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - David Allard
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Laurence Buisseret
- Department of Medical Oncology, Institut Jules Bordet, Brussels, Belgium
| | - John Stagg
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
17
|
Zhang ZH, Xu YW, Peng Y, Chen X, Li P, Zhou YG. Expression of a short antibody heavy chain peptide effectively antagonizes adenosine 2A receptor in vitro and in vivo. Expert Opin Ther Targets 2020; 24:707-717. [PMID: 32308059 DOI: 10.1080/14728222.2020.1758667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Adenosine 2A receptor (A2AR) is involved in many physiological and pathological functions and serves as an important drug target. Inhibition of A2AR may alleviate symptoms associated with a variety of neuropsychiatric disorders. However, the currently used A2AR antagonists have specificity limitations. RESEARCH DESIGN AND METHODS A Fab fragment (Fab2838) of an A2AR mouse monoclonal antibody can specifically bind to A2AR to form a complex and inhibit the activity of its receptor. We constructed the vector AntiA2AR, a small-molecule peptide that binds to and inhibits A2AR based on Fab2838. RESULTS Experiments in HEK293T cells showed that peptide AntiA2AR of 29 peptides was the most effective among the synthesized peptides in inhibiting the A2AR downstream signal cAMP/PKA/CREB. In neurons, the AntiA2AR reversed the calcium flow change induced by the A2AR agonist CGS21680 (1 μM). Furthermore, AntiA2AR expression in the mice striatum weakened the p-PKA/p-CREB signal, enhanced locomotor abilities and increased time spent in the center area in the home-cage observation experiment and increased anxiolytic behavior in the elevated-plus maze test. CONCLUSIONS Antagonistic peptide AntiA2AR can effectively block the A2AR signaling pathway. This provides a new strategy for the specific inhibition of A2AR and provides information needed for drug development.
Collapse
Affiliation(s)
- Zhuo-Hang Zhang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University , Chongqing, People's Republic of China
| | - Ya-Wei Xu
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University , Chongqing, People's Republic of China
| | - Yan Peng
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University , Chongqing, People's Republic of China
| | - Xing Chen
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University , Chongqing, People's Republic of China
| | - Ping Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University , Chongqing, People's Republic of China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University , Chongqing, People's Republic of China
| |
Collapse
|
18
|
Kuder KJ, Załuski M, Schabikowski J, Latacz G, Olejarz‐Maciej A, Jaśko P, Doroz‐Płonka A, Brockmann A, Müller CE, Kieć‐Kononowicz K. Novel, Dual Target‐Directed Annelated Xanthine Derivatives Acting on Adenosine Receptors and Monoamine Oxidase B. ChemMedChem 2020; 15:772-786. [DOI: 10.1002/cmdc.201900717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/04/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Kamil J. Kuder
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| | - Michał Załuski
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| | - Jakub Schabikowski
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| | - Agnieszka Olejarz‐Maciej
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| | - Piotr Jaśko
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| | - Agata Doroz‐Płonka
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| | - Andreas Brockmann
- PharmaCenter Bonn, Pharmaceutical InstitutePharmaceutical Chemistry University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical InstitutePharmaceutical Chemistry University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Katarzyna Kieć‐Kononowicz
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| |
Collapse
|
19
|
Exercise-Induced Adaptations to the Mouse Striatal Adenosine System. Neural Plast 2020; 2020:5859098. [PMID: 32399024 PMCID: PMC7204111 DOI: 10.1155/2020/5859098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
Adenosine acts as a key regulator of striatum activity, in part, through the antagonistic modulation of dopamine activity. Exercise can increase adenosine activity in the brain, which may impair dopaminergic functions in the striatum. Therefore, long-term repeated bouts of exercise may subsequently generate plasticity in striatal adenosine systems in a manner that promotes dopaminergic activity. This study investigated the effects of long-term voluntary wheel running on adenosine 1 (A1R), adenosine 2A (A2AR), dopamine 1 (D1R), and dopamine 2 (D2R) receptor protein expression in adult mouse dorsal and ventral striatum structures using immunohistochemistry. In addition, equilibrative nucleoside transporter 1 (ENT1) protein expression was examined after wheel running, as ENT1 regulates the bidirectional flux of adenosine between intra- and extracellular space. The results suggest that eight weeks of running wheel access spared age-related increases of A1R and A2AR protein concentrations across the dorsal and ventral striatal structures. Wheel running mildly reduced ENT1 protein levels in ventral striatum subregions. Moreover, wheel running mildly increased D2R protein density within striatal subregions in the dorsal medial striatum, nucleus accumbens core, and the nucleus accumbens shell. However, D1R protein expression in the striatum was unchanged by wheel running. These data suggest that exercise promotes adaptations to striatal adenosine systems. Exercise-reduced A1R and A2AR and exercise-increased D2R protein levels may contribute to improved dopaminergic signaling in the striatum. These findings may have implications for cognitive and behavioral processes, as well as motor and psychiatric diseases that involve the striatum.
Collapse
|
20
|
Alstadhaug KB, Andreou AP. Caffeine and Primary (Migraine) Headaches-Friend or Foe? Front Neurol 2019; 10:1275. [PMID: 31849829 PMCID: PMC6901704 DOI: 10.3389/fneur.2019.01275] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
Background: The actions of caffeine as an antagonist of adenosine receptors have been extensively studied, and there is no doubt that both daily and sporadic dietary consumption of caffeine has substantial biological effects on the nervous system. Caffeine influences headaches, the migraine syndrome in particular, but how is unclear. Materials and Methods: This is a narrative review based on selected articles from an extensive literature search. The aim of this study is to elucidate and discuss how caffeine may affect the migraine syndrome and discuss the potential pathophysiological pathways involved. Results: Whether caffeine has any significant analgesic and/or prophylactic effect in migraine remains elusive. Neither is it clear whether caffeine withdrawal is an important trigger for migraine. However, withdrawal after chronic exposure of caffeine may cause migraine-like headache and a syndrome similar to that experienced in the prodromal phase of migraine. Sensory hypersensitivity however, does not seem to be a part of the caffeine withdrawal syndrome. Whether it is among migraineurs is unknown. From a modern viewpoint, the traditional vascular explanation of the withdrawal headache is too simplistic and partly not conceivable. Peripheral mechanisms can hardly explain prodromal symptoms and non-headache withdrawal symptoms. Several lines of evidence point at the hypothalamus as a locus where pivotal actions take place. Conclusion: In general, chronic consumption of caffeine seems to increase the burden of migraine, but a protective effect as an acute treatment or in severely affected patients cannot be excluded. Future clinical trials should explore the relationship between caffeine withdrawal and migraine, and investigate the effects of long-term elimination.
