1
|
Pavlinek A, Adhya D, Tsompanidis A, Warrier V, Vernon AC, Lancaster M, Mill J, Srivastava DP, Baron-Cohen S. Using Organoids to Model Sex Differences in the Human Brain. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100343. [PMID: 39092139 PMCID: PMC11292257 DOI: 10.1016/j.bpsgos.2024.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 08/04/2024] Open
Abstract
Sex differences are widespread during neurodevelopment and play a role in neuropsychiatric conditions such as autism, which is more prevalent in males than females. In humans, males have been shown to have larger brain volumes than females with development of the hippocampus and amygdala showing prominent sex differences. Mechanistically, sex steroids and sex chromosomes drive these differences in brain development, which seem to peak during prenatal and pubertal stages. Animal models have played a crucial role in understanding sex differences, but the study of human sex differences requires an experimental model that can recapitulate complex genetic traits. To fill this gap, human induced pluripotent stem cell-derived brain organoids are now being used to study how complex genetic traits influence prenatal brain development. For example, brain organoids from individuals with autism and individuals with X chromosome-linked Rett syndrome and fragile X syndrome have revealed prenatal differences in cell proliferation, a measure of brain volume differences, and excitatory-inhibitory imbalances. Brain organoids have also revealed increased neurogenesis of excitatory neurons due to androgens. However, despite growing interest in using brain organoids, several key challenges remain that affect its validity as a model system. In this review, we discuss how sex steroids and the sex chromosomes each contribute to sex differences in brain development. Then, we examine the role of X chromosome inactivation as a factor that drives sex differences. Finally, we discuss the combined challenges of modeling X chromosome inactivation and limitations of brain organoids that need to be taken into consideration when studying sex differences.
Collapse
Affiliation(s)
- Adam Pavlinek
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Dwaipayan Adhya
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Alex Tsompanidis
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Varun Warrier
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | | | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Abstract
Across vertebrate species, gonadal hormones coordinate physiology with behavior to facilitate social interactions essential for reproduction and survival. In adulthood, these hormones activate neural circuits that regulate behaviors presenting differently in females and males, such as parenting and territorial aggression. Yet long before sex-typical behaviors emerge at puberty, transient hormone production during sensitive periods of neurodevelopment establish the circuits upon which adult hormones act. How transitory waves of early-life hormone signaling exert lasting effects on the brain remains a central question. Here we discuss how perinatal estradiol signaling organizes cellular and molecular sex differences in the rodent brain. We review classic anatomic studies revealing sex differences in cell number, volume, and neuronal projections, and consider how single-cell sequencing methods enable distinction between sex-biased cell-type abundance and gene expression. Finally, we highlight the recent discovery of a gene regulatory program activated by estrogen receptor α (ERα) following the perinatal hormone surge. A subset of this program displays sustained sex-biased gene expression and chromatin accessibility throughout the postnatal sensitive period, demonstrating a bona fide epigenetic mechanism. We propose that ERα-expressing neurons throughout the social behavior network use similar gene regulatory programs to coordinate brain sexual differentiation.
Collapse
Affiliation(s)
- Bruno Gegenhuber
- Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
3
|
Poeppl TB, Langguth B, Rupprecht R, Safron A, Bzdok D, Laird AR, Eickhoff SB. The neural basis of sex differences in sexual behavior: A quantitative meta-analysis. Front Neuroendocrinol 2016; 43:28-43. [PMID: 27742561 PMCID: PMC5123903 DOI: 10.1016/j.yfrne.2016.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 01/28/2023]
Abstract
Sexuality as to its etymology presupposes the duality of sexes. Using quantitative neuroimaging meta-analyses, we demonstrate robust sex differences in the neural processing of sexual stimuli in thalamus, hypothalamus, and basal ganglia. In a narrative review, we show how these relate to the well-established sex differences on the behavioral level. More specifically, we describe the neural bases of known poor agreement between self-reported and genital measures of female sexual arousal, of previously proposed male proneness to affective sexual conditioning, as well as hints of unconscious activation of bonding mechanisms during sexual stimulation in women. In summary, our meta-analytic review demonstrates that neurofunctional sex differences during sexual stimulation can account for well-established sex differences in sexual behavior.
Collapse
Affiliation(s)
- Timm B Poeppl
- University of Regensburg, Department of Psychiatry and Psychotherapy, Universitaetsstrasse 84, 93053 Regensburg, Germany.
| | - Berthold Langguth
- University of Regensburg, Department of Psychiatry and Psychotherapy, Universitaetsstrasse 84, 93053 Regensburg, Germany
| | - Rainer Rupprecht
- University of Regensburg, Department of Psychiatry and Psychotherapy, Universitaetsstrasse 84, 93053 Regensburg, Germany
| | - Adam Safron
- Northwestern University, Department of Psychology, 2029 Sheridan Road, Evanston, IL 60208, United States
| | - Danilo Bzdok
- RWTH Aachen University, Department of Psychiatry, Psychotherapy and Psychosomatics, Pauwelsstrasse 30, 52074 Aachen, Germany; Jülich Aachen Research Alliance (JARA), JARA Brain, Wilhelm-Johnen-Strasse, 52428 Jülich, Germany; INRIA, Neurospin - CEA, Parietal Team, Bât 145, Point Courrier 156, 91191 Gif/Yvette, France
| | - Angela R Laird
- Florida International University, Department of Physics, 11200 SW 8th Street, Miami, FL 33199, United States
| | - Simon B Eickhoff
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1), Wilhelm-Johnen-Strasse, 52428 Jülich, Germany; Heinrich Heine University, Institute of Clinical Neuroscience and Medical Psychology, Universitaetsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
de Vries GJ, Forger NG. Sex differences in the brain: a whole body perspective. Biol Sex Differ 2015; 6:15. [PMID: 26279833 PMCID: PMC4536872 DOI: 10.1186/s13293-015-0032-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/28/2015] [Indexed: 12/29/2022] Open
Abstract
Most writing on sexual differentiation of the mammalian brain (including our own) considers just two organs: the gonads and the brain. This perspective, which leaves out all other body parts, misleads us in several ways. First, there is accumulating evidence that all organs are sexually differentiated, and that sex differences in peripheral organs affect the brain. We demonstrate this by reviewing examples involving sex differences in muscles, adipose tissue, the liver, immune system, gut, kidneys, bladder, and placenta that affect the nervous system and behavior. The second consequence of ignoring other organs when considering neural sex differences is that we are likely to miss the fact that some brain sex differences develop to compensate for differences in the internal environment (i.e., because male and female brains operate in different bodies, sex differences are required to make output/function more similar in the two sexes). We also consider evidence that sex differences in sensory systems cause male and female brains to perceive different information about the world; the two sexes are also perceived by the world differently and therefore exposed to differences in experience via treatment by others. Although the topic of sex differences in the brain is often seen as much more emotionally charged than studies of sex differences in other organs, the dichotomy is largely false. By putting the brain firmly back in the body, sex differences in the brain are predictable and can be more completely understood.
