1
|
Tetenborg S, Shihabeddin E, Kumar EOAM, Sigulinsky CL, Dedek K, Lin YP, Echeverry FA, Hoff H, Pereda AE, Jones BW, Ribelayga CP, Ebnet K, Matsuura K, O'Brien J. Uncovering the electrical synapse proteome in retinal neurons via in vivo proximity labeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.26.625481. [PMID: 39651118 PMCID: PMC11623651 DOI: 10.1101/2024.11.26.625481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Electrical synapses containing Connexin 36 (Cx36) represent the main means for direct electrical communication among neurons in the mammalian nervous system. However, little is known about the protein complexes that constitute these synapses. In the present study, we applied different BioID strategies to screen the interactomes of Connexin 36 and its zebrafish orthologue Cx35b in retinal neurons. For in vivo proximity labeling in mice, we took advantage of the Cx36-EGFP strain and expressed a GFP-nanobody-TurboID fusion construct selectively in AII amacrine cells. For in vivo BioID in zebrafish, we generated a transgenic line expressing a Cx35b-TurboID fusion under control of the Cx35b promoter. Both strategies allowed us to capture a plethora of molecules that were associated with electrical synapses and showed a high degree of evolutionary conservation in the proteomes of both species. Besides known interactors of Cx36 such as ZO-1 and ZO-2 we have identified more than 50 new proteins, such as scaffold proteins, adhesion molecules and regulators of the cytoskeleton. Moreover, we determined the subcellular localization of these proteins in mouse retina and tested potential binding interactions with Cx36. Amongst these new interactors, we identified signal induced proliferation associated 1 like 3 (Sipa1l3), a protein that has been implicated in cell junction formation and cell polarity, as a new scaffold of electrical synapses. Interestingly, Sipa1l3 was able to interact with ZO-1, ZO-2 and Cx36, suggesting a pivotal role in electrical synapse function. In summary, our study provides the first detailed view of the electrical synapse proteome in retinal neurons, which is likely to apply to electrical synapses elsewhere.
Collapse
|
2
|
Nath A, Grimes WN, Diamond JS. Layers of inhibitory networks shape receptive field properties of AII amacrine cells. Cell Rep 2023; 42:113390. [PMID: 37930888 PMCID: PMC10769003 DOI: 10.1016/j.celrep.2023.113390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/10/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
In the retina, rod and cone pathways mediate visual signals over a billion-fold range in luminance. AII ("A-two") amacrine cells (ACs) receive signals from both pathways via different bipolar cells, enabling AIIs to operate at night and during the day. Previous work has examined luminance-dependent changes in AII gap junction connectivity, but less is known about how surrounding circuitry shapes AII receptive fields across light levels. Here, we report that moderate contrast stimuli elicit surround inhibition in AIIs under all but the dimmest visual conditions, due to actions of horizontal cells and at least two ACs that inhibit presynaptic bipolar cells. Under photopic (daylight) conditions, surround inhibition transforms AII response kinetics, which are inherited by downstream ganglion cells. Ablating neuronal nitric oxide synthase type-1 (nNOS-1) ACs removes AII surround inhibition under mesopic (dusk/dawn), but not photopic, conditions. Our findings demonstrate how multiple layers of neural circuitry interact to encode signals across a wide physiological range.
Collapse
Affiliation(s)
- Amurta Nath
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - William N Grimes
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey S Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Keeley PW, Patel SS, Reese BE. Cell numbers, cell ratios, and developmental plasticity in the rod pathway of the mouse retina. J Anat 2023; 243:204-222. [PMID: 35292986 PMCID: PMC10335380 DOI: 10.1111/joa.13653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
The precise specification of cellular fate is thought to ensure the production of the correct number of neurons within a population. Programmed cell death may be an additional mechanism controlling cell number, believed to refine the proper ratio of pre- to post-synaptic neurons for a given species. Here, we consider the size of three different neuronal populations in the rod pathway of the mouse retina: rod photoreceptors, rod bipolar cells, and AII amacrine cells. Across a collection of 28 different strains of mice, large variation in the numbers of all three cell types is present. The variation in their numbers is not correlated, so that the ratio of rods to rod bipolar cells, as well as rod bipolar cells to AII amacrine cells, varies as well. Establishing connectivity between such variable pre- and post-synaptic populations relies upon plasticity that modulates process outgrowth and morphological differentiation, which we explore experimentally for both rod bipolar and AII amacrine cells in a mouse retina with elevated numbers of each cell type. While both rod bipolar dendritic and axonal arbors, along with AII lobular arbors, modulate their areal size in relation to local homotypic cell densities, the dendritic appendages of the AII amacrine cells do not. Rather, these processes exhibit a different form of plasticity, regulating the branching density of their overlapping arbors. Each form of plasticity should ensure uniformity in retinal coverage in the presence of the independent specification of afferent and target cell number.
Collapse
Affiliation(s)
- Patrick W. Keeley
- Neuroscience Research InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Shivam S. Patel
- Neuroscience Research InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Benjamin E. Reese
- Neuroscience Research InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
- Department of Psychological & Brain SciencesUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| |
Collapse
|
4
|
Hilgen G. Connexin45 colocalization patterns in the plexiform layers of the developing mouse retina. J Anat 2023; 243:258-264. [PMID: 35315057 PMCID: PMC10335376 DOI: 10.1111/joa.13651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Chemical and electrical synapses (gap junctions) are widely prevalent in the nervous system. Gap junctions emerge long before chemical synapses, allowing communication between developing cells, and are thought to be involved in establishing neural circuits. Mounting evidence indicates that these two modalities of synaptic transmission closely interact during retinal development and that such interactions play a critical role in synaptogenesis and circuit formation during the perinatal period. In vertebrates, gap junctions consist of two connexins which in turn are made up of six connexins (Cx). To what extent Cx45 and Cx36, the most abundant connexins in the retina, are involved in synaptogenesis and retinal circuit formation is not known. The here presented immunohistochemical study used stainings of Cx45, Cx36 and Synaptophysin in the outer and inner (IPL) plexiform layers of postnatal day 8-16 mice retinas to shed light on the role of connexins during critical neuronal developmental processes. Cx45 and Cx36 expressions in both plexiform layers of the mouse retina increased till eye opening and dropped afterwards. The percentage of heterotypic Cx45/Cx36 gap junctions is also higher before the critical event of eye opening. Finally, Cx45 is closely located and/or colocalized with Synaptophysin also shortly before eye opening in the IPL of the mouse retina. All findings point towards a pivotal role for Cx45 during postnatal synaptogenesis in the mouse retina. However, a more functional study is needed to determine the role of Cx45 during synaptogenesis and circuit formation.
Collapse
Affiliation(s)
- Gerrit Hilgen
- Health & Life Sciences, Applied SciencesNorthumbria UniversityNewcastle upon TyneUK
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
5
|
Lee YH, Kothmann WW, Lin YP, Chuang AZ, Diamond JS, O'Brien J. Sources of Calcium at Connexin 36 Gap Junctions in the Retina. eNeuro 2023; 10:ENEURO.0493-22.2023. [PMID: 37527925 PMCID: PMC10450809 DOI: 10.1523/eneuro.0493-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
Synaptic plasticity is a fundamental feature of the CNS that controls the magnitude of signal transmission between communicating cells. Many electrical synapses exhibit substantial plasticity that modulates the degree of coupling within groups of neurons, alters the fidelity of signal transmission, or even reconfigures functional circuits. In several known examples, such plasticity depends on calcium and is associated with neuronal activity. Calcium-driven signaling is known to promote potentiation of electrical synapses in fish Mauthner cells, mammalian retinal AII amacrine cells, and inferior olive neurons, and to promote depression in thalamic reticular neurons. To measure local calcium dynamics in situ, we developed a transgenic mouse expressing a GCaMP calcium biosensor fused to Connexin 36 (Cx36) at electrical synapses. We examined the sources of calcium for activity-dependent plasticity in retina slices using confocal or Super-Resolution Radial Fluctuations imaging. More than half of Cx36-GCaMP gap junctions responded to puffs of glutamate with transient increases in fluorescence. The responses were strongly dependent on NMDA receptors, in keeping with known activity-dependent signaling in some amacrine cells. We also found that some responses depended on the activity of voltage-gated calcium channels, representing a previously unrecognized source of calcium to control retinal electrical synaptic plasticity. The high prevalence of calcium signals at electrical synapses in response to glutamate application indicates that a large fraction of electrical synapses has the potential to be regulated by neuronal activity. This provides a means to tune circuit connectivity dynamically based on local activity.
Collapse
Affiliation(s)
- Yuan-Hao Lee
- Richard S. Ruiz, Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - W Wade Kothmann
- Synaptic Physiology Section, National Institute of Neurological Diseases and Stroke, Bethesda, Maryland 20892
| | - Ya-Ping Lin
- Richard S. Ruiz, Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Alice Z Chuang
- Richard S. Ruiz, Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Jeffrey S Diamond
- Synaptic Physiology Section, National Institute of Neurological Diseases and Stroke, Bethesda, Maryland 20892
| | - John O'Brien
- Richard S. Ruiz, Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030
| |
Collapse
|
6
|
Kovács-Öller T, Szarka G, Hoffmann G, Péntek L, Valentin G, Ross L, Völgyi B. Extrinsic and Intrinsic Factors Determine Expression Levels of Gap Junction-Forming Connexins in the Mammalian Retina. Biomolecules 2023; 13:1119. [PMID: 37509155 PMCID: PMC10377540 DOI: 10.3390/biom13071119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Gap junctions (GJs) are not static bridges; instead, GJs as well as the molecular building block connexin (Cx) proteins undergo major expression changes in the degenerating retinal tissue. Various progressive diseases, including retinitis pigmentosa, glaucoma, age-related retinal degeneration, etc., affect neurons of the retina and thus their neuronal connections endure irreversible changes as well. Although Cx expression changes might be the hallmarks of tissue deterioration, GJs are not static bridges and as such they undergo adaptive changes even in healthy tissue to respond to the ever-changing environment. It is, therefore, imperative to determine these latter adaptive changes in GJ functionality as well as in their morphology and Cx makeup to identify and distinguish them from alterations following tissue deterioration. In this review, we summarize GJ alterations that take place in healthy retinal tissue and occur on three different time scales: throughout the entire lifespan, during daily changes and as a result of quick changes of light adaptation.
Collapse
Affiliation(s)
- Tamás Kovács-Öller
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, 7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Gergely Szarka
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, 7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Gyula Hoffmann
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, 7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Loretta Péntek
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
| | - Gréta Valentin
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
| | - Liliana Ross
- Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Béla Völgyi
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, 7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
7
|
Huang W, Xu Q, Liu F, Su J, Xiao D, Tang L, Hao ZZ, Liu R, Xiang K, Bi Y, Miao Z, Liu X, Liu Y, Liu S. Identification of TPBG-Expressing Amacrine Cells in DAT-tdTomato Mouse. Invest Ophthalmol Vis Sci 2022; 63:13. [PMID: 35551574 PMCID: PMC9123489 DOI: 10.1167/iovs.63.5.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose Neurons are the bricks of the neuronal system and experimental access to certain neuron subtypes will be of great help to decipher neuronal circuits. Here, we identified trophoblast glycoprotein (TPBG)-expressing GABAergic amacrine cells (ACs) that were selectively labeled in DAT-tdTomato transgenic mice. Methods Retina and brain sections were prepared for immunostaining with antibodies against various biomarkers. Patch-sequencing was performed to obtain the transcriptomes of tdTomato-positive cells in DAT-tdTomato mice. Whole-cell recordings were conducted to identify responses to light stimulation. Results Tyrosine hydroxylase immunoreactive cells were colocalized with tdTomato-positive cells in substantia nigra pars compacta, but not in the retina. Transcriptomes collected from tdTomato-positive cells in retinas via Patch-sequencing exhibited the expression of marker genes of ACs (Pax6 and Slc32a1) and marker genes of GABAergic neurons (Gad1, Gad2, and Slc6a1). Immunostaining with antibodies against relevant proteins (GAD67, GAD65, and GABA) also confirmed transcriptomic results. Furthermore, tdTomato-positive cells in retinas selectively expressed Tpbg, a marker gene for distinct clusters molecularly defined, which was proved with TPBG immunoreactivity in fluorescently labeled cells. Finally, tdTomato-positive cells recorded showed ON-OFF responses to light stimulation. Conclusions Ectopic expression occurs in the retina but not in the substantia nigra pars compacta in the DAT-tdTomato mouse, and fluorescently labeled cells in the retina are TPBG-expressing GABAergic ACs. This type of transgenic mice has been proved as an ideal tool to achieve efficient labeling of a distinct subset of ACs that selectively express Tpbg.
