1
|
Yan J, Ton H, Yan J, Dong Y, Xie Z, Jiang H. Anesthetic Sevoflurane Induces Enlargement of Dendritic Spine Heads in Mouse Neurons via Tau-Dependent Mechanisms. Anesth Analg 2025; 140:697-709. [PMID: 38507523 DOI: 10.1213/ane.0000000000006941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
BACKGROUND Sevoflurane induces neuronal dysfunction and cognitive impairment. However, the underlying mechanism remains largely to be determined. Tau, cyclophilin D, and dendritic spine contribute to cognitive function. But whether changes in dendritic spines are involved in the effects of sevoflurane and the potential association with tau and cyclophilin D is not clear. METHODS We harvested hippocampal neurons from wild-type mice, tau knockout mice, and cyclophilin D knockout mice. We treated these neurons with sevoflurane at day in vitro 7 and measured the diameter of dendritic spine head and the number of dendritic spines. Moreover, we determined the effects of sevoflurane on the expression of excitatory amino acid transporter 3 (EAAT3), extracellular glutamate levels, and miniature excitatory postsynaptic currents (mEPSCs). Finally, we used lithium, cyclosporine A, and overexpression of EAAT3 in the interaction studies. RESULTS Sevoflurane-induced tau phosphgorylation increased the diameter of dendritic spine head and decreased the number of dendritic spines in neurons harvested from wild-type and cyclophilin D knockout mice, but not tau knockout mice. Sevoflurane decreased the expression of EAAT3, increased extracellular glutamate levels, and decreased the frequency of mEPSCs in the neurons. Overexpression of EAAT3 mitigated the effects of sevoflurane on dendritic spines. Lithium, but not cyclosporine A, attenuated the effects of sevoflurane on dendritic spines. Lithium also inhibited the effects of sevoflurane on EAAT3 expression and mEPSCs. CONCLUSIONS These data suggest that sevoflurane induces a tau phosphorylation-dependent demtrimental effect on dendritic spine via decreasing EAAT3 expression and increasing extracellular glutamate levels, leading to neuronal dysfunction.
Collapse
Affiliation(s)
- Jia Yan
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Hoai Ton
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Jing Yan
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanlin Dong
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Hong Jiang
- From the Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Yıldızhan K, Nazıroğlu M. NMDA Receptor Activation Stimulates Hypoxia-Induced TRPM2 Channel Activation, Mitochondrial Oxidative Stress, and Apoptosis in Neuronal Cell Line: Modular Role of Memantine. Brain Res 2023; 1803:148232. [PMID: 36610553 DOI: 10.1016/j.brainres.2023.148232] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
TRPM2 channel is activated by the increase of hypoxia (HYP)-mediated excessive mitochondrial (mROS) and cytosolic (cROS) free reactive oxygen species generation and intracellular free Ca2+ ([Ca2+]i) influx. The stimulations of the N-methyl-d-aspartate(NMDA) receptor and TRPM2 channel induce mROS and apoptosis in the neurons, although their inhibitions via the treatments of memantine (MEM) and MK-801 decrease mROS and apoptosis. However, the molecular mechanisms underlying MEM treatment and NMDA inhibition' neuroprotection via TRPM2 inhibition in the HYP remain elusive. We investigated the modulator role of MEM and NMDA via the modulation of TRPM2 on oxidative neurodegeneration and apoptosis in SH-SY5Y neuronal cells. Six groups were induced in the SH-SY5Y and HEK293 cells as follows: Control, MEM, NMDA blocker (MK-801), HYP (CoCl2), HYP + MEM, and HYP + MK-801. The HYP caused to the increases of TRPM2 and PARP-1 expressions, and TRPM2 agonist (H2O2 and ADP-ribose)-induced TRPM2 current density and [Ca2+]i concentration via the upregulation of mitochondrial membrane potential, cROS, and mROS generations. The alterations were not observed in the absence of TRPM2 in the HEK293 cells. The increase of cROS, mROS, lipid peroxidation, cell death (propidium iodide/Hoechst) rate, apoptosis, caspase -3, caspase -8, and caspase -9 were restored via upregulation of glutathione and glutathione peroxidase by the treatments of TRPM2 antagonists (ACA or 2-APB), MEM, and MK-801. In conclusion, the inhibition of NMDA receptor via MEM treatment modulated HYP-mediated mROS, apoptosis, and TRPM2-induced excessive [Ca2+]i and may provide an avenue for protecting HYP-mediated neurodegenerative diseases associated with the increase of mROS, [Ca2+]i, and apoptosis.
Collapse
Affiliation(s)
- Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey; Drug Discovery Unit, BSN Health, Analyses, Innov., Consult., Org., Agricul., Trade Ltd, Isparta, Turkey; Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| |
Collapse
|
3
|
Soubh AA, El-Gazar AA, Mohamed EA, Awad AS, El-Abhar HS. Further insights for the role of Morin in mRTBI: Implication of non-canonical Wnt/PKC-α and JAK-2/STAT-3 signaling pathways. Int Immunopharmacol 2021; 100:108123. [PMID: 34560511 DOI: 10.1016/j.intimp.2021.108123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/01/2021] [Accepted: 08/01/2021] [Indexed: 12/24/2022]
Abstract
The slightly available data about the pathogenesis process of mild repetitive traumatic brain injury (mRTBI) indicates to the necessity of further exploration of mRTBI consequences. Several cellular changes are believed to contribute to the cognitive disabilities, and neurodegenerative changes observed later in persons subjected to mRTBI. We investigated glial fibrillary acidic protein (GFAP), the important severity related biomarker, where it showed further increase after multiple trauma compared to single one. To authenticate our aim, Morin (10 mg/kg loading dose, then twice daily 5 mg/kg for 7 days), MK-801 (1 mg/kg; i.p) and their combination were used. The results obtained has shown that all the chosen regimens opposed the upregulated dementia markers (Aβ1-40,p(Thr231)Tau) and inflammatory protein contents/expression of p(Ser53s6)NF-κBp65, TNF-α, IL-6,and IL-1β and the elevated GFAP in immune stained cortex sections. Additionally, they exerted anti-apoptotic activity by decreasing caspase-3 activity and increasing Bcl-2 contents. Saving brain tissues was evident after these therapeutic agents via upregulating the non-canonical Wnt-1/PKC-α cue and IL-10/p(Tyr(1007/1008))JAK-2/p(Tyr705)STAT-3 signaling pathway to confirm enhancement of survival pathways on the molecular level. Such results were imitated by correcting the injury dependent deviated behavior, where Morin alone or in combination enhanced behavior outcome. On one side, our study refers to the implication of two survival signaling pathways; viz.,the non-canonical Wnt-1/PKC-α and p(Tyr(1007/1008))JAK-2/p(Tyr705)STAT-3 in single and repetitive mRTBI along with distorted dementia markers, inflammation and apoptotic process that finally disrupted behavior. On the other side, intervention through affecting all these targets by Morin alone or with MK-801 affords a promising neuroprotective effect.
Collapse
Affiliation(s)
- Ayman A Soubh
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Amira A El-Gazar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Eman A Mohamed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Azza S Awad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
4
|
The Role of Cardiac N-Methyl-D-Aspartate Receptors in Heart Conditioning-Effects on Heart Function and Oxidative Stress. Biomolecules 2020; 10:biom10071065. [PMID: 32708792 PMCID: PMC7408261 DOI: 10.3390/biom10071065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
As well as the most known role of N-methyl-D-aspartate receptors (NMDARs) in the nervous system, there is a plethora of evidence that NMDARs are also present in the cardiovascular system where they participate in various physiological processes, as well as pathological conditions. The aim of this study was to assess the effects of preconditioning and postconditioning of isolated rat heart with NMDAR agonists and antagonists on heart function and release of oxidative stress biomarkers. The hearts of male Wistar albino rats were subjected to global ischemia for 20 min, followed by 30 min of reperfusion, using the Langendorff technique, and cardiodynamic parameters were determined during the subsequent preconditioning with the NMDAR agonists glutamate (100 µmol/L) and (RS)-(Tetrazol-5-yl)glycine (5 μmol/L) and the NMDAR antagonists memantine (100 μmol/L) and MK-801 (30 μmol/L). In the postconditioning group, the hearts were perfused with the same dose of drugs during the first 3 min of reperfusion. The oxidative stress biomarkers were determined spectrophotometrically in samples of coronary venous effluent. The NMDAR antagonists, especially MK-801, applied in postconditioning had a marked antioxidative effect with a most pronounced protective effect. The results from this study suggest that NMDARs could be a potential therapeutic target in the prevention and treatment of ischemic and reperfusion injury of the heart.
Collapse
|
5
|
Young D. The NMDA Receptor Antibody Paradox: A Possible Approach to Developing Immunotherapies Targeting the NMDA Receptor. Front Neurol 2020; 11:635. [PMID: 32719654 PMCID: PMC7347966 DOI: 10.3389/fneur.2020.00635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/28/2020] [Indexed: 12/29/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDAR) play a key role in brain development and function, including contributing to the pathogenesis of many neurological disorders. Immunization against the GluN1 subunit of the NMDAR and the production of GluN1 antibodies is associated with neuroprotective and seizure-protective effects in rodent models of stroke and epilepsy, respectively. Whilst these data suggest the potential for the development of GluN1 antibody therapy, paradoxically GluN1 autoantibodies in humans are associated with the pathogenesis of the autoimmune disease anti-NMDA receptor encephalitis. This review discusses possible reasons for the differential effects of GluN1 antibodies on NMDAR physiology that could contribute to these phenotypes.