Collapse
Affiliation(s)
- Karl B. Alstadhaug
- Nordland Hospital Trust, Bodø, Norway
- Institute of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
| | - Anna P. Andreou
- Headache Research, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- The Headache Centre, Guy's and St Thomas', NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
21
|
Mateus JM, Ribeiro FF, Alonso-Gomes M, Rodrigues RS, Marques JM, Sebastião AM, Rodrigues RJ, Xapelli S. Neurogenesis and Gliogenesis: Relevance of Adenosine for Neuroregeneration in Brain Disorders. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Joana M. Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa F. Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Alonso-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rui S. Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana M. Marques
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo J. Rodrigues
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
22
|
Iijima M, Orimo S, Terashi H, Suzuki M, Hayashi A, Shimura H, Mitoma H, Kitagawa K, Okuma Y. Efficacy of istradefylline for gait disorders with freezing of gait in Parkinson's disease: A single-arm, open-label, prospective, multicenter study. Expert Opin Pharmacother 2019; 20:1405-1411. [PMID: 31039621 DOI: 10.1080/14656566.2019.1614167] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Gait disorders are common in Parkinson's disease patients who respond poorly to dopaminergic treatment. Blockade of adenosine A2A receptors is expected to improve gait disorders. Istradefylline is a first-in-class selective adenosine A2A receptor antagonist with benefits for motor complications associated with Parkinson's disease. Research design and methods: This multicenter, open-label, single-group, prospective interventional study evaluated changes in total gait-related scores of the Part II/III Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and Freezing of Gait Questionnaire (FOG-Q) in 31 Parkinson's disease patients treated with istradefylline. Gait analysis by portable gait rhythmogram was performed. Results: MDS-UPDRS Part III gait-related total scores significantly decreased at Weeks 4-12 from baseline with significant improvements in gait, freezing of gait, and postural stability. Significant decreases in MDS-UPDRS Part II total scores and individual item scores at Week 12 indicated improved daily living activities. At Week 12, there were significant improvements in FOG-Q, new FOG-Q, and overall movement per 48 h measured by portable gait rhythmogram. Adverse events occurred in 7/31 patients. Conclusions: Istradefylline improved gait disorders in Parkinson's disease patients complicated with freezing of gait, improving their quality of life. No unexpected adverse drug reactions were identified. Trial registration: UMIN-CTR (UMIN000020288).
Collapse
Affiliation(s)
- Mutsumi Iijima
- a Department of Neurology , Tokyo Women's Medical University , Tokyo , Japan
| | - Satoshi Orimo
- b Department of Neurology , Kanto Central Hospital , Tokyo , Japan
| | - Hiroo Terashi
- c Department of Neurology , Tokyo Medical University , Tokyo , Japan
| | - Masahiko Suzuki
- d Department of Neurology , Katsushika Medical Center, The Jikei University School of Medicine , Tokyo , Japan
| | - Akito Hayashi
- e Department of Rehabilitation , Juntendo University Urayasu Hospital , Urayasu , Japan
| | - Hideki Shimura
- f Department of Neurology , Juntendo University Urayasu Hospital , Urayasu , Japan
| | - Hiroshi Mitoma
- g Department of Medical Education , Tokyo Medical University , Tokyo , Japan
| | - Kazuo Kitagawa
- a Department of Neurology , Tokyo Women's Medical University , Tokyo , Japan
| | - Yasuyuki Okuma
- h Department of Neurology , Juntendo University Shizuoka Hospital , Izunokuni , Japan
| |
Collapse
|
23
|
Rivera O, McHan L, Konadu B, Patel S, Sint Jago S, Talbert ME. A high-fat diet impacts memory and gene expression of the head in mated female Drosophila melanogaster. J Comp Physiol B 2019; 189:179-198. [PMID: 30810797 PMCID: PMC6711602 DOI: 10.1007/s00360-019-01209-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/12/2019] [Accepted: 02/17/2019] [Indexed: 12/25/2022]
Abstract
Obesity predisposes humans to a range of life-threatening comorbidities, including type 2 diabetes and cardiovascular disease. Obesity also aggravates neural pathologies, such as Alzheimer's disease, but this class of comorbidity is less understood. When Drosophila melanogaster (flies) are exposed to high-fat diet (HFD) by supplementing a standard medium with coconut oil, they adopt an obese phenotype of decreased lifespan, increased triglyceride storage, and hindered climbing ability. The latter development has been previously regarded as a potential indicator of neurological decline in fly models of neurodegenerative disease. Our objective was to establish the obesity phenotype in Drosophila and identify a potential correlation, if any, between obesity and neurological decline through behavioral assays and gene expression microarray. We found that mated female w1118 flies exposed to HFD maintained an obese phenotype throughout adult life starting at 7 days, evidenced by increased triglyceride stores, diminished life span, and impeded climbing ability. While climbing ability worsened cumulatively between 7 and 14 days of exposure to HFD, there was no corresponding alteration in triglyceride content. Microarray analysis of the mated female w1118 fly head revealed HFD-induced changes in expression of genes with functions in memory, metabolism, olfaction, mitosis, cell signaling, and motor function. Meanwhile, an Aversive Phototaxis Suppression assay in mated female flies indicated reduced ability to recall an entrained memory 6 h after training. Overall, our results support the suitability of mated female flies for examining connections between diet-induced obesity and nervous or neurobehavioral pathology, and provide many directions for further investigation.