Collapse
Affiliation(s)
- Wanjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qiang Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Feng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dongchang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lei Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ruifeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kangjian Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yalan Bi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, United Kingdom
| | - Zhichao Miao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, United Kingdom
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
8
|
Ishibashi M, Keung J, Morgans CW, Aicher SA, Carroll JR, Singer JH, Jia L, Li W, Fahrenfort I, Ribelayga CP, Massey SC. Analysis of rod/cone gap junctions from the reconstruction of mouse photoreceptor terminals. eLife 2022; 11:73039. [PMID: 35471186 PMCID: PMC9170248 DOI: 10.7554/elife.73039] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Electrical coupling, mediated by gap junctions, contributes to signal averaging, synchronization, and noise reduction in neuronal circuits. In addition, gap junctions may also provide alternative neuronal pathways. However, because they are small and especially difficult to image, gap junctions are often ignored in large-scale 3D reconstructions. Here, we reconstruct gap junctions between photoreceptors in the mouse retina using serial blockface-scanning electron microscopy, focused ion beam-scanning electron microscopy, and confocal microscopy for the gap junction protein Cx36. An exuberant spray of fine telodendria extends from each cone pedicle (including blue cones) to contact 40-50 nearby rod spherules at sites of Cx36 labeling, with approximately 50 Cx36 clusters per cone pedicle and 2-3 per rod spherule. We were unable to detect rod/rod or cone/cone coupling. Thus, rod/cone coupling accounts for nearly all gap junctions between photoreceptors. We estimate a mean of 86 Cx36 channels per rod/cone pair, which may provide a maximum conductance of ~1200 pS, if all gap junction channels were open. This is comparable to the maximum conductance previously measured between rod/cone pairs in the presence of a dopamine antagonist to activate Cx36, suggesting that the open probability of gap junction channels can approach 100% under certain conditions.
Collapse
Affiliation(s)
- Munenori Ishibashi
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Joyce Keung
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, United States
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, United States
| | - James R Carroll
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, United States
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, College Park, United States
| | - Li Jia
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Iris Fahrenfort
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Christophe P Ribelayga
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Stephen C Massey
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| |
Collapse
|
9
|
van der Sande E, Haarman AEG, Quint WH, Tadema KCD, Meester-Smoor MA, Kamermans M, De Zeeuw CI, Klaver CCW, Winkelman BHJ, Iglesias AI. The Role of GJD2(Cx36) in Refractive Error Development. Invest Ophthalmol Vis Sci 2022; 63:5. [PMID: 35262731 PMCID: PMC8934558 DOI: 10.1167/iovs.63.3.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Refractive errors are common eye disorders characterized by a mismatch between the focal power of the eye and its axial length. An increased axial length is a common cause of the refractive error myopia (nearsightedness). The substantial increase in myopia prevalence over the last decades has raised public health concerns because myopia can lead to severe ocular complications later in life. Genomewide association studies (GWAS) have made considerable contributions to the understanding of the genetic architecture of refractive errors. Among the hundreds of genetic variants identified, common variants near the gap junction delta-2 (GJD2) gene have consistently been reported as one of the top hits. GJD2 encodes the connexin 36 (Cx36) protein, which forms gap junction channels and is highly expressed in the neural retina. In this review, we provide current evidence that links GJD2(Cx36) to the development of myopia. We summarize the gap junctional communication in the eye and the specific role of GJD2(Cx36) in retinal processing of visual signals. Finally, we discuss the pathways involving dopamine and gap junction phosphorylation and coupling as potential mechanisms that may explain the role of GJD2(Cx36) in refractive error development.
Collapse
Affiliation(s)
- Emilie van der Sande
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
| | - Annechien E. G. Haarman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wim H. Quint
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kirke C. D. Tadema
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Magda A. Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maarten Kamermans
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Biomedical Physics and Biomedical Photonics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Beerend H. J. Winkelman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adriana I. Iglesias
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Talukdar S, Emdad L, Das SK, Fisher PB. GAP junctions: multifaceted regulators of neuronal differentiation. Tissue Barriers 2021; 10:1982349. [PMID: 34651545 DOI: 10.1080/21688370.2021.1982349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Gap junctions are intercellular membrane channels consisting of connexin proteins, which contribute to direct cytoplasmic exchange of small molecules, substrates and metabolites between adjacent cells. These channels play important roles in neuronal differentiation, maintenance, survival and function. Gap junctions regulate differentiation of neurons from embryonic, neural and induced pluripotent stem cells. In addition, they control transdifferentiation of neurons from mesenchymal stem cells. The expression and levels of several connexins correlate with cell cycle changes and different stages of neurogenesis. Connexins such as Cx36, Cx45, and Cx26, play a crucial role in neuronal function. Several connexin knockout mice display lethal or severely impaired phenotypes. Aberrations in connexin expression is frequently associated with various neurodegenerative disorders. Gap junctions also act as promising therapeutic targets for neuronal regenerative medicine, because of their role in neural stem cell integration, injury and remyelination.
Collapse
Affiliation(s)
- Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.,Vcu Institute of Molecular Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.,Vcu Institute of Molecular Medicine, Richmond, VA, United States.,Vcu Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.,Vcu Institute of Molecular Medicine, Richmond, VA, United States.,Vcu Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.,Vcu Institute of Molecular Medicine, Richmond, VA, United States.,Vcu Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| |
Collapse
|
11
|
Fusz K, Kovács-Öller T, Kóbor P, Szabó-Meleg E, Völgyi B, Buzás P, Telkes I. Regional Variation of Gap Junctional Connections in the Mammalian Inner Retina. Cells 2021; 10:2396. [PMID: 34572046 PMCID: PMC8466939 DOI: 10.3390/cells10092396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 11/24/2022] Open
Abstract
The retinas of many species show regional specialisations that are evident in the differences in the processing of visual input from different parts of the visual field. Regional specialisation is thought to reflect an adaptation to the natural visual environment, optical constraints, and lifestyle of the species. Yet, little is known about regional differences in synaptic circuitry. Here, we were interested in the topographical distribution of connexin-36 (Cx36), the major constituent of electrical synapses in the retina. We compared the retinas of mice, rats, and cats to include species with different patterns of regional specialisations in the analysis. First, we used the density of Prox1-immunoreactive amacrine cells as a marker of any regional specialisation, with higher cell density signifying more central regions. Double-labelling experiments showed that Prox1 is expressed in AII amacrine cells in all three species. Interestingly, large Cx36 plaques were attached to about 8-10% of Prox1-positive amacrine cell somata, suggesting the strong electrical coupling of pairs or small clusters of cell bodies. When analysing the regional changes in the volumetric density of Cx36-immunoreactive plaques, we found a tight correlation with the density of Prox1-expressing amacrine cells in the ON, but not in the OFF sublamina in all three species. The results suggest that the relative contribution of electrical synapses to the ON- and OFF-pathways of the retina changes with retinal location, which may contribute to functional ON/OFF asymmetries across the visual field.
Collapse
Affiliation(s)
- Katalin Fusz
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.F.); (P.K.); (I.T.)
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Tamás Kovács-Öller
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE NAP-2 Retinal Electrical Synapses Research Group, 7624 Pécs, Hungary
| | - Péter Kóbor
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.F.); (P.K.); (I.T.)
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Edina Szabó-Meleg
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Institute of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Béla Völgyi
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE NAP-2 Retinal Electrical Synapses Research Group, 7624 Pécs, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary
| | - Péter Buzás
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.F.); (P.K.); (I.T.)
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Ildikó Telkes
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.F.); (P.K.); (I.T.)
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
12
|
Haarman AEG, Enthoven CA, Tedja MS, Polling JR, Tideman JWL, Keunen JEE, Boon CJF, Felix JF, Raat H, Geerards AJM, Luyten GPM, van Rijn GA, Verhoeven VJM, Klaver CCW. Phenotypic Consequences of the GJD2 Risk Genotype in Myopia Development. Invest Ophthalmol Vis Sci 2021; 62:16. [PMID: 34406332 PMCID: PMC8375003 DOI: 10.1167/iovs.62.10.16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose To study the relatively high effect of the refractive error gene GJD2 in human myopia, and to assess its relationship with refractive error, ocular biometry and lifestyle in various age groups. Methods The population-based Rotterdam Study (RS), high myopia case-control study MYopia STudy, and the birth-cohort study Generation R were included in this study. Spherical equivalent (SER), axial length (AL), axial length/corneal radius (AL/CR), vitreous depth (VD), and anterior chamber depth (ACD) were measured using standard ophthalmologic procedures. Biometric measurements were compared between GJD2 (rs524952) genotype groups; education and environmental risk score (ERS) were calculated to estimate gene-environment interaction effects, using the Synergy index (SI). Results RS adults carrying two risk alleles had a lower SER and longer AL, ACD and VD (AA versus TT, 0.23D vs. 0.70D; 23.79 mm vs. 23.52 mm; 2.72 mm vs. 2.65 mm; 16.12 mm vs. 15.87 mm; all P < 0.001). Children carrying two risk alleles had larger AL/CR at ages 6 and 9 years (2.88 vs. 2.87 and 3.00 vs. 2.96; all P < 0.001). Education and ERS both negatively influenced myopia and the biometric outcomes, but gene-environment interactions did not reach statistical significance (SI 1.25 [95% confidence interval {CI}, 0.85-1.85] and 1.17 [95% CI, 0.55-2.50] in adults and children). Conclusions The elongation of the eye caused by the GJD2 risk genotype follows a dose-response pattern already visible at the age of 6 years. These early effects are an example of how a common myopia gene may drive myopia.
Collapse
Affiliation(s)
- Annechien E G Haarman
- Erasmus Medical Center, Department of Ophthalmology, Rotterdam, The Netherlands
- Erasmus Medical Center, Department of Epidemiology, Rotterdam, The Netherlands
| | - Clair A Enthoven
- Erasmus Medical Center, Department of Ophthalmology, Rotterdam, The Netherlands
- Erasmus Medical Center, Department of Epidemiology, Rotterdam, The Netherlands
- Erasmus Medical Center, the Generation R Study Group, Rotterdam, The Netherlands
| | - Milly S Tedja
- Erasmus Medical Center, Department of Ophthalmology, Rotterdam, The Netherlands
- Erasmus Medical Center, Department of Epidemiology, Rotterdam, The Netherlands
| | - Jan R Polling
- Erasmus Medical Center, Department of Ophthalmology, Rotterdam, The Netherlands
- Department of Optometry and Orthoptics, Hogeschool Utrecht, University of Applied Science, Utrecht, The Netherlands
| | - J Willem L Tideman
- Erasmus Medical Center, Department of Ophthalmology, Rotterdam, The Netherlands
| | - Jan E E Keunen
- University Medical Center St Radboud, Department of Ophthalmology, Nijmegen, The Netherlands
| | - Camiel J F Boon
- Leiden University Medical Center, Department of Ophthalmology, The Netherlands
- Amsterdam University Medical Center, Department of Ophthalmology, University of Amsterdam, The Netherlands
| | - Janine F Felix
- Erasmus Medical Center, Department of Epidemiology, Rotterdam, The Netherlands
- Erasmus Medical Center, the Generation R Study Group, Rotterdam, The Netherlands
- Erasmus Medical Center, Department of Pediatrics, Rotterdam, The Netherlands
| | - H Raat
- Erasmus University Medical Centre, Department of Public Health, Rotterdam, The Netherlands
| | | | | | - Gwyneth A van Rijn
- Leiden University Medical Center, Department of Ophthalmology, The Netherlands
| | - Virginie J M Verhoeven
- Erasmus Medical Center, Department of Ophthalmology, Rotterdam, The Netherlands
- Erasmus Medical Center, Department of Clinical Genetics, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Erasmus Medical Center, Department of Ophthalmology, Rotterdam, The Netherlands
- Erasmus Medical Center, Department of Epidemiology, Rotterdam, The Netherlands
- University Medical Center St Radboud, Department of Ophthalmology, Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| |
Collapse
|
13
|
Chen AM, Azar SS, Harris A, Brecha NC, Pérez de Sevilla Müller L. PTEN Expression Regulates Gap Junction Connectivity in the Retina. Front Neuroanat 2021; 15:629244. [PMID: 34093139 PMCID: PMC8172595 DOI: 10.3389/fnana.2021.629244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Manipulation of the phosphatase and tensin homolog (PTEN) pathway has been suggested as a therapeutic approach to treat or prevent vision loss due to retinal disease. In this study, we investigated the effects of deleting one copy of Pten in a well-characterized class of retinal ganglion cells called α-ganglion cells in the mouse retina. In Pten +/- retinas, α-ganglion cells did not exhibit major changes in their dendritic structure, although most cells developed a few, unusual loop-forming dendrites. By contrast, α-ganglion cells exhibited a significant decrease in heterologous and homologous gap junction mediated cell coupling with other retinal ganglion and amacrine cells. Additionally, the majority of OFF α-ganglion cells (12/18 cells) formed novel coupling to displaced amacrine cells. The number of connexin36 puncta, the predominant connexin that mediates gap junction communication at electrical synapses, was decreased by at least 50% on OFF α-ganglion cells. Reduced and incorrect gap junction connectivity of α-ganglion cells will affect their functional properties and alter visual image processing in the retina. The anomalous connectivity of retinal ganglion cells would potentially limit future therapeutic approaches involving manipulation of the Pten pathway for treating ganglion cell degeneration in diseases like glaucoma, traumatic brain injury, Parkinson's, and Alzheimer's diseases.