Collapse
Affiliation(s)
- Deborah Young
- Molecular Neurotherapeutics Laboratory, Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Kodam A, Ourdev D, Maulik M, Hariharakrishnan J, Banerjee M, Wang Y, Kar S. A role for astrocyte-derived amyloid β peptides in the degeneration of neurons in an animal model of temporal lobe epilepsy. Brain Pathol 2018; 29:28-44. [PMID: 29665128 DOI: 10.1111/bpa.12617] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/11/2018] [Indexed: 12/13/2022] Open
Abstract
Kainic acid, an analogue of the excitatory neurotransmitter glutamate, can trigger seizures and neurotoxicity in the hippocampus and other limbic structures in a manner that mirrors the neuropathology of human temporal lobe epilepsy (TLE). However, the underlying mechanisms associated with the neurotoxicity remain unclear. Since amyloid-β (Aβ) peptides, which are critical in the development of Alzheimer's disease, can mediate toxicity by activating glutamatergic NMDA receptors, it is likely that the enhanced glutamatergic transmission that renders hippocampal neurons vulnerable to kainic acid treatment may involve Aβ peptides. Thus, we seek to establish what role Aβ plays in kainic acid-induced toxicity using in vivo and in vitro paradigms. Our results show that systemic injection of kainic acid to adult rats triggers seizures, gliosis and loss of hippocampal neurons, along with increased levels/processing of amyloid precursor protein (APP), resulting in the enhanced production of Aβ-related peptides. The changes in APP levels/processing were evident primarily in activated astrocytes, implying a role for astrocytic Aβ in kainic acid-induced toxicity. Accordingly, we showed that treating rat primary cultured astrocytes with kainic acid can lead to increased Aβ production/secretion without any compromise in cell viability. Additionally, we revealed that kainic acid reduces neuronal viability more in neuronal/astrocyte co-cultures than in pure neuronal culture, and this is attenuated by precluding Aβ production. Collectively, these results indicate that increased production/secretion of Aβ-related peptides from activated astrocytes can contribute to neurotoxicity in kainic acid-treated rats. Since kainic acid administration can lead to neuropathological changes resembling TLE, it is likely that APP/Aβ peptides derived from astrocytes may have a role in TLE pathogenesis.
Collapse
Affiliation(s)
- A Kodam
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | - D Ourdev
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | - M Maulik
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | - J Hariharakrishnan
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | - M Banerjee
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | - Y Wang
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | - S Kar
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| |
Collapse
|
7
|
Ning C, Mo L, Chen X, Tu W, Wu J, Hou S, Xu J. Triptolide derivatives as potential multifunctional anti-Alzheimer agents: Synthesis and structure-activity relationship studies. Bioorg Med Chem Lett 2018; 28:689-693. [PMID: 29366650 DOI: 10.1016/j.bmcl.2018.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/05/2018] [Accepted: 01/12/2018] [Indexed: 02/05/2023]
Abstract
Owning to the promising neuroprotective profile and the ability to cross the blood-brain barrier, triptolide has attracted extensive attention. Although its limited solubility and toxicity have greatly hindered clinical translation, triptolide has nonetheless emerged as a promising candidate for structure-activity relationship studies for Alzheimer's disease. In the present study, a series of triptolide analogs were designed and synthesized, and their neuroprotective and anti-neuroinflammatory effects were then tested using a cell culture model. Among the triptolide derivatives tested, a memantine conjugate, compound 8, showed a remarkable neuroprotective effect against Aβ1-42 toxicity in primary cortical neuron cultures as well as an inhibitory effect against LPS-induced TNF-α production in BV2 cells at a subnanomolar concentration. Our findings provide insight into the different pharmacophores that are responsible for the multifunctional effects of triptolide in the central nervous system. Our study should help in the development of triptolide-based multifunctional anti-Alzheimer drugs.
Collapse
Affiliation(s)
- Chengqing Ning
- SUSTech Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liumei Mo
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Shantou University Medical College, Shantou 515041, China
| | - Xuwei Chen
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wentong Tu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Wu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Shengtao Hou
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Xu
- SUSTech Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
8
|
Spilovska K, Korabecny J, Sepsova V, Jun D, Hrabinova M, Jost P, Muckova L, Soukup O, Janockova J, Kucera T, Dolezal R, Mezeiova E, Kaping D, Kuca K. Novel Tacrine-Scutellarin Hybrids as Multipotent Anti-Alzheimer's Agents: Design, Synthesis and Biological Evaluation. Molecules 2017; 22:E1006. [PMID: 28621747 PMCID: PMC6152717 DOI: 10.3390/molecules22061006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 11/17/2022] Open
Abstract
A novel series of 6-chlorotacrine-scutellarin hybrids was designed, synthesized and the biological activity as potential anti-Alzheimer's agents was assessed. Their inhibitory activity towards human acetylcholinesterase (hAChE) and human butyrylcholinesterase (hBChE), antioxidant activity, ability to cross the blood-brain barrier (BBB) and hepatotoxic profile were evaluated in vitro. Among these compounds, hybrid K1383, bearing two methylene tether between two basic scaffolds, was found to be very potent hAChE inhibitor (IC50 = 1.63 nM). Unfortunately, none of the hybrids displayed any antioxidant activity (EC50 ≥ 500 μM). Preliminary data also suggests a comparable hepatotoxic profile with 6-Cl-THA (established on a HepG2 cell line). Kinetic studies performed on hAChE with the most active compound in the study, K1383, pointed out to a mixed, non-competitive enzyme inhibition. These findings were further corroborated by docking studies.
Collapse
Affiliation(s)
- Katarina Spilovska
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.
| | - Jan Korabecny
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Vendula Sepsova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Martina Hrabinova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Petr Jost
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
| | - Lubica Muckova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
| | - Ondrej Soukup
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Jana Janockova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
| | - Rafael Dolezal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Eva Mezeiova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Daniel Kaping
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
9
|
Li S, Hafeez A, Noorulla F, Geng X, Shao G, Ren C, Lu G, Zhao H, Ding Y, Ji X. Preconditioning in neuroprotection: From hypoxia to ischemia. Prog Neurobiol 2017; 157:79-91. [PMID: 28110083 DOI: 10.1016/j.pneurobio.2017.01.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/08/2017] [Accepted: 01/13/2017] [Indexed: 01/05/2023]
Abstract
Sublethal hypoxic or ischemic events can improve the tolerance of tissues, organs, and even organisms from subsequent lethal injury caused by hypoxia or ischemia. This phenomenon has been termed hypoxic or ischemic preconditioning (HPC or IPC) and is well established in the heart and the brain. This review aims to discuss HPC and IPC with respect to their historical development and advancements in our understanding of the neurochemical basis for their neuroprotective role. Through decades of collaborative research and studies of HPC and IPC in other organ systems, our understanding of HPC and IPC-induced neuroprotection has expanded to include: early- (phosphorylation targets, transporter regulation, interfering RNA) and late- (regulation of genes like EPO, VEGF, and iNOS) phase changes, regulators of programmed cell death, members of metabolic pathways, receptor modulators, and many other novel targets. The rapid acceleration in our understanding of HPC and IPC will help facilitate transition into the clinical setting.
Collapse
Affiliation(s)
- Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Adam Hafeez
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Fatima Noorulla
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA; Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - Guo Shao
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Guowei Lu
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Heng Zhao
- Department of Neurosurgery, Stanford University, CA, USA
| | - Yuchuan Ding
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China; Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China.
| |
Collapse
|
10
|
Unzeta M, Esteban G, Bolea I, Fogel WA, Ramsay RR, Youdim MBH, Tipton KF, Marco-Contelles J. Multi-Target Directed Donepezil-Like Ligands for Alzheimer's Disease. Front Neurosci 2016; 10:205. [PMID: 27252617 PMCID: PMC4879129 DOI: 10.3389/fnins.2016.00205] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/25/2016] [Indexed: 12/20/2022] Open
Abstract
HIGHLIGHTS ASS234 is a MTDL compound containing a moiety from Donepezil and the propargyl group from the PF 9601N, a potent and selective MAO B inhibitor. This compound is the most advanced anti-Alzheimer agent for preclinical studies identified in our laboratory.Derived from ASS234 both multipotent donepezil-indolyl (MTDL-1) and donepezil-pyridyl hybrids (MTDL-2) were designed and evaluated as inhibitors of AChE/BuChE and both MAO isoforms. MTDL-2 showed more high affinity toward the four enzymes than MTDL-1.MTDL-3 and MTDL-4, were designed containing the N-benzylpiperidinium moiety from Donepezil, a metal- chelating 8-hydroxyquinoline group and linked to a N-propargyl core and they were pharmacologically evaluated.The presence of the cyano group in MTDL-3, enhanced binding to AChE, BuChE and MAO A. It showed antioxidant behavior and it was able to strongly complex Cu(II), Zn(II) and Fe(III).MTDL-4 showed higher affinity toward AChE, BuChE.MTDL-3 exhibited good brain penetration capacity (ADMET) and less toxicity than Donepezil. Memory deficits in scopolamine-lesioned animals were restored by MTDL-3.MTDL-3 particularly emerged as a ligand showing remarkable potential benefits for its use in AD therapy. Alzheimer's disease (AD), the most common form of adult onset dementia, is an age-related neurodegenerative disorder characterized by progressive memory loss, decline in language skills, and other cognitive impairments. Although its etiology is not completely known, several factors including deficits of acetylcholine, β-amyloid deposits, τ-protein phosphorylation, oxidative stress, and neuroinflammation are considered to play significant roles in the pathophysiology of this disease. For a long time, AD patients have been treated with acetylcholinesterase inhibitors such as donepezil (Aricept®) but with limited therapeutic success. This might be due to the complex multifactorial nature of AD, a fact that has prompted the design of new Multi-Target-Directed Ligands (MTDL) based on the "one molecule, multiple targets" paradigm. Thus, in this context, different series of novel multifunctional molecules with antioxidant, anti-amyloid, anti-inflammatory, and metal-chelating properties able to interact with multiple enzymes of therapeutic interest in AD pathology including acetylcholinesterase, butyrylcholinesterase, and monoamine oxidases A and B have been designed and assessed biologically. This review describes the multiple targets, the design rationale and an in-house MTDL library, bearing the N-benzylpiperidine motif present in donepezil, linked to different heterocyclic ring systems (indole, pyridine, or 8-hydroxyquinoline) with special emphasis on compound ASS234, an N-propargylindole derivative. The description of the in vitro biological properties of the compounds and discussion of the corresponding structure-activity-relationships allows us to highlight new issues for the identification of more efficient MTDL for use in AD therapy.