Collapse
Affiliation(s)
- Geert J. de Vries
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30302-5030 USA
| | - Nancy G. Forger
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30302-5030 USA
| |
Collapse
|
5
|
Tsukahara S, Kanaya M, Yamanouchi K. Neuroanatomy and sex differences of the lordosis-inhibiting system in the lateral septum. Front Neurosci 2014; 8:299. [PMID: 25278832 PMCID: PMC4166118 DOI: 10.3389/fnins.2014.00299] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 09/02/2014] [Indexed: 12/21/2022] Open
Abstract
Female sexual behavior in rodents, termed lordosis, is controlled by facilitatory and inhibitory systems in the brain. It has been well demonstrated that a neural pathway from the ventromedial hypothalamic nucleus (VMN) to the midbrain central gray (MCG) is essential for facilitatory regulation of lordosis. The neural pathway from the arcuate nucleus to the VMN, via the medial preoptic nucleus, in female rats mediates transient suppression of lordosis, until female sexual receptivity is induced. In addition to this pathway, other regions are involved in inhibitory regulation of lordosis in female rats. The lordosis-inhibiting systems exist not only in the female brain but also in the male brain. The systems contribute to suppression of heterotypical sexual behavior in male rats, although they have the potential ability to display lordosis. The lateral septum (LS) exerts an inhibitory influence on lordosis in both female and male rats. This review focuses on the neuroanatomy and sex differences of the lordosis-inhibiting system in the LS. The LS functionally and anatomically links to the MCG to exert suppression of lordosis. Neurons of the intermediate part of the LS (LSi) serve as lordosis-inhibiting neurons and project axons to the MCG. The LSi-MCG neural connection is sexually dimorphic, and formation of the male-like LSi-MCG neural connection is affected by aromatized testosterone originating from the testes in the postnatal period. The sexually dimorphic LSi-MCG neural connection may reflect the morphological basis of sex differences in the inhibitory regulation of lordosis in rats.
Collapse
Affiliation(s)
- Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University Saitama, Japan
| | - Moeko Kanaya
- Division of Life Science, Graduate School of Science and Engineering, Saitama University Saitama, Japan
| | - Korehito Yamanouchi
- Department of Human Behavior and Environment Sciences, Faculty of Human Sciences, Waseda University Saitama, Japan
| |
Collapse
|
6
|
Abstract
Animal–animal recognition within, and across species, is essential for predator avoidance and social interactions. Despite its essential role in orchestrating responses to animal cues, basic principles of information processing by the vomeronasal system are still unknown. The medial amygdala (MeA) occupies a central position in the vomeronasal pathway, upstream of hypothalamic centers dedicated to defensive and social responses. We have characterized sensory responses in the mouse MeA and uncovered emergent properties that shed new light onto the transformation of vomeronasal information into sex- and species-specific responses. In particular, we show that the MeA displays a degree of stimulus selectivity and a striking sexually dimorphic sensory representation that are not observed in the upstream relay of the accessory olfactory bulb (AOB). Furthermore, our results demonstrate that the development of sexually dimorphic circuits in the MeA requires steroid signaling near the time of puberty to organize the functional representation of sensory stimuli. DOI:http://dx.doi.org/10.7554/eLife.02743.001 Many animals emit and detect chemicals known as pheromones to communicate with other members of their own species. Animals also rely on chemical signals from other species to warn them, for example, that a predator is nearby. Many of these chemical signals—which are present in sweat, tears, urine, and saliva—are detected by a structure called the vomeronasal organ, which is located at the base of the nasal cavity. When this organ detects a particular chemical signal, it broadcasts this information to a network of brain regions that generates an appropriate behavioral response. Two structures within this network, the accessory olfactory bulb and the medial amygdala, play an important role in modifying this signal before it reaches its final destination—a region of the brain called the hypothalamus. Activation of the hypothalamus by the signal triggers changes in the animal's behavior. Although the anatomical details of this pathway have been widely studied, it is not clear how information is actually transmitted along it. Now, Bergan et al. have provided insights into this process by recording signals in the brains of anesthetized mice exposed to specific stimuli. Whereas neurons in the accessory olfactory bulb responded similarly in male and female mice, those in the medial amygdala showed a preference for female urine in male mice, and a preference for male urine in the case of females. This is the first direct demonstration of differences in sensory processing in the brains of male and female mammals. These differences are thought to result from the actions of sex hormones, particularly estrogen, on brain circuits during development. Consistent with this, neurons in the medial amygdala of male mice with reduced levels of estrogen showed a reduced preference for female urine compared to control males. Similarly, female mice that had been previously exposed to high levels of estrogen as pups showed a reduced preference for male urine compared to controls. In addition to increasing understanding of how chemical signals—including pheromones—influence the responses of rodents to other animals, the work of Bergan et al. has provided clues to the neural mechanisms that underlie sex-specific differences in behaviors. DOI:http://dx.doi.org/10.7554/eLife.02743.002
Collapse
Affiliation(s)
- Joseph F Bergan
- Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Yoram Ben-Shaul
- School of Medicine, Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Catherine Dulac
- Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| |
Collapse
|
7
|
Ayala C, Pennacchio GE, Soaje M, Carreño NB, Bittencourt JC, Jahn GA, Celis ME, Valdez SR. Effects of thyroid status on NEI concentration in specific brain areas related to reproduction during the estrous cycle. Peptides 2013; 49:74-80. [PMID: 24028792 DOI: 10.1016/j.peptides.2013.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 01/10/2023]
Abstract
We previously showed that short-term hypo- and hyperthyroidism induce changes in neuropeptide glutamic-acid-isoleucine-amide (NEI) concentrations in discrete brain areas in male rats. To investigate the possible effects of hypo- and hyperthyroidism on NEI concentrations mainly in hypothalamic areas related to reproduction and behavior, female rats were sacrificed at different days of the estrous cycle. Circulating luteinizing hormone (LH), estradiol and progesterone concentrations were measured in control, hypothyroid (hypoT, treated with PTU during 7-9 days) and hyperthyroid (hyperT, l-T4 during 4-7 days) animals. Both treatments blunted the LH surge. Hypo- and hyperthyroidism increased estradiol concentrations during proestrus afternoon (P-PM), although hypoT rats showed lower values compared to control during proestrus morning (P-AM). Progesterone levels were higher in all groups at P-PM and in the hyperT during diestrus morning (D2). NEI concentrations were lower in hypoT rats during the estrous cycle except in estrus (E) in the peduncular part of the lateral hypothalamus (PLH). They were also reduced by both treatments in the perifornical part of the lateral hypothalamus (PeFLH) during P-PM. Hypothyroidism led to higher NEI concentrations during P-PM in the organum vasculosum of the lamina terminalis and anteroventral periventricular nucleus (OVLT+AVPV). The present results indicate that NEI concentration is regulated in a complex manner by hypo- and hyperthyroidism in the different areas studied, suggesting a correlation between NEI values and the variations of gonadal steroid levels during estrous cycle. These changes could be, in part, responsible for the alterations observed in the hypothalamic-pituitary-gonadal axis in these pathologies.
