1
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
2
|
Li M, Feng F, Feng H, Hu P, Xue Y, Xu T, Song E. VAMP4 regulates insulin levels by targeting secretory granules to lysosomes. J Cell Biol 2022; 221:213439. [PMID: 36053215 PMCID: PMC9441717 DOI: 10.1083/jcb.202110164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Insulin levels are essential for the maintenance of glucose homeostasis, and deviations lead to pathoglycemia or diabetes. However, the metabolic mechanism controlling insulin quantity and quality is poorly understood. In pancreatic β cells, insulin homeostasis and release are tightly governed by insulin secretory granule (ISG) trafficking, but the required regulators and mechanisms are largely unknown. Here, we identified that VAMP4 controlled the insulin levels in response to glucose challenge. VAMP4 deficiency led to increased blood insulin levels and hyperresponsiveness to glucose. In β cells, VAMP4 is packaged into immature ISGs (iISGs) at trans-Golgi networks and subsequently resorted to clathrin-coated vesicles during granule maturation. VAMP4-positive iISGs and resorted vesicles then fuse with lysosomes facilitated by a SNARE complex consisting of VAMP4, STX7, STX8, and VTI1B, which ensures the breakdown of excess (pro)insulin and obsolete materials and thus maintenance of intracellular insulin homeostasis. Thus, VAMP4 is a key factor regulating the insulin levels and a potential target for the treatment of diabetes.
Collapse
Affiliation(s)
- Min Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,Guangzhou Laboratory, Guangzhou, China,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Fengping Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Han Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pengkai Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanhong Xue
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,Guangzhou Laboratory, Guangzhou, China,Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,Dr. Tao Xu:
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,Correspondence to Dr. Eli Song:
| |
Collapse
|
3
|
Andersen RC, Schmidt JH, Rombach J, Lycas MD, Christensen NR, Lund VK, Stapleton DS, Pedersen SS, Olsen MA, Stoklund M, Noes-Holt G, Nielsen TT, Keller MP, Jansen AM, Herlo R, Pietropaolo M, Simonsen JB, Kjærulff O, Holst B, Attie AD, Gether U, Madsen KL. Coding variants identified in diabetic patients alter PICK1 BAR domain function in insulin granule biogenesis. J Clin Invest 2022; 132:144904. [PMID: 35077398 PMCID: PMC8884907 DOI: 10.1172/jci144904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Bin/amphiphysin/Rvs (BAR) domains are positively charged crescent-shaped modules that mediate curvature of negatively charged lipid membranes during remodeling processes. The BAR domain proteins PICK1, ICA69, and the arfaptins have recently been demonstrated to coordinate the budding and formation of immature secretory granules (ISGs) at the trans-Golgi network. Here, we identify 4 coding variants in the PICK1 gene from a whole-exome screening of Danish patients with diabetes that each involve a change in positively charged residues in the PICK1 BAR domain. All 4 coding variants failed to rescue insulin content in INS-1E cells upon knock down of endogenous PICK1. Moreover, 2 variants showed dominant-negative properties. In vitro assays addressing BAR domain function suggested that the coding variants compromised BAR domain function but increased the capacity to cause fission of liposomes. Live confocal microscopy and super-resolution microscopy further revealed that PICK1 resides transiently on ISGs before egress via vesicular budding events. Interestingly, this egress of PICK1 was accelerated in the coding variants. We propose that PICK1 assists in or complements the removal of excess membrane and generic membrane trafficking proteins, and possibly also insulin, from ISGs during the maturation process; and that the coding variants may cause premature budding, possibly explaining their dominant-negative function.
Collapse
Affiliation(s)
- Rita C. Andersen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan H. Schmidt
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joscha Rombach
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew D. Lycas
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj R. Christensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Viktor K. Lund
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Donnie S. Stapleton
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Signe S. Pedersen
- Beta Cell Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mathias A. Olsen
- Beta Cell Biology Group, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Stoklund
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gith Noes-Holt
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tommas T.E. Nielsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Anna M. Jansen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Herlo
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Massimo Pietropaolo
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jens B. Simonsen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ole Kjærulff
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth L. Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
van der Welle REN, Jobling R, Burns C, Sanza P, van der Beek JA, Fasano A, Chen L, Zwartkruis FJ, Zwakenberg S, Griffin EF, ten Brink C, Veenendaal T, Liv N, van Ravenswaaij‐Arts CMA, Lemmink HH, Pfundt R, Blaser S, Sepulveda C, Lozano AM, Yoon G, Santiago‐Sim T, Asensio CS, Caldwell GA, Caldwell KA, Chitayat D, Klumperman J. Neurodegenerative VPS41 variants inhibit HOPS function and mTORC1-dependent TFEB/TFE3 regulation. EMBO Mol Med 2021; 13:e13258. [PMID: 33851776 PMCID: PMC8103106 DOI: 10.15252/emmm.202013258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/09/2022] Open
Abstract
Vacuolar protein sorting 41 (VPS41) is as part of the Homotypic fusion and Protein Sorting (HOPS) complex required for lysosomal fusion events and, independent of HOPS, for regulated secretion. Here, we report three patients with compound heterozygous mutations in VPS41 (VPS41S285P and VPS41R662* ; VPS41c.1423-2A>G and VPS41R662* ) displaying neurodegeneration with ataxia and dystonia. Cellular consequences were investigated in patient fibroblasts and VPS41-depleted HeLa cells. All mutants prevented formation of a functional HOPS complex, causing delayed lysosomal delivery of endocytic and autophagic cargo. By contrast, VPS41S285P enabled regulated secretion. Strikingly, loss of VPS41 function caused a cytosolic redistribution of mTORC1, continuous nuclear localization of Transcription Factor E3 (TFE3), enhanced levels of LC3II, and a reduced autophagic response to nutrient starvation. Phosphorylation of mTORC1 substrates S6K1 and 4EBP1 was not affected. In a C. elegans model of Parkinson's disease, co-expression of VPS41S285P /VPS41R662* abolished the neuroprotective function of VPS41 against α-synuclein aggregates. We conclude that the VPS41 variants specifically abrogate HOPS function, which interferes with the TFEB/TFE3 axis of mTORC1 signaling, and cause a neurodegenerative disease.
Collapse
Affiliation(s)
- Reini E N van der Welle
- Section Cell BiologyCenter for Molecular MedicineInstitute of BiomembranesUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Rebekah Jobling
- Department of PediatricsDivision of Clinical and Metabolic GeneticsThe Hospital for Sick ChildrenUniversity of TorontoTorontoONCanada
| | - Christian Burns
- Department of Biological SciencesDivision of Natural Sciences and MathematicsUniversity of DenverDenverCOUSA
| | - Paolo Sanza
- Section Cell BiologyCenter for Molecular MedicineInstitute of BiomembranesUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Jan A van der Beek
- Section Cell BiologyCenter for Molecular MedicineInstitute of BiomembranesUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson’s DiseaseMorton and Gloria Shulman Movement Disorders ClinicToronto Western Hospital, UHNTorontoONCanada
- Division of NeurologyUniversity of TorontoTorontoONCanada
- Krembil Brain InstituteTorontoONCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoONCanada
| | - Lan Chen
- Department of Biological SciencesDivision of Natural Sciences and MathematicsUniversity of DenverDenverCOUSA
| | - Fried J Zwartkruis
- Section Molecular Cancer ResearchCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Susan Zwakenberg
- Section Molecular Cancer ResearchCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Edward F Griffin
- Department of Biological SciencesThe University of AlabamaTuscaloosaALUSA
- Department of NeurologyCenter for Neurodegeneration and Experimental TherapeuticsNathan Shock Center for Basic Research in the Biology of AgingUniversity of Alabama at Birmingham School of MedicineBirminghamALUSA
| | - Corlinda ten Brink
- Section Cell BiologyCenter for Molecular MedicineInstitute of BiomembranesUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Tineke Veenendaal
- Section Cell BiologyCenter for Molecular MedicineInstitute of BiomembranesUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Nalan Liv
- Section Cell BiologyCenter for Molecular MedicineInstitute of BiomembranesUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | | | - Henny H Lemmink
- Department of GeneticsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Rolph Pfundt
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Susan Blaser
- Department of Diagnostic ImagingHospital for Sick ChildrenTorontoONCanada
| | - Carolina Sepulveda
- Edmond J. Safra Program in Parkinson’s DiseaseMorton and Gloria Shulman Movement Disorders ClinicToronto Western Hospital, UHNTorontoONCanada
- Division of NeurologyUniversity of TorontoTorontoONCanada
| | - Andres M Lozano
- Krembil Brain InstituteTorontoONCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoONCanada
- Department of NeurosurgeryToronto Western Hospital, UHNTorontoONCanada
- University of TorontoTorontoONCanada
| | - Grace Yoon
- Department of PediatricsDivision of Clinical and Metabolic GeneticsThe Hospital for Sick ChildrenUniversity of TorontoTorontoONCanada
| | | | - Cedric S Asensio
- Department of Biological SciencesDivision of Natural Sciences and MathematicsUniversity of DenverDenverCOUSA
| | - Guy A Caldwell
- Department of Biological SciencesThe University of AlabamaTuscaloosaALUSA
- Department of NeurologyCenter for Neurodegeneration and Experimental TherapeuticsNathan Shock Center for Basic Research in the Biology of AgingUniversity of Alabama at Birmingham School of MedicineBirminghamALUSA
| | - Kim A Caldwell
- Department of Biological SciencesThe University of AlabamaTuscaloosaALUSA
- Department of NeurologyCenter for Neurodegeneration and Experimental TherapeuticsNathan Shock Center for Basic Research in the Biology of AgingUniversity of Alabama at Birmingham School of MedicineBirminghamALUSA
| | - David Chitayat
- Department of PediatricsDivision of Clinical and Metabolic GeneticsThe Hospital for Sick ChildrenUniversity of TorontoTorontoONCanada
- The Prenatal Diagnosis and Medical Genetics ProgramDepartment of Obstetrics and GynecologyUniversity of TorontoTorontoONCanada
| | - Judith Klumperman
- Section Cell BiologyCenter for Molecular MedicineInstitute of BiomembranesUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
5
|
Emperador-Melero J, Toonen RF, Verhage M. Vti Proteins: Beyond Endolysosomal Trafficking. Neuroscience 2019; 420:32-40. [DOI: 10.1016/j.neuroscience.2018.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
|
6
|
Dufurrena Q, Bäck N, Mains R, Hodgson L, Tanowitz H, Mandela P, Eipper B, Kuliawat R. Kalirin/Trio Rho GDP/GTP exchange factors regulate proinsulin and insulin secretion. J Mol Endocrinol 2018; 62:JME-18-0048.R2. [PMID: 30407917 PMCID: PMC6494717 DOI: 10.1530/jme-18-0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022]
Abstract
Key features for progression to pancreatic β-cell failure and disease are loss of glucose responsiveness and an increased ratio of secreted proinsulin to insulin. Proinsulin and insulin are stored in secretory granules (SGs) and the fine-tuning of hormone output requires signal mediated recruitment of select SG populations according to intracellular location and age. The GTPase Rac1 coordinates multiple signaling pathways that specify SG release and Rac1 activity is controlled in part by GDP/GTP exchange factors (GEFs). To explore the function of two large multidomain GEFs, Kalirin and Trio in β-cells, we manipulated their Rac1-specific GEF1 domain activity by using small molecule inhibitors and by genetically ablating Kalirin. We examined age related secretory granule behavior employing radiolabeling protocols. Loss of Kalirin/Trio function attenuated radioactive proinsulin release by reducing constitutive-like secretion and exocytosis of 2-hour old granules. At later chase times or at steady state, Kalirin/Trio manipulations decreased glucose stimulated insulin output. Finally, use of a Rac1 FRET biosensor with cultured β-cell lines, demonstrated that Kalirin/Trio GEF1 activity was required for normal rearrangement of Rac1 to the plasma membrane in response to glucose. Rac1 activation can be evoked by both glucose metabolism and signaling through the incretin glucagon-like peptide 1 (GLP-1) receptor. GLP-1 addition restored Rac1 localization/activity and insulin secretion in the absence of Kalirin, thereby assigning Kalirin's participation to stimulatory glucose signaling.