Collapse
Affiliation(s)
- Mercedes Unzeta
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Gerard Esteban
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland
| | - Irene Bolea
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Wieslawa A. Fogel
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | - Rona R. Ramsay
- Biomolecular Sciences, Biomedical Sciences Research Complex, University of St AndrewsSt. Andrews, UK
| | - Moussa B. H. Youdim
- Department of Pharmacology, Ruth and Bruce Rappaport Faculty of Medicine, Eve Topf and National Parkinson Foundation Center for Neurodegenerative Diseases ResearchHaifa, Israel
| | - Keith F. Tipton
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College DublinDublin, Ireland
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry, Spanish National Research CouncilMadrid, Spain
| |
Collapse
|
11
|
Wang X, Blanchard J, Grundke-Iqbal I, Iqbal K. Memantine Attenuates Alzheimer's Disease-Like Pathology and Cognitive Impairment. PLoS One 2015; 10:e0145441. [PMID: 26697860 PMCID: PMC4689401 DOI: 10.1371/journal.pone.0145441] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/03/2015] [Indexed: 12/02/2022] Open
Abstract
Deficiency of protein phosphatase-2A is a key event in Alzheimer’s disease. An endogenous inhibitor of protein phosphatase-2A, inhibitor-1, I1PP2A, which inhibits the phosphatase activity by interacting with its catalytic subunit protein phosphatase-2Ac, is known to be upregulated in Alzheimer’s disease brain. In the present study, we overexpressed I1PP2A by intracerebroventricular injection with adeno-associated virus vector-1-I1PP2A in Wistar rats. The I1PP2A rats showed a decrease in brain protein phosphatase-2A activity, abnormal hyperphosphorylation of tau, neurodegeneration, an increase in the level of activated glycogen synthase kinase-3beta, enhanced expression of intraneuronal amyloid-beta and spatial reference memory deficit; littermates treated identically but with vector only, i.e., adeno-associated virus vector-1-enhanced GFP, served as a control. Treatment with memantine, a noncompetitive NMDA receptor antagonist which is an approved drug for treatment of Alzheimer’s disease, rescued protein phosphatase-2A activity by decreasing its demethylation at Leu309 selectively and attenuated Alzheimer’s disease-like pathology and cognitive impairment in adeno-associated virus vector-1-I1PP2A rats. These findings provide new clues into the possible mechanism of the beneficial therapeutic effect of memantine in Alzheimer’s disease patients.
Collapse
Affiliation(s)
- Xiaochuan Wang
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- Department of Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Julie Blanchard
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Inge Grundke-Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Venâncio C, Félix L, Almeida V, Coutinho J, Antunes L, Peixoto F, Summavielle T. Acute Ketamine Impairs Mitochondrial Function and Promotes Superoxide Dismutase Activity in the Rat Brain. Anesth Analg 2015; 120:320-8. [DOI: 10.1213/ane.0000000000000539] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
An Immunological Approach to Increase the Brain's Resilience to Insults. ISRN NEUROSCIENCE 2014; 2014:103213. [PMID: 24967312 PMCID: PMC4045558 DOI: 10.1155/2014/103213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 03/12/2014] [Indexed: 01/13/2023]
Abstract
We have previously demonstrated the therapeutic potential of inducing a humoral response with autoantibodies to the N-methyl D-aspartate (NMDA) receptor using a genetic approach. In this study, we generated three recombinant proteins to different functional domains of the NMDA receptor, which is implicated in mediating brain tolerance, specifically NR1[21-375], NR1[313-619], NR1[654-800], and an intracellular scaffolding protein, Homer1a, with a similar anatomical expression pattern. All peptides showed similar antigenicity and antibody titers following systemic vaccination, and all animals thrived. Two months following vaccination, rats were administered the potent neurotoxin, kainic acid. NR1[21-375] animals showed an antiepileptic phenotype but no neuroprotection. Remarkably, despite ineffective antiepileptic activity, 6 of 7 seizing NR1[654-800] rats showed absolutely no injury with only minimal changes in the remaining animal, whereas the majority of persistently seizing rats in the other groups showed moderate to severe hippocampal injury. CREB, BDNF, and HSP70, proteins associated with preconditioning, were selectively upregulated in the hippocampus of NR1[654-800] animals, consistent with the observed neuroprotective phenotype. These results identify NR1 epitopes important in conferring anticonvulsive and neuroprotective effects and support the concept of an immunological strategy to induce a chronic state of tolerance in the brain.
Collapse
|
14
|
Wu Z, Chen X, Liu F, Chen W, Wu P, Wieschhaus AJ, Chishti AH, Roche PA, Chen WM, Lin TJ. Calpain-1 contributes to IgE-mediated mast cell activation. THE JOURNAL OF IMMUNOLOGY 2014; 192:5130-9. [PMID: 24760147 DOI: 10.4049/jimmunol.1301677] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mast cells play a central role in allergy through secretion of both preformed and newly synthesized mediators. Mast cell mediator secretion is controlled by a complex network of signaling events. Despite intensive studies, signaling pathways in the regulation of mast cell mediator secretion remain incompletely defined. In this study, we examined the role of calpain in IgE-dependent mast cell activation. IgE-mediated activation of mouse bone marrow-derived mast cells enhanced calpain activity. Inhibition of calpain activity by a number of calpain inhibitors reduced IgE-mediated mast cell degranulation both in vitro and in vivo. Calpain inhibitors blocked IgE-mediated TNF and IL-6 production in vitro and reduced late-phase allergic response in vivo. Importantly, mouse calpain-1 null bone marrow-derived mast cells showed reduced IgE-mediated mast cell degranulation in vitro and in vivo, diminished cytokine and chemokine production in vitro, and impaired late-phase allergic response in vivo. Further studies revealed that calpain-1 deficiency led to specific attenuation of IκB-NF-κB pathway and IKK-SNAP23 pathway, whereas calcium flux, MAPK, Akt, and NFAT pathway proceed normally in IgE-activated calpain-1 null mast cells. Thus, calpain-1 is identified as a novel regulator in IgE-mediated mast cell activation and could serve as a potential therapeutic target for the management of allergic inflammation.
Collapse
Affiliation(s)
- Zhengli Wu
- Department of Microbiology and Immunology, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada
| | - Xiaochun Chen
- Department of Neurology, Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Fang Liu
- Department of Microbiology and Immunology, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada
| | - Wei Chen
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Ping Wu
- Department of Microbiology and Immunology, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada
| | - Adam J Wieschhaus
- Department of Molecular Physiology and Pharmacology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Athar H Chishti
- Department of Molecular Physiology and Pharmacology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Wei-Min Chen
- Department of Hematology, Fujian Provincial Hospital, Fuzhou, Fujian 350000, China
| | - Tong-Jun Lin
- Department of Microbiology and Immunology, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada;
| |
Collapse
|
15
|
Turovskaya MV, Turovsky EA, Kononov AV, Zinchenko VP. Short-term hypoxia induces a selective death of GABAergic neurons. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2014. [DOI: 10.1134/s199074781305019x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Zheng H, Fridkin M, Youdim M. From single target to multitarget/network therapeutics in Alzheimer's therapy. Pharmaceuticals (Basel) 2014; 7:113-35. [PMID: 24463342 PMCID: PMC3942689 DOI: 10.3390/ph7020113] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 02/06/2023] Open
Abstract
Brain network dysfunction in Alzheimer’s disease (AD) involves many proteins (enzymes), processes and pathways, which overlap and influence one another in AD pathogenesis. This complexity challenges the dominant paradigm in drug discovery or a single-target drug for a single mechanism. Although this paradigm has achieved considerable success in some particular diseases, it has failed to provide effective approaches to AD therapy. Network medicines may offer alternative hope for effective treatment of AD and other complex diseases. In contrast to the single-target drug approach, network medicines employ a holistic approach to restore network dysfunction by simultaneously targeting key components in disease networks. In this paper, we explore several drugs either in the clinic or under development for AD therapy in term of their design strategies, diverse mechanisms of action and disease-modifying potential. These drugs act as multi-target ligands and may serve as leads for further development as network medicines.