Collapse
Affiliation(s)
- Ashley M. Chen
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shaghauyegh S. Azar
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alexander Harris
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nicholas C. Brecha
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California, Los Angeles, Los Angeles, CA, United States
- Stein Eye Institute, David Geffen School of Medicine at Los Angeles, University of California, Los Angeles, Los Angeles, CA, United States
- CURE Digestive Diseases Research Center, David Geffen School of Medicine at Los Angeles, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Administration Greater Los Angeles Health System, Los Angeles, CA, United States
| | - Luis Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine at Los Angeles, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
14
|
Abstract
Our previous research showed that increased phosphorylation of connexin (Cx)36 indicated extended coupling of AII amacrine cells (ACs) in the rod-dominant mouse myopic retina. This research will determine whether phosphorylation at serine 276 of Cx35-containing gap junctions increased in the myopic chicken, whose retina is cone-dominant. Refractive errors and ocular biometric dimensions of 7-days-old chickens were determined following 12 h and 7 days induction of myopia by a −10D lens. The expression pattern and size of Cx35-positive plaques were examined in the early (12 h) and compensated stages (7 days) of lens-induced myopia (LIM). At the same time, phosphorylation at serine 276 (functional assay) of Cx35 in strata 5 (S5) of the inner plexiform layer was investigated. The axial length of the 7 days LIM eyes was significantly longer than that of non-LIM controls (P < 0.05). Anti-phospho-Ser276 (Ser276-P)-labeled plaques were significantly increased in LIM retinas at both 12 h and 7 days. The density of Ser276-P of Cx35 was observed to increase after 12 h LIM. In the meanwhile, the areas of existing Cx35 plaques did not change. As there was more phosphorylation of connexin35 at Ser276 at both the early and late stages (12 h) and 7 days of LIM chicken retinal activity, the coupling with ACs could be increased in myopia development of the cone-dominated chicken retina.
Collapse
|
15
|
Zoidl GR, Spray DC. The Roles of Calmodulin and CaMKII in Cx36 Plasticity. Int J Mol Sci 2021; 22:4473. [PMID: 33922931 PMCID: PMC8123330 DOI: 10.3390/ijms22094473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 01/07/2023] Open
Abstract
Anatomical and electrophysiological evidence that gap junctions and electrical coupling occur between neurons was initially confined to invertebrates and nonmammals and was thought to be a primitive form of synaptic transmission. More recent studies revealed that electrical communication is common in the mammalian central nervous system (CNS), often coexisting with chemical synaptic transmission. The subsequent progress indicated that electrical synapses formed by the gap junction protein connexin-36 (Cx36) and its paralogs in nonmammals constitute vital elements in mammalian and fish synaptic circuitry. They govern the collective activity of ensembles of coupled neurons, and Cx36 gap junctions endow them with enormous adaptive plasticity, like that seen at chemical synapses. Moreover, they orchestrate the synchronized neuronal network activity and rhythmic oscillations that underlie the fundamental integrative processes, such as memory and learning. Here, we review the available mechanistic evidence and models that argue for the essential roles of calcium, calmodulin, and the Ca2+/calmodulin-dependent protein kinase II in integrating calcium signals to modulate the strength of electrical synapses through interactions with the gap junction protein Cx36.
Collapse
Affiliation(s)
- Georg R. Zoidl
- Department of Biology & Center for Vision Research (CVR), York University, Toronto, ON M3J 1P3, Canada
| | - David C. Spray
- Dominick P. Purpura Department of Neuroscience & Department of Medicine (Cardiology), Albert Einstein College of Medicine, New York, NY 10461, USA;
| |
Collapse
|
16
|
González-Casanova J, Schmachtenberg O, Martínez AD, Sanchez HA, Harcha PA, Rojas-Gomez D. An Update on Connexin Gap Junction and Hemichannels in Diabetic Retinopathy. Int J Mol Sci 2021; 22:ijms22063194. [PMID: 33801118 PMCID: PMC8004116 DOI: 10.3390/ijms22063194] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 01/10/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the main causes of vision loss in the working age population. It is characterized by a progressive deterioration of the retinal microvasculature, caused by long-term metabolic alterations inherent to diabetes, leading to a progressive loss of retinal integrity and function. The mammalian retina presents an orderly layered structure that executes initial but complex visual processing and analysis. Gap junction channels (GJC) forming electrical synapses are present in each retinal layer and contribute to the communication between different cell types. In addition, connexin hemichannels (HCs) have emerged as relevant players that influence diverse physiological and pathological processes in the retina. This article highlights the impact of diabetic conditions on GJC and HCs physiology and their involvement in DR pathogenesis. Microvascular damage and concomitant loss of endothelial cells and pericytes are related to alterations in gap junction intercellular communication (GJIC) and decreased connexin 43 (Cx43) expression. On the other hand, it has been shown that the expression and activity of HCs are upregulated in DR, becoming a key element in the establishment of proinflammatory conditions that emerge during hyperglycemia. Hence, novel connexin HCs blockers or drugs to enhance GJIC are promising tools for the development of pharmacological interventions for diabetic retinopathy, and initial in vitro and in vivo studies have shown favorable results in this regard.
Collapse
Affiliation(s)
- Jorge González-Casanova
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile;
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.D.M.); (H.A.S.); (P.A.H.)
| | - Helmuth A. Sanchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.D.M.); (H.A.S.); (P.A.H.)
| | - Paloma A. Harcha
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.D.M.); (H.A.S.); (P.A.H.)
| | - Diana Rojas-Gomez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370146, Chile
- Correspondence: ; Tel.: +56-2-26618559
| |
Collapse
|
17
|
Harrison KR, Chervenak AP, Resnick SM, Reifler AN, Wong KY. Amacrine Cells Forming Gap Junctions With Intrinsically Photosensitive Retinal Ganglion Cells: ipRGC Types, Neuromodulator Contents, and Connexin Isoform. Invest Ophthalmol Vis Sci 2021; 62:10. [PMID: 33410914 PMCID: PMC7804497 DOI: 10.1167/iovs.62.1.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Intrinsically photosensitive retinal ganglion cells (ipRGCs) signal not only centrally to non-image-forming visual centers of the brain but also intraretinally to amacrine interneurons through gap junction electrical coupling, potentially modulating image-forming retinal processing. We aimed to determine (1) which ipRGC types couple with amacrine cells, (2) the neuromodulator contents of ipRGC-coupled amacrine cells, and (3) whether connexin36 (Cx36) contributes to ipRGC-amacrine coupling. Methods Gap junction-permeable Neurobiotin tracer was injected into green fluorescent protein (GFP)-labeled ipRGCs in Opn4Cre/+; Z/EG mice to stain coupled amacrine cells, and immunohistochemistry was performed to reveal the neuromodulator contents of the Neurobiotin-stained amacrine cells. We also created Opn4Cre/+; Cx36flox/flox; Z/EG mice to knock out Cx36 in GFP-labeled ipRGCs and looked for changes in the number of ipRGC-coupled amacrine cells. Results Seventy-three percent of ipRGCs, including all six types (M1-M6), were tracer-coupled with amacrine somas 5.7 to 16.5 µm in diameter but not with ganglion cells. Ninety-two percent of the ipRGC-coupled somas were in the ganglion cell layer and the rest in the inner nuclear layer. Some ipRGC-coupled amacrine cells were found to accumulate serotonin or to contain nitric oxide synthase or neuropeptide Y. Knocking out Cx36 in M2 and M4 dramatically reduced the number of coupled somas. Conclusions Heterologous gap junction coupling with amacrine cells is widespread across mouse ipRGC types. ipRGC-coupled amacrine cells probably comprise multiple morphologic types and use multiple neuromodulators, suggesting that gap junctional ipRGC-to-amacrine signaling likely exerts diverse modulatory effects on retinal physiology. ipRGC-amacrine coupling is mediated partly, but not solely, by Cx36.
Collapse
Affiliation(s)
- Krystal R. Harrison
- Department of Molecular, Cellular, & Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| | - Andrew P. Chervenak
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Sarah M. Resnick
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Aaron N. Reifler
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Kwoon Y. Wong
- Department of Molecular, Cellular, & Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
18
|
Zhu Q, Yang G, Chen B, Liu F, Li X, Liu L. Altered Expression of GJD2 Messenger RNA and the Coded Protein Connexin 36 in Negative Lens-induced Myopia of Guinea Pigs. Optom Vis Sci 2020; 97:1080-1088. [PMID: 33278187 PMCID: PMC7742206 DOI: 10.1097/opx.0000000000001611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023] Open
Abstract
SIGNIFICANCE Decreased expression of the retinal GJD2 gene messenger RNA (mRNA) and connexin 36 (Cx36) protein in the guinea pig negative lens-induced myopia (LIM) model suggests their involvement in local retinal circuits regulating eye growth. PURPOSE Previous studies suggest that the GJD2 gene and Cx36 protein encoded by the GJD2 gene play important roles in retinal signaling pathways and eye development. The aim of this study was to investigate the changes in GJD2 mRNA and Cx36 protein expression in the guinea pig lens-induced myopia model. METHODS Four-week-old guinea pigs were randomly divided into two groups. Animals in the experimental group were fitted with monocular -10 D lenses; and animals in the control group, with monocular plano lenses. Biometric measurements, including the spherical equivalent refractive error and axial length, were monitored. Animals were killed after 0, 1, 2, and 3 weeks of treatment, and their retinas were isolated. Retinal GJD2 mRNA and Cx36 protein expression levels were assessed by quantitative real-time polymerase chain reaction and Western blot analysis, respectively. RESULTS Spherical equivalent refractive error values indicated that negative lens-treated eyes became significantly more myopic than plano lens-treated eyes (P = .001), consistent with their longer axial lengths compared with those of control eyes. Both GJD2 mRNA and Cx36 protein expression levels were decreased in the retinas of negative lens-treated eyes compared with levels in the retinas of plano lens-treated eyes, although there were differences in the timing; GJD2 mRNA, levels were significantly decreased after 1 and 2 weeks of treatment (P = .01 and P = .004, respectively), whereas Cx36 protein expression was significantly decreased after only 1 week (P = .01). CONCLUSIONS That both retinal GJD2 mRNA and Cx36 protein expression levels were decreased after induction of myopia with negative lenses points to retinal circuits involving Cx36 in myopia development in the guinea pig.
Collapse
Affiliation(s)
- Qiurong Zhu
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guoyuan Yang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bingjie Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fengyang Liu
- Department of Optometry, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Xia Li
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Banerjee S, Wang Q, Zhao F, Tang G, So C, Tse D, To CH, Feng Y, Zhou X, Pan F. Increased Connexin36 Phosphorylation in AII Amacrine Cell Coupling of the Mouse Myopic Retina. Front Cell Neurosci 2020; 14:124. [PMID: 32547367 PMCID: PMC7278884 DOI: 10.3389/fncel.2020.00124] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Myopia is a substantial public health problem worldwide. In the myopic retina, distant images are focused in front of the photoreceptors. The cells and mechanisms for retinal signaling that account either for emmetropization (i.e., normal refraction) or for refractive errors have remained elusive. Gap junctions play a key component in enhancement of signal transmission in visual pathways. AII amacrine cells (ACs), coupled by connexin36, segregate signals into ON and OFF pathways. Coupling between AII ACs is actively modulated through phosphorylation at serine 293 via dopamine in the mouse retina. In this study, form deprivation mouse myopia models were used to evaluate the expression patterns of connexin36-positive plaques (structural assay) and the state of connexin36 phosphorylation (functional assay) in AII ACs, which was green fluorescent protein-expressing in the Fam81a mouse line. Single-cell RNA sequencing showed dopaminergic synapse and gap junction pathways of AII ACs were downregulated in the myopic retina, although Gjd2 mRNA expression remained the same. Compared with the normal refractive eye, phosphorylation of connexin36 was increased in the myopic retina, but expression of connexin36 remained unchanged. This increased phosphorylation of Cx36 could indicate increased functional gap junction coupling of AII ACs in the myopic retina, a possible adaptation to adjust to the altered noisy signaling status.