Collapse
Affiliation(s)
- Quinn Dufurrena
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY
| | - Nils Bäck
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Richard Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Herbert Tanowitz
- Departments of Pathology, Medicine, Albert Einstein College of Medicine, Bronx, NY
| | | | - Betty Eipper
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT
| | - Regina Kuliawat
- Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
7
|
Choudhary B, Kamak M, Ratnakaran N, Kumar J, Awasthi A, Li C, Nguyen K, Matsumoto K, Hisamoto N, Koushika SP. UNC-16/JIP3 regulates early events in synaptic vesicle protein trafficking via LRK-1/LRRK2 and AP complexes. PLoS Genet 2017; 13:e1007100. [PMID: 29145394 PMCID: PMC5716593 DOI: 10.1371/journal.pgen.1007100] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 12/05/2017] [Accepted: 11/02/2017] [Indexed: 01/02/2023] Open
Abstract
JIP3/UNC-16/dSYD is a MAPK-scaffolding protein with roles in protein trafficking. We show that it is present on the Golgi and is necessary for the polarized distribution of synaptic vesicle proteins (SVPs) and dendritic proteins in neurons. UNC-16 excludes Golgi enzymes from SVP transport carriers and facilitates inclusion of specific SVPs into the same transport carrier. The SVP trafficking roles of UNC-16 are mediated through LRK-1, whose localization to the Golgi is reduced in unc-16 animals. UNC-16, through LRK-1, also enables Golgi-localization of the μ-subunit of the AP-1 complex. AP1 regulates the size but not the composition of SVP transport carriers. Additionally, UNC-16 and LRK-1 through the AP-3 complex regulates the composition but not the size of the SVP transport carrier. These early biogenesis steps are essential for dependence on the synaptic vesicle motor, UNC-104 for axonal transport. Our results show that UNC-16 and its downstream effectors, LRK-1 and the AP complexes function at the Golgi and/or post-Golgi compartments to control early steps of SV biogenesis. The UNC-16 dependent steps of exclusion, inclusion and motor recruitment are critical for polarized distribution of neuronal cargo. Synaptic vesicles (SVs) have a defined composition and size at the synapse. The multiple synaptic vesicle proteins (SVPs) found on these vesicle membranes are synthesized at and trafficked out of the cell body in distinct transport carriers. However, we do not yet understand how different SVPs are sorted and trafficked to the synapse. We show that UNC-16/JIP3 plays a critical role, in a series of essential steps, to ensure proper membrane composition and size of the ensuing SVP carrier exiting the cell body. These processes are “exclusion” of resident Golgi enzymes followed by the “inclusion” of synaptic vesicle proteins in the same transport carrier. Regulation of composition and size seems to occur independently of each other and depends on two distinct AP complexes acting downstream to LRK-1. Our study further indicates that the composition of the transport carrier formed is important for the recruitment of motors and consequently for the polarized localization of SVPs.
Collapse
Affiliation(s)
- Bikash Choudhary
- National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Madhushree Kamak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Neena Ratnakaran
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Jitendra Kumar
- National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Anjali Awasthi
- National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bangalore, Karnataka, India
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Chun Li
- Group of Signaling Mechanisms, Nagoya University, Nagoya, Japan
| | - Ken Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, New York, New York, United States of America
| | | | - Naoki Hisamoto
- Group of Signaling Mechanisms, Nagoya University, Nagoya, Japan
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
- * E-mail:
| |
Collapse
|
8
|
Zhang X, Jiang S, Mitok KA, Li L, Attie AD, Martin TFJ. BAIAP3, a C2 domain-containing Munc13 protein, controls the fate of dense-core vesicles in neuroendocrine cells. J Cell Biol 2017; 216:2151-2166. [PMID: 28626000 PMCID: PMC5496627 DOI: 10.1083/jcb.201702099] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022] Open
Abstract
Dense-core vesicle (DCV) exocytosis is a SNARE (soluble N-ethylmaleimide-sensitive fusion attachment protein receptor)-dependent anterograde trafficking pathway that requires multiple proteins for regulation. Several C2 domain-containing proteins are known to regulate Ca2+-dependent DCV exocytosis in neuroendocrine cells. In this study, we identified others by screening all (∼139) human C2 domain-containing proteins by RNA interference in neuroendocrine cells. 40 genes were identified, including several encoding proteins with known roles (CAPS [calcium-dependent activator protein for secretion 1], Munc13-2, RIM1, and SYT10) and many with unknown roles. One of the latter, BAIAP3, is a secretory cell-specific Munc13-4 paralog of unknown function. BAIAP3 knockdown caused accumulation of fusion-incompetent DCVs in BON neuroendocrine cells and lysosomal degradation (crinophagy) of insulin-containing DCVs in INS-1 β cells. BAIAP3 localized to endosomes was required for Golgi trans-Golgi network 46 (TGN46) recycling, exhibited Ca2+-stimulated interactions with TGN SNAREs, and underwent Ca2+-stimulated TGN recruitment. Thus, unlike other Munc13 proteins, BAIAP3 functions indirectly in DCV exocytosis by affecting DCV maturation through its role in DCV protein recycling. Ca2+ rises that stimulate DCV exocytosis may stimulate BAIAP3-dependent retrograde trafficking to maintain DCV protein homeostasis and DCV function.
Collapse
Affiliation(s)
- Xingmin Zhang
- Department of Biochemistry, University of Wisconsin, Madison, WI
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI
| | - Shan Jiang
- School of Pharmacy, University of Wisconsin, Madison, WI
| | - Kelly A Mitok
- Department of Biochemistry, University of Wisconsin, Madison, WI
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, WI
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin, Madison, WI
| | | |
Collapse
|
9
|
Chlorpromazine Increases the Expression of Polysialic Acid (PolySia) in Human Neuroblastoma Cells and Mouse Prefrontal Cortex. Int J Mol Sci 2017; 18:ijms18061123. [PMID: 28538701 PMCID: PMC5485947 DOI: 10.3390/ijms18061123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 01/11/2023] Open
Abstract
The neural cell adhesion molecule (NCAM) is modified by polysialic acid (polySia or PSA) in embryonic brains. In adult brains, polySia modification of NCAM is only observed in restricted areas where neural plasticity, remodeling of neural connections, or neural generation is ongoing although the amount of NCAM remains unchanged. Impairments of the polySia-expression and several single nucleotide polymorphisms (SNPs) of the polysialyltransferase (polyST) ST8SIA2 gene are reported to be associated with schizophrenia and bipolar disorder. Chlorpromazine (CPZ) is well-known as an agent for treating schizophrenia, and our hypothesis is that CPZ may affect the polySia expression or the gene expression of polySTs or NCAM. To test this hypothesis, we analyzed the effects of CPZ on the expression of polySia-NCAM on human neuroblastoma cell line, IMR-32 cells, by immunochemical and chemical methods. Interestingly, the cell surface expression of polySia, especially those with lower chain lengths, was significantly increased on the CPZ-treated cells, while mRNAs for polySTs and NCAM, and the amounts of total polySia-NCAM remained unchanged. The addition of brefeldin A, an inhibitor of endocytosis, suppressed the CPZ-induced cell surface polySia expression. In addition, polySia-NCAM was also observed in the vesicle compartment inside the cell. All these data suggest that the level of cell surface expression of polySia in IMR-32 is highly regulated and that CPZ changes the rate of the recycling of polySia-NCAM, leading to the up-regulation of polySia-NCAM on the cell surface. We also analyzed the effect of CPZ on polySia-expression in various brain regions in adult mice and found that CPZ only influenced the total amounts of polySia-NCAM in prefrontal cortex. These results suggest a brain-region-specific effect of CPZ on the expression of total polySia in mouse brain. Collectively, anti-schizophrenia agent CPZ consistently up-regulates the expression polySia at both cellular and animal levels.
Collapse
|
10
|
Liu T, Li H, Hong W, Han W. Brefeldin A-inhibited guanine nucleotide exchange protein 3 is localized in lysosomes and regulates GABA signaling in hippocampal neurons. J Neurochem 2016; 139:748-756. [PMID: 27696409 DOI: 10.1111/jnc.13859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 09/14/2016] [Accepted: 09/22/2016] [Indexed: 01/06/2023]
Abstract
ADP-ribosylation factor (ARF) family of guanine-nucleotide-binding (G) proteins regulates organelle biogenesis, structure and trafficking. The functions of ARF proteins are tightly controlled by guanine nucleotide exchange factors (GEFs) containing a conserved SEC7 domain. Based on sequence similarity to brefeldin A-inhibited guanine nucleotide exchange protein (BIG)/GBF of the Arf-GEF family, we recently identified BIG3 as a novel ARF GEF protein with a non-functional catalytic motif in the SEC7 domain. BIG3 is mainly expressed in pancreatic islets and brain. In the islets, depletion of BIG3 increases insulin and glucagon secretion because of enhanced biogenesis of insulin and glucagon granules in the absence of BIG3. Here, we investigate BIG3 functions in the brain, in particular its regulation of neurotransmitter release in hippocampal neurons from wild-type and BIG3 knockout mice. In hippocampal neurons, BIG3 is mainly localized in lysosomes, and its depletion selectively impairs inhibitory synaptic transmission. Our finding provides novel insights for a cell-specific function of BIG3 in regulating neurotransmission.