Collapse
Affiliation(s)
- Carolina Ayala
- Laboratorio de Ciencias Fisiológicas, Cátedra de Bacteriología y Virología Médicas, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, CP 5000 Córdoba, Argentina; Sección de Desarrollo Cerebral Perinatal (SPBD), Instituto de Histología y Embriología Mendoza (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Parque General San Martín, CP 5500 Mendoza, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Jahagirdar V, Zoeller TR, Tighe DP, Wagner CK. Maternal hypothyroidism decreases progesterone receptor expression in the cortical subplate of foetal rat brain. J Neuroendocrinol 2012; 24:1126-34. [PMID: 22435967 DOI: 10.1111/j.1365-2826.2012.02318.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Steroid hormones exert profound effects on the development of brain areas controlling complex cognitive function in adulthood. One class, progestins, may contribute by acting on the progestin receptor (PR), which is transiently expressed in a critical layer of developing cortex: the subplate. PR expression in the subplate coincides with the establishment of ongoing cortical connectivity and may play an important organisational role. Identification of the factor(s) that regulate the precise timing of PR expression within subplate may help elucidate the function of PR. Thyroid hormone may interact with hormone response elements within the PR gene. The present study examined the effects of maternal hypothyroidism on levels of PR immunoreactivity (PR-IR) within the foetal subplate. Pregnant rats were made hypothyroid by the administration of methimazole and potassium perchlorate in drinking water. Maternal hypothyroidism significantly decreased PR-IR within the foetal subplate. Using the incorporation of 5-bromo-2'-deoxyuridine (BrDU) during subplate cell neurogenesis (embryonic day 13.5) to determine subplate cell survival in hypothyroid animals, we found that decreases in PR-IR cannot be attributed to significant subplate cell loss but are more likely the result of altered PR expression. Gestational thyroxine replacement to hypothyroid dams prevented the decrease in PR-IR within the subplate. These results identify thyroid hormone as a potential factor in the regulation of PR expression in the developing brain. These results are consistent with the idea that endocrine cross-talk between progesterone and thyroid hormone may be one mechanism by which maternal hypothyroidism alters normal cortical development.
Collapse
Affiliation(s)
- V Jahagirdar
- Department of Psychology and Center for Neuroscience Research, University at Albany, Albany, NY 12222, USA
| | | | | | | |
Collapse
|
9
|
Petersen SL, Krishnan S, Aggison LK, Intlekofer KA, Moura PJ. Sexual differentiation of the gonadotropin surge release mechanism: a new role for the canonical NfκB signaling pathway. Front Neuroendocrinol 2012; 33:36-44. [PMID: 21741397 DOI: 10.1016/j.yfrne.2011.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/09/2011] [Accepted: 06/11/2011] [Indexed: 12/30/2022]
Abstract
Sex differences in luteinizing hormone (LH) release patterns are controlled by the hypothalamus, established during the perinatal period and required for fertility. Female mammals exhibit a cyclic surge pattern of LH release, while males show a tonic release pattern. In rodents, the LH surge pattern is dictated by the anteroventral periventricular nucleus (AVPV), an estrogen receptor-rich structure that is larger and more cell-dense in females. Sex differences result from mitochondrial cell death triggered in perinatal males by estradiol derived from aromatization of testosterone. Herein we provide an historical perspective and an update describing evidence that molecules important for cell survival and cell death in the immune system also control these processes in the developing AVPV. We conclude with a new model proposing that development of the female AVPV requires constitutive activation of the Tnfα, Tnf receptor 2, NfκB and Bcl2 pathway that is blocked by induction of Tnf receptor-associated factor 2-inhibiting protein (Traip) in the male.