Collapse
Affiliation(s)
- Seema Banerjee
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Qin Wang
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Fuxin Zhao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, The State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, China
| | - George Tang
- School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Chunghim So
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Dennis Tse
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Chi-Ho To
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, The State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, China
| | - Feng Pan
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
20
|
Light adaptation in the chick retina: Dopamine, nitric oxide, and gap-junction coupling modulate spatiotemporal contrast sensitivity. Exp Eye Res 2020; 195:108026. [PMID: 32246982 DOI: 10.1016/j.exer.2020.108026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 11/20/2022]
Abstract
Adaptation to changes in ambient light intensity, in retinal cells and circuits, optimizes visual functions. In the retina, light-adaptation results in changes in light-sensitivity and spatiotemporal tuning of ganglion cells. Under light-adapted conditions, contrast sensitivity (CS) of ganglion cells is a bandpass function of spatial frequency; in contrast, dark-adaptation reduces CS, especially at higher spatial frequencies. In this work, we aimed to understand intrinsic neuromodulatory mechanisms that underlie retinal adaptation to changes in ambient light level. Specifically, we investigated how CS is affected by dopamine (DA), nitric oxide (NO), and modifiers of electrical coupling through gap junctions, under different conditions of adapting illumination. Using the optokinetic response as a behavioral readout of direction-selective ganglion cell activity, we characterized the spatial CS of chicks under high- and low-photopic conditions and how it was regulated by DA, NO, and gap-junction uncouplers. We observed that: (1) DA D2R-family agonists and a donor of NO increased CS tested in low-photopic illumination, as if observed in the high-photopic light; whereas (2) removing their effects using either DA antagonists or NO- synthase inhibitors mimicked low-photopic CS; (3) simulation of high-photopic CS by DA agonists was abolished by NO-synthase inhibitors; and (4) selectively blocking coupling via connexin 35/36-containing gap junctions, using a "designer" mimetic peptide, increased CS, as does strong illumination. We conclude that, in the chicken retina: (1) DA and NO induce changes in spatiotemporal processing, similar to those driven by increasing illumination, (2) DA possibly acts through stimulating NO synthesis, and (3) blockade of coupling via gap junctions containing connexin 35/36 also drives a change in retinal CS functions. As a noninvasive method, the optokinetic response can provide rapid, conditional, and reversible assessment of retinal functions when pharmacological reagents are injected into the vitreous humor. Finally, the chick's large eyes, and the many similarities between their adaptational circuit functions and those in mammals such as the mouse, make them a promising model for future retinal research.
Collapse
|
21
|
Tetenborg S, Yadav SC, Brüggen B, Zoidl GR, Hormuzdi SG, Monyer H, van Woerden GM, Janssen-Bienhold U, Dedek K. Localization of Retinal Ca 2+/Calmodulin-Dependent Kinase II-β (CaMKII-β) at Bipolar Cell Gap Junctions and Cross-Reactivity of a Monoclonal Anti-CaMKII-β Antibody With Connexin36. Front Mol Neurosci 2019; 12:206. [PMID: 31555090 PMCID: PMC6724749 DOI: 10.3389/fnmol.2019.00206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/07/2019] [Indexed: 11/13/2022] Open
Abstract
Neuronal gap junctions formed by connexin36 (Cx36) and chemical synapses share striking similarities in terms of plasticity. Ca2+/calmodulin-dependent protein kinase II (CaMKII), an enzyme known to induce memory formation at chemical synapses, has recently been described to potentiate electrical coupling in the retina and several other brain areas via phosphorylation of Cx36. The contribution of individual CaMKII isoforms to this process, however, remains unknown. We recently identified CaMKII-β at electrical synapses in the mouse retina. Now, we set out to identify cell types containing Cx36 gap junctions that also express CaMKII-β. To ensure precise description, we first tested the specificity of two commercially available antibodies on CaMKII-β-deficient retinas. We found that a polyclonal antibody was highly specific for CaMKII-β. However, a monoclonal antibody (CB-β-1) recognized CaMKII-β but also cross-reacted with the C-terminal tail of Cx36, making localization analyses with this antibody inaccurate. Using the polyclonal antibody, we identified strong CaMKII-β expression in bipolar cell terminals that were secretagogin- and HCN1-positive and thus represent terminals of type 5 bipolar cells. In these terminals, a small fraction of CaMKII-β also colocalized with Cx36. A similar pattern was observed in putative type 6 bipolar cells although there, CaMKII expression seemed less pronounced. Next, we tested whether CaMKII-β influenced the Cx36 expression in bipolar cell terminals by quantifying the number and size of Cx36-immunoreactive puncta in CaMKII-β-deficient retinas. However, we found no significant differences between the genotypes, indicating that CaMKII-β is not necessary for the formation and maintenance of Cx36-containing gap junctions in the retina. In addition, in wild-type retinas, we observed frequent association of Cx36 and CaMKII-β with synaptic ribbons, i.e., chemical synapses, in bipolar cell terminals. This arrangement resembled the composition of mixed synapses found for example in Mauthner cells, in which electrical coupling is regulated by glutamatergic activity. Taken together, our data imply that CaMKII-β may fulfill several functions in bipolar cell terminals, regulating both Cx36-containing gap junctions and ribbon synapses and potentially also mediating cross-talk between these two types of bipolar cell outputs.
Collapse
Affiliation(s)
- Stephan Tetenborg
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Shubhash Chandra Yadav
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Bianca Brüggen
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Georg R Zoidl
- Department of Biology & Center for Vision Research, York University, Toronto, ON, Canada
| | - Sheriar G Hormuzdi
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | | | - Geeske M van Woerden
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Ulrike Janssen-Bienhold
- Department of Neuroscience, Visual Neuroscience, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
22
|
Yang GY, Liu FY, Li X, Zhu QR, Chen BJ, Liu LQ. Decreased expression of gap junction delta-2 (GJD2) messenger RNA and connexin 36 protein in form-deprivation myopia of guinea pigs. Chin Med J (Engl) 2019; 132:1700-1705. [PMID: 31283648 PMCID: PMC6759107 DOI: 10.1097/cm9.0000000000000319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND More than ten genome-wide association studies have identified the significant association between the gap junction delta-2 (GJD2) gene and myopia. However, no functional studies have been performed to confirm that this gene is correlated with myopia. This study aimed to observe how this gene changed in mRNA and protein level in the form-deprivation myopia (FDM) animal model. METHODS Four-week-old guinea pigs were randomly divided into two groups: control and FDM groups (n = 12 for each group). The right eyes of the FDM group were covered with opaque hemispherical plastic lenses for 3 weeks. For all the animals, refractive status, axial length (AL), and corneal radius of curvature were measured at baseline and 3 weeks later by streak retinoscope, A-scan ultrasonography, and keratometer, respectively. Retinal GJD2 mRNA expression and connexin 36 (Cx36) levels in FDM and control groups were measured by quantitative real-time PCR and Western blot analyses, respectively. Those results were compared using independent t test, Mann-Whitney U test, or paired t test. A significance level of P < 0.05 was used. RESULTS Three weeks later, the FDM group (form-deprived eyes) showed about a myopic shift of approximately -6.75 (-7.94 to -6.31) D, while the control group remained hyperopic with only a shift of -0.50 (-0.75 to 0.25) D (Z = -3.38, P < 0.01). The AL increased by 0.74 (0.61-0.76) and 0.10 (0.05-0.21) mm in FDM and control groups, respectively (Z = -3.37, P < 0.01). The relative mRNA expression of GJD2 in the FDM group decreased 31.58% more than the control group (t = 11.44, P < 0.01). The relative protein expression of CX36 on the retina was lowered by 37.72% in form-deprivation eyes as compared to the controls (t = 17.74, P < 0.01). CONCLUSION Both the mRNA expression of GJD2 and Cx36 protein amount were significantly decreased in the retina of FDM guinea pigs. This indicates that Cx36 is involved in FDM development, providing compensating evidence for the results obtained from genome-wide association studies.
Collapse
Affiliation(s)
- Guo-Yuan Yang
- Department of Opthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feng-Yang Liu
- Department of Opthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Ophthalmology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xia Li
- Department of Opthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiu-Rong Zhu
- Department of Opthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bing-Jie Chen
- Department of Opthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Long-Qian Liu
- Department of Opthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
23
|
Telkes I, Kóbor P, Orbán J, Kovács-Öller T, Völgyi B, Buzás P. Connexin-36 distribution and layer-specific topography in the cat retina. Brain Struct Funct 2019; 224:2183-2197. [PMID: 31172263 PMCID: PMC6591202 DOI: 10.1007/s00429-019-01876-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/11/2019] [Indexed: 11/29/2022]
Abstract
Connexin-36 (Cx36) is the major constituent of mammalian retinal gap junctions positioned in key signal pathways. Here, we examined the laminar and large-scale topographical distribution of Cx36 punctate immunolabels in the retina of the cat, a classical model of the mammalian visual system. Calretinin-immunoreactive (CaR-IR) cell populations served to outline the nuclear and plexiform layers and to stain specific neuronal populations. CaR-IR cells included horizontal cells in the outer retina, numerous amacrine cells, and scattered cells in the ganglion cell layer. Cx36-IR plaques were found among horizontal cell dendrites albeit without systematic colocalization of the two labels. Diffuse Cx36 immunoreactivity was found in the cytoplasm of AII amacrine cells, but no colocalization of Cx36 plaques was observed with either the perikarya or the long varicose dendrites of the CaR-IR non-AII amacrine cells. Cx36 puncta were seen throughout the entire inner plexiform layer showing their highest density in the ON sublamina. The densities of AII amacrine cell bodies and Cx36 plaques in the ON sublamina were strongly correlated across a wide range of eccentricities suggesting their anatomical association. However, the high number of plaques per AII cell suggests that a considerable fraction of Cx36 gap junctions in the ON sublamina is formed by other cell types than AII amacrine cells drawing attention to extensive but less studied electrically coupled networks.
Collapse
Affiliation(s)
- Ildikó Telkes
- Institute of Physiology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, 7624, Hungary
| | - Péter Kóbor
- Institute of Physiology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, 7624, Hungary
| | - József Orbán
- Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
- Department of Biophysics, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Tamás Kovács-Öller
- Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, 7624, Hungary
- Retinal Electrical Synapses Research Group, MTA-PTE NAP-2, University of Pécs, Pécs, 7624, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, 7624, Hungary
| | - Béla Völgyi
- Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, 7624, Hungary
- Retinal Electrical Synapses Research Group, MTA-PTE NAP-2, University of Pécs, Pécs, 7624, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, 7624, Hungary
| | - Péter Buzás
- Institute of Physiology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.
- Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary.
- Centre for Neuroscience, University of Pécs, Pécs, 7624, Hungary.
| |
Collapse
|
24
|
Yadav SC, Tetenborg S, Dedek K. Gap Junctions in A8 Amacrine Cells Are Made of Connexin36 but Are Differently Regulated Than Gap Junctions in AII Amacrine Cells. Front Mol Neurosci 2019; 12:99. [PMID: 31065239 PMCID: PMC6489437 DOI: 10.3389/fnmol.2019.00099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/03/2019] [Indexed: 01/01/2023] Open
Abstract
In the mammalian retina, amacrine cells represent the most diverse cell class and are involved in the spatio-temporal processing of visual signals in the inner plexiform layer. They are connected to bipolar, other amacrine and ganglion cells, forming complex networks via electrical and chemical synapses. The small-field A8 amacrine cell was shown to receive non-selective glutamatergic input from OFF and ON cone bipolar cells at its bistratified dendrites in sublamina 1 and 4 of the inner plexiform layer. Interestingly, it was also shown to form electrical synapses with ON cone bipolar cells, thus resembling the rod pathway-specific AII amacrine cell. In contrast to the AII cell, however, the electrical synapses of A8 cells are poorly understood. Therefore, we made use of the Ier5-GFP mouse line, in which A8 cells are labeled by GFP, to study the gap junction composition and frequency in A8 cells. We found that A8 cells form <20 gap junctions per cell and these gap junctions consist of connexin36. Connexin36 is present at both OFF and ON dendrites of A8 cells, preferentially connecting A8 cells to type 1 OFF and type 6 and 7 ON bipolar cells and presumably other amacrine cells. Additionally, we show that the OFF dendrites of A8 cells co-stratify with the processes of dopaminergic amacrine cells from which they may receive GABAergic input via GABAA receptor subunit α3. As we found A8 cells to express dopamine receptor D1 (but not D2), we also tested whether A8 cell coupling is modulated by D1 receptor agonists and antagonists as was shown for the coupling of AII cells. However, this was not the case. In summary, our data suggests that A8 coupling is differently regulated than AII cells and may even be independent of ambient light levels and serve signal facilitation rather than providing a separate neuronal pathway.