Collapse
Affiliation(s)
- Tao Liu
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Hongyu Li
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Weiping Han
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
11
|
Ishii J, Yazawa T, Chiba T, Shishido-Hara Y, Arimasu Y, Sato H, Kamma H. PROX1 Promotes Secretory Granule Formation in Medullary Thyroid Cancer Cells. Endocrinology 2016; 157:1289-98. [PMID: 26760117 DOI: 10.1210/en.2015-1973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mechanisms of endocrine secretory granule (SG) formation in thyroid C cells and medullary thyroid cancer (MTC) cells have not been fully elucidated. Here we directly demonstrated that PROX1, a developmental homeobox gene, is transcriptionally involved in SG formation in MTC, which is derived from C cells. Analyses using gene expression databases on web sites revealed that, among thyroid cancer cells, MTC cells specifically and highly express PROX1 as well as several SG-forming molecule genes. Immunohistochemical analyses showed that in vivo MTC and C cells expressed PROX1, although follicular thyroid cancer and papillary thyroid cancer cells, normal follicular cells did not. Knockdown of PROX1 in an MTC cells reduced SGs detected by electron microscopy, and decreased expression of SG-related genes (chromogranin A, chromogranin B, secretogranin II, secretogranin III, synaptophysin, and carboxypeptidase E). Conversely, the introduction of a PROX1 transgene into a papillary thyroid cancer and anaplastic thyroid cancer cells induced the expression of SG-related genes. Reporter assays using the promoter sequence of chromogranin A showed that PROX1 activates the chromogranin A gene in addition to the known regulatory mechanisms, which are mediated via the cAMP response element binding protein and the repressor element 1-silencing transcription factor. Furthermore, chromatin immunoprecipitation-PCR assays demonstrated that PROX1 binds to the transcriptional regulatory element of the chromogranin A gene. In conclusion, PROX1 is an important regulator of endocrine SG formation in MTC cells.
Collapse
Affiliation(s)
- Jun Ishii
- Department of Pathology (J.I., T.C., Y.A., H.K.), Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan; Department of Diagnostic Pathology (T.Y.), Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; Department of Anatomic Pathology (Y.S.-H.), Tokyo Medical University, Shinjuku, Tokyo 101-0062, Japan; and Department of Anatomy (H.S.), St Marianna University School of Medicine, Kanagawa 216-8511, Japan
| | - Takuya Yazawa
- Department of Pathology (J.I., T.C., Y.A., H.K.), Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan; Department of Diagnostic Pathology (T.Y.), Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; Department of Anatomic Pathology (Y.S.-H.), Tokyo Medical University, Shinjuku, Tokyo 101-0062, Japan; and Department of Anatomy (H.S.), St Marianna University School of Medicine, Kanagawa 216-8511, Japan
| | - Tomohiro Chiba
- Department of Pathology (J.I., T.C., Y.A., H.K.), Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan; Department of Diagnostic Pathology (T.Y.), Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; Department of Anatomic Pathology (Y.S.-H.), Tokyo Medical University, Shinjuku, Tokyo 101-0062, Japan; and Department of Anatomy (H.S.), St Marianna University School of Medicine, Kanagawa 216-8511, Japan
| | - Yukiko Shishido-Hara
- Department of Pathology (J.I., T.C., Y.A., H.K.), Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan; Department of Diagnostic Pathology (T.Y.), Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; Department of Anatomic Pathology (Y.S.-H.), Tokyo Medical University, Shinjuku, Tokyo 101-0062, Japan; and Department of Anatomy (H.S.), St Marianna University School of Medicine, Kanagawa 216-8511, Japan
| | - Yuu Arimasu
- Department of Pathology (J.I., T.C., Y.A., H.K.), Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan; Department of Diagnostic Pathology (T.Y.), Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; Department of Anatomic Pathology (Y.S.-H.), Tokyo Medical University, Shinjuku, Tokyo 101-0062, Japan; and Department of Anatomy (H.S.), St Marianna University School of Medicine, Kanagawa 216-8511, Japan
| | - Hanako Sato
- Department of Pathology (J.I., T.C., Y.A., H.K.), Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan; Department of Diagnostic Pathology (T.Y.), Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; Department of Anatomic Pathology (Y.S.-H.), Tokyo Medical University, Shinjuku, Tokyo 101-0062, Japan; and Department of Anatomy (H.S.), St Marianna University School of Medicine, Kanagawa 216-8511, Japan
| | - Hiroshi Kamma
- Department of Pathology (J.I., T.C., Y.A., H.K.), Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan; Department of Diagnostic Pathology (T.Y.), Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; Department of Anatomic Pathology (Y.S.-H.), Tokyo Medical University, Shinjuku, Tokyo 101-0062, Japan; and Department of Anatomy (H.S.), St Marianna University School of Medicine, Kanagawa 216-8511, Japan
| |
Collapse
|
12
|
Liu T, Li H, Gounko NV, Zhou Z, Xu A, Hong W, Han W. Detection of insulin granule exocytosis by an electrophysiology method with high temporal resolution reveals enlarged insulin granule pool in BIG3-knockout mice. Am J Physiol Endocrinol Metab 2014; 307:E611-8. [PMID: 25139048 DOI: 10.1152/ajpendo.00208.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently identified BIG3 as a negative regulator of insulin granule biogenesis and reported increased insulin secretion in BIG3-knockout (BKO) mice. To pinpoint the site of action for BIG3, we investigated whether BIG3 regulates quantal insulin granule exocytosis. We established an assay to detect insulin granule exocytosis by recording ATP-elicited currents at high temporal resolution by patch clamp. Similarly to insulin, ATP release was increased in BKO β-cells. Although the frequency of insulin granule exocytosis was increased in BKO β-cells, quantal size or release kinetics remained unchanged. Electron microscopy studies showed that the number of insulin granules was increased by >60% in BKO β-cells. However, the number of morphologically docked granules was unaltered. The number of insulin granules having significant distances away from plasma membrane was greatly increased in BKO β-cells. Thus, BIG3 negatively regulates insulin granule exocytosis by restricting insulin granule biogenesis without the release kinetics of individual granules at the final exocytotic steps being affected. Depletion of BIG3 leads to an enlarged releasable pool of insulin granules, which accounts for increased release frequency and consequently increased insulin secretion.
Collapse
Affiliation(s)
- Tao Liu
- Singapore Bioimaging Consortium
| | - Hongyu Li
- Singapore Bioimaging Consortium, Institute of Molecular and Cell Biology, and
| | - Natalia V Gounko
- Institute of Molecular and Cell Biology, and Joint IMB-IMCB Electron Microscopy Suite, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Zhuan Zhou
- Institute of Molecular Medicine, Peking University, Peking, China; and
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, and Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, and
| | | |
Collapse
|
13
|
Bonnemaison M, Bäck N, Lin Y, Bonifacino JS, Mains R, Eipper B. AP-1A controls secretory granule biogenesis and trafficking of membrane secretory granule proteins. Traffic 2014; 15:1099-121. [PMID: 25040637 DOI: 10.1111/tra.12194] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023]
Abstract
The adaptor protein 1A complex (AP-1A) transports cargo between the trans-Golgi network (TGN) and endosomes. In professional secretory cells, AP-1A also retrieves material from immature secretory granules (SGs). The role of AP-1A in SG biogenesis was explored using AtT-20 corticotrope tumor cells expressing reduced levels of the AP-1A μ1A subunit. A twofold reduction in μ1A resulted in a decrease in TGN cisternae and immature SGs and the appearance of regulated secretory pathway components in non-condensing SGs. Although basal secretion of endogenous SG proteins was unaffected, secretagogue-stimulated release was halved. The reduced μ1A levels interfered with the normal trafficking of carboxypeptidase D (CPD) and peptidylglycine α-amidating monooxygenase-1 (PAM-1), integral membrane enzymes that enter immature SGs. The non-condensing SGs contained POMC products and PAM-1, but not CPD. Based on metabolic labeling and secretion experiments, the cleavage of newly synthesized PAM-1 into PHM was unaltered, but PHM basal secretion was increased in sh-μ1A PAM-1 cells. Despite lacking a canonical AP-1A binding motif, yeast two-hybrid studies demonstrated an interaction between the PAM-1 cytosolic domain and AP-1A. Coimmunoprecipitation experiments with PAM-1 mutants revealed an influence of the luminal domains of PAM-1 on this interaction. Thus, AP-1A is crucial for normal SG biogenesis, function and composition.
Collapse
Affiliation(s)
- Mathilde Bonnemaison
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | | | | | | | | | |
Collapse
|
14
|
Kanagaraj P, Gautier-Stein A, Riedel D, Schomburg C, Cerdà J, Vollack N, Dosch R. Souffle/Spastizin controls secretory vesicle maturation during zebrafish oogenesis. PLoS Genet 2014; 10:e1004449. [PMID: 24967841 PMCID: PMC4072560 DOI: 10.1371/journal.pgen.1004449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/02/2014] [Indexed: 12/20/2022] Open
Abstract
During oogenesis, the egg prepares for fertilization and early embryogenesis. As a consequence, vesicle transport is very active during vitellogenesis, and oocytes are an outstanding system to study regulators of membrane trafficking. Here, we combine zebrafish genetics and the oocyte model to identify the molecular lesion underlying the zebrafish souffle (suf) mutation. We demonstrate that suf encodes the homolog of the Hereditary Spastic Paraplegia (HSP) gene SPASTIZIN (SPG15). We show that in zebrafish oocytes suf mutants accumulate Rab11b-positive vesicles, but trafficking of recycling endosomes is not affected. Instead, we detect Suf/Spastizin on cortical granules, which undergo regulated secretion. We demonstrate genetically that Suf is essential for granule maturation into secretion competent dense-core vesicles describing a novel role for Suf in vesicle maturation. Interestingly, in suf mutants immature, secretory precursors accumulate, because they fail to pinch-off Clathrin-coated buds. Moreover, pharmacological inhibition of the abscission regulator Dynamin leads to an accumulation of immature secretory granules and mimics the suf phenotype. Our results identify a novel regulator of secretory vesicle formation in the zebrafish oocyte. In addition, we describe an uncharacterized cellular mechanism for Suf/Spastizin activity during secretion, which raises the possibility of novel therapeutic avenues for HSP research. Oocytes of egg laying animals frequently represent the biggest cell type of a species. The size of the egg is a consequence of active transport processes, e.g. the import of yolk proteins, which results in the massive storage of vesicles. In addition, secretory vesicles termed cortical granules are stored in the oocyte to be discharged right after fertilization during cortical reaction, which also occurs in mammals. Their secretion leads to chorion expansion, which prevents the lethal entry of additional sperm and protects the developing embryo against physical damage. Mutants with a defect in membrane transport are successful tools to discover genes regulating vesicle formation. We molecularly identify the disrupted gene in the recessive maternal-effect mutation souffle, which encodes a homolog of human SPASTIZIN. SPASTIZIN was previously implicated in endocytosis, but our cellular analysis of mutant oocytes connects this gene also with the regulation of cortical granule exocytosis. More precisely, we show that Suf/Spastizin is crucial for the maturation of cortical granules into secretion competent vesicles describing a novel role for this protein. Since SPASITIZN causes the disease Hereditary Spastic Paraplegia in humans, our results will help to decipher the pathogenesis of this neurodegenerative disorder.