Collapse
Affiliation(s)
- Hailin Zheng
- Department of Medicinal Chemistry, Intra-cellular Therapies Inc. 3960 Broadway, New York, NY 10032, USA.
| | - Mati Fridkin
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Moussa Youdim
- Abital Pharma Pipeline Ltd., Tel Aviv 6789141, Israel.
| |
Collapse
|
17
|
Brödemann R, Peters B, Höllt V, Becker A. Dynamic aspects of cerebral hypoxic preconditioning measured in an in vitro model. Neurosci Lett 2014; 558:175-9. [PMID: 24240010 DOI: 10.1016/j.neulet.2013.10.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/17/2013] [Accepted: 10/29/2013] [Indexed: 11/25/2022]
Abstract
Preconditioning increases the neurons' resistance to subsequent hypoxia. An in vitro study was conducted to explore kinetic aspects of hypoxic preconditioning. Hippocampal slices were exposed to one single or repeated episodes of oxygen and glucose deprivation (OGD). The interval between OGD episodes varied between 30 min and 180 min. OGD led to a significant reduction in the population spike amplitude. Subsequent episodes of OGD did not result in a further reduction in the population spike amplitude if the interval between the episodes was ca. 60 min, which demonstrated that there were preconditioning effects. In the experiment using an interval of 30 min, population spike amplitude decreased after each OGD episode. The set-up described is useful for detecting damaging effects of OGD as well as preconditioning effects. A time window of ca. 60 min is required to induce protective mechanisms.
Collapse
Affiliation(s)
- Rudolf Brödemann
- Otto-von-Guericke University, Faculty of Medicine, Institute of Pharmacology and Toxicology, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Brigitte Peters
- Otto-von-Guericke University, Faculty of Medicine, Department of Biometry and Informatics, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Volker Höllt
- Otto-von-Guericke University, Faculty of Medicine, Institute of Pharmacology and Toxicology, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Axel Becker
- Otto-von-Guericke University, Faculty of Medicine, Institute of Pharmacology and Toxicology, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| |
Collapse
|
18
|
Turovsky EA, Turovskaya MV, Kononov AV, Zinchenko VP. Short-term episodes of hypoxia induce posthypoxic hyperexcitability and selective death of GABAergic hippocampal neurons. Exp Neurol 2013; 250:1-7. [PMID: 24041985 DOI: 10.1016/j.expneurol.2013.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/07/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
We have previously developed a rat hippocampal neuronal cell model for the registration of the preconditioning effect and posthypoxic hyperexcitability (Turovskaya et al., 2011). Repeated episodes of short-term hypoxia are reported to suppress the amplitude of Ca(2+) response to NMDA in majority of neurons, reflecting the effect of preconditioning in the culture. In addition, exposure to hypoxia causes posthypoxic hyperexcitability: this is characterized by the onset of spontaneous synchronous Ca(2+) transients in a population of neurons in a neural network during the period of reoxygenation after each hypoxic episode. The nature of this phenomenon is unknown, although it has been observed that there always exists a minority of neurons in which there is no effect of hypoxic preconditioning. In this small population of neurons, the amplitude of Ca(2+) response to NMDA is not suppressed, but rather increases after each episode of hypoxia. Here we report the type of these neurons and their role in the generation of posthypoxic hyperexcitability. We compared the effect of short-term hypoxia on the amplitude of the Ca(2+) response to NMDA and the Ca(2+) transient generation in two populations of neurons - inhibitory GABAergic and excitatory glutamatergic. We have demonstrated that the neurons in which the preconditioning effect was not observed are GABAergic. Moreover at the instant moment of the posthypoxic synchronous Ca(2+)-transient generation (during reoxygenation) there is a global increase of [Ca(2+)]i and subsequent apoptosis in some GABAergic neurons. Anti-inflammatory cytokine interleukin-10 prevents the development of posthypoxic hyperexcitability, inhibiting the spontaneous synchronous Ca(2+) transients. At the same time, interleukin-10 protects GABAergic neurons from death, by restoring the effect of hypoxic preconditioning in them. Activation of one of the signaling pathways initiated by interleukin-10 appears to be necessary for the development of hypoxic preconditioning in GABAergic neurons. Overall our results indicate that short-term episodes of hypoxia can damage GABAergic neurons and weaken the inhibitory action of GABAergic neurons in a neural network. Activation of PI3K-dependent survival signaling pathways in neurons of this type is a possible strategy to protect these cells against hypoxia.
Collapse
Affiliation(s)
- Egor A Turovsky
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | | | | | | |
Collapse
|
19
|
Seo JW, Kim Y, Hur J, Park KS, Cho YW. Proteomic Analysis of Primary Cultured Rat Cortical Neurons in Chemical Ischemia. Neurochem Res 2013; 38:1648-60. [DOI: 10.1007/s11064-013-1067-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 04/29/2013] [Accepted: 05/03/2013] [Indexed: 01/15/2023]
|
20
|
Danysz W, Parsons CG. Alzheimer's disease, β-amyloid, glutamate, NMDA receptors and memantine--searching for the connections. Br J Pharmacol 2013; 167:324-52. [PMID: 22646481 DOI: 10.1111/j.1476-5381.2012.02057.x] [Citation(s) in RCA: 360] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
β-amyloid (Aβ) is widely accepted to be one of the major pathomechanisms underlying Alzheimer's disease (AD), although there is presently lively debate regarding the relative roles of particular species/forms of this peptide. Most recent evidence indicates that soluble oligomers rather than plaques are the major cause of synaptic dysfunction and ultimately neurodegeneration. Soluble oligomeric Aβ has been shown to interact with several proteins, for example glutamatergic receptors of the NMDA type and proteins responsible for maintaining glutamate homeostasis such as uptake and release. As NMDA receptors are critically involved in neuronal plasticity including learning and memory, we felt that it would be valuable to provide an up to date review of the evidence connecting Aβ to these receptors and related neuronal plasticity. Strong support for the clinical relevance of such interactions is provided by the NMDA receptor antagonist memantine. This substance is the only NMDA receptor antagonist used clinically in the treatment of AD and therefore offers an excellent tool to facilitate translational extrapolations from in vitro studies through in vivo animal experiments to its ultimate clinical utility.
Collapse
Affiliation(s)
- Wojciech Danysz
- Merz Pharmaceuticals GmbH, Eckenheimer Landstraße, Frankfurt am Main, Germany
| | | |
Collapse
|
21
|
Effect of bFGF on neuronal damage induced by sequential treatment of amyloid β and excitatory amino acid in vitro and in vivo. Eur J Pharmacol 2012; 695:76-82. [DOI: 10.1016/j.ejphar.2012.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/04/2012] [Accepted: 09/17/2012] [Indexed: 11/18/2022]
|
22
|
Javier Miguel-Hidalgo J, Paul IA, Wanzo V, Banerjee PK. Memantine prevents cognitive impairment and reduces Bcl-2 and caspase 8 immunoreactivity in rats injected with amyloid β1–40. Eur J Pharmacol 2012; 692:38-45. [DOI: 10.1016/j.ejphar.2012.07.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 07/09/2012] [Accepted: 07/12/2012] [Indexed: 02/01/2023]
|
23
|
Thellung S, Gatta E, Pellistri F, Corsaro A, Villa V, Vassalli M, Robello M, Florio T. Excitotoxicity through NMDA receptors mediates cerebellar granule neuron apoptosis induced by prion protein 90-231 fragment. Neurotox Res 2012; 23:301-14. [PMID: 22855343 DOI: 10.1007/s12640-012-9340-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/13/2012] [Accepted: 07/18/2012] [Indexed: 10/28/2022]
Abstract
Prion diseases recognize, as a unique molecular trait, the misfolding of CNS-enriched prion protein (PrP(C)) into an aberrant isoform (PrP(Sc)). In this work, we characterize the in vitro toxicity of amino-terminally truncated recombinant PrP fragment (amino acids 90-231, PrP90-231), on rat cerebellar granule neurons (CGN), focusing on glutamatergic receptor activation and Ca(2+) homeostasis impairment. This recombinant fragment assumes a toxic conformation (PrP90-231(TOX)) after controlled thermal denaturation (1 h at 53 °C) acquiring structural characteristics identified in PrP(Sc) (enrichment in β-structures, increased hydrophobicity, partial resistance to proteinase K, and aggregation in amyloid fibrils). By annexin-V binding assay, and evaluation of the percentage of fragmented and condensed nuclei, we show that treatment with PrP90-231(TOX), used in pre-fibrillar aggregation state, induces CGN apoptosis. This effect was associated with a delayed, but sustained elevation of [Ca(2+)]i. Both CGN apoptosis and [Ca(2+)]i increase were not observed using PrP90-231 in PrP(C)-like conformation. PrP90-231(TOX) effects were significantly reduced in the presence of ionotropic glutamate receptor antagonists. In particular, CGN apoptosis and [Ca(2+)]i increase were largely reduced, although not fully abolished, by pre-treatment with the NMDA antagonists APV and memantine, while the AMPA antagonist CNQX produced a lower, although still significant, effect. In conclusion, we report that CGN apoptosis induced by PrP90-231(TOX) correlates with a sustained elevation of [Ca(2+)]i mediated by the activation of NMDA and AMPA receptors.