Collapse
Affiliation(s)
- Shubhash C Yadav
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Stephan Tetenborg
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
25
|
Veruki ML, Zhou Y, Castilho Á, Morgans CW, Hartveit E. Extrasynaptic NMDA Receptors on Rod Pathway Amacrine Cells: Molecular Composition, Activation, and Signaling. J Neurosci 2019; 39:627-650. [PMID: 30459218 PMCID: PMC6343648 DOI: 10.1523/jneurosci.2267-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022] Open
Abstract
In the rod pathway of the mammalian retina, axon terminals of glutamatergic rod bipolar cells are presynaptic to AII and A17 amacrine cells in the inner plexiform layer. Recent evidence suggests that both amacrines express NMDA receptors, raising questions concerning molecular composition, localization, activation, and function of these receptors. Using dual patch-clamp recording from synaptically connected rod bipolar and AII or A17 amacrine cells in retinal slices from female rats, we found no evidence that NMDA receptors contribute to postsynaptic currents evoked in either amacrine. Instead, NMDA receptors on both amacrine cells were activated by ambient glutamate, and blocking glutamate uptake increased their level of activation. NMDA receptor activation also increased the frequency of GABAergic postsynaptic currents in rod bipolar cells, suggesting that NMDA receptors can drive release of GABA from A17 amacrines. A striking dichotomy was revealed by pharmacological and immunolabeling experiments, which found GluN2B-containing NMDA receptors on AII amacrines and GluN2A-containing NMDA receptors on A17 amacrines. Immunolabeling also revealed a clustered organization of NMDA receptors on both amacrines and a close spatial association between GluN2B subunits and connexin 36 on AII amacrines, suggesting that NMDA receptor modulation of gap junction coupling between these cells involves the GluN2B subunit. Using multiphoton Ca2+ imaging, we verified that activation of NMDA receptors evoked an increase of intracellular Ca2+ in dendrites of both amacrines. Our results suggest that AII and A17 amacrines express clustered, extrasynaptic NMDA receptors, with different and complementary subunits that are likely to contribute differentially to signal processing and plasticity.SIGNIFICANCE STATEMENT Glutamate is the most important excitatory neurotransmitter in the CNS, but not all glutamate receptors transmit fast excitatory signals at synapses. NMDA-type glutamate receptors act as voltage- and ligand-gated ion channels, with functional properties determined by their specific subunit composition. These receptors can be found at both synaptic and extrasynaptic sites on neurons, but the role of extrasynaptic NMDA receptors is unclear. Here, we demonstrate that retinal AII and A17 amacrine cells, postsynaptic partners at rod bipolar dyad synapses, express extrasynaptic (but not synaptic) NMDA receptors, with different and complementary GluN2 subunits. The localization of GluN2A-containing receptors to A17s and GluN2B-containing receptors to AIIs suggests a mechanism for differential modulation of excitability and signaling in this retinal microcircuit.
Collapse
Affiliation(s)
- Margaret L Veruki
- University of Bergen, Department of Biomedicine, N-5009 Bergen, Norway, and
| | - Yifan Zhou
- University of Bergen, Department of Biomedicine, N-5009 Bergen, Norway, and
| | - Áurea Castilho
- University of Bergen, Department of Biomedicine, N-5009 Bergen, Norway, and
| | - Catherine W Morgans
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239
| | - Espen Hartveit
- University of Bergen, Department of Biomedicine, N-5009 Bergen, Norway, and
| |
Collapse
|
26
|
Kántor O, Szarka G, Benkő Z, Somogyvári Z, Pálfi E, Baksa G, Rácz G, Nitschke R, Debertin G, Völgyi B. Strategic Positioning of Connexin36 Gap Junctions Across Human Retinal Ganglion Cell Dendritic Arbors. Front Cell Neurosci 2018; 12:409. [PMID: 30524239 PMCID: PMC6262005 DOI: 10.3389/fncel.2018.00409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/22/2018] [Indexed: 11/18/2022] Open
Abstract
Connexin36 (Cx36) subunits form gap junctions (GJ) between neurons throughout the central nervous system. Such GJs of the mammalian retina serve the transmission, averaging and correlation of signals prior to conveying visual information to the brain. Retinal GJs have been exhaustively studied in various animal species, however, there is still a perplexing paucity of information regarding the presence and function of human retinal GJs. Particularly little is known about GJ formation of human retinal ganglion cells (hRGCs) due to the limited number of suitable experimental approaches. Compared to the neuronal coupling studies in animal models, where GJ permeable tracer injection is the gold standard method, the post-mortem nature of scarcely available human retinal samples leaves immunohistochemistry as a sole approach to obtain information on hRGC GJs. In this study Lucifer Yellow (LY) dye injections and Cx36 immunohistochemistry were performed in fixed short-post-mortem samples to stain hRGCs with complete dendritic arbors and locate dendritic Cx36 GJs. Subsequent neuronal reconstructions and morphometric analyses revealed that Cx36 plaques had a clear tendency to form clusters and particularly favored terminal dendritic segments.
Collapse
Affiliation(s)
- Orsolya Kántor
- Department of Neuroanatomy, Faculty of Medicine, Institute for Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, Pécs, Hungary.,Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gergely Szarka
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, Pécs, Hungary.,Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,Center for Neuroscience, University of Pécs, Pécs, Hungary.,János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Zsigmond Benkő
- Complex Systems and Computational Neuroscience Group, Wigner Research Center for Physics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zoltán Somogyvári
- Complex Systems and Computational Neuroscience Group, Wigner Research Center for Physics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Emese Pálfi
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gábor Baksa
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gergely Rácz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Roland Nitschke
- Life Imaging Center, Center for Biological Systems Analysis, Albert-Ludwigs University, Freiburg, Germany.,BIOSS Center for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Gábor Debertin
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, Pécs, Hungary.,Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,Center for Neuroscience, University of Pécs, Pécs, Hungary.,János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Béla Völgyi
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, Pécs, Hungary.,Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,Center for Neuroscience, University of Pécs, Pécs, Hungary.,János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| |
Collapse
|
27
|
Strettoi E, Masri RA, Grünert U. AII amacrine cells in the primate fovea contribute to photopic vision. Sci Rep 2018; 8:16429. [PMID: 30401922 PMCID: PMC6219554 DOI: 10.1038/s41598-018-34621-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/19/2018] [Indexed: 11/20/2022] Open
Abstract
The AII amacrine cell is known as a key interneuron in the scotopic (night-vision) pathway in the retina. Under scotopic conditions, rod signals are transmitted via rod bipolar cells to AII amacrine cells, which split the rod signal into the OFF (via glycinergic synapses) and the ON pathway (via gap junctions). But the AII amacrine cell also has a “day job”: at high light levels when cones are active, AII connections with ON cone bipolar cells provide crossover inhibition to extend the response range of OFF cone bipolar cells. The question whether AII cells contribute to crossover inhibition in primate fovea (where rods and rod bipolar cells are rare or absent) has not been answered. Here, immunohistochemistry and three-dimensional reconstruction show that calretinin positive cells in the fovea of macaque monkeys and humans have AII morphology and connect to cone bipolar cells. The pattern of AII connections to cone bipolar cells is quantitatively similar to that of AII cells outside the fovea. Our results support the view that in mammalian retina AII cells first evolved to serve cone circuits, then later were co-opted to process scotopic signals subsequent to the evolution of rod bipolar cells.
Collapse
Affiliation(s)
| | - Rania A Masri
- Save Sight Institute, Discipline of Clinical Ophthalmology, The University of Sydney, Sydney, NSW, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Ulrike Grünert
- Save Sight Institute, Discipline of Clinical Ophthalmology, The University of Sydney, Sydney, NSW, 2000, Australia. .,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2000, Australia. .,Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| |
Collapse
|
28
|
Yao X, Cafaro J, McLaughlin AJ, Postma FR, Paul DL, Awatramani G, Field GD. Gap Junctions Contribute to Differential Light Adaptation across Direction-Selective Retinal Ganglion Cells. Neuron 2018; 100:216-228.e6. [PMID: 30220512 PMCID: PMC6293282 DOI: 10.1016/j.neuron.2018.08.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/28/2018] [Accepted: 08/17/2018] [Indexed: 01/19/2023]
Abstract
Direction-selective ganglion cells (DSGCs) deliver signals from the retina to multiple brain areas to indicate the presence and direction of motion. Delivering reliable signals in response to motion is critical across light levels. Here we determine how populations of DSGCs adapt to changes in light level, from moonlight to daylight. Using large-scale measurements of neural activity, we demonstrate that the population of DSGCs switches encoding strategies across light levels. Specifically, the direction tuning of superior (upward)-preferring ON-OFF DSGCs becomes broader at low light levels, whereas other DSGCs exhibit stable tuning. Using a conditional knockout of gap junctions, we show that this differential adaptation among superior-preferring ON-OFF DSGCs is caused by connexin36-mediated electrical coupling and differences in effective GABAergic inhibition. Furthermore, this adaptation strategy is beneficial for balancing motion detection and direction estimation at the lower signal-to-noise ratio encountered at night. These results provide insights into how light adaptation impacts motion encoding in the retina.
Collapse
Affiliation(s)
- Xiaoyang Yao
- Graduate Program in Neurobiology, Duke University, Durham, NC, 27710, USA; Neurobiology Department, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jon Cafaro
- Neurobiology Department, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | | | - David L Paul
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Gautam Awatramani
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Greg D Field
- Neurobiology Department, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
29
|
O'Brien J, Bloomfield SA. Plasticity of Retinal Gap Junctions: Roles in Synaptic Physiology and Disease. Annu Rev Vis Sci 2018; 4:79-100. [DOI: 10.1146/annurev-vision-091517-034133] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electrical synaptic transmission via gap junctions underlies direct and rapid neuronal communication in the central nervous system. The diversity of functional roles played by electrical synapses is perhaps best exemplified in the vertebrate retina, in which gap junctions are expressed by each of the five major neuronal types. These junctions are highly plastic; they are dynamically regulated by ambient illumination and circadian rhythms acting through light-activated neuromodulators. The networks formed by electrically coupled neurons provide plastic, reconfigurable circuits positioned to play key and diverse roles in the transmission and processing of visual information at every retinal level. Recent work indicates gap junctions also play a role in the progressive cell death and aberrant activity seen in various pathological conditions of the retina. Gap junctions thus form potential targets for novel neuroprotective therapies in the treatment of neurodegenerative retinal diseases such as glaucoma and ischemic retinopathies.
Collapse
Affiliation(s)
- John O'Brien
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Stewart A. Bloomfield
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY 10036, USA
| |
Collapse
|
30
|
Zhao X, Wong KY, Zhang DQ. Mapping physiological inputs from multiple photoreceptor systems to dopaminergic amacrine cells in the mouse retina. Sci Rep 2017; 7:7920. [PMID: 28801634 PMCID: PMC5554153 DOI: 10.1038/s41598-017-08172-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/07/2017] [Indexed: 01/28/2023] Open
Abstract
In the vertebrate retina, dopamine is synthesized and released by a specialized type of amacrine cell, the dopaminergic amacrine cell (DAC). DAC activity is stimulated by rods, cones, and melanopsin-expressing intrinsically photosensitive retinal ganglion cells upon illumination. However, the relative contributions of these three photoreceptor systems to the DAC light-induced response are unknown. Here we found that rods excite dark-adapted DACs across a wide range of stimulation intensities, primarily through connexin-36-dependent rod pathways. Similar rod-driven responses were observed in both ventral and dorsal DACs. We further found that in the dorsal retina, M-cones and melanopsin contribute to dark-adapted DAC responses with a similar threshold intensity. In the ventral retina, however, the threshold intensity for M-cone-driven responses was two log units greater than that observed in dorsal DACs, and melanopsin-driven responses were almost undetectable. We also examined the DAC response to prolonged adapting light and found such responses to be mediated by rods under dim lighting conditions, rods/M-cones/melanopsin under intermediate lighting conditions, and cones and melanopsin under bright lighting conditions. Our results elucidate the relative contributions of the three photoreceptor systems to DACs under different lighting conditions, furthering our understanding of the role these cells play in the visual system.
Collapse
Affiliation(s)
- Xiwu Zhao
- Eye Research Institute, Oakland University, Rochester, MI, United States.,Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Kwoon Y Wong
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Dao-Qi Zhang
- Eye Research Institute, Oakland University, Rochester, MI, United States.
| |
Collapse
|
31
|
Kántor O, Varga A, Nitschke R, Naumann A, Énzsöly A, Lukáts Á, Szabó A, Németh J, Völgyi B. Bipolar cell gap junctions serve major signaling pathways in the human retina. Brain Struct Funct 2017; 222:2603-2624. [PMID: 28070649 DOI: 10.1007/s00429-016-1360-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/22/2016] [Indexed: 11/26/2022]
Abstract
Connexin36 (Cx36) constituent gap junctions (GJ) throughout the brain connect neurons into functional syncytia. In the retina they underlie the transmission, averaging and correlation of signals prior conveying visual information to the brain. This is the first study that describes retinal bipolar cell (BC) GJs in the human inner retina, whose function is enigmatic even in the examined animal models. Furthermore, a number of unique features (e.g. fovea, trichromacy, midget system) necessitate a reexamination of the animal model results in the human retina. Well-preserved postmortem human samples of this study are allowed to identify Cx36 expressing BCs neurochemically. Results reveal that both rod and cone pathway interneurons display strong Cx36 expression. Rod BC inputs to AII amacrine cells (AC) appear in juxtaposition to AII GJs, thus suggesting a strategic AII cell targeting by rod BCs. Cone BCs serving midget, parasol or koniocellular signaling pathways display a wealth of Cx36 expression to form homologously coupled arrays. In addition, they also establish heterologous GJ contacts to serve an exchange of information between parallel signaling streams. Interestingly, a prominent Cx36 expression was exhibited by midget system BCs that appear to maintain intimate contacts with bistratified BCs serving other pathways. These findings suggest that BC GJs in parallel signaling streams serve both an intra- and inter-pathway exchange of signals in the human retina.