Collapse
Affiliation(s)
- Palsamy Kanagaraj
- Institut fuer Entwicklungsbiochemie, Georg-August Universitaet Goettingen, Goettingen, Germany
| | | | - Dietmar Riedel
- Max-Planck Institut fuer Biophysikalische Chemie, Goettingen, Germany
| | - Christoph Schomburg
- Institut fuer Entwicklungsbiochemie, Georg-August Universitaet Goettingen, Goettingen, Germany
| | - Joan Cerdà
- IRTA-Institute of Marine Sciences, CSIC, Barcelona, Spain
| | - Nadine Vollack
- Institut fuer Entwicklungsbiochemie, Georg-August Universitaet Goettingen, Goettingen, Germany
| | - Roland Dosch
- Institut fuer Entwicklungsbiochemie, Georg-August Universitaet Goettingen, Goettingen, Germany
- Departement de Zoologie et Biologie Animale, Universite de Geneve, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
15
|
Hammel I, Meilijson I. The stealthy nano-machine behind mast cell granule size distribution. Mol Immunol 2014; 63:45-54. [PMID: 24629227 DOI: 10.1016/j.molimm.2014.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/15/2014] [Accepted: 02/01/2014] [Indexed: 02/01/2023]
Abstract
The classical model of mast cell secretory granule formation suggests that newly synthesized secretory mediators, transported from the rough endoplasmic reticulum to the Golgi complex, undergo post-transitional modification and are packaged for secretion by condensation within membrane-bound granules of unit size. These unit granules may fuse with other granules to form larger granules that reside in the cytoplasm until secreted. A novel stochastic model for mast cell granule growth and elimination (G&E) as well as inventory management is presented. Resorting to a statistical mechanics approach in which SNAP (Soluble NSF Attachment Protein) REceptor (SNARE) components are viewed as interacting particles, the G&E model provides a simple 'nano-machine' of SNARE self-aggregation that can perform granule growth and secretion. Granule stock is maintained as a buffer to meet uncertainty in demand by the extracellular environment and to serve as source of supply during the lead time to produce granules of adaptive content. Experimental work, mathematical calculations, statistical modeling and a rationale for the emergence of nearly last-in, first out inventory management, are discussed.
Collapse
Affiliation(s)
- Ilan Hammel
- Sackler Faculty of Medicine, Department of Pathology, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Isaac Meilijson
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Mathematical Sciences, Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
16
|
Self-assembly of VPS41 promotes sorting required for biogenesis of the regulated secretory pathway. Dev Cell 2013; 27:425-37. [PMID: 24210660 DOI: 10.1016/j.devcel.2013.10.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 08/06/2013] [Accepted: 10/11/2013] [Indexed: 12/22/2022]
Abstract
The regulated release of polypeptides has a central role in physiology, behavior, and development, but the mechanisms responsible for production of the large dense core vesicles (LDCVs) capable of regulated release have remained poorly understood. Recent work has implicated cytosolic adaptor protein AP-3 in the recruitment of LDCV membrane proteins that confer regulated release. However, AP-3 in mammals has been considered to function in the endolysosomal pathway and in the biosynthetic pathway only in yeast. We now find that the mammalian homolog of yeast VPS41, a member of the homotypic fusion and vacuole protein sorting (HOPS) complex that delivers biosynthetic cargo to the endocytic pathway in yeast, promotes LDCV formation through a common mechanism with AP-3, indicating a conserved role for these proteins in the biosynthetic pathway. VPS41 also self-assembles into a lattice, suggesting that it acts as a coat protein for AP-3 in formation of the regulated secretory pathway.
Collapse
|
17
|
Sirkis DW, Edwards RH, Asensio CS. Widespread dysregulation of peptide hormone release in mice lacking adaptor protein AP-3. PLoS Genet 2013; 9:e1003812. [PMID: 24086151 PMCID: PMC3784564 DOI: 10.1371/journal.pgen.1003812] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 08/06/2013] [Indexed: 12/13/2022] Open
Abstract
The regulated secretion of peptide hormones, neural peptides and many growth factors depends on their sorting into large dense core vesicles (LDCVs) capable of regulated exocytosis. LDCVs form at the trans-Golgi network, but the mechanisms that sort proteins to this regulated secretory pathway and the cytosolic machinery that produces LDCVs remain poorly understood. Recently, we used an RNAi screen to identify a role for heterotetrameric adaptor protein AP-3 in regulated secretion and in particular, LDCV formation. Indeed, mocha mice lacking AP-3 have a severe neurological and behavioral phenotype, but this has been attributed to a role for AP-3 in the endolysosomal rather than biosynthetic pathway. We therefore used mocha mice to determine whether loss of AP-3 also dysregulates peptide release in vivo. We find that adrenal chromaffin cells from mocha animals show increased constitutive exocytosis of both soluble cargo and LDCV membrane proteins, reducing the response to stimulation. We also observe increased basal release of both insulin and glucagon from pancreatic islet cells of mocha mice, suggesting a global disturbance in the release of peptide hormones. AP-3 exists as both ubiquitous and neuronal isoforms, but the analysis of mice lacking each of these isoforms individually and together shows that loss of both is required to reproduce the effect of the mocha mutation on the regulated pathway. In addition, we show that loss of the related adaptor protein AP-1 has a similar effect on regulated secretion but exacerbates the effect of AP-3 RNAi, suggesting distinct roles for the two adaptors in the regulated secretory pathway.
Collapse
Affiliation(s)
- Daniel W. Sirkis
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California, United States of America
- Departments of Physiology and Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Robert H. Edwards
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California, United States of America
- Departments of Physiology and Neurology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| | - Cédric S. Asensio
- Departments of Physiology and Neurology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
18
|
Expression and function of the dense-core vesicle membranes are governed by the transcription repressor REST. FEBS Lett 2013; 587:1915-22. [PMID: 23651552 DOI: 10.1016/j.febslet.2013.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 11/20/2022]
Abstract
The membrane of dense-core vesicles is present only in neural cells, where it is instrumental to the regulated discharge of important molecules such as the catecholamine neurotransmitters. The mechanism underlying the specificity of this membrane to certain cell types has so far been unclear. Studies of this problem have been carried out by employing the pheochromocytoma PC12 cell line and its clones defective of dense-core vesicles. REST, the transcription repressor expressed at high levels in non-neural and at very low levels in neural cells, was found to regulate the genes encoding almost all the proteins of both the core and the membrane of the dense-core vesicles, including the transporter for catecholamines and the SNAREs for their exocytosis. Moreover, REST appears to control the assembly of the vesicle membrane. The role of REST in the various steps of the expression and function of the dense-core vesicle membrane is critical during development and participates in the dynamic regulation of mature cell physiology.
Collapse
|
19
|
Kögel T, Rudolf R, Hodneland E, Copier J, Regazzi R, Tooze SA, Gerdes HH. Rab3D is critical for secretory granule maturation in PC12 cells. PLoS One 2013; 8:e57321. [PMID: 23526941 PMCID: PMC3602456 DOI: 10.1371/journal.pone.0057321] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/21/2013] [Indexed: 11/19/2022] Open
Abstract
Neuropeptide- and hormone-containing secretory granules (SGs) are synthesized at the trans-Golgi network (TGN) as immature secretory granules (ISGs) and complete their maturation in the F-actin-rich cell cortex. This maturation process is characterized by acidification-dependent processing of cargo proteins, condensation of the SG matrix and removal of membrane and proteins not destined to mature secretory granules (MSGs). Here we addressed a potential role of Rab3 isoforms in these maturation steps by expressing their nucleotide-binding deficient mutants in PC12 cells. Our data show that the presence of Rab3D(N135I) decreases the restriction of maturing SGs to the F-actin-rich cell cortex, blocks the removal of the endoprotease furin from SGs and impedes the processing of the luminal SG protein secretogranin II. This strongly suggests that Rab3D is implicated in the subcellular localization and maturation of ISGs.
Collapse
Affiliation(s)
- Tanja Kögel
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Rüdiger Rudolf
- Interdisciplinary Center of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | | | - John Copier
- London Research Institute Cancer Research United Kingdom, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Sharon A. Tooze
- London Research Institute Cancer Research United Kingdom, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Hans-Hermann Gerdes
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Interdisciplinary Center of Neurobiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
RAB-5 and RAB-10 cooperate to regulate neuropeptide release in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2012; 109:18944-9. [PMID: 23100538 DOI: 10.1073/pnas.1203306109] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons secrete neuropeptides from dense core vesicles (DCVs) to modulate neuronal activity. Little is known about how neurons manage to differentially regulate the release of synaptic vesicles (SVs) and DCVs. To analyze this, we screened all Caenorhabditis elegans Rab GTPases and Tre2/Bub2/Cdc16 (TBC) domain containing GTPase-activating proteins (GAPs) for defects in DCV release from C. elegans motoneurons. rab-5 and rab-10 mutants show severe defects in DCV secretion, whereas SV exocytosis is unaffected. We identified TBC-2 and TBC-4 as putative GAPs for RAB-5 and RAB-10, respectively. Multiple Rabs and RabGAPs are typically organized in cascades that confer directionality to membrane-trafficking processes. We show here that the formation of release-competent DCVs requires a reciprocal exclusion cascade coupling RAB-5 and RAB-10, in which each of the two Rabs recruits the other's GAP molecule. This contributes to a separation of RAB-5 and RAB-10 domains at the Golgi-endosomal interface, which is lost when either of the two GAPs is inactivated. Taken together, our data suggest that RAB-5 and RAB-10 cooperate to locally exclude each other at an essential stage during DCV sorting.