Collapse
Affiliation(s)
- Stefano Thellung
- Department of Internal Medicine, Section of Pharmacology and Centre of Excellence for Biomedical Research (CEBR) School of Medicine, University of Genova, Viale Benedetto XV, 2, 16132, Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abramets II, Evdokimov D, Talalayenko AN. Early Anoxic Damage to the Hippocampus and Its Modifications Resulting From Chronic Influences of Antidepressants. NEUROPHYSIOLOGY+ 2011. [DOI: 10.1007/s11062-011-9193-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Mohamed A, Posse de Chaves E. Aβ internalization by neurons and glia. Int J Alzheimers Dis 2011; 2011:127984. [PMID: 21350608 PMCID: PMC3042623 DOI: 10.4061/2011/127984] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 12/23/2010] [Indexed: 11/20/2022] Open
Abstract
In the brain, the amyloid β peptide (Aβ) exists extracellularly and inside neurons. The intracellular accumulation of Aβ in Alzheimer's disease brain has been questioned for a long time. However, there is now sufficient strong evidence indicating that accumulation of Aβ inside neurons plays an important role in the pathogenesis of Alzheimer's disease. Intraneuronal Aβ originates from intracellular cleavage of APP and from Aβ internalization from the extracellular milieu. We discuss here the different molecular mechanisms that are responsible for Aβ internalization in neurons and the links between Aβ internalization and neuronal dysfunction and death. A brief description of Aβ uptake by glia is also presented.
Collapse
Affiliation(s)
- Amany Mohamed
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | | |
Collapse
|
26
|
Song MS, Baker GB, Todd KG, Kar S. Inhibition of β-amyloid1-42 internalization attenuates neuronal death by stabilizing the endosomal-lysosomal system in rat cortical cultured neurons. Neuroscience 2011; 178:181-8. [PMID: 21262324 DOI: 10.1016/j.neuroscience.2010.12.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 12/22/2010] [Accepted: 12/24/2010] [Indexed: 11/16/2022]
Abstract
A number of recent studies have indicated that accumulation of β amyloid (Aβ) peptides within neurons is an early event which may trigger degeneration of neurons and subsequent development of Alzheimer's disease (AD) pathology. However, very little is known about the internalization and/or subcellular sites involved in trafficking of Aβ peptides into the neurons that are vulnerable in AD pathology. To address this issue we evaluated internalization of fluoroscein conjugated Aβ1-42 (FAβ1-42) and subsequent alteration of endosomal-lysosomal (EL) markers such as cathepsin D, Rab5 and Rab7 in rat cortical cultured neurons. It is evident from our results that internalization of FAβ1-42, which occurred in a dose- and time-dependent manner, triggered degeneration of neurons along with increased levels and/or altered distribution of cathepsin D, Rab5 and Rab7. Our results further revealed that FAβ1-42 internalization was attenuated by phenylarsine oxide (a general inhibitor of endocytosis) and sucrose (an inhibitor of clathrin-mediated endocytosis) but not by antagonists of N-methyl-d-aspartate (NMDA) glutamate receptors. Additionally, inhibition of FAβ1-42 endocytosis not only protected neurons against toxicity but also reversed the altered levels/distributions of EL markers. These results, taken together, suggest that internalization of exogenous Aβ1-42, which is partly mediated via a clathrin-dependent process, can lead to degeneration of neurons, possibly by activating the EL system. Inhibition of FAβ endocytosis attenuated toxicity, thus suggesting a potential strategy for preventing loss of neurons in AD pathology.
Collapse
Affiliation(s)
- M S Song
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada T6G 2M8
| | | | | | | |
Collapse
|
27
|
Kuszczyk M, Słomka M, Antkiewicz-Michaluk L, Salińska E, Łazarewicz JW. 1-Methyl-1,2,3,4-tetrahydroisoquinoline and established uncompetitive NMDA receptor antagonists induce tolerance to excitotoxicity. Pharmacol Rep 2010; 62:1041-50. [DOI: 10.1016/s1734-1140(10)70366-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/20/2010] [Indexed: 12/11/2022]
|
28
|
β-Amyloid-related peptides potentiate K+-evoked glutamate release from adult rat hippocampal slices. Neurobiol Aging 2010; 31:1164-72. [DOI: 10.1016/j.neurobiolaging.2008.08.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 07/17/2008] [Accepted: 08/14/2008] [Indexed: 11/21/2022]
|
29
|
Pirondi S, Giuliani A, Del Vecchio G, Giardino L, Hökfelt T, Calzà L. The galanin receptor 2/3 agonist Gal2-11 protects the SN56 cells against beta-amyloid 25-35 toxicity. J Neurosci Res 2010; 88:1064-73. [PMID: 19885864 DOI: 10.1002/jnr.22278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The neuropeptide galanin is a modulator of cholinergic function and may play a role in A beta peptide-induced degeneration of cholinergic forebrain neurons. We have studied the effect of galanin and its galanin receptor subtype 2/3 agonist Gal2-11on toxicity induced by freshly-prepared beta-amyloid(25-35) in the cholinergic cell line SN56. Both nuclear fragmentation and caspase-3 expression were analysed. beta-amyloid(25-35)-exposure induced a significant increase in caspase-3 mRNA expression after 30, 60, 90 or 150 min of beta-amyloid(25-35) exposure. These effects were abolished in the presence of Gal2-11 (10 nM). Similarly, beta-amyloid(25-35)-induced nuclear fragmentation was prevented by the galanin agonist at all time points studied. These findings indicate that the galanin 2/3 agonist Gal2-11 protects SN56 cholinergic cells from beta-amyloid(25-35)-induced cell death and that this action is mediated by an early reduction of caspase-3 expression.
Collapse
Affiliation(s)
- S Pirondi
- DIMORFIPA, University of Bologna, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Bottum K, Poon E, Haley B, Karmarkar S, Tischkau SA. Suprachiasmatic nucleus neurons display endogenous resistance to excitotoxicity. Exp Biol Med (Maywood) 2010; 235:237-46. [PMID: 20404040 DOI: 10.1258/ebm.2009.009244] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A comprehensive understanding of neuroprotective pathways is essential to progress in the battle against numerous neurodegenerative conditions. The hypothalamic suprachiasmatic nucleus (SCN) is endogenously resistant to glutamate (Glu) excitotoxicity in vivo. This study was designed to determine whether immortalized SCN neurons (SCN2.2 cells) retain this characteristic. We first established that SCN2.2 cells retained the ability to respond to Glu. SCN2.2 cells expressed N-methyl-d-aspartate (NMDA) receptor subtypes NR1 and NR2A/2B, suggesting the presence of functional receptors. mRNA for the NMDA receptor subunits NR2A and NR2B were higher in the SCN2.2 than in the control hypothalamic neurons (GT1-7). Specific NMDA receptor antagonists (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate and d-(-)-2-amino-5-phosphonovaleric acid blocked Glu-induced activation of gene expression. SCN2.2 cells were resistant to Glu excitotoxicity compared with GT1-7 neurons as assessed with a mitochondrial function assay, cell death by trypan blue exclusion and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling. SCN2.2 resistance to Glu excitoxicity was retained in the presence of the broad spectrum Glu transport inhibitor, l-trans-pyrrolidine-2,4 dicarboxylate, excluding glial Glu uptake as a major neuroprotective mechanism. Collectively, these observations demonstrate endogenous neuroprotection in SCN2.2 cells; this cell line is resistant to excitotoxicity under conditions that are toxic to other immortalized cell lines. Thus, the SCN2.2 cell line may provide insights into the molecular mechanisms that confer endogenous neuroprotection in the SCN.
Collapse
Affiliation(s)
- Kathleen Bottum
- Department of Medicine, Division of Internal Medicine and Psychiatry, Southern Illinois School of Medicine, Springfield, IL 62794-9636, USA
| | | | | | | | | |
Collapse
|
31
|
Smith AJ, Tauskela JS, Stone TW, Smith RA. Preconditioning with 4-aminopyridine protects cerebellar granule neurons against excitotoxicity. Brain Res 2009; 1294:165-75. [DOI: 10.1016/j.brainres.2009.07.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 07/16/2009] [Accepted: 07/18/2009] [Indexed: 01/23/2023]
|
32
|
Benardete EA, Bergold PJ. Genomic analysis of ischemic preconditioning in adult rat hippocampal slice cultures. Brain Res 2009; 1292:107-22. [PMID: 19631194 DOI: 10.1016/j.brainres.2009.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 07/04/2009] [Accepted: 07/08/2009] [Indexed: 01/08/2023]
Abstract
Understanding endogenous mechanisms of neuroprotection may have important clinical applications. It is well established that brain tissue becomes more resistant to ischemic injury following a sublethal ischemic insult. This process, called ischemic preconditioning (IPC), can be induced in adult rat hippocampal slice cultures by a brief oxygen-glucose deprivation (OGD) [Hassen, G.W., Tian, D., Ding, D., Bergold, P.J., 2004. A new model of ischemic preconditioning using young adult hippocampal slice cultures. Brain Res. Brain Res. Protoc. 13, 135-143]. We have analyzed the changes in gene expression brought about by IPC in this model in order to understand the mechanisms involved. Total RNA was isolated at different time points following a brief OGD (3, 6 and 12 h) and used to probe genome-wide expression microarrays. Genes were identified that were significantly up- or down-regulated relative to controls. We placed genes that were differentially expressed into statistically significant groups based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene ontology (GO) terms. Genes involved in signal transduction, transcription, and oxidative phosphorylation are differentially expressed at each time point. The analysis demonstrates that alterations in signaling pathways (TGF-beta, Wnt, MAPK, ErbB, Toll-like receptor, JAK-STAT, VEGF) consistently accompany IPC. RT-PCR was used to confirm that members of these signaling pathways are regulated as predicted by the microarray analysis. We verified that protein translation following OGD is necessary for IPC. We also found that blocking the NMDA receptor during OGD does not significantly inhibit IPC in this model or produce large changes in gene expression. Our data thus suggests that changes in signaling pathways and their down-stream targets play an important role in triggering endogenous neuroprotection.