Collapse
Affiliation(s)
- Orsolya Kántor
- Department of Neuroanatomy, Faculty of Medicine, Institute for Anatomy and Cell Biology, University of Freiburg, 79104, Freiburg, Germany
- MTA-PTE NAP B Retinal Electrical Synapses Research Group, Pécs, 7624, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Alexandra Varga
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Roland Nitschke
- Life Imaging Center, Center for Biological Systems Analysis, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Angela Naumann
- Life Imaging Center, Center for Biological Systems Analysis, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Anna Énzsöly
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
- Department of Ophthalmology, Semmelweis University, Budapest, 1085, Hungary
| | - Ákos Lukáts
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Arnold Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - János Németh
- Department of Ophthalmology, Semmelweis University, Budapest, 1085, Hungary
| | - Béla Völgyi
- MTA-PTE NAP B Retinal Electrical Synapses Research Group, Pécs, 7624, Hungary.
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, 7624, Hungary.
- János Szentágothai Research Center, University of Pécs, Ifjúság street 20, Pécs, 7624, Hungary.
- Department of Ophthalmology, New York University Langone Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
32
|
Roy S, Kim D, Lim R. Cell-cell communication in diabetic retinopathy. Vision Res 2017; 139:115-122. [PMID: 28583293 DOI: 10.1016/j.visres.2017.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
In diabetic retinopathy, high glucose (HG)-mediated breakdown in cell-cell communication promotes disruption of retinal homeostasis. Several studies indicate that HG condition alters expression of connexin genes and subsequent gap junction intercellular communication (GJIC) in retinal vascular cells and non-vascular cells. A serious consequence of disrupted cell-cell communication is apoptosis and breakdown of the blood-retinal barrier (BRB). More recently, studies suggest adverse effects from HG on retinal Müller cells. This article focuses on HG-mediated changes in connexin expression and GJIC and their subsequent effects on the breakdown of retinal homeostasis, cell death, compromised vascular permeability, and interactions between endothelial cells, pericytes and retinal Müller cells in the pathogenesis of diabetic retinopathy. Additionally, options for rectifying disrupted homeostasis under HG condition associated with diabetic retinopathy are reviewed.
Collapse
Affiliation(s)
- Sayon Roy
- Department of Medicine and Ophthalmology, Boston University School of Medicine, Boston, MA, United States.
| | - Dongjoon Kim
- Department of Medicine and Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| | - Remington Lim
- Department of Medicine and Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
33
|
Kovács-Öller T, Debertin G, Balogh M, Ganczer A, Orbán J, Nyitrai M, Balogh L, Kántor O, Völgyi B. Connexin36 Expression in the Mammalian Retina: A Multiple-Species Comparison. Front Cell Neurosci 2017; 11:65. [PMID: 28337128 PMCID: PMC5343066 DOI: 10.3389/fncel.2017.00065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/23/2017] [Indexed: 11/23/2022] Open
Abstract
Much knowledge about interconnection of human retinal neurons is inferred from results on animal models. Likewise, there is a lack of information on human retinal electrical synapses/gap junctions (GJ). Connexin36 (Cx36) forms GJs in both the inner and outer plexiform layers (IPL and OPL) in most species including humans. However, a comparison of Cx36 GJ distribution in retinas of humans and popular animal models has not been presented. To this end a multiple-species comparison was performed in retinas of 12 mammals including humans to survey the Cx36 distribution. Areas of retinal specializations were avoided (e.g., fovea, visual streak, area centralis), thus observed Cx36 distribution differences were not attributed to these species-specific architecture of central retinal areas. Cx36 was expressed in both synaptic layers in all examined retinas. Cx36 plaques displayed an inhomogenous IPL distribution favoring the ON sublamina, however, this feature was more pronounced in the human, swine and guinea pig while it was less obvious in the rabbit, squirrel monkey, and ferret retinas. In contrast to the relative conservative Cx36 distribution in the IPL, the labels in the OPL varied considerably among mammals. In general, OPL plaques were rare and rather small in rod dominant carnivores and rodents, whereas the human and the cone rich guinea pig retinas displayed robust Cx36 labels. This survey presented that the human retina displayed two characteristic features, a pronounced ON dominance of Cx36 plaques in the IPL and prevalent Cx36 plaque conglomerates in the OPL. While many species showed either of these features, only the guinea pig retina shared both. The observed similarities and subtle differences in Cx36 plaque distribution across mammals do not correspond to evolutionary distances but may reflect accomodation to lifestyles of examined species.
Collapse
Affiliation(s)
- Tamás Kovács-Öller
- Department of Experimental Zoology and Neurobiology, University of PécsPécs, Hungary; János Szentágothai Research CenterPécs, Hungary; Retinal Electrical Synapses Research Group, Hungarian Academy of Sciences (MTA-PTE NAP B)Pécs, Hungary
| | - Gábor Debertin
- Department of Experimental Zoology and Neurobiology, University of PécsPécs, Hungary; János Szentágothai Research CenterPécs, Hungary; Retinal Electrical Synapses Research Group, Hungarian Academy of Sciences (MTA-PTE NAP B)Pécs, Hungary
| | - Márton Balogh
- Department of Experimental Zoology and Neurobiology, University of PécsPécs, Hungary; János Szentágothai Research CenterPécs, Hungary; Retinal Electrical Synapses Research Group, Hungarian Academy of Sciences (MTA-PTE NAP B)Pécs, Hungary
| | - Alma Ganczer
- Department of Experimental Zoology and Neurobiology, University of PécsPécs, Hungary; János Szentágothai Research CenterPécs, Hungary; Retinal Electrical Synapses Research Group, Hungarian Academy of Sciences (MTA-PTE NAP B)Pécs, Hungary
| | - József Orbán
- János Szentágothai Research CenterPécs, Hungary; Department of Biophysics, University of PécsPécs, Hungary; High-Field Terahertz Research Group, Hungarian Academy of Sciences (MTA-PTE)Pécs, Hungary
| | - Miklós Nyitrai
- János Szentágothai Research CenterPécs, Hungary; Department of Biophysics, University of PécsPécs, Hungary; Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences (MTA-PTE)Pécs, Hungary
| | - Lajos Balogh
- National Research Institute for Radiobiology and Radiohygiene Budapest, Hungary
| | - Orsolya Kántor
- Retinal Electrical Synapses Research Group, Hungarian Academy of Sciences (MTA-PTE NAP B)Pécs, Hungary; Department of Anatomy, Histology and Embryology, Semmelweis UniversityBudapest, Hungary; Department of Neuroanatomy, Institute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgFreiburg, Germany
| | - Béla Völgyi
- Department of Experimental Zoology and Neurobiology, University of PécsPécs, Hungary; János Szentágothai Research CenterPécs, Hungary; Retinal Electrical Synapses Research Group, Hungarian Academy of Sciences (MTA-PTE NAP B)Pécs, Hungary; Department of Ophthalmology, New York University Langone Medical Center, New YorkNY, USA
| |
Collapse
|
34
|
Asteriti S, Gargini C, Cangiano L. Connexin 36 expression is required for electrical coupling between mouse rods and cones. Vis Neurosci 2017; 34:E006. [PMID: 28965521 DOI: 10.1017/s0952523817000037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Rod-cone gap junctions mediate the so-called "secondary rod pathway", one of three routes that convey rod photoreceptor signals across the retina. Connexin 36 (Cx36) is expressed at these gap junctions, but an unidentified connexin protein also seems to be expressed. Cx36 knockout mice have been used extensively in the quest to dissect the roles in vision of all three pathways, with the assumption, never directly tested, that rod-cone electrical coupling is abolished by deletion of this connexin isoform. We previously showed that when wild type mouse cones couple to rods, their apparent dynamic range is extended toward lower light intensities, with the appearance of large responses to dim flashes (up to several mV) originating in rods. Here we recorded from the cones of Cx36del[LacZ]/del[LacZ] mice and found that dim flashes of the same intensity evoked at most small sub-millivolt responses. Moreover, these residual responses originated in the cones themselves, since: (i) their spectral preference matched that of the recorded cone and not of rods, (ii) their time-to-peak was shorter than in coupled wild type cones, (iii) a pharmacological block of gap junctions did not reduce their amplitude. Taken together, our data show that rod signals are indeed absent in the cones of Cx36 knockout mice. This study is the first direct demonstration that Cx36 is crucial for the assembly of functional rod-cone gap junctional channels, implying that its genetic deletion is a reliable experimental approach to eliminate rod-cone coupling.
Collapse
Affiliation(s)
- Sabrina Asteriti
- Department of Translational Research,University of Pisa,Pisa,Italy
| | | | - Lorenzo Cangiano
- Department of Translational Research,University of Pisa,Pisa,Italy
| |
Collapse
|
35
|
Retinal gap junctions are involved in rhythmogenesis of neuronal activity at remote locations – Study on infra-slow oscillations in the rat olivary pretectal nucleus. Neuroscience 2016; 339:150-161. [DOI: 10.1016/j.neuroscience.2016.09.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022]
|
36
|
Tideman JWL, Fan Q, Polling JR, Guo X, Yazar S, Khawaja A, Höhn R, Lu Y, Jaddoe VWV, Yamashiro K, Yoshikawa M, Gerhold-Ay A, Nickels S, Zeller T, He M, Boutin T, Bencic G, Vitart V, Mackey DA, Foster PJ, MacGregor S, Williams C, Saw SM, Guggenheim JA, Klaver CCW. When do myopia genes have their effect? Comparison of genetic risks between children and adults. Genet Epidemiol 2016; 40:756-766. [PMID: 27611182 DOI: 10.1002/gepi.21999] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 07/05/2016] [Accepted: 07/17/2016] [Indexed: 01/10/2023]
Abstract
Previous studies have identified many genetic loci for refractive error and myopia. We aimed to investigate the effect of these loci on ocular biometry as a function of age in children, adolescents, and adults. The study population consisted of three age groups identified from the international CREAM consortium: 5,490 individuals aged <10 years; 5,000 aged 10-25 years; and 16,274 aged >25 years. All participants had undergone standard ophthalmic examination including measurements of axial length (AL) and corneal radius (CR). We examined the lead SNP at all 39 currently known genetic loci for refractive error identified from genome-wide association studies (GWAS), as well as a combined genetic risk score (GRS). The beta coefficient for association between SNP genotype or GRS versus AL/CR was compared across the three age groups, adjusting for age, sex, and principal components. Analyses were Bonferroni-corrected. In the age group <10 years, three loci (GJD2, CHRNG, ZIC2) were associated with AL/CR. In the age group 10-25 years, four loci (BMP2, KCNQ5, A2BP1, CACNA1D) were associated; and in adults 20 loci were associated. Association with GRS increased with age; β = 0.0016 per risk allele (P = 2 × 10-8 ) in <10 years, 0.0033 (P = 5 × 10-15 ) in 10- to 25-year-olds, and 0.0048 (P = 1 × 10-72 ) in adults. Genes with strongest effects (LAMA2, GJD2) had an early effect that increased with age. Our results provide insights on the age span during which myopia genes exert their effect. These insights form the basis for understanding the mechanisms underlying high and pathological myopia.