Collapse
|
21
|
Exocytosis is impaired in mucopolysaccharidosis IIIA mouse chromaffin cells. Neuroscience 2012; 227:110-8. [PMID: 23022219 DOI: 10.1016/j.neuroscience.2012.09.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/28/2012] [Accepted: 09/13/2012] [Indexed: 11/22/2022]
Abstract
Mucopolysaccharidosis IIIA (MPS IIIA) is a lysosomal storage disorder caused by a deficiency in the activity of the lysosomal hydrolase, sulphamidase, an enzyme involved in the degradation of heparan sulphate. MPS IIIA patients exhibit progressive mental retardation and behavioural disturbance. While neuropathology is the major clinical problem in MPS IIIA patients, there is little understanding of how lysosomal storage generates this phenotype. As reduced neuronal communication can underlie cognitive deficiencies, we investigated whether the secretion of neurotransmitters is altered in MPS IIIA mice; utilising adrenal chromaffin cells, a classical model for studying secretion via exocytosis. MPS IIIA chromaffin cells displayed heparan sulphate storage and electron microscopy revealed large electron-lucent storage compartments. There were also increased numbers of large/elongated chromaffin granules, with a morphology that was similar to immature secretory granules. Carbon fibre amperometry illustrated a significant decrease in the number of exocytotic events for MPS IIIA, when compared to control chromaffin cells. However, there were no changes in the kinetics of release, the amount of catecholamine released per exocytotic event, or the amount of Ca(2+) entry upon stimulation. The increased number of large/elongated granules and reduced number of exocytotic events suggests that either the biogenesis and/or the cell surface docking and fusion potential of these vesicles is impaired in MPS IIIA. If this also occurs in central nervous system neurons, the reduction in neurotransmitter release could help to explain the development of neuropathology in MPS IIIA.
Collapse
|
22
|
Bogan JS, Xu Y, Hao M. Cholesterol accumulation increases insulin granule size and impairs membrane trafficking. Traffic 2012; 13:1466-80. [PMID: 22889194 DOI: 10.1111/j.1600-0854.2012.01407.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/09/2012] [Accepted: 08/13/2012] [Indexed: 11/28/2022]
Abstract
The formation of mature secretory granules is essential for proper storage and regulated release of hormones and neuropeptides. In pancreatic β cells, cholesterol accumulation causes defects in insulin secretion and may participate in the pathogenesis of type 2 diabetes. Using a novel cholesterol analog, we show for the first time that insulin granules are the major sites of intracellular cholesterol accumulation in live β cells. This is distinct from other, non-secretory cell types, in which cholesterol is concentrated in the recycling endosomes and the trans-Golgi network. Excess cholesterol was delivered specifically to insulin granules, which caused granule enlargement and retention of syntaxin 6 and VAMP4 in granule membranes, with concurrent depletion of these proteins from the trans-Golgi network. Clathrin also accumulated in the granules of cholesterol-overloaded cells, consistent with a possible defect in the last stage of granule maturation, during which clathrin-coated vesicles bud from the immature granules. Excess cholesterol also reduced the docking and fusion of insulin granules at the plasma membrane. Together, the data support a model in which cholesterol accumulation in insulin secretory granules impairs the ability of these vesicles to respond to stimuli, and thus reduces insulin secretion.
Collapse
Affiliation(s)
- Jonathan S Bogan
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
23
|
Park Y, Hernandez JM, van den Bogaart G, Ahmed S, Holt M, Riedel D, Jahn R. Controlling synaptotagmin activity by electrostatic screening. Nat Struct Mol Biol 2012; 19:991-7. [PMID: 22940675 PMCID: PMC3465474 DOI: 10.1038/nsmb.2375] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/27/2012] [Indexed: 01/24/2023]
Abstract
Exocytosis of neurosecretory vesicles is mediated bythe SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins syntaxin-1, synaptobrevin, and SNAP-25, with synaptotagmin functioning as the major Ca2+-sensor for triggering membrane fusion. Here we show that bovine chromaffin granules readily fuse with large unilamellar liposomes in a SNARE-dependent manner. Fusion is enhanced by Ca2+ but only if the target liposomes contain PI(4,5)P2 and if polyphosphate anions such as nucleotides or pyrophosphate are present. Ca2+-dependent enhancement is mediated by endogenous synaptotagmin-1. Polyphosphates operate by an electrostatic mechanism that reverses an inactivating cis-association of synaptotagmin-1 with its own membrane whereas trans-binding is not affected. Hence, balancing trans- and cis-membrane interactions of synaptotagmin may be a crucial element in the pathway of Ca2+-dependent exocytosis.
Collapse
Affiliation(s)
- Yongsoo Park
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
TBC-8, a putative RAB-2 GAP, regulates dense core vesicle maturation in Caenorhabditis elegans. PLoS Genet 2012; 8:e1002722. [PMID: 22654674 PMCID: PMC3359978 DOI: 10.1371/journal.pgen.1002722] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 04/04/2012] [Indexed: 02/05/2023] Open
Abstract
Dense core vesicles (DCVs) are thought to be generated at the late Golgi apparatus as immature DCVs, which subsequently undergo a maturation process through clathrin-mediated membrane remodeling events. This maturation process is required for efficient processing of neuropeptides within DCVs and for removal of factors that would otherwise interfere with DCV release. Previously, we have shown that the GTPase, RAB-2, and its effector, RIC-19, are involved in DCV maturation in Caenorhabditis elegans motoneurons. In rab-2 mutants, specific cargo is lost from maturing DCVs and missorted into the endosomal/lysosomal degradation route. Cargo loss could be prevented by blocking endosomal delivery. This suggests that RAB-2 is involved in retention of DCV components during the sorting process at the Golgi-endosomal interface. To understand how RAB-2 activity is regulated at the Golgi, we screened for RAB-2-specific GTPase activating proteins (GAPs). We identified a potential RAB-2 GAP, TBC-8, which is exclusively expressed in neurons and which, when depleted, shows similar DCV maturation defects as rab-2 mutants. We could demonstrate that RAB-2 binds to its putative GAP, TBC-8. Interestingly, TBC-8 also binds to the RAB-2 effector, RIC-19. This interaction appears to be conserved as TBC-8 also interacted with the human ortholog of RIC-19, ICA69. Therefore, we propose that a dynamic ON/OFF cycling of RAB-2 at the Golgi induced by the GAP/effector complex is required for proper DCV maturation.
Collapse
|
25
|
Cellular Mechanisms for the Biogenesis and Transport of Synaptic and Dense-Core Vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:27-115. [DOI: 10.1016/b978-0-12-394310-1.00002-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Krzewski K, Gil-Krzewska A, Watts J, Stern JNH, Strominger JL. VAMP4- and VAMP7-expressing vesicles are both required for cytotoxic granule exocytosis in NK cells. Eur J Immunol 2011; 41:3323-9. [PMID: 21805468 DOI: 10.1002/eji.201141582] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/09/2011] [Accepted: 07/28/2011] [Indexed: 11/10/2022]
Abstract
NK cells eliminate cancer and virus-infected cells through their cytolytic activity. The last step in NK-cell cytotoxicity, resulting in exocytosis of granule content, requires fusion of lytic granules with the plasma membrane. Proteins from the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediate membrane fusion events in the cell. Here, we show that NK cells express all members of the R-SNARE subgroup. Two of these R-SNARE proteins, VAMP4 and VAMP7, colocalize with lytic granules during cytotoxic interactions. However, only VAMP7 associates with perforin-containing granules in nonactivated cells, indicating that the two VAMPs have different functions in exocytosis. Using both the tumor NK-cell line YTS and the peripheral NK cells, we show that the disruption of expression of either VAMP4 or VAMP7 inhibits the release of lytic granules and severely impairs NK-cell cytotoxic activity. Furthermore, VAMP7 but not VAMP4 is involved in IFN-γ secretion in NK cells, indicating that VAMP7 is involved in many fusion processes and thus plays a more general function in NK-cell activity than VAMP4.
Collapse
Affiliation(s)
- Konrad Krzewski
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
27
|
Park JJ, Gondré-Lewis MC, Eiden LE, Loh YP. A distinct trans-Golgi network subcompartment for sorting of synaptic and granule proteins in neurons and neuroendocrine cells. J Cell Sci 2011; 124:735-44. [PMID: 21321327 DOI: 10.1242/jcs.076372] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Golgi-to-plasma-membrane trafficking of synaptic-like microvesicle (SLMV) proteins, vesicular acetylcholine transporter (VAChT) and synaptophysin (SYN), and a large dense-core vesicle (LDCV) protein, chromogranin A (CgA), was investigated in undifferentiated neuroendocrine PC12 cells. Live cell imaging and 20°C block-release experiments showed that VAChT-GFP, SYN-GFP and CgA-RFP specifically and transiently cohabitated in a distinct sorting compartment during cold block and then separated into synaptic protein transport vesicles (SPTVs) and LDCVs, after release from temperature block. We found that in this trans-Golgi subcompartment there was colocalization of SPTV and LDCV proteins, most significantly with VAMP4 and Golgin97, and to some degree with TGN46, but not at all with TGN38. Moreover, some SNAP25 and VAMP2, two subunits of the exocytic machinery, were also recruited onto this compartment. Thus, in neuroendocrine cells, synaptic vesicle and LDCV proteins converge briefly in a distinct trans-Golgi network subcompartment before sorting into SPTVs and LDCVs, ultimately for delivery to the plasma membrane. This specialized sorting compartment from which SPTVs and LDCVs bud might facilitate the acquisition of common exocytic machinery needed on the membranes of these vesicles.
Collapse
Affiliation(s)
- Joshua J Park
- Section on Cellular Neurobiology, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
28
|
Asensio CS, Sirkis DW, Edwards RH. RNAi screen identifies a role for adaptor protein AP-3 in sorting to the regulated secretory pathway. J Cell Biol 2010; 191:1173-87. [PMID: 21149569 PMCID: PMC3002028 DOI: 10.1083/jcb.201006131] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 11/09/2010] [Indexed: 12/12/2022] Open
Abstract
The regulated release of proteins depends on their inclusion within large dense-core vesicles (LDCVs) capable of regulated exocytosis. LDCVs form at the trans-Golgi network (TGN), but the mechanism for protein sorting to this regulated secretory pathway (RSP) and the cytosolic machinery involved in this process have remained poorly understood. Using an RNA interference screen in Drosophila melanogaster S2 cells, we now identify a small number of genes, including several subunits of the heterotetrameric adaptor protein AP-3, which are required for sorting to the RSP. In mammalian neuroendocrine cells, loss of AP-3 dysregulates exocytosis due to a primary defect in LDCV formation. Previous work implicated AP-3 in the endocytic pathway, but we find that AP-3 promotes sorting to the RSP within the biosynthetic pathway at the level of the TGN. Although vesicles with a dense core still form in the absence of AP-3, they contain substantially less synaptotagmin 1, indicating that AP-3 concentrates the proteins required for regulated exocytosis.