Collapse
Affiliation(s)
- Osvaldo Rivera
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Lara McHan
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Bridget Konadu
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Sumitkumar Patel
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Silvienne Sint Jago
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Matthew E Talbert
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA.
| |
Collapse
|
24
|
Adenosine A 2A-Cannabinoid CB 1 Receptor Heteromers in the Hippocampus: Cannabidiol Blunts Δ 9-Tetrahydrocannabinol-Induced Cognitive Impairment. Mol Neurobiol 2019; 56:5382-5391. [PMID: 30610611 DOI: 10.1007/s12035-018-1456-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
At present, clinical interest in the plant-derived cannabinoid compound cannabidiol (CBD) is rising exponentially, since it displays multiple therapeutic properties. In addition, CBD can counteract the undesirable effects of the psychoactive cannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) that hinder clinical development of cannabis-based therapies. Despite this attention, the mechanisms of CBD action and its interaction with Δ9-THC are still not completely elucidated. Here, by combining in vivo and complementary molecular techniques, we demonstrate for the first time that CBD blunts the Δ9-THC-induced cognitive impairment in an adenosine A2A receptor (A2AR)-dependent manner. Furthermore, we reveal the existence of A2AR and cannabinoid CB1 receptor (CB1R) heteromers at the presynaptic level in CA1 neurons in the hippocampus. Interestingly, our findings support a brain region-dependent A2AR-CB1R functional interplay; indeed, CBD was not capable of modifying motor functions presumably regulated by striatal A2AR/CB1R complexes, nor anxiety responses related to other brain regions. Overall, these data provide new evidence regarding the mechanisms of action of CBD and the nature of A2AR-CB1R interactions in the brain.
Collapse
|
25
|
McCullough KM, Daskalakis NP, Gafford G, Morrison FG, Ressler KJ. Cell-type-specific interrogation of CeA Drd2 neurons to identify targets for pharmacological modulation of fear extinction. Transl Psychiatry 2018; 8:164. [PMID: 30135420 PMCID: PMC6105686 DOI: 10.1038/s41398-018-0190-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/23/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
Behavioral and molecular characterization of cell-type-specific populations governing fear learning and behavior is a promising avenue for the rational identification of potential therapeutics for fear-related disorders. Examining cell-type-specific changes in neuronal translation following fear learning allows for targeted pharmacological intervention during fear extinction learning, mirroring possible treatment strategies in humans. Here we identify the central amygdala (CeA) Drd2-expressing population as a novel fear-supporting neuronal population that is molecularly distinct from other, previously identified, fear-supporting CeA populations. Sequencing of actively translating transcripts of Drd2 neurons using translating ribosome affinity purification (TRAP) technology identifies mRNAs that are differentially regulated following fear learning. Differentially expressed transcripts with potentially targetable gene products include Npy5r, Rxrg, Adora2a, Sst5r, Fgf3, Erbb4, Fkbp14, Dlk1, and Ssh3. Direct pharmacological manipulation of NPY5R, RXR, and ADORA2A confirms the importance of this cell population and these cell-type-specific receptors in fear behavior. Furthermore, these findings validate the use of functionally identified specific cell populations to predict novel pharmacological targets for the modulation of emotional learning.
Collapse
Affiliation(s)
- Kenneth M McCullough
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, and Behavioral Sciences, Behavioral Neuroscience, Emory University, Atlanta, GA, USA
| | - Nikolaos P Daskalakis
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Georgette Gafford
- Department of Psychiatry, and Behavioral Sciences, Behavioral Neuroscience, Emory University, Atlanta, GA, USA
| | - Filomene G Morrison
- Department of Psychiatry, and Behavioral Sciences, Behavioral Neuroscience, Emory University, Atlanta, GA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Behavioral Science Division, National Center for PTSD, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, and Behavioral Sciences, Behavioral Neuroscience, Emory University, Atlanta, GA, USA.
| |
Collapse
|
26
|
Role of adenosine A 2A receptors in motor control: relevance to Parkinson's disease and dyskinesia. J Neural Transm (Vienna) 2018; 125:1273-1286. [PMID: 29396609 DOI: 10.1007/s00702-018-1848-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/26/2018] [Indexed: 12/16/2022]
Abstract
Adenosine is an endogenous purine nucleoside that regulates several physiological functions, at the central and peripheral levels. Besides, adenosine has emerged as a major player in the regulation of motor behavior. In fact, adenosine receptors of the A2A subtype are highly enriched in the caudate-putamen, which is richly innervated by dopamine. Moreover, several studies in experimental animals have consistently demonstrated that the pharmacological antagonism of A2A receptors has a facilitatory influence on motor behavior. Taken together, these findings have envisaged A2A receptors as a promising target for symptomatic therapies aimed at ameliorating motor deficits. Accordingly, A2A receptor antagonists have been extensively studied as new agents for the treatment of Parkinson's disease (PD), the epitome of motor disorders. In this review, we provide an overview of the effects that adenosine A2A receptor antagonists elicit in rodent and primate experimental models of PD, with regard to the counteraction of motor deficits as well as to manifestation of dyskinesia and motor fluctuations. Moreover, we briefly present the results of clinical trials of A2A receptor antagonists in PD patients experiencing motor fluctuations, with particular regard to dyskinesia. Finally, we discuss the interaction between A2A receptor antagonists and serotonin receptor agonists, since combined administration of these drugs has recently emerged as a new potential therapeutic strategy in the treatment of dyskinesia.