Collapse
Affiliation(s)
- Sandra L Petersen
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| | | | | | | | | |
Collapse
|
10
|
|
11
|
McCarthy MM, Wright CL, Schwarz JM. New tricks by an old dogma: mechanisms of the Organizational/Activational Hypothesis of steroid-mediated sexual differentiation of brain and behavior. Horm Behav 2009; 55:655-65. [PMID: 19682425 PMCID: PMC2742630 DOI: 10.1016/j.yhbeh.2009.02.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 01/06/2023]
Abstract
The hormonal regulation of sexual behavior has been the topic of study for over 50 years and yet controversies persist regarding the importance of early versus late events and the identity of the critical neural and cellular substrates. We have taken a mechanistic approach toward the masculinizing actions of the gonadal steroid estradiol, as a means to understand how organization of the neuroarchitechture during a perinatal sensitive period exerts enduring influences on adult behavior. We have identified important roles for prostaglandins, FAK and paxillin, PI3 kinase and glutamate, and determined that cell-to-cell signaling is a critical component of the early organizational events. We have further determined that the mechanisms mediating different components of sexual behavior are distinct and regionally specific. The multitude of mechanisms by which the steroid estradiol, exerts divergent effects on the developing nervous system provides for a multitude of phenotypes which can vary significantly both within and between the sexes.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Physiology, Program in Neuroscience, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
12
|
López V, Wagner CK. Progestin receptor is transiently expressed perinatally in neurons of the rat isocortex. J Comp Neurol 2009; 512:124-39. [PMID: 18973223 DOI: 10.1002/cne.21883] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Steroid hormones influence the development of numerous brain regions, including some that are not classically considered steroid-sensitive. For example, nuclear receptors for both androgen and estrogen have been detected in neonatal cortical cells. High levels of progestin binding and progestin receptor (PR) mRNA have also been reported in early perinatal isocortex. PR expression coincides with high levels of de novo progesterone produced within the cortex, suggesting that PR and its ligand influence the important developmental cortical processes occurring shortly after birth. In order to better understand the role PR plays in cortical development, we used the cellular-level resolution of immunohistochemistry and in situ hybridization (ISH) to characterize changes in perinatal PR expression within specific cortical lamina. PR immunoreactivity (PR-ir) was examined at embryonic days (E) 18, 20, 21, 22, and postnatal days (P) 1, 3, 6, 9, 13, and 27. We find that PR-ir is transiently expressed in specific lamina of frontal, parietal, temporal, and occipital cortex. PR-ir was observed in subplate cells on E18, in increasingly superficial lamina (primarily lamina V, then II/III) during early postnatal development, and was absent by P27. Double-labeling immunohistochemistry indicated that PR-ir colocalizes with the neuronal marker, microtubule associated protein-2, but not with the glial marker, nestin, nor with gamma-aminobutyric acid. These results suggest that specific subpopulations of cortical neurons may be transiently sensitive to progesterone, and that progesterone and its receptor may play a critical role in the fundamental mechanisms underlying normal cortical development.
Collapse
Affiliation(s)
- Verónica López
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | |
Collapse
|
13
|
Quadros PS, Schlueter LJ, Wagner CK. Distribution of progesterone receptor immunoreactivity in the midbrain and hindbrain of postnatal rats. Dev Neurobiol 2008; 68:1378-90. [PMID: 18712784 DOI: 10.1002/dneu.20664] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nuclear steroid hormone receptors are powerful transcription factors and therefore have the potential to influence and regulate fundamental processes of neural development. The expression of progesterone receptors (PR) has been described in the developing forebrain of rats and mice, and the mammalian brain may be exposed to significant amounts of progesterone, either from maternal sources and/or de novo synthesis of progesterone from cholesterol within the brain. The present study examined the distribution of PR immunoreactive (PRir) cells within the midbrain and hindbrain of postnatal rats. The results demonstrate that PR is transiently expressed within the first 2 weeks of life in specific motor, sensory and reticular core nuclei as well as within midbrain dopaminergic cell groups such as the substantia nigra and the ventral tegmental area. Additionally, robust PRir was observed in cells of the lower rhombic lip, a transient structure giving rise to precerebellar nuclei. These results suggest that progestins and progesterone receptors may play a fundamental role in the postnatal development of numerous midbrain and hindbrain nuclei, including some areas implicated in human disorders. Additionally, these findings contribute to the increasing evidence that steroid hormones and their receptors influence neural development in a wide range of brain areas, including many not typically associated with reproduction or neuroendocrine function.
Collapse
Affiliation(s)
- Princy S Quadros
- Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA.
| | | | | |
Collapse
|
14
|
Jeong JK, Ryu BJ, Choi J, Kim DH, Choi EJ, Park JW, Park JJ, Lee BJ. NELL2 participates in formation of the sexually dimorphic nucleus of the pre-optic area in rats. J Neurochem 2008; 106:1604-13. [PMID: 18513367 DOI: 10.1111/j.1471-4159.2008.05505.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Formation of the sexually dimorphic nucleus of the pre-optic area (SDN-POA) in the rat hypothalamus shows a sexually differential development of neurons. Volume of the SDN-POA in males is much bigger than that in females which is because of a neuroprotective effect of estradiol converted from circulating testosterone during a critical period of brain development. We found that neural epidermal growth factor-like like-2 (NELL2), a neural tissue-enriched protein, is a potential downstream target of estrogen. In this study, we examined a possible role of NELL2 in the development of the SDN-POA and in the normalcy of sexual behavior in the male rats. NELL2 was expressed and co-localized with estrogen receptor alpha in the SDN-POA. A blockade of NELL2 synthesis in the brain during postnatal day 0 (d0) to d4 by an intracerebroventricular injection of an antisense NELL2 oligodeoxynucleotide, resulted in a decrease in volume of the SDN-POA in males. Interestingly, it reduced some components of the male sexual behavior such as mounting and intromission, but not the sexual partner preference in adulthood. In vitro study using the hippocampal neuroprecursor HiB5 cells showed that NELL2 has a protective effect from a cell death condition. These data suggest that a relevant expression of NELL2 in the neonatal brain is important for the estrogen-induced normal development of the SDN-POA and the normalcy of sexual behavior in male rats.
Collapse
Affiliation(s)
- Jin Kwon Jeong
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Pezuk P, Aydin E, Aksoy A, Canbeyli R. Effects of BNST lesions in female rats on forced swimming and navigational learning. Brain Res 2008; 1228:199-207. [PMID: 18619949 DOI: 10.1016/j.brainres.2008.06.071] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 06/18/2008] [Accepted: 06/20/2008] [Indexed: 12/15/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) in the forebrain shows sexual dimorphism in its neuroanatomical connectivity and neurochemical characteristics. The structure is involved in many behavioral and motivational phenomena particularly related to coping with stress. Female rats differ from males in responding to stressful situations such as forced swimming and navigational learning in the water maze. It was previously shown that bilateral damage to the BNST in male Wistar rats aggravated depression as measured by forced swim tests, but did not impair navigational learning in the water maze. The present study extended the findings to female rats demonstrating that bilateral electrolytic lesions of the BNST increased immobility and decreased climbing compared to sham-operated controls, but failed to affect performance in the water maze. Additionally, lesions did not alter behavior in the open field and the elevated plus-maze tests suggesting not only that the modulation of depression by BNST lesions is specific, but also providing support for the view that the BNST may not necessarily be critically involved in anxiety.