Collapse
Affiliation(s)
- Cédric S. Asensio
- Department of Physiology, Department of Neurology, and Graduate Programs in Pharmacogenomics and Cell Biology, University of California, San Francisco, San Francisco, CA 94158
| | - Daniel W. Sirkis
- Department of Physiology, Department of Neurology, and Graduate Programs in Pharmacogenomics and Cell Biology, University of California, San Francisco, San Francisco, CA 94158
| | - Robert H. Edwards
- Department of Physiology, Department of Neurology, and Graduate Programs in Pharmacogenomics and Cell Biology, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
29
|
Abstract
hid-1 was originally identified as a Caenorhabditis elegans gene encoding a novel conserved protein that regulates the decision to enter into the enduring dauer larval stage. We isolated a novel allele of hid-1 in a forward genetic screen for mutants mislocalizing RBF-1 rabphilin, a RAB-27 effector. Here we demonstrate that HID-1 functions in the nervous system to regulate neuromuscular signaling and in the intestine to regulate the defecation motor program. We further show that a conserved N-terminal myristoylated motif of both invertebrate and vertebrate HID-1 is essential for its association with intracellular membranes in nematodes and PC12 cells. C. elegans neuronal HID-1 resides on intracellular membranes in neuronal cell somas; however, the kinesin UNC-104 also transports HID-1 to synaptic regions. HID-1 accumulates in the axons of unc-13 and unc-31 mutants, suggesting it is associated with neurosecretory vesicles. Consistent with this, genetic studies place HID-1 in a peptidergic signaling pathway. Finally, a hid-1 null mutation reduces the levels of endogenous neuropeptides and alters the secretion of fluorescent-tagged cargos derived from neuronal and intestinal dense core vesicles (DCVs). Taken together, our findings indicate that HID-1 is a novel component of a DCV-based neurosecretory pathway and that it regulates one or more aspects of the biogenesis, maturation, or trafficking of DCVs.
Collapse
|
30
|
Kögel T, Gerdes HH. Roles of myosin Va and Rab3D in membrane remodeling of immature secretory granules. Cell Mol Neurobiol 2010; 30:1303-8. [PMID: 21080055 PMCID: PMC3008937 DOI: 10.1007/s10571-010-9597-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/02/2010] [Indexed: 01/24/2023]
Abstract
Neuroendocrine secretory granules (SGs) are formed at the trans-Golgi network (TGN) as immature intermediates. In PC12 cells, these immature SGs (ISGs) are transported within seconds to the cell cortex, where they move along actin filaments and complete maturation. This maturation process comprises acidification-dependent processing of cargo proteins, condensation of the SG matrix, and removal of membrane and proteins not destined to mature SGs (MSGs) into ISG-derived vesicles (IDVs). We investigated the roles of myosin Va and Rab3 isoforms in the maturation of ISGs in neuroendocrine PC12 cells. The expression of dominant-negative mutants of myosin Va or Rab3D blocked the removal of the endoprotease furin from ISGs. Furthermore, expression of mutant Rab3D, but not of mutant myosin Va, impaired cargo processing of SGs. In conclusion, our data suggest an implication of myosin Va and Rab3D in the maturation of SGs where they participate in overlapping but not identical tasks.
Collapse
Affiliation(s)
- Tanja Kögel
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | | |
Collapse
|
31
|
Skalski M, Yi Q, Kean MJ, Myers DW, Williams KC, Burtnik A, Coppolino MG. Lamellipodium extension and membrane ruffling require different SNARE-mediated trafficking pathways. BMC Cell Biol 2010; 11:62. [PMID: 20698987 PMCID: PMC2925818 DOI: 10.1186/1471-2121-11-62] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/10/2010] [Indexed: 12/26/2022] Open
Abstract
Background Intracellular membrane traffic is an essential component of the membrane remodeling that supports lamellipodium extension during cell adhesion. The membrane trafficking pathways that contribute to cell adhesion have not been fully elucidated, but recent studies have implicated SNARE proteins. Here, the functions of several SNAREs (SNAP23, VAMP3, VAMP4 and syntaxin13) are characterized during the processes of cell spreading and membrane ruffling. Results We report the first description of a SNARE complex, containing SNAP23, syntaxin13 and cellubrevin/VAMP3, that is induced by cell adhesion to an extracellular matrix. Impairing the function of the SNAREs in the complex using inhibitory SNARE domains disrupted the recycling endosome, impeded delivery of integrins to the cell surface, and reduced haptotactic cell migration and spreading. Blocking SNAP23 also inhibited the formation of PMA-stimulated, F-actin-rich membrane ruffles; however, membrane ruffle formation was not significantly altered by inhibition of VAMP3 or syntaxin13. In contrast, membrane ruffling, and not cell spreading, was sensitive to inhibition of two SNAREs within the biosynthetic secretory pathway, GS15 and VAMP4. Consistent with this, formation of a complex containing VAMP4 and SNAP23 was enhanced by treatment of cells with PMA. The results reveal a requirement for the function of a SNAP23-syntaxin13-VAMP3 complex in the formation of lamellipodia during cell adhesion and of a VAMP4-SNAP23-containing complex during PMA-induced membrane ruffling. Conclusions Our findings suggest that different SNARE-mediated trafficking pathways support membrane remodeling during ECM-induced lamellipodium extension and PMA-induced ruffle formation, pointing to important mechanistic differences between these processes.
Collapse
Affiliation(s)
- Michael Skalski
- Department of Molecular and Cellular Biology, University of Guleph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhang Z, Zhang Z, Jackson MB. Synaptotagmin IV modulation of vesicle size and fusion pores in PC12 cells. Biophys J 2010; 98:968-78. [PMID: 20303854 DOI: 10.1016/j.bpj.2009.11.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/30/2009] [Accepted: 11/18/2009] [Indexed: 01/27/2023] Open
Abstract
Many synaptotagmins are Ca(2+)-binding membrane proteins with functions in Ca(2+)-triggered exocytosis. Synaptotagmin IV (syt IV) has no Ca(2+) binding activity, but nevertheless modulates exocytosis. Here, cell-attached capacitance recording was used to study single vesicle fusion and fission in control and syt IV overexpressing PC12 cells. Unitary capacitance steps varied widely in size, indicating that both microvesicles (MVs) and dense-core vesicles (DCVs) undergo fusion. Syt IV overexpression reduced the size of DCVs and endocytotic vesicles but not MVs. Syt IV also reduced the basal rate of Ca(2+)-induced fusion. During kiss-and-run, syt IV increased the conductance and duration of DCV fusion pores but not MV fusion pores. During full-fusion of DCVs syt IV increased the fusion pore conductance but not the duration. Syt IV overexpression increased the duration but not the conductance of fission pores during endocytosis. The effects of syt IV on fusion pores in PC12 cells resembled the effects on fusion pores in peptidergic nerve terminals. However, differences between these and results obtained with amperometry may indicate that amperometry and capacitance detect the fusion of different populations of vesicles. The effects of syt IV on fusion pores are discussed in terms of structural models and kinetic mechanisms.
Collapse
Affiliation(s)
- Zhenjie Zhang
- Department of Physiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | |
Collapse
|
33
|
Sturek JM, Castle JD, Trace AP, Page LC, Castle AM, Evans-Molina C, Parks JS, Mirmira RG, Hedrick CC. An intracellular role for ABCG1-mediated cholesterol transport in the regulated secretory pathway of mouse pancreatic beta cells. J Clin Invest 2010; 120:2575-89. [PMID: 20530872 DOI: 10.1172/jci41280] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 04/14/2010] [Indexed: 01/12/2023] Open
Abstract
Cholesterol is a critical component of cell membranes, and cellular cholesterol levels and distribution are tightly regulated in mammals. Recent evidence has revealed a critical role for pancreatic beta cell-specific cholesterol homeostasis in insulin secretion as well as in beta cell dysfunction in diabetes and the metabolic response to thiazolidinediones (TZDs), which are antidiabetic drugs. The ATP-binding cassette transporter G1 (ABCG1) has been shown to play a role in cholesterol efflux, but its role in beta cells is currently unknown. In other cell types, ABCG1 expression is downregulated in diabetes and upregulated by TZDs. Here we have demonstrated an intracellular role for ABCG1 in beta cells. Loss of ABCG1 expression impaired insulin secretion both in vivo and in vitro, but it had no effect on cellular cholesterol content or efflux. Subcellular localization studies showed the bulk of ABCG1 protein to be present in insulin granules. Loss of ABCG1 led to altered granule morphology and reduced granule cholesterol levels. Administration of exogenous cholesterol restored granule morphology and cholesterol content and rescued insulin secretion in ABCG1-deficient islets. These findings suggest that ABCG1 acts primarily to regulate subcellular cholesterol distribution in mouse beta cells. Furthermore, islet ABCG1 expression was reduced in diabetic mice and restored by TZDs, implicating a role for regulation of islet ABCG1 expression in diabetes pathogenesis and treatment.
Collapse
Affiliation(s)
- Jeffrey M Sturek
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
ARTHUR CP, DEAN C, PAGRATIS M, CHAPMAN ER, STOWELL MHB. Loss of synaptotagmin IV results in a reduction in synaptic vesicles and a distortion of the Golgi structure in cultured hippocampal neurons. Neuroscience 2010; 167:135-42. [PMID: 20138128 PMCID: PMC3102522 DOI: 10.1016/j.neuroscience.2010.01.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/26/2010] [Accepted: 01/26/2010] [Indexed: 01/12/2023]
Abstract
Fusion of synaptic vesicles with the plasma membrane is mediated by the SNARE (soluble NSF attachment receptor) proteins and is regulated by synaptotagmin (syt). There are at least 17 syt isoforms that have the potential to act as modulators of membrane fusion events. Synaptotagmin IV (syt IV) is particularly interesting; it is an immediate early gene that is regulated by seizures and certain classes of drugs, and, in humans, syt IV maps to a region of chromosome 18 associated with schizophrenia and bipolar disease. Syt IV has recently been found to localize to dense core vesicles in hippocampal neurons, where it regulates neurotrophin release. Here we have examined the ultrastructure of cultured hippocampal neurons from wild-type and syt IV -/- mice using electron tomography. Perhaps surprisingly, we observed a potential synaptic vesicle transport defect in syt IV -/- neurons, with the accumulation of large numbers of small clear vesicles (putative axonal transport vesicles) near the trans-Golgi network. We also found an interaction between syt IV and KIF1A, a kinesin known to be involved in vesicle trafficking to the synapse. Finally, we found that syt IV -/- synapses exhibited reduced numbers of synaptic vesicles and a twofold reduction in the proportion of docked vesicles compared to wild-type. The proportion of docked vesicles in syt IV -/- boutons was further reduced, 5-fold, following depolarization.