Collapse
|
27
|
Nazario LR, da Silva RS, Bonan CD. Targeting Adenosine Signaling in Parkinson's Disease: From Pharmacological to Non-pharmacological Approaches. Front Neurosci 2017; 11:658. [PMID: 29217998 PMCID: PMC5703841 DOI: 10.3389/fnins.2017.00658] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/10/2017] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative disease displaying negative impacts on both the health and social ability of patients and considerable economical costs. The classical anti-parkinsonian drugs based in dopaminergic replacement are the standard treatment, but several motor side effects emerge during long-term use. This mini-review presents the rationale to several efforts from pre-clinical and clinical studies using adenosine receptor antagonists as a non-dopaminergic therapy. As several studies have indicated that the monotherapy with adenosine receptor antagonists reaches limited efficacy, the usage as a co-adjuvant appeared to be a promising strategy. The formulation of multi-targeted drugs, using adenosine receptor antagonists and other neurotransmitter systems than the dopaminergic one as targets, have been receiving attention since Parkinson's disease presents a complex biological impact. While pharmacological approaches to cure or ameliorate the conditions of PD are the leading strategy in this area, emerging positive aspects have arisen from non-pharmacological approaches and adenosine function inhibition appears to improve both strategies.
Collapse
Affiliation(s)
- Luiza R Nazario
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rosane S da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla D Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
28
|
Blesa J, Trigo-Damas I, Dileone M, Del Rey NLG, Hernandez LF, Obeso JA. Compensatory mechanisms in Parkinson's disease: Circuits adaptations and role in disease modification. Exp Neurol 2017; 298:148-161. [PMID: 28987461 DOI: 10.1016/j.expneurol.2017.10.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022]
Abstract
The motor features of Parkinson's disease (PD) are well known to manifest only when striatal dopaminergic deficit reaches 60-70%. Thus, PD has a long pre-symptomatic and pre-motor evolution during which compensatory mechanisms take place to delay the clinical onset of disabling manifestations. Classic compensatory mechanisms have been attributed to changes and adjustments in the nigro-striatal system, such as increased neuronal activity in the substantia nigra pars compacta and enhanced dopamine synthesis and release in the striatum. However, it is not so clear currently that such changes occur early enough to account for the pre-symptomatic period. Other possible mechanisms relate to changes in basal ganglia and motor cortical circuits including the cerebellum. However, data from early PD patients are difficult to obtain as most studies have been carried out once the diagnosis and treatments have been established. Likewise, putative compensatory mechanisms taking place throughout disease evolution are nearly impossible to distinguish by themselves. Here, we review the evidence for the role of the best known and other possible compensatory mechanisms in PD. We also discuss the possibility that, although beneficial in practical terms, compensation could also play a deleterious role in disease progression.
Collapse
Affiliation(s)
- Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| | - Inés Trigo-Damas
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Michele Dileone
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Natalia Lopez-Gonzalez Del Rey
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Ledia F Hernandez
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - José A Obeso
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| |
Collapse
|
29
|
Mukai M, Uchimura T, Zhang X, Greene D, Vergeire M, Cantillon M. Effects of Rifampin on the Pharmacokinetics of a Single Dose of Istradefylline in Healthy Subjects. J Clin Pharmacol 2017; 58:193-201. [PMID: 28881378 PMCID: PMC5811788 DOI: 10.1002/jcph.1003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 07/25/2017] [Indexed: 11/22/2022]
Abstract
Istradefylline, a selective adenosine A2A inhibitor, is under development for the treatment of Parkinson's disease. The effect of oral steady‐state rifampin 600 mg/day, a potent cytochrome P450 (CYP) 3A4 inducer, on the disposition of a single oral dose of istradefylline 40 mg was determined in a crossover study in 20 healthy subjects by measuring plasma concentrations of istradefylline and its M1 and M8 metabolites and their derived pharmacokinetic parameters. Based on the geometric mean ratio of log‐transformed data, rifampin reduced istradefylline exposure: Cmax, 0.55 (90%CI, 0.49–0.62); AUClast, 0.21 (90%CI, 0.19–0.22); and AUCinf, 0.19 (90%CI, 0.18–0.20), indicating nonequivalence. These changes were primarily because of the effect of rifampin on the elimination parameters of istradefylline; mean CL/F was increased from 4.0 to 20.6 L/h, and mean t1/2 was reduced from 94.8 to 31.5 hours. The effect of rifampin coadministration on the disposition of the istradefylline M1 and M8 metabolites was inconsistent and variable. Furthermore, as exposure of the istradefylline M1 and M8 metabolites in plasma was generally <9% of total drug exposure, it would be expected to have a negligible impact on the pharmacodynamic effect of istradefylline. Caution should be exercised when istradefylline is administered concurrently with strong CYP3A4 inducers and dose adjustment considered.
Collapse
Affiliation(s)
- Mayumi Mukai
- Kyowa Kirin Pharmaceutical Development, Inc., Princeton, NJ, USA
| | | | - Xiaoping Zhang
- Kyowa Kirin Pharmaceutical Development, Inc., Princeton, NJ, USA
| | - Douglas Greene
- Kyowa Kirin Pharmaceutical Development, Inc., Princeton, NJ, USA
| | | | - Marc Cantillon
- Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
30
|
Yin SB, Zhang XG, Chen S, Yang WT, Zheng XW, Zheng GQ. Adenosine A 2A Receptor Gene Knockout Prevents l-3,4-Dihydroxyphenylalanine-Induced Dyskinesia by Downregulation of Striatal GAD67 in 6-OHDA-Lesioned Parkinson's Mice. Front Neurol 2017; 8:88. [PMID: 28377741 PMCID: PMC5359221 DOI: 10.3389/fneur.2017.00088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/24/2017] [Indexed: 11/29/2022] Open
Abstract
l-3,4-Dihydroxyphenylalanine (l-DOPA) remains the primary pharmacological agent for the symptomatic treatment of Parkinson’s disease (PD). However, the development of l-DOPA-induced dyskinesia (LID) limits the long-term use of l-DOPA for PD patients. Some data have reported that adenosine A2A receptor (A2AR) antagonists prevented LID in animal model of PD. However, the mechanism in which adenosine A2AR blockade alleviates the symptoms of LID has not been fully clarified. Here, we determined to knock out (KO) the gene of A2AR and explored the possible underlying mechanisms implicated in development of LID in a mouse model of PD. A2AR gene KO mice were unilaterally injected into the striatum with 6-hydroxydopamine (6-OHDA) in order to damage dopamine neurons on one side of the brain. 6-OHDA-lesioned mice were then injected once daily for 21 days with l-DOPA. Abnormal involuntary movements (AIMs) were evaluated on days 3, 8, 13, and 18 after l-DOPA administration, and real-time polymerase chain reaction and immunohistochemistry for glutamic acid decarboxylase (GAD) 65 and GAD67 were performed. We found that A2AR gene KO was effective in reducing AIM scores and accompanied with decrease of striatal GAD67, rather than GAD65. These results demonstrated that the possible mechanism involved in alleviation of AIM symptoms by A2AR gene KO might be through reducing the expression of striatal GAD67.