Collapse
Affiliation(s)
- Ethan A Benardete
- Department of Neurosurgery, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| | | |
Collapse
|
33
|
Gerencser AA, Mark KA, Hubbard AE, Divakaruni AS, Mehrabian Z, Nicholls DG, Polster BM. Real-time visualization of cytoplasmic calpain activation and calcium deregulation in acute glutamate excitotoxicity. J Neurochem 2009; 110:990-1004. [PMID: 19493161 DOI: 10.1111/j.1471-4159.2009.06194.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although calpain (EC 3.4.22) protease activation was suggested to contribute to excitotoxic delayed calcium deregulation (DCD) via proteolysis of Na+/Ca2+ exchanger 3 (NCX3), cytoplasmic calpain activation in relation to DCD has never been visualized in real-time. We employed a calpain fluorescence resonance energy transfer substrate to simultaneously image calpain activation and calcium deregulation in live cortical neurons. A calpain inhibitor-sensitive decline in fluorescence resonance energy transfer was observed at 39 +/- 5 min after the occurrence of DCD in neurons exposed to continuous glutamate (100 microM). Inhibition of calpain by calpeptin did not delay the onset of DCD, recovery from DCD-like reversible calcium elevations, or cell death despite inhibiting alpha-spectrin processing by > 90%. NCXs reversed during glutamate exposure, the NCX antagonist KB-R7943 prolonged the time to DCD, and significant NCX3 cleavage following 90 min of glutamate exposure was not observed. Our findings suggest that robust calpain activation associated with acute glutamate toxicity occurs only after a sustained loss in calcium homeostasis. Processing of NCX3 or other calpain substrates is unlikely to be the primary cause of acute excitotoxicity in cortical neurons. However, a role for calpain as a contributing factor or in response to milder glutamate insults is not excluded.
Collapse
|
34
|
A new model for the study of high-K+-induced preconditioning in cultured neurones: Role of N-methyl-d-aspartate and α7-nicotinic acetylcholine receptors. J Neurosci Methods 2009; 177:311-6. [DOI: 10.1016/j.jneumeth.2008.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 10/10/2008] [Accepted: 10/14/2008] [Indexed: 11/24/2022]
|
35
|
Tauskela JS, Fang H, Hewitt M, Brunette E, Ahuja T, Thivierge JP, Comas T, Mealing GAR. Elevated synaptic activity preconditions neurons against an in vitro model of ischemia. J Biol Chem 2008; 283:34667-76. [PMID: 18845540 PMCID: PMC3259903 DOI: 10.1074/jbc.m805624200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 10/06/2008] [Indexed: 12/22/2022] Open
Abstract
Tolerance to otherwise lethal cerebral ischemia in vivo or to oxygen-glucose deprivation (OGD) in vitro can be induced by prior transient exposure to N-methyl-D-aspartic acid (NMDA): preconditioning in this manner activates extrasynaptic and synaptic NMDA receptors and can require bringing neurons to the "brink of death." We considered if this stressful requirement could be minimized by the stimulation of primarily synaptic NMDA receptors. Subjecting cultured cortical neurons to prolonged elevations in electrical activity induced tolerance to OGD. Specifically, exposing cultures to a K(+)-channel blocker, 4-aminopyridine (20-2500 microm), and a GABA(A) receptor antagonist, bicuculline (50 microm) (4-AP/bic), for 1-2 days resulted in potent tolerance to normally lethal OGD applied up to 3 days later. Preconditioning induced phosphorylation of ERK1/2 and CREB which, along with Ca(2+) spiking and OGD tolerance, was eliminated by tetrodotoxin. Antagonists of NMDA receptors or L-type voltage-gated Ca(2+) channels (L-VGCCs) applied during preconditioning decreased Ca(2+) spiking, phosphorylation of ERK1/2 and CREB, and OGD tolerance more effectively when combined, particularly at the lowest 4-AP concentration. Inhibiting ERK1/2 or Ca(2+)/calmodulin-dependent protein kinases (CaMKs) also reduced Ca(2+) spiking and OGD tolerance. Preconditioning resulted in altered neuronal excitability for up to 3 days following 4-AP/bic washout, based on field potential recordings obtained from neurons cultured on 64-channel multielectrode arrays. Taken together, the data are consistent with action potential-driven co-activation of primarily synaptic NMDA receptors and L-VGCCs, resulting in parallel phosphorylation of ERK1/2 and CREB and involvement of CaMKs, culminating in a potent, prolonged but reversible, OGD-tolerant phenotype.
Collapse
Affiliation(s)
- Joseph S Tauskela
- Synaptic Therapies & Devices Group, National Research Council, Institute for Biological Sciences, Ottawa, Ontario K1A 0R6, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Song MS, Rauw G, Baker GB, Kar S. Memantine protects rat cortical cultured neurons against β-amyloid-induced toxicity by attenuating tau phosphorylation. Eur J Neurosci 2008; 28:1989-2002. [DOI: 10.1111/j.1460-9568.2008.06498.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Nitric oxide mediates NMDA-induced persistent inhibition of protein synthesis through dephosphorylation of eukaryotic initiation factor 4E-binding protein 1 and eukaryotic initiation factor 4G proteolysis. Biochem J 2008; 411:667-77. [DOI: 10.1042/bj20071060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cerebral ischaemia causes long-lasting protein synthesis inhibition that is believed to contribute to brain damage. Energy depletion promotes translation inhibition during ischaemia, and the phosphorylation of eIF (eukaryotic initiation factor) 2α is involved in the translation inhibition induced by early ischaemia/reperfusion. However, the molecular mechanisms underlying prolonged translation down-regulation remain elusive. NMDA (N-methyl-D-aspartate) excitotoxicity is also involved in ischaemic damage, as exposure to NMDA impairs translation and promotes the synthesis of NO (nitric oxide), which can also inhibit translation. In the present study, we investigated whether NO was involved in NMDA-induced protein synthesis inhibition in neurons and studied the underlying molecular mechanisms. NMDA and the NO donor DEA/NO (diethylamine–nitric oxide sodium complex) both inhibited protein synthesis and this effect persisted after a 30 min exposure. Treatments with NMDA or NO promoted calpain-dependent eIF4G cleavage and 4E-BP1 (eIF4E-binding protein 1) dephosphorylation and also abolished the formation of eIF4E–eIF4G complexes; however, they did not induce eIF2α phosphorylation. Although NOS (NO synthase) inhibitors did not prevent protein synthesis inhibition during 30 min of NMDA exposure, they did abrogate the persistent inhibition of translation observed after NMDA removal. NOS inhibitors also prevented NMDA-induced eIF4G degradation, 4E-BP1 dephosphorylation, decreased eIF4E–eIF4G-binding and cell death. Although the calpain inhibitor calpeptin blocked NMDA-induced eIF4G degradation, it did not prevent 4E-BP1 dephosphorylation, which precludes eIF4E availability, and thus translation inhibition was maintained. The present study suggests that eIF4G integrity and hyperphosphorylated 4E-BP1 are needed to ensure appropriate translation in neurons. In conclusion, our data show that NO mediates NMDA-induced persistent translation inhibition and suggest that deficient eIF4F activity contributes to this process.
Collapse
|
38
|
Neuroprotective effects of memantine in a mouse model of retinal degeneration induced by rotenone. Brain Res 2008; 1215:208-17. [PMID: 18486118 DOI: 10.1016/j.brainres.2008.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/02/2008] [Accepted: 04/02/2008] [Indexed: 11/24/2022]
Abstract
This is the first report of the in vivo effectiveness of memantine as a neuroprotective agent against rotenone-induced retinal toxicity. We tested the hypothesis that uncompetitive NMDAR blockade with memantine prevents mitochondrial dysfunction-related neurodegeneration in vivo, using a mouse model of retinal ganglion cell layer (GCL) degeneration induced by rotenone, a mitochondrial complex I inhibitor. Rotenone induced an increase in cell death and oxidative stress in GCL compared to controls, and these changes were prevented by the co-administration of memantine. The neurotoxic effect of rotenone was also reflected as a decrease in total cell density in GCL and GCL+nerve fiber layer thickness. These changes were also prevented by co-administration of memantine in a dose-dependent manner. In addition, memantine induced an increase in long-term retinal energy metabolic capacity. The results suggest that NMDAR activation contributes to cell death induced by mitochondrial dysfunction and that uncompetitive NMDAR blockade may be used as a neuroprotective strategy against mitochondrial dysfunction in neurodegenerative diseases.