Collapse
Affiliation(s)
- C. P. ARTHUR
- MCD Biology, University of Colorado, Boulder, CO, 80309, USA
- The Scripps Research Institute, Department of Cell Biology, La Jolla, CA, 92037, USA
| | - C. DEAN
- Howard Hughes Medical Institute, Department of Physiology, University of Wisconsin, Madison, WI, 53706, USA
| | - M. PAGRATIS
- MCD Biology, University of Colorado, Boulder, CO, 80309, USA
| | - E. R. CHAPMAN
- Howard Hughes Medical Institute, Department of Physiology, University of Wisconsin, Madison, WI, 53706, USA
| | | |
Collapse
|
35
|
Versatile roles for myosin Va in dense core vesicle biogenesis and function. Biochem Soc Trans 2010; 38:199-204. [PMID: 20074059 DOI: 10.1042/bst0380199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The motor protein myosin Va is involved in multiple successive steps in the development of dense-core vesicles, such as in the membrane remodelling during their maturation, their transport along actin filaments and the regulation of their exocytosis. In the present paper, we summarize the current knowledge on the roles of myosin Va in the different steps of dense-core vesicle biogenesis and exocytosis, and compare findings obtained from different cell types and experimental systems.
Collapse
|
36
|
Abstract
Synaptotagmins (Syts) are transmembrane proteins involved in the regulation of membrane trafficking. Here, we summarize literature data that provide growing evidence that several Syts are involved in the pathophysiological mechanisms of temporal lobe epilepsy and Parkinson's disease, as well as few reports related to brain ischemia and Alzheimer's disease (AD). We also report new data from our laboratories, showing changes of the expression of several Syts in Tg2576 mouse model of AD that may be related to neuroinflammation surrounding the beta-amyloid plaques. Furthermore, we demonstrate N-methyl-D-aspartate receptor-mediated upregulation of Syt 4 mRNA in a model of excitotoxic striatal lesion induced by unilateral striatal injection of quinolinic acid, associating the upregulation of Syt 4 with mechanisms of excitotoxicity. We propose that pharmacological manipulation of Syt expression in animal models of neurodegeneration should be further explored, as it may help to clarify the role of individual Syt isoforms in the regulation of membrane trafficking in neurodegeneration.
Collapse
Affiliation(s)
- Gordana Glavan
- Medical Faculty, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | | | | |
Collapse
|
37
|
Kögel T, Rudolf R, Hodneland E, Hellwig A, Kuznetsov SA, Seiler F, Söllner TH, Barroso J, Gerdes HH. Distinct Roles of Myosin Va in Membrane Remodeling and Exocytosis of Secretory Granules. Traffic 2010; 11:637-50. [DOI: 10.1111/j.1600-0854.2010.01048.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Sobota JA, Bäck N, Eipper BA, Mains RE. Inhibitors of the V0 subunit of the vacuolar H+-ATPase prevent segregation of lysosomal- and secretory-pathway proteins. J Cell Sci 2009; 122:3542-53. [PMID: 19737820 DOI: 10.1242/jcs.034298] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) establishes pH gradients along secretory and endocytic pathways. Progressive acidification is essential for proteolytic processing of prohormones and aggregation of soluble content proteins. The V-ATPase V(0) subunit is thought to have a separate role in budding and fusion events. Prolonged treatment of professional secretory cells with selective V-ATPase inhibitors (bafilomycin A1, concanamycin A) was used to investigate its role in secretory-granule biogenesis. As expected, these inhibitors eliminated regulated secretion and blocked prohormone processing. Drug treatment caused the formation of large, mixed organelles, with components of immature granules and lysosomes and some markers of autophagy. Markers of the trans-Golgi network and earlier secretory pathway were unaffected. Ammonium chloride and methylamine treatment blocked acidification to a similar extent as the V-ATPase inhibitors without producing mixed organelles. Newly synthesized granule content proteins appeared in mixed organelles, whereas mature secretory granules were spared. Following concanamycin treatment, selected membrane proteins enter tubulovesicular structures budding into the interior of mixed organelles. shRNA-mediated knockdown of the proteolipid subunit of V(0) also caused vesiculation of immature granules. Thus, V-ATPase has a role in protein sorting in immature granules that is distinct from its role in acidification.
Collapse
Affiliation(s)
- Jacqueline A Sobota
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Exocrine, endocrine, and neuroendocrine cells store hormones and neuropeptides in secretory granules (SGs), which undergo regulated exocytosis in response to an appropriate stimulus. These cargo proteins are sorted at the trans-Golgi network into forming immature secretory granules (ISGs). ISGs undergo maturation while they are transported to and within the F-actin-rich cortex. This process includes homotypic fusion of ISGs, acidification of their lumen, processing, and aggregation of cargo proteins as well as removal of excess membrane and missorted cargo. The resulting mature secretory granules (MSGs) are stored in the F-actin-rich cell cortex, perhaps as segregated pools exhibiting specific responses to stimuli for regulated exocytosis. During the last decade our understanding of the maturation of ISGs advanced substantially. The use of biochemical approaches led to the identification of membrane molecules mechanistically involved in this process. Furthermore, live cell imaging in combination with fluorescently tagged marker proteins of SGs provided insights into the dynamics of maturing ISGs, and the functional implications of cytoskeletal elements and motor proteins.
Collapse
|
40
|
Biogenesis of Dense-Core Secretory Granules. TRAFFICKING INSIDE CELLS 2009. [PMCID: PMC7122546 DOI: 10.1007/978-0-387-93877-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dense core granules (DCGs) are vesicular organelles derived from outbound traffic through the eukaryotic secretory pathway. As DCGs are formed, the secretory pathway can also give rise to other types of vesicles, such as those bound for endosomes, lysosomes, and the cell surface. DCGs differ from these other vesicular carriers in both content and function, storing highly concentrated cores’ of condensed cargo in vesicles that are stably maintained within the cell until a specific extracellular stimulus causes their fusion with the plasma membrane. These unique features are imparted by the activities of membrane and lumenal proteins that are specifically delivered to the vesicles during synthesis. This chapter will describe the DCG biogenesis pathway, beginning with the sorting of DCG proteins from proteins that are destined for other types of vesicle carriers. In the trans-Golgi network (TGN), sorting occurs as DCG proteins aggregate, causing physical separation from non-DCG proteins. Recent work addresses the nature of interactions that produce these aggregates, as well as potentially important interactions with membranes and membrane proteins. DCG proteins are released from the TGN in vesicles called immature secretory granules (ISGs). The mechanism of ISG formation is largely unclear but is not believed to rely on the assembly of vesicle coats like those observed in other secretory pathways. The required cytosolic factors are now beginning to be identified using in vitro systems with purified cellular components. ISG transformation into a mature fusion-competent, stimulus-dependent DCG occurs as endoproteolytic processing of many DCG proteins causes continued condensation of the lumenal contents. At the same time, proteins that fail to be incorporated into the condensing core are removed by a coat-mediated budding mechanism, which also serves to remove excess membrane and membrane proteins from the maturing vesicle. This chapter will summarize the work leading to our current view of granule synthesis, and will discuss questions that need to be addressed in order to gain a more complete understanding of the pathway.
Collapse
|
41
|
Lui-Roberts WW, Ferraro F, Nightingale TD, Cutler DF. Aftiphilin and gamma-synergin are required for secretagogue sensitivity of Weibel-Palade bodies in endothelial cells. Mol Biol Cell 2008; 19:5072-81. [PMID: 18815278 PMCID: PMC2592662 DOI: 10.1091/mbc.e08-03-0301] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 09/02/2008] [Accepted: 09/16/2008] [Indexed: 12/27/2022] Open
Abstract
Formation of secretory organelles requires the coupling of cargo selection to targeting into the correct exocytic pathway. Although the assembly of regulated secretory granules is driven in part by selective aggregation and retention of content, we recently reported that adaptor protein-1 (AP-1) recruitment of clathrin is essential to the initial formation of Weibel-Palade bodies (WPBs) at the trans-Golgi network. A selective co-aggregation process might include recruitment of components required for targeting to the regulated secretory pathway. However, we find that acquisition of the regulated secretory phenotype by WPBs in endothelial cells is coupled to but can be separated from formation of the distinctive granule core by ablation of the AP-1 effectors aftiphilin and gamma-synergin. Their depletion by small interfering RNA leads to WPBs that fail to respond to secretagogue and release their content in an unregulated manner. We find that these non-responsive WPBs have density, markers of maturation, and highly multimerized von Willebrand factor similar to those of wild-type granules. Thus, by also recruiting aftiphilin/gamma-synergin in addition to clathrin, AP-1 coordinates formation of WPBs with their acquisition of a regulated secretory phenotype.
Collapse
Affiliation(s)
- Winnie W.Y. Lui-Roberts
- MRC Laboratory of Molecular Cell Biology, Cell Biology Unit and Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Francesco Ferraro
- MRC Laboratory of Molecular Cell Biology, Cell Biology Unit and Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Thomas D. Nightingale
- MRC Laboratory of Molecular Cell Biology, Cell Biology Unit and Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Daniel F. Cutler
- MRC Laboratory of Molecular Cell Biology, Cell Biology Unit and Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
42
|
Park JJ, Koshimizu H, Loh YP. Biogenesis and Transport of Secretory Granules to Release Site in Neuroendocrine Cells. J Mol Neurosci 2008; 37:151-9. [DOI: 10.1007/s12031-008-9098-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 05/06/2008] [Indexed: 11/29/2022]
|
43
|
Morvan J, Tooze SA. Discovery and progress in our understanding of the regulated secretory pathway in neuroendocrine cells. Histochem Cell Biol 2008; 129:243-52. [PMID: 18197413 PMCID: PMC2248607 DOI: 10.1007/s00418-008-0377-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2008] [Indexed: 01/24/2023]
Abstract
In this review we start with a historical perspective beginning with the early morphological work done almost 50 years ago. The importance of these pioneering studies is underscored by our brief summary of the key questions addressed by subsequent research into the mechanism of secretion. We then highlight important advances in our understanding of the formation and maturation of neuroendocrine secretory granules, first using in vitro reconstitution systems, then most recently biochemical approaches, and finally genetic manipulations in vitro and in vivo.