Collapse
Affiliation(s)
- Su-Bing Yin
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Xiao-Guang Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Shuang Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Wen-Ting Yang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Xia-Wei Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
31
|
Cerebellum Transcriptome of Mice Bred for High Voluntary Activity Offers Insights into Locomotor Control and Reward-Dependent Behaviors. PLoS One 2016; 11:e0167095. [PMID: 27893846 PMCID: PMC5125674 DOI: 10.1371/journal.pone.0167095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022] Open
Abstract
The role of the cerebellum in motivation and addictive behaviors is less understood than that in control and coordination of movements. High running can be a self-rewarding behavior exhibiting addictive properties. Changes in the cerebellum transcriptional networks of mice from a line selectively bred for High voluntary running (H) were profiled relative to an unselected Control (C) line. The environmental modulation of these changes was assessed both in activity environments corresponding to 7 days of Free (F) access to running wheel and to Blocked (B) access on day 7. Overall, 457 genes exhibited a significant (FDR-adjusted P-value < 0.05) genotype-by-environment interaction effect, indicating that activity genotype differences in gene expression depend on environmental access to running. Among these genes, network analysis highlighted 6 genes (Nrgn, Drd2, Rxrg, Gda, Adora2a, and Rab40b) connected by their products that displayed opposite expression patterns in the activity genotype contrast within the B and F environments. The comparison of network expression topologies suggests that selection for high voluntary running is linked to a predominant dysregulation of hub genes in the F environment that enables running whereas a dysregulation of ancillary genes is favored in the B environment that blocks running. Genes associated with locomotor regulation, signaling pathways, reward-processing, goal-focused, and reward-dependent behaviors exhibited significant genotype-by-environment interaction (e.g. Pak6, Adora2a, Drd2, and Arhgap8). Neuropeptide genes including Adcyap1, Cck, Sst, Vgf, Npy, Nts, Penk, and Tac2 and related receptor genes also exhibited significant genotype-by-environment interaction. The majority of the 183 differentially expressed genes between activity genotypes (e.g. Drd1) were under-expressed in C relative to H genotypes and were also under-expressed in B relative to F environments. Our findings indicate that the high voluntary running mouse line studied is a helpful model for understanding the molecular mechanisms in the cerebellum that influence locomotor control and reward-dependent behaviors.
Collapse
|
32
|
Uchida SI, Soshiroda K, Okita E, Kawai-Uchida M, Mori A, Jenner P, Kanda T. The adenosine A2A receptor antagonist, istradefylline enhances anti-parkinsonian activity induced by combined treatment with low doses of L-DOPA and dopamine agonists in MPTP-treated common marmosets. Eur J Pharmacol 2015; 766:25-30. [DOI: 10.1016/j.ejphar.2015.09.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/04/2015] [Accepted: 09/18/2015] [Indexed: 10/23/2022]
|
33
|
Del' Guidice T, Beaulieu JM. Selective disruption of dopamine D2-receptors/beta-arrestin2 signaling by mood stabilizers. J Recept Signal Transduct Res 2015; 35:224-32. [PMID: 26459714 DOI: 10.3109/10799893.2015.1072976] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mood stabilizers are a heterogeneous class of drugs having antidepressant and anti-manic effects in bipolar disorders, depression and schizophrenia. Despite wide clinical applications, the mechanisms underlying their shared actions and therapeutic specificity are unknown. Here, we examine the effects of the structurally unrelated mood stabilizers lamotrigine, lithium and valproate on G protein and beta-arrestin-dependent components of dopamine D2 receptor signaling and assess their contribution to the behavioral effects of these drugs. When administered chronically to mice lacking either D2 receptors or beta-arrestin 2, lamotrigine, lithium and valproate failed to affect Akt/GSK3 signaling as they do in normal littermates. This lack of effect on signaling resulted in a loss of responsiveness to mood stabilizers in tests assessing "antimanic" or "antidepressant"-like behavioral drug effects. This shows that mood stabilizers lamotrigine, lithium and valproate can exert behavioral effects in mice by disrupting the beta-arrestin 2-mediated regulation of Akt/GSK3 signaling by D2 dopamine receptors, thereby suggesting a shared mechanism for mood stabilizer selectivity.