Collapse
|
39
|
Boeck CR, Kroth EH, Bronzatto MJ, Vendite D. Effect of the L- or D-aspartate on ecto-5'nucleotidase activity and on cellular viability in cultured neurons: participation of the adenosine A(2A) receptors. Amino Acids 2007; 33:439-44. [PMID: 17619122 DOI: 10.1007/s00726-006-0455-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2006] [Accepted: 09/29/2006] [Indexed: 12/20/2022]
Abstract
Glutamate increases the extracellular adenosine levels, an important endogenous neuromodulator. The neurotoxicity induced by glutamate increases the ecto-5'-nucleotidase activity in neurons, which produces adenosine from AMP. L- and D-aspartate (Asp) mimic most of the actions of glutamate in the N-methyl-D-aspartate (NMDA) receptors. In the present study, both amino acids stimulated the ecto-5'-nucleotidase activity in cerebellar granule cells. MK-801 and AP-5 prevented the L- and D-Asp-evoked activation of ecto-5'-nucleotidase. Both NMDA receptor antagonists prevented completely the damage induced by L-Asp, but partially the D-Asp-induced damage. The antagonist of adenosine A(2A) receptors (ZM 241385) prevented totally the L- Asp-induced cellular death, but partially the neurotoxicity induced by D-Asp and the antagonist of adenosine A(1) receptors (CPT) had no effect. The results indicated a different involvement of NMDA receptors on the L- or D-Asp-evoked activation of ecto-5'-nucleotidase and on cellular damage. The adenosine formed from ecto-5'-nucleotidase stimulation preferentially acted on adenosine A(2A) receptor which is probably co-operating with the neurotoxicity induced by amino acids.
Collapse
Affiliation(s)
- C R Boeck
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | | | | |
Collapse
|
40
|
Schmitt F, Ryan M, Cooper G. A brief review of the pharmacologic and therapeutic aspects of memantine in Alzheimer's disease. Expert Opin Drug Metab Toxicol 2007; 3:135-41. [PMID: 17269900 DOI: 10.1517/17425255.3.1.135] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The past decade has seen an increase in therapeutic options for Alzheimer's disease (AD) that target neurotransmitters, such as acetylcholine, and research continues to target abnormal proteins in the AD brain. Recently, glutamate excitotoxicity has also become a target for AD treatment with the advent of memantine. Clinical trial data reviewed for memantine show good tolerability, low side-effect profiles and a positive therapeutic impact in moderate-to-severe AD, both as monotherapy and in conjunction with donepezil. However, additional data suggest variable benefits in the mild stages of AD. Furthermore, published reports support reduced dosing in patients with significant renal disease. However, the opportunity to target a second mechanism in the treatment of AD, thereby providing added symptomatic benefit, appears to be a useful consideration for clinicians who treat this devastating neurodegenerative disorder.
Collapse
Affiliation(s)
- Frederick Schmitt
- University of Kentucky, Sanders-Brown Center on Aging, Department of Neurology, 800 S. Limestone Street, Lexington, KY 40536-0230, USA.
| | | | | |
Collapse
|
41
|
O'Duffy AE, Bordelon YM, McLaughlin B. Killer proteases and little strokes--how the things that do not kill you make you stronger. J Cereb Blood Flow Metab 2007; 27:655-68. [PMID: 16896349 PMCID: PMC2881558 DOI: 10.1038/sj.jcbfm.9600380] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The phenomenon of ischemic preconditioning was initially observed over 20 years ago. The basic tenant is that if stimuli are applied at a subtoxic level, cells upregulate endogenous protective mechanisms to block injury induced by subsequent stress. Since this discovery, many conserved signaling mechanisms that contribute to activation of this potent protective program have been identified in the brain. A clinical correlate of this basic research finding can be found in patients with a history of transient ischemic attack (TIA), who have a decreased morbidity after stroke. In spite of multidisciplinary efforts to design safer, more effective stroke therapies, we have thus far failed to translate our understanding of endogenous protective pathways to treatments for neurodegeneration. This review is designed to provide clinicians and basic scientists with an overview of stress biology after TIA and preconditioning, discuss new therapeutic strategies to target the protein dysfunction that follows ischemic injury, and propose enhanced biochemical profiling to identify individuals at risk of stroke after TIA. We pay particular attention to the unanticipated consequences of overly aggressive intervention after TIA in which we have found that traditional cytotoxic agents such as free radicals and apoptosis associated proteases is essential for neuroprotection and communication in the stressed brain. These data emphasize the importance of understanding the complex interplay between chaperones, apoptotic proteases including caspases, and the proteolytic degradation machinery in adaptation to neurological injury.
Collapse
Affiliation(s)
- Anne E O'Duffy
- Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232-8548, USA
| | | | | |
Collapse
|
42
|
Wenk GL, Parsons CG, Danysz W. Potential role of N-methyl-D-aspartate receptors as executors of neurodegeneration resulting from diverse insults: focus on memantine. Behav Pharmacol 2007; 17:411-24. [PMID: 16940762 DOI: 10.1097/00008877-200609000-00007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glutamatergic neurotransmission is critical to normal learning and memory and when the activity of glutamate neurons becomes excessive, or the normal function of its primary receptors becomes dysfunctional, this may lead to pathological changes associated with age-related neurodegenerative diseases. Anomalous glutamatergic activity associated with Alzheimer's disease may be due to a postsynaptic receptor and downstream defects that produce inappropriately timed or sustained glutamate activation of N-methyl-D-aspartate receptors, leading to neuronal injury and death and cognitive deficits associated with dementia. The mechanisms leading to the condition of chronically depolarized membranes on vulnerable neurons in the Alzheimer's disease brain are likely due to a complex interaction between oxidative stress, mitochondrial failure, chronic brain inflammation and the presence of amyloid-beta and hyperphosphorylated-tau; each of these factors are highly interrelated with each other and are discussed with an emphasis upon potential therapeutic mechanisms underlying the neuroprotective actions of memantine.
Collapse
Affiliation(s)
- Gary L Wenk
- Department Psychology & Neuroscience, Ohio State University, Ohio, USA
| | | | | |
Collapse
|
43
|
Neurodegenerative diseases and memory. Neurobiol Learn Mem 2007. [DOI: 10.1016/b978-012372540-0/50017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
44
|
Hill JJ, Callaghan DA, Ding W, Kelly JF, Chakravarthy BR. Identification of okadaic acid-induced phosphorylation events by a mass spectrometry approach. Biochem Biophys Res Commun 2006; 342:791-9. [PMID: 16499873 DOI: 10.1016/j.bbrc.2006.02.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 02/07/2006] [Indexed: 11/29/2022]
Abstract
Okadaic acid (OA) is a widely used small-molecule phosphatase inhibitor that is thought to selectively inhibit protein phosphatase 2A (PP2A). Multiple studies have demonstrated that PP2A activity is compromised in the brains of Alzheimer's disease patients. Thus, we set out to determine changes in phosphorylation that occur upon OA treatment of neuronal cells. Utilizing isotope-coded affinity tags and mass spectrometry analysis, we determined the relative abundance of proteins in a phosphoprotein enriched fraction from control and OA-treated primary cortical neurons. We identified many proteins whose phosphorylation state is regulated by OA, including glycogen synthase kinase 3beta, collapsin-response mediator proteins (DRP-2, DPYSL-5, and CRMP-4), and the B subunit of PP2A itself. Most interestingly, we have found that complexin 2, an important regulator of neurotransmitter release and synaptic plasticity, is phosphorylated at serine 93 upon OA treatment of neurons. This is the first report of a phosphorylation site on complexin 2.
Collapse
Affiliation(s)
- Jennifer J Hill
- Institute for Biological Sciences, National Research Council Canada, 100 Sussex Dr., Ottawa, Ont., Canada K1A 0R6.
| | | | | | | | | |
Collapse
|
45
|
Ma D, Hossain M, Pettet GKJ, Luo Y, Lim T, Akimov S, Sanders RD, Franks NP, Maze M. Xenon preconditioning reduces brain damage from neonatal asphyxia in rats. J Cereb Blood Flow Metab 2006; 26:199-208. [PMID: 16034370 DOI: 10.1038/sj.jcbfm.9600184] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Xenon attenuates on-going neuronal injury in both in vitro and in vivo models of hypoxic-ischaemic injury when administered during and after the insult. In the present study, we sought to investigate whether the neuroprotective efficacy of xenon can be observed when administered before an insult, referred to as 'preconditioning'. In a neuronal-glial cell coculture, preexposure to xenon for 2 h caused a concentration-dependent reduction of lactate dehydrogenase release from cells deprived of oxygen and glucose 24 h later; xenon's preconditioning effect was abolished by cycloheximide, a protein synthesis inhibitor. Preconditioning with xenon decreased propidium iodide staining in a hippocampal slice culture model subjected to oxygen and glucose deprivation. In an in vivo model of neonatal asphyxia involving hypoxic-ischaemic injury to 7-day-old rats, preconditioning with xenon reduced infarction size when assessed 7 days after injury. Furthermore, a sustained improvement in neurologic function was also evident 30 days after injury. Phosphorylated cAMP (cyclic adenosine 3',5'-monophosphate)-response element binding protein (pCREB) was increased by xenon exposure. Also, the prosurvival proteins Bcl-2 and brain-derived neurotrophic factor were upregulated by xenon treatment. These studies provide evidence for xenon's preconditioning effect, which might be caused by a pCREB-regulated synthesis of proteins that promote survival against neuronal injury.