Collapse
Affiliation(s)
- J Willem L Tideman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Qiao Fan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Jan Roelof Polling
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Orthoptics, School of Applied Science Utrecht, Rotterdam, The Netherlands
| | - Xiaobo Guo
- Department of Statistical Science, School of Mathematics & Computational Science, Sun Yat-Sen University, Guangzhou, GD, China
- SYSU-CMU Shunde International Joint Research Institute, Guangzhou, GD, China
- Southern China Research Center of Statistical Science, Sun Yat-Sen University, Guangzhou, GD, China
| | - Seyhan Yazar
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Anthony Khawaja
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - René Höhn
- Department of Ophthalmology, University Medical Center, Mainz, Germany
- Department of Ophthalmology, Inselspital, Bern, Switzerland
| | - Yi Lu
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Vincent W V Jaddoe
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kenji Yamashiro
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Munemitsu Yoshikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Aslihan Gerhold-Ay
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center Mainz, Mainz, Germany
| | - Stefan Nickels
- Department of Ophthalmology, University Medical Center, Mainz, Germany
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Mingguang He
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Thibaud Boutin
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Goran Bencic
- Department of Ophthalmology, Sisters of Mercy University Hospital, Zagreb, Croatia
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Paul J Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Cathy Williams
- School of Social and Community Medicine, University of Bristol, Bristol, England
| | - Seang Mei Saw
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- National University of Singapore Saw Swee Hock School of Public Health, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | | | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
37
|
Kántor O, Benkő Z, Énzsöly A, Dávid C, Naumann A, Nitschke R, Szabó A, Pálfi E, Orbán J, Nyitrai M, Németh J, Szél Á, Lukáts Á, Völgyi B. Characterization of connexin36 gap junctions in the human outer retina. Brain Struct Funct 2016; 221:2963-84. [PMID: 26173976 DOI: 10.1007/s00429-015-1082-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
Abstract
Retinal connexins (Cx) form gap junctions (GJ) in key circuits that transmit average or synchronize signals. Expression of Cx36, -45, -50 and -57 have been described in many species but there is still a disconcerting paucity of information regarding the Cx makeup of human retinal GJs. We used well-preserved human postmortem samples to characterize Cx36 GJ constituent circuits of the outer plexiform layer (OPL). Based on their location, morphometric characteristics and co-localizations with outer retinal neuronal markers, we distinguished four populations of Cx36 plaques in the human OPL. Three of these were comprised of loosely scattered Cx36 plaques; the distalmost population 1 formed cone-to-rod GJs, population 2 in the mid-OPL formed cone-to-cone GJs, whereas the proximalmost population 4 likely connected bipolar cell dendrites. The fourth population (population 3) of Cx36 plaques conglomerated beneath cone pedicles and connected dendritic tips of bipolar cells that shared a common presynaptic cone. Overall, we show that the human outer retina displays a diverse cohort of Cx36 GJ that follows the general mammalian scheme and display a great functional diversity.
Collapse
Affiliation(s)
- Orsolya Kántor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Zsigmond Benkő
- Department of Theory, Wigner Research Center for Physics of the Hungarian Academy of Sciences, Budapest, 1121, Hungary
- Semmelweis University School of Ph.D. Studies, Budapest, 1085, Hungary
| | - Anna Énzsöly
- Department of Ophthalmology, Semmelweis University, Budapest, 1085, Hungary
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, 1094, Hungary
| | - Csaba Dávid
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, 1094, Hungary
| | - Angela Naumann
- Life Imaging Center, Center for Biological Systems Analysis, Albert-Ludwigs University, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Roland Nitschke
- Life Imaging Center, Center for Biological Systems Analysis, Albert-Ludwigs University, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Arnold Szabó
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, 1094, Hungary
| | - Emese Pálfi
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - József Orbán
- Department of Biophysics, University of Pécs, Pécs, 7624, Hungary
- János Szentágothai Research Center, University of Pécs, Ifjúság str. 6, 7624, Pécs, Hungary
| | - Miklós Nyitrai
- Department of Biophysics, University of Pécs, Pécs, 7624, Hungary
- János Szentágothai Research Center, University of Pécs, Ifjúság str. 6, 7624, Pécs, Hungary
| | - János Németh
- Department of Ophthalmology, Semmelweis University, Budapest, 1085, Hungary
| | - Ágoston Szél
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, 1094, Hungary
| | - Ákos Lukáts
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, 1094, Hungary
| | - Béla Völgyi
- János Szentágothai Research Center, University of Pécs, Ifjúság str. 6, 7624, Pécs, Hungary.
- MTA-PTE NAP B Retinal Electrical Synapses Research Group, Pécs, 7624, Hungary.
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, 7624, Hungary.
- Department of Ophthalmology, New York University Langone Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
38
|
Meyer A, Tetenborg S, Greb H, Segelken J, Dorgau B, Weiler R, Hormuzdi SG, Janssen-Bienhold U, Dedek K. Connexin30.2: In Vitro Interaction with Connexin36 in HeLa Cells and Expression in AII Amacrine Cells and Intrinsically Photosensitive Ganglion Cells in the Mouse Retina. Front Mol Neurosci 2016; 9:36. [PMID: 27303262 PMCID: PMC4882342 DOI: 10.3389/fnmol.2016.00036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/09/2016] [Indexed: 11/13/2022] Open
Abstract
Electrical coupling via gap junctions is an abundant phenomenon in the mammalian retina and occurs in all major cell types. Gap junction channels are assembled from different connexin subunits, and the connexin composition of the channel confers specific properties to the electrical synapse. In the mouse retina, gap junctions were demonstrated between intrinsically photosensitive ganglion cells and displaced amacrine cells but the underlying connexin remained undetermined. In the primary rod pathway, gap junctions play a crucial role, coupling AII amacrine cells among each other and to ON cone bipolar cells. Although it has long been known that connexin36 and connexin45 are necessary for the proper functioning of this most sensitive rod pathway, differences between homocellular AII/AII gap junctions and AII/ON bipolar cell gap junctions suggested the presence of an additional connexin in AII amacrine cells. Here, we used a connexin30.2-lacZ mouse line to study the expression of connexin30.2 in the retina. We show that connexin30.2 is expressed in intrinsically photosensitive ganglion cells and AII amacrine cells. Moreover, we tested whether connexin30.2 and connexin36-both expressed in AII amacrine cells-are able to interact with each other and are deposited in the same gap junctional plaques. Using newly generated anti-connexin30.2 antibodies, we show in HeLa cells that both connexins are indeed able to interact and may form heteromeric channels: both connexins were co-immunoprecipitated from transiently transfected HeLa cells and connexin30.2 gap junction plaques became significantly larger when co-expressed with connexin36. These data suggest that connexin36 is able to form heteromeric gap junctions with another connexin. We hypothesize that co-expression of connexin30.2 and connexin36 may endow AII amacrine cells with the means to differentially regulate its electrical coupling to different synaptic partners.
Collapse
Affiliation(s)
- Arndt Meyer
- Department of Neuroscience and Neurobiology, University of Oldenburg Oldenburg, Germany
| | - Stephan Tetenborg
- Department of Neuroscience and Neurobiology, University of Oldenburg Oldenburg, Germany
| | - Helena Greb
- Department of Neuroscience and Neurobiology, University of Oldenburg Oldenburg, Germany
| | - Jasmin Segelken
- Department of Neuroscience and Neurobiology, University of Oldenburg Oldenburg, Germany
| | - Birthe Dorgau
- Department of Neuroscience and Neurobiology, University of Oldenburg Oldenburg, Germany
| | - Reto Weiler
- Department of Neuroscience and Neurobiology, University of OldenburgOldenburg, Germany; Research Center Neurosensory Science, University of OldenburgOldenburg, Germany
| | | | - Ulrike Janssen-Bienhold
- Department of Neuroscience and Neurobiology, University of OldenburgOldenburg, Germany; Research Center Neurosensory Science, University of OldenburgOldenburg, Germany
| | - Karin Dedek
- Department of Neuroscience and Neurobiology, University of OldenburgOldenburg, Germany; Research Center Neurosensory Science, University of OldenburgOldenburg, Germany
| |
Collapse
|
39
|
Connexin43 in retinal injury and disease. Prog Retin Eye Res 2016; 51:41-68. [DOI: 10.1016/j.preteyeres.2015.09.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/25/2015] [Accepted: 09/27/2015] [Indexed: 12/26/2022]
|
40
|
Bolte P, Herrling R, Dorgau B, Schultz K, Feigenspan A, Weiler R, Dedek K, Janssen-Bienhold U. Expression and Localization of Connexins in the Outer Retina of the Mouse. J Mol Neurosci 2015; 58:178-92. [PMID: 26453550 DOI: 10.1007/s12031-015-0654-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/08/2015] [Indexed: 01/30/2023]
Abstract
The identification of the proteins that make up the gap junction channels between rods and cones is of crucial importance to understand the functional role of photoreceptor coupling within the retinal network. In vertebrates, connexin proteins constitute the structural components of gap junction channels. Connexin36 is known to be expressed in cones whereas extensive investigations have failed to identify the corresponding connexin expressed in rods. Using immunoelectron microscopy, we demonstrate that connexin36 (Cx36) is present in gap junctions of cone but not rod photoreceptors in the mouse retina. To identify the rod connexin, we used nested reverse transcriptase polymerase chain reaction and tested retina and photoreceptor samples for messenger RNA (mRNA) expression of all known connexin genes. In addition to connexin36, we detected transcripts for connexin32, connexin43, connexin45, connexin50, and connexin57 in photoreceptor samples. Immunohistochemistry showed that connexin43, connexin45, connexin50, and connexin57 proteins are expressed in the outer plexiform layer. However, none of these connexins was detected at gap junctions between rods and cones as a counterpart of connexin36. Therefore, the sought-after rod protein must be either an unknown connexin sequence, a connexin36 splice product not detected by our antibodies, or a protein from a further gap junction protein family.
Collapse
Affiliation(s)
- Petra Bolte
- Neurobiology Group, Department for Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, 26111, Oldenburg, Germany.,Animal Navigation, University of Oldenburg, 26111, Oldenburg, Germany
| | - Regina Herrling
- Neurobiology Group, Department for Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, 26111, Oldenburg, Germany
| | - Birthe Dorgau
- Neurobiology Group, Department for Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, 26111, Oldenburg, Germany.,Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Konrad Schultz
- Neurobiology Group, Department for Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, 26111, Oldenburg, Germany
| | - Andreas Feigenspan
- Neurobiology Group, Department for Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, 26111, Oldenburg, Germany.,Animal Physiology, FAU Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Reto Weiler
- Neurobiology Group, Department for Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, 26111, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, 26111, Oldenburg, Germany
| | - Karin Dedek
- Neurobiology Group, Department for Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, 26111, Oldenburg, Germany. .,Research Center Neurosensory Science, University of Oldenburg, 26111, Oldenburg, Germany.
| | - Ulrike Janssen-Bienhold
- Neurobiology Group, Department for Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, 26111, Oldenburg, Germany. .,Research Center Neurosensory Science, University of Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
41
|
Ivanova E, Yee CW, Sagdullaev BT. Increased phosphorylation of Cx36 gap junctions in the AII amacrine cells of RD retina. Front Cell Neurosci 2015; 9:390. [PMID: 26483638 PMCID: PMC4589668 DOI: 10.3389/fncel.2015.00390] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/18/2015] [Indexed: 11/24/2022] Open
Abstract
Retinal degeneration (RD) encompasses a family of diseases that lead to photoreceptor death and visual impairment. Visual decline due to photoreceptor cell loss is further compromised by emerging spontaneous hyperactivity in inner retinal cells. This aberrant activity acts as a barrier to signals from the remaining photoreceptors, hindering therapeutic strategies to restore light sensitivity in RD. Gap junctions, particularly those expressed in AII amacrine cells, have been shown to be integral to the generation of aberrant activity. It is unclear whether gap junction expression and coupling are altered in RD. To test this, we evaluated the expression and phosphorylation state of connexin36 (Cx36), the gap junction subunit predominantly expressed in AII amacrine cells, in two mouse models of RD, rd10 (slow degeneration) and rd1 (fast degeneration). Using Ser293-P antibody, which recognizes a phosphorylated form of connexin36, we found that phosphorylation of connexin36 in both slow and fast RD models was significantly greater than in wildtype controls. This elevated phosphorylation may underlie the increased gap junction coupling of AII amacrine cells exhibited by RD retina.
Collapse
Affiliation(s)
- Elena Ivanova
- Departments of Ophthalmology and Neurology, Burke Medical Research Institute, Weill Medical College of Cornell University White Plains, NY, USA
| | - Christopher W Yee
- Departments of Ophthalmology and Neurology, Burke Medical Research Institute, Weill Medical College of Cornell University White Plains, NY, USA
| | - Botir T Sagdullaev
- Departments of Ophthalmology and Neurology, Burke Medical Research Institute, Weill Medical College of Cornell University White Plains, NY, USA
| |
Collapse
|
42
|
Purgert RJ, Lukasiewicz PD. Differential encoding of spatial information among retinal on cone bipolar cells. J Neurophysiol 2015. [PMID: 26203104 DOI: 10.1152/jn.00287.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The retina is the first stage of visual processing. It encodes elemental features of visual scenes. Distinct cone bipolar cells provide the substrate for this to occur. They encode visual information, such as color and luminance, a principle known as parallel processing. Few studies have directly examined whether different forms of spatial information are processed in parallel among cone bipolar cells. To address this issue, we examined the spatial information encoded by mouse ON cone bipolar cells, the subpopulation excited by increments in illumination. Two types of spatial processing were identified. We found that ON cone bipolar cells with axons ramifying in the central inner plexiform layer were tuned to preferentially encode small stimuli. By contrast, ON cone bipolar cells with axons ramifying in the proximal inner plexiform layer, nearest the ganglion cell layer, were tuned to encode both small and large stimuli. This dichotomy in spatial tuning is attributable to amacrine cells providing stronger inhibition to central ON cone bipolar cells compared with proximal ON cone bipolar cells. Furthermore, background illumination altered this difference in spatial tuning. It became less pronounced in bright light, as amacrine cell-driven inhibition became pervasive among all ON cone bipolar cells. These results suggest that differential amacrine cell input determined the distinct spatial encoding properties among ON cone bipolar cells. These findings enhance the known parallel processing capacity of the retina.