Collapse
Affiliation(s)
- Pinar Pezuk
- Department of Biology, University of Virginia, Charlottesville, VA 22904-4328, USA
| | | | | | | |
Collapse
|
16
|
Abstract
The brain has been known to be a sensitive target organ for the permanent organisational effects of gonadal steroids for close to 50 years. Recent advances have revealed a variety of unexpected cellular mechanisms by which steroids impact on the synaptic profile of hypothalamic nuclei critical to the control of reproduction. This review focuses on three in particular: 1) prostaglandins in the masculinisation of the preoptic area and control of male sexual behaviour; 2) GABA in the arcuate nucleus and potential control of the anterior pituitary; and 3) non-genomic activation of phosphotydolinositol 3 (PI3) kinase and glutamate in the ventromedial nucleus, which is relevant to the control of female reproductive behaviour. The importance of cell-to-cell communication, be it between neurones or between neurones and astrocytes, is highlighted as an essential principle for expanding the impact of steroids beyond those cells that express nuclear receptors.
Collapse
Affiliation(s)
- M M McCarthy
- Department of Physiology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
17
|
Abstract
Hormone exposure, including testosterone and its metabolite estradiol, induces a myriad of effects during a critical period of brain development that are necessary for brain sexual differentiation. Nuclear volume, neuronal morphology, and astrocyte complexity are examples of the wide range of effects by which testosterone and estradiol can induce permanent changes in the function of neurons for the purpose of reproduction in adulthood. This review will examine the multitude of mechanisms by which steroid hormones induce these permanent changes in brain structure and function. Elucidating how steroids alter brain development sheds light on how individual variation in neuronal phenotype is established during a critical period.
Collapse
Affiliation(s)
- Jaclyn M Schwarz
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
18
|
Abstract
The sexual differentiation of reproductive physiology and behavior in the rodent brain is largely determined by estradiol aromatized from testicular androgens. The cellular mechanisms by which estradiol masculinizes the brain are beginning to emerge and revealing novel features of brain development that are highly region-specific. In the preoptic area, the major site controlling male sexual behavior, estradiol increases the level of the COX-2 enzyme and its product, prostaglandin E2 which promotes dendritic spine synaptogenesis. In the ventromedial nucleus of the hypothalamus, the major site controlling female reproductive behavior, estradiol promotes glutamate release from synaptic terminals, activating NMDA receptors and the MAP kinase pathway. In the arcuate nucleus, a major regulator of anterior pituitary function, estradiol increases GABA synthesis, altering the morphology of neighboring astrocytes and reducing formation of dendritic spines synapses. Glutamate, GABA and the importance of neuronal-astrocytic cross-talk are emerging as common aspects of masculinization. Advances are also being made in the mechanistic basis of female brain development, although the challenges are far greater.
Collapse
Affiliation(s)
- Jaclyn M Schwarz
- Department of Physiology and Program in Neuroscience, University of Maryland Baltimore, 655 W. Baltimore Street, Baltimore, MD 21230, USA
| | | |
Collapse
|
19
|
Bouret SG, Gorski JN, Patterson CM, Chen S, Levin BE, Simerly RB. Hypothalamic neural projections are permanently disrupted in diet-induced obese rats. Cell Metab 2008; 7:179-85. [PMID: 18249177 PMCID: PMC2442478 DOI: 10.1016/j.cmet.2007.12.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 11/04/2007] [Accepted: 12/07/2007] [Indexed: 01/20/2023]
Abstract
The arcuate nucleus of the hypothalamus (ARH) is a key component of hypothalamic pathways regulating energy balance, and leptin is required for normal development of ARH projections. Diet-induced obesity (DIO) has a polygenic mode of inheritance, and DIO individuals develop the metabolic syndrome when a moderate amount of fat is added to the diet. Here we demonstrate that rats selectively bred to develop DIO, which are known to be leptin resistant before they become obese, have defective ARH projections that persist into adulthood. Furthermore, the ability of leptin to activate intracellular signaling in ARH neurons in vivo and to promote ARH neurite outgrowth in vitro is significantly reduced in DIO neonates. Thus, animals that are genetically predisposed toward obesity display an abnormal organization of hypothalamic pathways involved in energy homeostasis that may be the result of diminished responsiveness of ARH neurons to the trophic actions of leptin during postnatal development.