Collapse
Affiliation(s)
- Thomas Del' Guidice
- a Department of Psychiatry and Neuroscience , Faculty of Medicine, Université Laval-IUSMQ , Québec , Canada
| | - Jean-Martin Beaulieu
- a Department of Psychiatry and Neuroscience , Faculty of Medicine, Université Laval-IUSMQ , Québec , Canada
| |
Collapse
|
34
|
Ng SK, Higashimori H, Tolman M, Yang Y. Suppression of adenosine 2a receptor (A2aR)-mediated adenosine signaling improves disease phenotypes in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 2015; 267:115-22. [PMID: 25779930 DOI: 10.1016/j.expneurol.2015.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/27/2015] [Accepted: 03/05/2015] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease in which the majority of upper and lower motor neurons are degenerated. Despite intensive efforts to identify drug targets and develop neuroprotective strategies, effective therapeutics for ALS remains unavailable. The identification and characterization of novel targets and pathways remain crucial in the development of ALS therapeutics. Adenosine is a major neuromodulator that actively regulates synaptic transmission. Interestingly, adenosine levels are significantly elevated in the cerebrospinal fluid (CSF) of progressing human ALS patients. In the current study, we showed that adenosine 2a receptor (A2aR), but not adenosine 1 receptor (A1R), is highly enriched in spinal (motor) neurons. A2aR expression is also selectively increased at the symptomatic onset in the spinal cords of SOD1G93A mice and end-stage human ALS spinal cords. Interestingly, we found that direct adenosine treatment is sufficient to induce embryonic stem cell-derived motor neuron (ESMN) cell death in cultures. Subsequent pharmacological inhibition and partial genetic ablation of A2aR (A2aR(+/-)) significantly protect ESMN from SOD1G93A(+) astrocyte-induced cell death and delay disease progression of SOD1G93A mice. Taken together, our results provide compelling novel evidence that A2aR-mediated adenosine signaling contributes to the selective spinal motor neuron degeneration observed in the SOD1G93A mouse model of ALS.
Collapse
Affiliation(s)
- Seng Kah Ng
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| | - Haruki Higashimori
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| | - Michaela Tolman
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA; Neuroscience Program, Tufts Sackler School of Graduate Biomedical Sciences, 136 Harrison Ave, Boston, MA 02111, USA
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA; Neuroscience Program, Tufts Sackler School of Graduate Biomedical Sciences, 136 Harrison Ave, Boston, MA 02111, USA.
| |
Collapse
|
35
|
Kakkar AK, Dahiya N. Management of Parkinson׳s disease: Current and future pharmacotherapy. Eur J Pharmacol 2015; 750:74-81. [DOI: 10.1016/j.ejphar.2015.01.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 01/18/2023]
|
36
|
Adenosinergic Regulation of Sleep–Wake Behavior in the Basal Ganglia. CURRENT TOPICS IN NEUROTOXICITY 2015. [DOI: 10.1007/978-3-319-20273-0_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
The Story of Istradefylline—The First Approved A2A Antagonist for the Treatment of Parkinson’s Disease. CURRENT TOPICS IN NEUROTOXICITY 2015. [DOI: 10.1007/978-3-319-20273-0_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Górska AM, Gołembiowska K. The role of adenosine A1 and A2A receptors in the caffeine effect on MDMA-induced DA and 5-HT release in the mouse striatum. Neurotox Res 2014; 27:229-45. [PMID: 25391902 PMCID: PMC4353865 DOI: 10.1007/s12640-014-9501-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/28/2014] [Accepted: 11/05/2014] [Indexed: 11/29/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) popular as a designer drug is often used with caffeine to gain a stronger stimulant effect. MDMA induces 5-HT and DA release by interaction with monoamine transporters. Co-administration of caffeine and MDMA may aggravate MDMA-induced toxic effects on DA and 5-HT terminals. In the present study, we determined whether caffeine influences DA and 5-HT release induced by MDMA. We also tried to find out if adenosine A1 and A2A receptors play a role in the effect of caffeine by investigating the effect of the selective adenosine A1 and A2A receptor antagonists, DPCPX and KW 6002 on DA and 5-HT release induced by MDMA. Mice were treated with caffeine (10 mg/kg) and MDMA (20 or 40 mg/kg) alone or in combination. DA and 5-HT release in the mouse striatum was measured using in vivo microdialysis. Caffeine exacerbated the effect of MDMA on DA and 5-HT release. DPCPX or KW 6002 co-administered with MDMA had similar influence as caffeine, but KW 6002 was more potent than caffeine or DPCPX. To exclude the contribution of MAO inhibition by caffeine in the caffeine effect on MDMA-induced increase in DA and 5-HT, we also tested the effect of the nonxanthine adenosine receptor antagonist CGS 15943A lacking properties of MAO activity modification. Our findings indicate that adenosine A1 and A2A receptor blockade may account for the caffeine-induced exacerbation of the MDMA effect on DA and 5-HT release and may aggravate MDMA toxicity.
Collapse
Affiliation(s)
- A. M. Górska
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - K. Gołembiowska
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
39
|
Yamada K, Kobayashi M, Shiozaki S, Ohta T, Mori A, Jenner P, Kanda T. Antidepressant activity of the adenosine A2A receptor antagonist, istradefylline (KW-6002) on learned helplessness in rats. Psychopharmacology (Berl) 2014; 231:2839-49. [PMID: 24488405 DOI: 10.1007/s00213-014-3454-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE Istradefylline, an adenosine A2A receptor antagonist, improves motor function in animal models of Parkinson's disease (PD) and in patients with PD. In addition, some A2A antagonists exert antidepressant-like activity in rodent models of depression, such as the forced swim and the tail suspension tests. OBJECTIVE We have investigated the effect of istradefylline on depression-like behaviors using the rat learned helplessness (LH) model. RESULTS Acute, as well as chronic, oral administration of istradefylline significantly improved the inescapable shock (IES)-induced escape deficit with a degree of efficacy comparable to chronic treatment with the tricyclic antidepressant desipramine and the selective serotonin (5-HT) reuptake inhibitor, fluoxetine. Both the A1/A2A receptor nonspecific antagonist theophylline and the moderately selective antagonist CGS15943, but not the A1 selective antagonist DPCPX, ameliorated the IES-induced escape deficit. The enhancement of escape response by istradefylline was reversed by a local injection of the A2A specific agonist CGS21680 either into the nucleus accumbens, the caudate-putamen, or the paraventricular nucleus of the hypothalamus, but not by the A1 specific agonist R-PIA into the nucleus accumbens. Moreover, neither the 5-HT2A/2C receptor antagonist methysergide or the adrenergic α 2 antagonist yohimbine, nor the β-adrenergic antagonist propranolol, affected the improvement of escape response induced by istradefylline. CONCLUSIONS Istradefylline exerts antidepressant-like effects via modulation of A2A receptor activity which is independent of monoaminergic transmission in the brain. Istradefylline may represent a novel treatment option for depression in PD as well as for the motor symptoms.