Collapse
Affiliation(s)
- Daqing Ma
- Department of Anaesthetics, Intensive Care and Pain Medicine, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Meloni BP, Van Dyk D, Cole R, Knuckey NW. Proteome analysis of cortical neuronal cultures following cycloheximide, heat stress and MK801 preconditioning. Proteomics 2005; 5:4743-53. [PMID: 16252307 DOI: 10.1002/pmic.200500107] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Studying endogenous neuroprotective mechanisms induced by preconditioning may provide drug leads to reduce ischemic neuronal death. In this study, we used 2-DE to examine protein expression following cycloheximide, heat stress, and MK801 preconditioning in rat cortical neuronal cultures. Of 150 differentially expressed protein spots selected for identification the protein or tentative protein(s) were identified in 84 cases, representing 50 different proteins. Different protein spots representing the same protein or closely related protein(s) occurred for 21 of the identified proteins and are likely to represent PTMs or proteolytic fragments of the protein. Six protein spots (actin, elongation factor 1-alpha 1, peptidyl-prolyl cis-transisomerase A, Cu/Zn superoxide dismutase, stathmin, tropomyosin) were differentially expressed in all three preconditioning treatments. Twenty-seven protein spots were differentially expressed in two preconditioning treatments, while 51 spots were differentially expressed in one treatment. Three proteins heterogeneous nuclear ribonucleoproteins A2/B1, mitochondrial stress-70 protein, and tropomyosin were detected in control neuronal cultures, but not following one or more preconditioning treatments, while a posttranslational modified form of the voltage dependent anion channel 1 was only detected following cycloheximide preconditioning. In summary, this study has revealed multiple protein changes potentially involved in neuroprotective and neurodamaging pathways, which require further characterization.
Collapse
Affiliation(s)
- Bruno P Meloni
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands 6009, WA, Australia.
| | | | | | | |
Collapse
|
47
|
Cordey M, Pike CJ. Conventional protein kinase C isoforms mediate neuroprotection induced by phorbol ester and estrogen. J Neurochem 2005; 96:204-17. [PMID: 16336227 DOI: 10.1111/j.1471-4159.2005.03545.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Rapid signal transduction pathways play a prominent role in mediating neuroprotective actions of estrogen in the CNS. We have previously shown that estrogen-induced neuroprotection of primary cerebrocortical neurons from beta-amyloid peptide (Abeta) toxicity depends on activation of protein kinase C (PKC). PKC activation with phorbol-12-myristate-13-acetate (PMA) also provides neuroprotection in this paradigm. Because the PKC family includes several isoforms that have opposing roles in regulating cell survival, we sought to identify which PKC isoforms contribute to neuroprotection induced by PMA and estrogen. We detected protein expression of multiple PKC isoforms in primary neuron cultures, including conventional (alpha, betaI, betaII), novel (delta, epsilon, theta) and atypical (zeta, iota/lambda) PKC. Using a panel of isoform-specific peptide inhibitors and activators, we find that novel and atypical PKC isoforms do not participate in the mechanism of either PMA or estrogen neuroprotection. In contrast, a selective peptide activator of conventional PKC isoforms provides dose-dependent neuroprotection against Abeta toxicity. In addition, peptide inhibitors of conventional, betaI, or betaII PKC isoforms significantly reduce protection afforded by PMA or 17beta-estradiol. Taken together, these data provide evidence that conventional PKC isoforms mediate phorbol ester and estrogen neuroprotection of cultured neurons challenged by Abeta toxicity.
Collapse
Affiliation(s)
- Myriam Cordey
- Neuroscience Graduate Program and Andrus Gerontology Center, University of Southern California, Los Angeles, California 90089-0191, USA
| | | |
Collapse
|
48
|
Kowara R, Chen Q, Milliken M, Chakravarthy B. Calpain-mediated truncation of dihydropyrimidinase-like 3 protein (DPYSL3) in response to NMDA and H2O2 toxicity. J Neurochem 2005; 95:466-74. [PMID: 16135096 DOI: 10.1111/j.1471-4159.2005.03383.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dihydropyrimidinase-like protein 3 (DPYSL3), a member of TUC (TOAD-64/Ulip/CRMP), is believed to play a role in neuronal differentiation, axonal outgrowth and, possibly, neuronal regeneration. In primary cortical cultures, glutamate (NMDA) excitotoxicity and oxidative stress (H2O2) caused the cleavage of DPYSL3, resulting in the appearance of a doublet of 62 kDa and 60 kDa. Pre-treatment of cell cultures with calpain inhibitors, but not caspase 3 inhibitor, before exposure to NMDA or H2O2 completely blocked the appearance of the doublet, suggesting calpain-mediated truncation. Furthermore, in vitro digestion of DPYSL3 in cell lysate with purified calpain revealed a cleavage product identical to that observed in NMDA- and H2O2-treated cells, and its appearance was blocked by calpain inhibitors. Analysis of the DPYSL3 protein sequence revealed a possible cleavage site for calpain (Val-Arg-Ser) on the C-terminus of DPYSL3. Collectively, these studies demonstrate for the first time that DPYSL3 is a calpain substrate. The physiological relevance of the truncated DPYSL3 protein remains to be determined.
Collapse
Affiliation(s)
- Renata Kowara
- National Research Council, Institute for Biological Sciences, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
49
|
Lange-Asschenfeldt C, Raval AP, Pérez-Pinzón MA. Ischemic tolerance induction in organotypic hippocampal slices: role for the GABA(A) receptor? Neurosci Lett 2005; 384:87-92. [PMID: 15908115 DOI: 10.1016/j.neulet.2005.04.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2005] [Revised: 03/30/2005] [Accepted: 04/16/2005] [Indexed: 11/15/2022]
Abstract
Ischemic preconditioning (IPC) refers to sublethal ischemic insults rendering brain tissue tolerant against subsequent ischemic insults. We investigated the role of the GABA(A) receptor (GABA(A)R) upon IPC induction. Rat organotypic hippocampal slices were subjected to IPC by 15 min of oxygen-glucose deprivation (OGD) followed by 40 min of OGD 48 h later, resulting in robust cell death reduction as assessed by the propidium iodide fluorescence method ('late' or 'second window' IPC). Superfusion with the GABA(A)R antagonist bicuculline during IPC ameliorated propidium iodide uptake at a high but not at low doses indicating that GABA(A)R activation may be assigned a limited role in neuroprotection. In previous studies, we found that increased neuronal excitability can promote IPC neuroprotection. We, therefore, tested the hypothesis that blockade of inhibitory GABAergic transmission conferred ischemic tolerance. However, temporary administration of bicuculline 48 h prior to ischemic challenge was not neuroprotective. In another approach, we tested whether preconditioning with the GABA(A)R agonist, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) mediated ischemic tolerance and found no significant neuroprotection. The results are discussed in light of the intrinsic excitatory-inhibitory balance of glutamate and GABA.
Collapse
Affiliation(s)
- Christian Lange-Asschenfeldt
- Cerebral Vascular Disease Research Center, Department of Neurology and Neuroscience, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | |
Collapse
|
50
|
Luo Q, Ding Y, Watson K, Zhang J, Fan GH. N-methyl-D-aspartate attenuates CXCR2-mediated neuroprotection through enhancing the receptor phosphorylation and blocking the receptor recycling. Mol Pharmacol 2005; 68:528-37. [PMID: 15914698 DOI: 10.1124/mol.105.011197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abnormal extracellular accumulations of beta-amyloid, a major component of the senile plaques, and of the excitatory amino acid glutamate are both believed to be associated with degeneration of nerve cells in the central nervous system of patients with Alzheimer's disease. The chemokine receptor CXCR2 has been shown to play a role in protecting neurons against beta-amyloid-induced injury in vitro, but it remains unclear whether CXCR2-mediated neuroprotection is affected by glutamate. We demonstrated that pretreatment of hippocampal neurons with a sublethal concentration of N-methyl-d-aspartate (NMDA) attenuated the macrophage inflammatory protein 2 (MIP2)-induced protection against beta-amyloid-induced neuronal death. The NMDA induced inhibition was blocked by (+)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801), a noncompetitive NMDA receptor antagonist, indicating the involvement of NMDA receptors in this process. A sublethal dose of NMDA pretreatment induced CXCR2 phosphorylation, although to a lesser extent than the receptor phosphorylation induced by MIP2, and differential serine residues were involved in NMDA- and MIP2-induced CXCR2 phosphorylation. Moreover, NMDA treatment reduced the CXCR2-mediated Ca(2+) mobilization, suggesting that NMDA induces cross-desensitization of CXCR2. CXCR2 underwent dephosphorylation after removal of the extracellular ligand, but the dephosphorylation rate was significantly reduced in the cells pretreated with NMDA. Treatment of the neuronal cells with NMDA retarded the recycling of CXCR2. In view of the critical role of receptor phosphorylation and recycling in the functional responsiveness of the chemokine receptor, these observations indicate a novel pathway through which glutamate may interfere with the neuroprotective function of chemokines.
Collapse
Affiliation(s)
- Qingwei Luo
- Department of Pharmacology, Meharry Medical College, 1005 Dr. D. B Todd Jr Blvd, Nashville, TN 37208, USA
| | | | | | | | | |
Collapse
|