Collapse
Affiliation(s)
- Sebastien G Bouret
- Neuroscience Program, The Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA. <>
| | | | | | | | | | | |
Collapse
|
20
|
Patisaul HB, Fortino AE, Polston EK. Sex differences in serotonergic but not gamma-aminobutyric acidergic (GABA) projections to the rat ventromedial nucleus of the hypothalamus. Endocrinology 2008; 149:397-408. [PMID: 17947355 DOI: 10.1210/en.2007-0666] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hormonal conditions that elicit lordosis in female rats are ineffective in males, suggesting that this behavior is actively suppressed in males. Previous studies theorize that serotonergic and gamma-aminobutyric acidergic (GABA) inputs to the ventrolateral division of the ventromedial nucleus of the hypothalamus (VMNvl) may contribute to lordosis inhibition in males. Using triple-label immunofluorescent techniques, the present studies explored potential sex differences in the density of these projections within three hypothalamic sites: the VMNvl, the arcuate nucleus (ARC), and the dorsomedial nucleus of the hypothalamus. Antibodies directed against HuC/D, estrogen receptor (ER)-alpha and either serotonin (5-HT) or the gamma-aminobutyric acid synthetic enzyme glutamic acid decarboxylase-65 were used to compare the densities of glutamic acid decarboxylase (GAD)-65- and 5-HT-containing fibers in each brain area, the percentage of VMNvl HuC/D immunoreactive (ir) neurons that contained ERalpha, and the percentage of HuC/D and ERalpha double-labeled cells receiving apparent contacts from 5-HT fibers between adult, gonadectomized male and female rats. The densities of VMNvl and ARC 5-HT immunolabeled fibers were significantly higher in the males, and the percentage of VMNvl HuC/D-ir neurons containing ERalpha was significantly higher in the females. The percentage of HuC/D-ir cells contacted by 5-HT fibers was significantly higher in the males, compared with the females, but there was no sex difference in the proportion of those cells receiving contacts that were ERalpha-ir. Neonatal administration of estradiol but not genistein masculinized 5-HT content in the adult female VMNvl, but the percentage of HuC/D-ir cells colabeled with ERalpha was not significantly affected by treatment. A similar, but not statistically significant, pattern was observed in the ARC. These findings suggest that the development of serotonergic inputs to the male VMNvl is orchestrated by neonatal estradiol exposure. The hormone-dependent organization of these 5-HT projection patterns may be an important developmental mechanism accounting for sex-specific behaviors in adulthood.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Zoology, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | | | |
Collapse
|
21
|
Abstract
Estradiol is the most potent and ubiquitous member of a class of steroid hormones called estrogens. Fetuses and newborns are exposed to estradiol derived from their mother, their own gonads, and synthesized locally in their brains. Receptors for estradiol are nuclear transcription factors that regulate gene expression but also have actions at the membrane, including activation of signal transduction pathways. The developing brain expresses high levels of receptors for estradiol. The actions of estradiol on developing brain are generally permanent and range from establishment of sex differences to pervasive trophic and neuroprotective effects. Cellular end points mediated by estradiol include the following: 1) apoptosis, with estradiol preventing it in some regions but promoting it in others; 2) synaptogenesis, again estradiol promotes in some regions and inhibits in others; and 3) morphometry of neurons and astrocytes. Estradiol also impacts cellular physiology by modulating calcium handling, immediate-early-gene expression, and kinase activity. The specific mechanisms of estradiol action permanently impacting the brain are regionally specific and often involve neuronal/glial cross-talk. The introduction of endocrine disrupting compounds into the environment that mimic or alter the actions of estradiol has generated considerable concern, and the developing brain is a particularly sensitive target. Prostaglandins, glutamate, GABA, granulin, and focal adhesion kinase are among the signaling molecules co-opted by estradiol to differentiate male from female brains, but much remains to be learned. Only by understanding completely the mechanisms and impact of estradiol action on the developing brain can we also understand when these processes go awry.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Physiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland 21201, USA.
| |
Collapse
|
22
|
Todd BJ, Schwarz JM, Mong JA, McCarthy MM. Glutamate AMPA/kainate receptors, not GABA(A) receptors, mediate estradiol-induced sex differences in the hypothalamus. Dev Neurobiol 2007; 67:304-15. [PMID: 17443789 DOI: 10.1002/dneu.20337] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sex differences in brain morphology underlie physiological and behavioral differences between males and females. During the critical perinatal period for sexual differentiation in the rat, gonadal steroids act in a regionally specific manner to alter neuronal morphology. Using Golgi-Cox impregnation, we examined several parameters of neuronal morphology in postnatal day 2 (PN2) rats. We found that in the ventromedial nucleus of the hypothalamus (VMN) and in areas just dorsal and just lateral to the VMN that there was a sex difference in total dendritic spine number (males greater) that was abolished by treating female neonates with exogenous testosterone. Dendritic branching was similarly sexually differentiated and hormonally modulated in the VMN and dorsal to the VMN. We then used spinophilin, a protein that positively correlates with the amount of dendritic spines, to investigate the mechanisms underlying these sex differences. Estradiol, which mediates most aspects of masculinization and is the aromatized product of testosterone, increased spinophilin levels in female PN2 rats to that of males. Muscimol, an agonist at GABA(A) receptors, did not affect spinophilin protein levels in either male or female neonates. Kainic acid, an agonist at glutamatergic AMPA/kainate receptors, mimicked the effect of estradiol in females. Antagonizing AMPA/kainate receptors with NBQX prevented the estradiol-induced increase in spinophilin in females but did not affect spinophilin level in males.
Collapse
Affiliation(s)
- Brigitte J Todd
- Department of Physiology, University of Maryland, Baltimore School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | |
Collapse
|
23
|
Ciofi P, Lapirot OC, Tramu G. An androgen-dependent sexual dimorphism visible at puberty in the rat hypothalamus. Neuroscience 2007; 146:630-42. [PMID: 17395386 DOI: 10.1016/j.neuroscience.2007.02.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/24/2007] [Accepted: 02/06/2007] [Indexed: 11/18/2022]
Abstract
Morphological studies in rodents have well documented the masculinization of the perinatal brain by estradiol derived from aromatized testosterone, and the resulting irreversible quantitative sex-differences generated in cell numbers or expression of chemical phenotypes. Here, using immunohistochemistry, we explored how this applies to the postnatal development and masculinization of the neurokinin B (NKB)-containing system of the arcuate nucleus/median eminence complex (ARC/ME). In adult rats, NKB-immunoreactive neurons exhibit an unusual, qualitative sexual dimorphism of their ventral axonal projections: to the neuropil in females, to capillary vessels in males. In adults, there was no sex-difference in the numbers of NKB-immunoreactive perikarya or capillary vessels in the ARC/ME, suggesting that this sexual dimorphism cannot be explained by the existence of supernumerary structures. At birth (day 0) the NKB system was immature in both sexes, and while its adult features emerged progressively until puberty in females, they did not develop before puberty (day 40) in males, revealing a sexual dimorphism only late postnatally. When males were orchidectomized at day 30, the masculine distribution of NKB-immunoreactive axons expected at day 40 was not seen, while it was apparent after chronic treatment with testosterone or dihydrotestosterone, suggesting a testicular masculinizing action via androgen receptors at puberty. Moreover in these prepubertal-orchidectomized males, the distribution of NKB-immunoreactive axons was surprisingly feminized by chronic estradiol alone, suggesting that NKB neurons are not irreversibly programmed before puberty. Last, in adult females, the distribution of NKB-immunoreactive axons was feminine 30 days after ovariectomy, and it was masculinized after concurrent chronic dihydrotestosterone, suggesting that NKB neurons remain responsive to androgens late in reproductive life. Thus, the sexual differentiation of the hypothalamus proceeds well beyond the perinatal period and includes the epigenetic action of non-aromatizable androgens upon subsets of neurons that have retained bipotent features.