Collapse
Affiliation(s)
- Robert J Purgert
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri; and
| | - Peter D Lukasiewicz
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri; and Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
43
|
Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 2015; 161:1202-1214. [PMID: 26000488 PMCID: PMC4481139 DOI: 10.1016/j.cell.2015.05.002] [Citation(s) in RCA: 4791] [Impact Index Per Article: 479.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 03/04/2015] [Accepted: 04/30/2015] [Indexed: 02/06/2023]
Abstract
Cells, the basic units of biological structure and function, vary broadly in type and state. Single-cell genomics can characterize cell identity and function, but limitations of ease and scale have prevented its broad application. Here we describe Drop-seq, a strategy for quickly profiling thousands of individual cells by separating them into nanoliter-sized aqueous droplets, associating a different barcode with each cell's RNAs, and sequencing them all together. Drop-seq analyzes mRNA transcripts from thousands of individual cells simultaneously while remembering transcripts' cell of origin. We analyzed transcriptomes from 44,808 mouse retinal cells and identified 39 transcriptionally distinct cell populations, creating a molecular atlas of gene expression for known retinal cell classes and novel candidate cell subtypes. Drop-seq will accelerate biological discovery by enabling routine transcriptional profiling at single-cell resolution. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Evan Z Macosko
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Anindita Basu
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Rahul Satija
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10003, USA
| | - James Nemesh
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Karthik Shekhar
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Melissa Goldman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Itay Tirosh
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Allison R Bialas
- The Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, MA 02115, USA
| | - Nolan Kamitaki
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Emily M Martersteck
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - John J Trombetta
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Alex K Shalek
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science and Department of Chemistry, MIT, Cambridge, MA 02139, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Steven A McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
44
|
Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia. Nat Commun 2015; 6:6689. [DOI: 10.1038/ncomms7689] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 02/20/2015] [Indexed: 11/08/2022] Open
|
45
|
Kovács-Öller T, Raics K, Orbán J, Nyitrai M, Völgyi B. Developmental changes in the expression level of connexin36 in the rat retina. Cell Tissue Res 2014; 358:289-302. [PMID: 25110193 DOI: 10.1007/s00441-014-1967-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/09/2014] [Indexed: 02/03/2023]
Abstract
Connexin36 (Cx36) is the major gap junction forming protein in the brain and the retina; thus, alterations in its expression indicate changes in the corresponding circuitry. Many structural changes occur in the early postnatal retina before functional neuronal circuits are finalized, including those that incorporate gap junctions. To reveal the time-lapse formation of inner retinal gap junctions, we examine the developing postnatal rat retina from birth (P0) to young adult age (P20) and follow the expression of Cx36 in the mRNA and protein levels. We found a continuous elevation in the expression of both the Cx36 transcript and protein between P0 and P20 and a somewhat delayed Cx36 plaque formation throughout the inner plexiform layer (IPL) starting at P10. By using tristratificated calretinin positive (CaR(+)) fibers in the IPL as a guide, we detected a clear preference of Cx36 plaques for the ON sublamina from the earliest time of detection. This distributional preference became more pronounced at P15 and P20 due to the emergence and widespread expression of large (>0.1 μm(2)) Cx36 plaques in the ON sublamina. Finally, we showed that parvalbumin-positive (PV(+)) AII amacrine cell dendrites colocalize with Cx36 plaques as early as P10 in strata 3 and 4, whereas colocalizations in stratum 5 became characteristic only around P20. We conclude that Cx36 expression in the rat IPL displays a characteristic succession of changes during retinogenesis reflecting the formation of the underlying electrical synaptic circuitry. In particular, AII cell gap junctions, first formed with ON cone bipolar cells and later with other AII amacrine cells, accounted for the observed Cx36 expressional changes.
Collapse
Affiliation(s)
- Tamás Kovács-Öller
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Ifjúság street 6, Hungary
| | | | | | | | | |
Collapse
|
46
|
Dunn FA, Wong ROL. Wiring patterns in the mouse retina: collecting evidence across the connectome, physiology and light microscopy. J Physiol 2014; 592:4809-23. [PMID: 25172948 DOI: 10.1113/jphysiol.2014.277228] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The visual system has often been thought of as a parallel processor because distinct regions of the brain process different features of visual information. However, increasing evidence for convergence and divergence of circuit connections, even at the level of the retina where visual information is first processed, chips away at a model of dedicated and distinct pathways for parallel information flow. Instead, our current understanding is that parallel channels may emerge, not from exclusive microcircuits for each channel, but from unique combinations of microcircuits. This review depicts diagrammatically the current knowledge and remaining puzzles about the retinal circuit with a focus on the mouse retina. Advances in techniques for labelling cells and genetic manipulations have popularized the use of transgenic mice. We summarize evidence gained from serial electron microscopy, electrophysiology and light microscopy to illustrate the wiring patterns in mouse retina. We emphasize the need to explore proposed retinal connectivity using multiple methods to verify circuits both structurally and functionally.
Collapse
Affiliation(s)
- Felice A Dunn
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, 94143-0730, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
47
|
Thompson DA, Lyons RJ, Russell-Eggitt I, Liasis A, Jägle H, Grünewald S. Retinal characteristics of the congenital disorder of glycosylation PMM2-CDG. J Inherit Metab Dis 2013; 36:1039-47. [PMID: 23430200 DOI: 10.1007/s10545-013-9594-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 12/30/2012] [Accepted: 01/24/2013] [Indexed: 10/27/2022]
Abstract
The congenital disorder of glycosylation, PMM2-CDG, is associated with progressive photoreceptor degeneration, which causes a pigmentary retinopathy. We identified a sibling pair, mildly affected with PMM2-CDG, who showed preserved photoreceptor function, but profound deficits of the 'on-pathway' in the retina. This localises the site of early, or initial, retinal dysfunction in PMM2-CDG to the synapse in the outer plexiform layer between bipolar cells, photoreceptors and horizontal cells. We sought wider evidence to support this novel finding by reviewing retrospectively the case notes of eight patients, diagnosed with PMM2-CDG between the ages of 7 months to 16 years. We compared the clinical presentation and electroretinograms, (ERGs), of these patients with the sibling pair. We found that five of eight patients showed characteristic ERG features of on-pathway dysfunction in the form of reduced ERG b-wave amplitude. The remaining three patients had significant photoreceptor dysfunction by the time of ERG recording, and both a- and b-wave amplitudes were markedly attenuated. We conclude that ERG signs of on-pathway dysfunction can be detected in the early stages of PMM2-CDG. Referral for electroretinography evidence of this specific on-pathway deficit, with preservation of oscillatory potentials, can help establish the diagnosis of infants with developmental delay or failure to thrive in whom a glycosylation defect is suspected. Also by increasing our understanding of the interaction of N-glycoproteins at this synapse we may be able to design future therapeutic intervention to prevent or ameliorate the progressive visual loss associated with PMM2-CDG.
Collapse
Affiliation(s)
- Dorothy A Thompson
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children, UCL ICH, Great Ormond Street, London, WC1N 3JH, UK,
| | | | | | | | | | | |
Collapse
|
48
|
Völgyi B, Pan F, Paul DL, Wang JT, Huberman AD, Bloomfield SA. Gap junctions are essential for generating the correlated spike activity of neighboring retinal ganglion cells. PLoS One 2013; 8:e69426. [PMID: 23936012 PMCID: PMC3720567 DOI: 10.1371/journal.pone.0069426] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
Neurons throughout the brain show spike activity that is temporally correlated to that expressed by their neighbors, yet the generating mechanism(s) remains unclear. In the retina, ganglion cells (GCs) show robust, concerted spiking that shapes the information transmitted to central targets. Here we report the synaptic circuits responsible for generating the different types of concerted spiking of GC neighbors in the mouse retina. The most precise concerted spiking was generated by reciprocal electrical coupling of GC neighbors via gap junctions, whereas indirect electrical coupling to a common cohort of amacrine cells generated the correlated activity with medium precision. In contrast, the correlated spiking with the lowest temporal precision was produced by shared synaptic inputs carrying photoreceptor noise. Overall, our results demonstrate that different synaptic circuits generate the discrete types of GC correlated activity. Moreover, our findings expand our understanding of the roles of gap junctions in the retina, showing that they are essential for generating all forms of concerted GC activity transmitted to central brain targets.
Collapse
Affiliation(s)
- Béla Völgyi
- Department of Ophthalmology, New York University Langone Medical Center, New York, New York, United States of America.
| | | | | | | | | | | |
Collapse
|
49
|
Völgyi B, Kovács-Oller T, Atlasz T, Wilhelm M, Gábriel R. Gap junctional coupling in the vertebrate retina: variations on one theme? Prog Retin Eye Res 2013; 34:1-18. [PMID: 23313713 DOI: 10.1016/j.preteyeres.2012.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/18/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
Abstract
Gap junctions connect cells in the bodies of all multicellular organisms, forming either homologous or heterologous (i.e. established between identical or different cell types, respectively) cell-to-cell contacts by utilizing identical (homotypic) or different (heterotypic) connexin protein subunits. Gap junctions in the nervous system serve electrical signaling between neurons, thus they are also called electrical synapses. Such electrical synapses are particularly abundant in the vertebrate retina where they are specialized to form links between neurons as well as glial cells. In this article, we summarize recent findings on retinal cell-to-cell coupling in different vertebrates and identify general features in the light of the evergrowing body of data. In particular, we describe and discuss tracer coupling patterns, connexin proteins, junctional conductances and modulatory processes. This multispecies comparison serves to point out that most features are remarkably conserved across the vertebrate classes, including (i) the cell types connected via electrical synapses; (ii) the connexin makeup and the conductance of each cell-to-cell contact; (iii) the probable function of each gap junction in retinal circuitry; (iv) the fact that gap junctions underlie both electrical and/or tracer coupling between glial cells. These pan-vertebrate features thus demonstrate that retinal gap junctions have changed little during the over 500 million years of vertebrate evolution. Therefore, the fundamental architecture of electrically coupled retinal circuits seems as old as the retina itself, indicating that gap junctions deeply incorporated in retinal wiring from the very beginning of the eye formation of vertebrates. In addition to hard wiring provided by fast synaptic transmitter-releasing neurons and soft wiring contributed by peptidergic, aminergic and purinergic systems, electrical coupling may serve as the 'skeleton' of lateral processing, enabling important functions such as signal averaging and synchronization.
Collapse
Affiliation(s)
- Béla Völgyi
- Department of Ophthalmology, School of Medicine, New York University, 550 First Avenue, MSB 149, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
50
|
del Corsso C, Iglesias R, Zoidl G, Dermietzel R, Spray DC. Calmodulin dependent protein kinase increases conductance at gap junctions formed by the neuronal gap junction protein connexin36. Brain Res 2012; 1487:69-77. [PMID: 22796294 PMCID: PMC4355912 DOI: 10.1016/j.brainres.2012.06.058] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/26/2012] [Accepted: 06/30/2012] [Indexed: 11/27/2022]
Abstract
The major neuronal gap junction protein connexin36 (Cx36) exhibits the remarkable property of "run-up", in which junctional conductance typically increases by 10-fold or more within 5-10min following cell break-in with patch pipettes. Such conductance "run-up" is a unique property of Cx36, as it has not been seen in cell pairs expressing other connexins. Because of the recent observation describing CaMKII binding and phosphorylation sites in Cx36 and evidence that calmodulin dependent protein kinase II (CaMKII) may potentiate electrical coupling in neurons of teleosts, we have explored whether CaMKII activates mammalian Cx36. Consistent with this hypothesis, certain Cx36 mutants lacking the CaMKII binding and phosphorylation sites or wild type Cx36 treated with certain cognate peptides corresponding to binding or phosphorylation sites blocked or strongly attenuated run-up of junctional conductance. Likewise, KN-93, an inhibitor of CaMKII, blocked run-up, as did a membrane permeable peptide corresponding to the CaMKII autoinhibitory domain. Furthermore, run-up was blocked by phosphatase delivered within the pipette and not affected by treatment with the phosphatase inhibitor okadaic acid. These results imply that phosphorylation by CaMKII strengthens junctional currents of Cx36 channels, thereby conferring functional plasticity on electrical synapses formed of this protein.
Collapse
Affiliation(s)
- Cristiane del Corsso
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY,10461, USA
| | - Rodolfo Iglesias
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY,10461, USA
| | | | | | - David C. Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY,10461, USA
| |
Collapse
|