Collapse
Affiliation(s)
- Koji Yamada
- Development Research Laboratories, Research Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8731, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Adenosine and glutamate in neuroglial interaction: implications for circadian disorders and alcoholism. ADVANCES IN NEUROBIOLOGY 2014; 11:103-19. [PMID: 25236726 DOI: 10.1007/978-3-319-08894-5_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recent studies have demonstrated that the function of glia is not restricted to the support of neuronal function. In fact, astrocytes are essential for neuronal activity in the brain and play an important role in the regulation of complex behavior. Astrocytes actively participate in synapse formation and brain information processing by releasing and uptaking glutamate, D-serine, adenosine 5'-triphosphate (ATP), and adenosine. In the central nervous system, adenosine-mediated neuronal activity modulates the actions of other neurotransmitter systems. Adenosinergic fine-tuning of the glutamate system in particular has been shown to regulate circadian rhythmicity and sleep, as well as alcohol-related behavior and drinking. Adenosine gates both photic (light-induced) glutamatergic and nonphotic (alerting) input to the circadian clock located in the suprachiasmatic nucleus of the hypothalamus. Astrocytic, SNARE-mediated ATP release provides the extracellular adenosine that drives homeostatic sleep. Acute ethanol increases extracellular adenosine, which mediates the ataxic and hypnotic/sedative effects of alcohol, while chronic ethanol leads to downregulated adenosine signaling that underlies insomnia, a major predictor of relapse. Studies using mice lacking the equilibrative nucleoside transporter 1 have illuminated how adenosine functions through neuroglial interactions involving glutamate uptake transporter GLT-1 [referred to as excitatory amino acid transporter 2 (EAAT2) in human] and possibly water channel aquaporin 4 to regulate ethanol sensitivity, reward-related motivational processes, and alcohol intake.
Collapse
|
41
|
Mode of Action of Adenosine A2A Receptor Antagonists as Symptomatic Treatment for Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:87-116. [DOI: 10.1016/b978-0-12-801022-8.00004-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
42
|
Gomes I, Fujita W, Chandrakala MV, Devi LA. Disease-specific heteromerization of G-protein-coupled receptors that target drugs of abuse. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:207-65. [PMID: 23663971 DOI: 10.1016/b978-0-12-386931-9.00009-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Drugs of abuse such as morphine or marijuana exert their effects through the activation of G-protein-coupled receptors (GPCRs), the opioid and cannabinoid receptors, respectively. Moreover, interactions between either of these receptors have been shown to be involved in the rewarding effects of drugs of abuse. Recent advances in the field, using a variety of approaches, have demonstrated that many GPCRs, including opioid, cannabinoid, and dopamine receptors, can form associations between different receptor subtypes or with other GPCRs to form heteromeric complexes. The formation of these complexes, in turn, leads to the modulation of the properties of individual protomers. The development of tools that can selectively disrupt GPCR heteromers as well as monoclonal antibodies that can selectively block signaling by specific heteromer pairs has indicated that heteromers involving opioid, cannabinoid, or dopamine receptors may play a role in various disease states. In this review, we describe evidence for opioid, cannabinoid, and dopamine receptor heteromerization and the potential role of GPCR heteromers in pathophysiological conditions.
Collapse
Affiliation(s)
- Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, USA
| | | | | | | |
Collapse
|
43
|
Kumari N, Mishra CB, Prakash A, Kumar N, Mongre R, Luthra PM. 8-(Furan-2-yl)-3-phenethylthiazolo[5,4-e][1,2,4]triazolo[1,5-c]pyrimidine-2(3H)-thione as novel, selective and potent adenosine A(2A) receptor antagonist. Neurosci Lett 2013; 558:203-7. [PMID: 24161891 DOI: 10.1016/j.neulet.2013.10.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/10/2013] [Accepted: 10/13/2013] [Indexed: 11/28/2022]
Abstract
Antagonism of the human A2A receptor has been implicated to alleviate the symptoms associated with Parkinson's disease. The present finding reveals the potential of PTTP (8-(furan-2-yl)-3-phenethylthiazolo[1,2,4]triazolo[1,5-c]pyrimidine-2(3H)-thione) as novel and potent A2AR antagonist. In radioligand binding assay, PTTP showed significantly high binding affinity (Ki 6.3 nM) and selectivity with A2AR (A1R/A2AR=4603) which was comparable to the results of docking analysis (Ki=1.6 nM, ΔG=-14.52 Kcal/mol). PTTP antagonized (0.46 pmol/ml) the effect of NECA-induced increase in cAMP concentration (0.65 pmol/ml) better than SCH58261 (0.55 pmol/ml) in HEK293T cells. Haloperidol and NECA-induced mice pre-treated with PTTP at 10mg/kg showed attenuation in catalepsy and akinesia without significant neurotoxicity in rotarod test at 20mg/kg. Essentially, novel compound demonstrated remarkable potential as A2AR antagonist in the therapy of PD.
Collapse
Affiliation(s)
- Namrata Kumari
- Neuropharmaceutical Chemistry Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Mall Road, Delhi 110007, India
| | - Chandra Bhushan Mishra
- Neuropharmaceutical Chemistry Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Mall Road, Delhi 110007, India
| | - Amresh Prakash
- Neuropharmaceutical Chemistry Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Mall Road, Delhi 110007, India
| | - Nitin Kumar
- Neuropharmaceutical Chemistry Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Mall Road, Delhi 110007, India
| | - Rajkumar Mongre
- Neuropharmaceutical Chemistry Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Mall Road, Delhi 110007, India
| | - Pratibha Mehta Luthra
- Neuropharmaceutical Chemistry Laboratory, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Mall Road, Delhi 110007, India.