Collapse
Affiliation(s)
- P Ciofi
- Inserm U862, F-33077 Bordeaux, France; Université Victor Ségalen Bordeaux 2, F-33077 Bordeaux, France.
| | | | | |
Collapse
|
24
|
Govek EK, Swann JM. Stereological sex difference during development of the magnocelluar subdivision of the medial preoptic nucleus (MPN mag). Brain Res 2007; 1145:90-6. [PMID: 17336277 DOI: 10.1016/j.brainres.2007.01.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 12/16/2006] [Accepted: 01/26/2007] [Indexed: 11/18/2022]
Abstract
In Syrian hamsters, reproductive behaviors are initiated in the presence of appropriate hormonal and chemosensory cues. These cues are detected and integrated within a highly conserved pathway that converges on a small nuclear group in the lateral aspect of the medial preoptic area, the magnocellular subdivision of the medial preoptic nucleus (MPN mag). The MPN mag plays a critical role in the regulation of male mating behavior--bilateral ablation of the MPN mag eliminates copulation. The MPN mag is sexually differentiated in both neuron number and density, but not in overall volume or volume of individual neurons. The current study used unbiased stereological methods to determine when the MPN mag becomes sexually differentiated. Our data indicate that the MPN mag becomes sexually dimorphic in volume and cell number after the critical period when steroid treatment induces male sexual behavior.
Collapse
Affiliation(s)
- E K Govek
- Department of Biological Sciences, 111 Research Drive, Lehigh University, Bethlehem, PA 18104, USA
| | | |
Collapse
|
25
|
Cenquizca LA, Swanson LW. Analysis of direct hippocampal cortical field CA1 axonal projections to diencephalon in the rat. J Comp Neurol 2006; 497:101-14. [PMID: 16680763 PMCID: PMC2570652 DOI: 10.1002/cne.20985] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The hippocampal formation is generally considered essential for processing episodic memory. However, the structural organization of hippocampal afferent and efferent axonal connections is still not completely understood, although such information is critical to support functional hypotheses. The full extent of axonal projections from field CA1 to the interbrain (diencephalon) is analyzed here with the Phaseolus vulgaris-leucoagglutinin (PHAL) method. The ventral pole of field CA1 establishes direct pathways to, and terminal fields within, the anterior hypothalamic nucleus, ventromedial hypothalamic nucleus, lateral hypothalamic and lateral preoptic areas, medial preoptic area, and certain other hypothalamic regions, as well as particular midline thalamic nuclei. These results suggest that hippocampal field CA1 modulates motivated or goal-directed behaviors, and physiological responses, associated with the targeted hypothalamic neuron populations.
Collapse
Affiliation(s)
- Lee A. Cenquizca
- Department of Life Sciences, Los Angeles City College, Los Angeles, California 90029
| | - Larry W. Swanson
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520, USA
| |
Collapse
|
26
|
Abstract
The hormones that regulate the hypothalamic circuits that control essential functions, such as reproduction and energy homeostasis, also specify brain architecture by regulating key developmental events. The cellular mechanisms underlying the developmental actions of testosterone and estrogen to determine patterns of neuronal cell death, synaptogenesis and axon guidance are being identified. Recent neuroanatomical evidence indicates that the adipocyte-derived hormone leptin may direct the development of hypothalamic pathways involved in energy homeostasis by promoting axonal projections from the arcuate nucleus of the hypothalamus to other hypothalamic sites that mediate the effects of leptin on food intake and body weight. Understanding how sex steroids and leptin regulate hypothalamic development will enable us to identify hormonally directed signaling events essential to the specification of neural circuitry that is optimized for sustained homeostasis.
Collapse
Affiliation(s)
- Richard B Simerly
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA.
| |
Collapse
|
27
|
Abstract
The human brain assembles an incredible network of over a billion neurons. Understanding how these connections form during development in order for the brain to function properly is a fundamental question in biology. Much of this wiring takes place during embryonic development. Neurons are generated in the ventricular zone, migrate out, and begin to differentiate. However, neurons are often born in locations some distance from the target cells with which they will ultimately form connections. To form connections, neurons project long axons tipped with a specialized sensing device called a growth cone. The growing axons interact directly with molecules within the environment through which they grow. In order to find their targets, axonal growth cones use guidance molecules that can either attract or repel them. Understanding what these guidance cues are, where they are expressed, and how the growth cone is able to transduce their signal in a directionally specific manner is essential to understanding how the functional brain is constructed. In this chapter, we review what is known about the mechanisms involved in axonal guidance. We discuss how the growth cone is able to sense and respond to its environment and how it is guided by pioneering cells and axons. As examples, we discuss current models for the development of the spinal cord, the cerebral cortex, and the visual and olfactory systems.
Collapse
Affiliation(s)
- Céline Plachez
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
28
|
Morris JA, Jordan CL, Breedlove SM. Sexual differentiation of the vertebrate nervous system. Nat Neurosci 2004; 7:1034-9. [PMID: 15452574 DOI: 10.1038/nn1325] [Citation(s) in RCA: 458] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 08/13/2004] [Indexed: 11/09/2022]
Abstract
Understanding the mechanisms that give rise to sex differences in the behavior of nonhuman animals may contribute to the understanding of sex differences in humans. In vertebrate model systems, a single factor-the steroid hormone testosterone-accounts for most, and perhaps all, of the known sex differences in neural structure and behavior. Here we review some of the events triggered by testosterone that masculinize the developing and adult nervous system, promote male behaviors and suppress female behaviors. Testosterone often sculpts the developing nervous system by inhibiting or exacerbating cell death and/or by modulating the formation and elimination of synapses. Experience, too, can interact with testosterone to enhance or diminish its effects on the central nervous system. However, more work is needed to uncover the particular cells and specific genes on which testosterone acts to initiate these events.
Collapse
Affiliation(s)
- John A Morris
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
29
|
Abstract
The arcuate nucleus of the hypothalamus (ARH) is a critical component of the forebrain pathways that regulate energy homeostasis, and it plays a particularly important role in relaying leptin signal to other part of the hypothalamus. However, until recently, little was known about the development of these critical pathways. Recent work investigating the development of leptin-sensitive hypothalamic pathways suggests possible developmental mechanisms that may contribute to obesity later in life. Anatomic findings indicate that ARH circuits are structurally and functionally immature until the third week of postnatal life in mice. Recent data also suggest that leptin is required for normal development of ARH pathways and that this developmental activity of leptin is restricted to a neonatal window of maximum sensitivity that corresponds to a period of elevated leptin secretion. Thus, leptin may function to organize formation of hypothalamic circuitry in much the same way that sex steroids act on sexually dimorphic circuits. Perturbations in perinatal nutrition that alter leptin levels may, therefore, have enduring consequences for the formation and function of circuits regulating food intake and body weight.