Collapse
Affiliation(s)
- Joëlle Morvan
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, UK
| | | |
Collapse
|
44
|
Origins of the regulated secretory pathway. THE GOLGI APPARATUS 2008. [PMCID: PMC7121582 DOI: 10.1007/978-3-211-76310-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modes of transport of soluble (or luminal) secretory proteins synthesized in the endoplasmic reticulum (ER) could be divided into two groups. The socalled constitutive secretory pathway (CSP) is common to all eukaryotic cells, constantly delivering constitutive soluble secretory proteins (CSSPs) linked to the rate of protein synthesis but largely independent of external stimuli. In regulated secretion, protein is sorted from the Golgi into storage/secretory granules (SGs) whose contents are released when stimuli trigger their final fusion with the plasma membrane (Hannah et al. 1999).
Collapse
|
45
|
JNK phosphorylates synaptotagmin-4 and enhances Ca2+-evoked release. EMBO J 2007; 27:76-87. [PMID: 18046461 DOI: 10.1038/sj.emboj.7601935] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 11/06/2007] [Indexed: 11/08/2022] Open
Abstract
Ca2+ influx induced by membrane depolarization triggers the exocytosis of secretory vesicles in various cell types such as endocrine cells and neurons. Peptidyl growth factors enhance Ca2+-evoked release, an effect that may underlie important adaptive responses such as the long-term potentiation of synaptic transmission induced by growth factors. Here, we show that activation of the c-Jun N-terminal kinase (JNK) plays an essential role in nerve growth factor (NGF) enhancement of Ca2+-evoked release in PC12 neuroendocrine cells. Moreover, JNK associated with phosphorylated synaptotagmin-4 (Syt 4), a key mediator of NGF enhancement of Ca2+-evoked release in this system. NGF treatment led to phosphorylation of endogenous Syt 4 at Ser135 and translocation of Syt 4 from immature to mature secretory vesicles in a JNK-dependent manner. Furthermore, mutation of Ser135 abrogated enhancement of Ca2+-evoked release by Syt 4. These results provide a molecular basis for the effect of growth factors on Ca2+-mediated secretion.
Collapse
|
46
|
Ferraro F, Ma XM, Sobota JA, Eipper BA, Mains RE. Kalirin/Trio Rho guanine nucleotide exchange factors regulate a novel step in secretory granule maturation. Mol Biol Cell 2007; 18:4813-25. [PMID: 17881726 PMCID: PMC2096607 DOI: 10.1091/mbc.e07-05-0503] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The molecular mechanisms involved in the maturation of secretory granules, organelles that store hormones and neuropeptides, are poorly understood. As granule content proteins are processed, the composition of granule membranes changes, yielding constitutive-like secretion of immature content proteins and producing secretagogue-responsive mature granules. Constitutive-like secretion was not previously recognized as a process subject to regulation. We show that Kalirin and Trio, homologous Rho guanine nucleotide exchange factors (GEFs), which interact with a secretory granule resident protein, modulate cargo secretion from immature granules. Some of the Kalirin and Trio isoforms expressed in neuroendocrine cells colocalize with immature granules. Overexpression of their N-terminal GEF domain (GEF1) enhances secretion from immature granules, depleting cells of secretory cargo in the absence of secretagogue. This response requires GEF1 activity and is mimicked by Kalirin/Trio substrates Rac1 and RhoG. Accordingly, selective pharmacological inhibition of endogenous GEF1 activity decreases secretagogue-independent release of hormone precursors, accumulating product peptide in mature secretory granules. Kalirin/Trio modulation of cargo secretion from immature granules provides secretory cells with an extra layer of control over the sets of peptides released. Control of this step enhances the range of physiological responses that can be elicited, whereas lack of control could have pathological consequences.
Collapse
Affiliation(s)
- Francesco Ferraro
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030-3401
| | - Xin-Ming Ma
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030-3401
| | - Jacqueline A. Sobota
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030-3401
| | - Betty A. Eipper
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030-3401
| | - Richard E. Mains
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030-3401
| |
Collapse
|
47
|
Zenner HL, Collinson LM, Michaux G, Cutler DF. High-pressure freezing provides insights into Weibel-Palade body biogenesis. J Cell Sci 2007; 120:2117-25. [PMID: 17535847 DOI: 10.1242/jcs.007781] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Weibel-Palade bodies (WPBs) of endothelial cells play an important role in haemostasis and the initiation of inflammation, yet their biogenesis is poorly understood. Tubulation of their major content protein, von Willebrand factor (VWF), is crucial to WPB function, and so we investigated further the relationship between VWF tubule formation and WPB formation in human umbilical vein endothelial cells (HUVECs). By using high-pressure freezing and freeze substitution before electron microscopy, we visualised VWF tubules in the trans-Golgi network (TGN), as well as VWF subunits in vesicular structures. Tubules were also seen in WPBs that were connected to the TGN by membranous stalks. Tubules are disorganised in the immature WPBs but during maturation we found a dramatic increase in the spatial organisation of the tubules and in organelle electron density. We also found coated budding profiles suggestive of the removal of missorted material after initial formation of these granules. Finally, we discovered that these large, seemingly rigid, organelles flex at hinge points and that the VWF tubules are interrupted at these hinges, facilitating organelle movement around the cell. The use of high-pressure freezing was vital in this study and it suggests that this technique might prove essential to any detailed characterisation of organelle biogenesis.
Collapse
Affiliation(s)
- Helen L Zenner
- MRC Laboratory of Molecular Cell Biology, Cell Biology Unit, and Department of Biochemistry and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | |
Collapse
|
48
|
Vias M, Burtt G, Culig Z, Veerakumarasivam A, Neal DE, Mills IG. A role for neurotensin in bicalutamide resistant prostate cancer cells. Prostate 2007; 67:190-202. [PMID: 17044078 DOI: 10.1002/pros.20518] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Anti-androgens are administered as a principal treatment for prostate cancer. Aggressive hormone refractory disease is characterized in some cases by the development of a neuroendocrine phenotype. However little attention has been paid to resistance pathways selected for by long-term treatment with non-steroidal anti-androgens. METHODS Using a resistant sub-line, LNCaP-Bic, we performed a comparative gene expression profiling using cDNA microarrays and target validation by qRT-PCR. Targets were then explored using cell proliferation, cell cycle analysis and in vitro invasion assays using siRNA technology. RESULTS Neurotensin/Neuromedin N (NTS) was upregulated in the LNCaP-Bic line at both the transcript and protein level. The resistant line was found to have an increased proliferation rate, more rapid cell cycle progression and increased invasiveness through Matrigel. Each phenotypic difference could be reduced using siRNA knockdown of NT. CONCLUSION Increased expression of NT in bicalutamide resistant prostate cancer cells induces cell proliferation and invasion suggesting that this peptide may contribute to the development of bicalutamide resistant prostate cancer.
Collapse
Affiliation(s)
- Maria Vias
- Department of Oncology, Hutchison/MRC Research Centre, CRUK Uro-Oncology Group, University of Cambridge, Hills Road, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
49
|
Haberman Y, Ziv I, Gorzalczany Y, Hirschberg K, Mittleman L, Fukuda M, Sagi-Eisenberg R. Synaptotagmin (Syt) IX is an essential determinant for protein sorting to secretory granules in mast cells. Blood 2006; 109:3385-92. [PMID: 17164344 DOI: 10.1182/blood-2006-07-033126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The secretory granules (SGs) of secretory cells of the hematopoietic lineage, such as the mast cells, are lysosome-related organelles whose membrane proteins travel through the plasma membrane and the endocytic system. Therefore, a mechanism must exist to prevent proteins destined to recycling or to the trans-Golgi network (TGN) from reaching the SGs. We now show that synaptotagmin (Syt) IX, a Syt homologue that is required for recycling from the endocytic recycling compartment (ERC) in rat basophilic leukemia (RBL-2H3) cultured mast cells, is involved in segregating recycling proteins from the SGs. By using as a marker the recycling protein TGN38, which cycles between the TGN, plasma membrane, and the ERC, we show that knock-down of Syt IX results in mistargeting of HA-tagged TGN38 to the SGs. We further demonstrate that Syt IX binds directly the small GTPase ARF1 and associates with the clathrin adaptor complex AP-1. These results therefore implicate Syt IX as an essential factor for the correct sorting of SGs proteins. Moreover, they place Syt IX as part of the machinery that is involved in the formation of transport carriers that mediate SGs protein sorting.
Collapse
Affiliation(s)
- Yael Haberman
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
50
|
Bonanomi D, Benfenati F, Valtorta F. Protein sorting in the synaptic vesicle life cycle. Prog Neurobiol 2006; 80:177-217. [PMID: 17074429 DOI: 10.1016/j.pneurobio.2006.09.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 01/06/2023]
Abstract
At early stages of differentiation neurons already contain many of the components necessary for synaptic transmission. However, in order to establish fully functional synapses, both the pre- and postsynaptic partners must undergo a process of maturation. At the presynaptic level, synaptic vesicles (SVs) must acquire the highly specialized complement of proteins, which make them competent for efficient neurotransmitter release. Although several of these proteins have been characterized and linked to precise functions in the regulation of the SV life cycle, a systematic and unifying view of the mechanisms underlying selective protein sorting during SV biogenesis remains elusive. Since SV components do not share common sorting motifs, their targeting to SVs likely relies on a complex network of protein-protein and protein-lipid interactions, as well as on post-translational modifications. Pleiomorphic carriers containing SV proteins travel and recycle along the axon in developing neurons. Nevertheless, SV components appear to eventually undertake separate trafficking routes including recycling through the neuronal endomembrane system and the plasmalemma. Importantly, SV biogenesis does not appear to be limited to a precise stage during neuronal differentiation, but it rather continues throughout the entire neuronal lifespan and within synapses. At nerve terminals, remodeling of the SV membrane results from the use of alternative exocytotic pathways and possible passage through as yet poorly characterized vacuolar/endosomal compartments. As a result of both processes, SVs with heterogeneous molecular make-up, and hence displaying variable competence for exocytosis, may be generated and coexist within the same nerve terminal.
Collapse
Affiliation(s)
- Dario Bonanomi
- Department of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | | | | |
Collapse
|