| |
Collapse
|
44
|
Wu YC, Lai HL, Chang WC, Lin JT, Liu YJ, Chern Y. A novel Gαs-binding protein, Gas-2 like 2, facilitates the signaling of the A2A adenosine receptor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3145-3154. [PMID: 23994616 DOI: 10.1016/j.bbamcr.2013.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 12/13/2022]
Abstract
The A2A adenosine receptor (A2AR) is a G-protein-coupled receptor that contains a long cytoplasmic carboxyl terminus (A2AR-C). We report here that Gas-2 like 2 (G2L2) is a new interacting partner of A2AR-C. The interaction between A2AR and G2L2 was verified by GST pull-down, co-immunoprecipitation, immunocytochemical staining, and fluorescence resonance energy transfer. Expression of G2L2 increased the intracellular cAMP content evoked by A2AR in an A2AR-C-dependent manner. Immunoprecipitation and pull-down assays demonstrated that G2L2 selectively bound to A2AR-C and the inactive form of Gαs to facilitate the recruitment of the trimeric G protein complex to the proximal position of A2AR for efficient activation. Collectively, G2L2 is a new effector that controls the action of A2AR by modulating its ability to regulate the Gαs-mediated cAMP contents.
Collapse
Affiliation(s)
- Yi-Chih Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsing-Lin Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Cheng Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jiun-Tsai Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Liu
- Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yijuang Chern
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
45
|
Pang X, Yang M, Han K. Antagonist binding and induced conformational dynamics of GPCR A2A
adenosine receptor. Proteins 2013; 81:1399-410. [DOI: 10.1002/prot.24283] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/12/2013] [Accepted: 03/04/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Xueqin Pang
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian Liaoning 116023 China
| | - Mingjun Yang
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian Liaoning 116023 China
| | - Keli Han
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian Liaoning 116023 China
| |
Collapse
|
46
|
Saki M, Yamada K, Koshimura E, Sasaki K, Kanda T. In vitro pharmacological profile of the A2A receptor antagonist istradefylline. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:963-72. [PMID: 23812646 DOI: 10.1007/s00210-013-0897-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 06/13/2013] [Indexed: 12/28/2022]
Abstract
Adenosine A2A receptors are suggested to be a promising non-dopaminergic target for the treatment of Parkinson's disease (PD). Istradefylline is an adenosine A2A receptor antagonist that has been reported to exhibit antiparkinsonian activities in PD patients as well as both rodents and nonhuman primate models of PD. The aim of this study was to evaluate the in vitro pharmacological profile of istradefylline as an A2A receptor antagonist. Istradefylline exhibited high affinity for A2A receptors in humans, marmosets, dogs, rats, and mice. The affinities for the other subtypes of adenosine receptors (A1, A2B, and A3) were lower than that for A2A receptors in each species. Istradefylline demonstrated no significant affinity for other neurotransmitter receptors, including dopamine receptors (D1, D2, D3, D4, and D5). In addition, istradefylline hardly inhibited monoamine oxidase-A, monoamine oxidase-B, or catechol-O-methyl transferase. A kinetic analysis indicated that istradefylline reversibly binds to the human A2A receptors: The association reached equilibrium within 1 min, and the binding was also almost completely dissociated within 1 min. Istradefylline inhibited the A2A agonist CGS21680-induced accumulation of cAMP in the cultured cells and then shifted the concentration-response curve of CGS21680 to the right without affecting the maximal response of the agonist. These results indicate that istradefylline is a potent, selective, and competitive A2A receptor antagonist. The in vitro pharmacological profile of istradefylline helps to explain the in vivo profile of istradefylline and may be useful for clinical pharmacokinetic-pharmacodynamic considerations of efficacy and safety.
Collapse
Affiliation(s)
- Mayumi Saki
- Sales and Marketing Division, Marketing Department, Kyowa Hakko Kirin Co., Ltd., 1-6-1 Ohtemachi, Chiyoda-ku, Tokyo, 100-8185, Japan
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Sasaki K, Yamasaki T, Omotuyi IO, Mishina M, Ueda H. Age-dependent dystonia in striatal Gγ7 deficient mice is reversed by the dopamine D2 receptor agonist pramipexole. J Neurochem 2013; 124:844-54. [PMID: 23311775 DOI: 10.1111/jnc.12149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/04/2013] [Accepted: 01/04/2013] [Indexed: 01/27/2023]
Abstract
Gγ7 is enriched in striatum and forms a heterotrimeric complex with Gαolf /Gβ, which is coupled to D1 receptor (D1R). Here, we attempted to characterize the pathophysiological, neurochemical, and pharmacological features of mice deficient of Gγ7 gene. Gγ7 knockout mice exhibited age-dependent deficiency in rotarod behavior and increased dystonia-like clasping reflex without loss of striatal neurons. The neurochemical basis for the motor manifestations using immunoblot analysis revealed increased levels of D1R, ChAT and NMDA receptor subunits (NR1 and NR2B) concurrent with decreased levels of D2R and Gαolf , possibly because of the secondary changes of decreased Gαolf /Gγ7-mediated D1R transmission. These behavioral and neurochemical changes are closely related to those observed in Huntington's disease (HD) human subjects and HD model mice. Taking advantage of the finding of D2R down-regulation in Gγ7 knockout mice and the dopamine-mediated synergistic relationship in the control of locomotion between D2R-striatopallidal and D1R-stritonigral neurons, we hypothesized that D2-agonist pramipexole would reverse behavioral dyskinesia caused by defective D1R/Gαolf signaling. Indeed, the rotarod deficiency and clasping reflex were reversed by pramipexole treatment under chronic administration. These findings suggest that Gγ7 knockout mice could be a new type of movement disorders, including HD and useful for the evaluation of therapeutic candidates.
Collapse
Affiliation(s)
- Keita Sasaki
- Department of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | |
Collapse
|
49
|
Lazarus M, Huang ZL, Lu J, Urade Y, Chen JF. How do the basal ganglia regulate sleep–wake behavior? Trends Neurosci 2012; 35:723-32. [DOI: 10.1016/j.tins.2012.07.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 06/25/2012] [Accepted: 07/02/2012] [Indexed: 12/11/2022]
|
50
|
Parkinson's disease. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|