Collapse
Affiliation(s)
- Sebastien G Bouret
- Oregon National Primate Research Center, Division of Neuroscience and Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | | |
Collapse
|
30
|
Polston EK, Gu G, Simerly RB. Neurons in the principal nucleus of the bed nuclei of the stria terminalis provide a sexually dimorphic GABAergic input to the anteroventral periventricular nucleus of the hypothalamus. Neuroscience 2004; 123:793-803. [PMID: 14706792 DOI: 10.1016/j.neuroscience.2003.09.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neurons of the principal nucleus of the bed nuclei of the stria terminalis (BSTp) process pheromonal and viscerosensory stimuli associated with reproduction and relay this information to preoptic and hypothalamic cell groups that regulate reproductive function. The anteroventral periventricular nucleus of the hypothalamus (AVPV), a nucleus involved in the regulation of gonadotropin secretory patterns, receives dense projections from BSTp neurons in males but not in females. By injecting the anterograde tracer, Phaseolus vulgaris leucoagglutinin (PHAL), into the BSTp of rats and immunohistochemically colocalizing the GABA synthetic enzyme, GAD65, to PHAL-immunoreactive fibers in the AVPV, we tested the hypothesis that these sex-specific projections arise from BSTp neurons that synthesize the inhibitory neurotransmitter GABA. Although dense GAD65-immunoreactive fiber terminals were observed in both the male and female AVPV, higher numbers of GAD65-labeled terminals were found in the male, and those localized to PHAL-immunoreactive fibers were seen almost exclusively in males. Treatment of newborn females with testosterone or neonatal orchidectomy of males reversed these sex differences, while GAD65-immunoreactivity in the AVPV was not altered in response to exogenous hormone treatments administered to peripubertal animals. Our results suggest that projections from BSTp neurons constitute a stable, sex-specific GABAergic input to the AVPV that is patterned permanently by perinatal hormone exposure.
Collapse
Affiliation(s)
- E K Polston
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, 97006, Beaverton, OR, USA
| | | | | |
Collapse
|
31
|
Tsukahara S, Inami K, Maekawa F, Kakeyama M, Yokoyama T, Yuji M, Kitagawa H, Kannan Y, Yamanouchi K. Postnatal apoptosis, development, and sex difference in the lateral septum of rats. J Comp Neurol 2004; 475:177-87. [PMID: 15211459 DOI: 10.1002/cne.20184] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To determine whether apoptosis is involved in the formation of the structure and morphological sex difference of the lateral septum (LS), the postnatal developmental changes in the number of apoptotic cells were examined in the LS on postnatal day 1 (PD1 = birth day), 4, 6, 8, 11, 16, and 31 in male and female rats. Apoptotic cells were immunohistochemically detected by antibody against single-stranded DNA (ssDNA) or active caspase-3. The volume of the LS was also measured and was found to increase with age. The number of apoptotic cells detected by anti-ssDNA in the LS increased from PD1 to PD8 but decreased after PD11. Also, the LS was divided into dorsal, intermediate, and ventral parts (LSd, LSi, and LSv), and the volume and number of ssDNA-immunoreactive cells in each part were measured on PD6, 8, 11, 16, and 31. In both sexes, a large number of ssDNA-immunoreactive cells was found in the LSd and LSi on PD8 (but not on PD6) and in the LSv on PD6 and PD8. On PD6, the number of active caspase-3-immunoreactive cells was significantly greater in the LSv than in the LSd or LSi, in both sexes. Only the LSi of males had a high number of ssDNA-immunoreacitve cells on PD16; the number was significantly greater than that of females of the same age. However, there was no significant sex difference in the number of active caspase-3-immunoreacitve cells in the LSi on PD16. On PD31, the volume of the LSi was significantly greater in females than in males. There was no sex difference in volume or number of apoptotic cells in the LSd or LSv. These findings indicate that loss of cells due to apoptosis, which is partially caused by activation of caspase-3, occurs in the LS during postnatal development, with regional differences. They also indicate that sex difference in caspase-3-independent apoptosis contributes to morphological sexual differentiation of the LSi.
Collapse
Affiliation(s)
- Shinji Tsukahara
- Graduate School of Science and Technology, Kobe University, Nada-ku, Kobe 657-8501, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sex differences in steroid-induced synaptic plasticity. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s1569-2558(03)34017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Abstract
Mating behavior in male hamsters is regulated by a chemosensory pathway that converges on the bed nucleus of the stria terminalis (BST) and the medial nucleus of the amygdala (Me). Both the BST and the Me project to the lateral part of the medial preoptic area. Lesion studies have identified a small group of large cells referred to as the magnocellular medial preoptic nucleus (MPN mag) whose integrity is required for normal mating behavior. Our data, summarized within, indicate that the MPN mag is a sexually differentiated nucleus in a large steroid-responsive network that relays pheromonal signals from the sensory systems to the motor areas to affect behavior.
Collapse
Affiliation(s)
- Jennifer M Swann
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | | | | |
Collapse
|
34
|
Polston EK, Simerly RB. Sex-specific patterns of galanin, cholecystokinin, and substance P expression in neurons of the principal bed nucleus of the stria terminalis are differentially reflected within three efferent preoptic pathways in the juvenile rat. J Comp Neurol 2003; 465:551-9. [PMID: 12975815 DOI: 10.1002/cne.10841] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neurons in the principal bed nucleus of the stria terminalis (BSTp) integrate hormonal and sensory information associated with reproduction and transmit this information to hypothalamic nuclei that regulate neuroendocrine and behavioral functions. The neuropeptides galanin (GAL), cholecystokinin (CCK), and substance P (SP) are highly expressed in BSTp neurons and are differentially regulated by sex steroids. The current experiments investigated whether developmental or peripubertal hormone-mediated changes in GAL, CCK, and SP expression are reflected within efferent pathways to the preoptic structures that regulate gonadotropin secretion and sexual behavior. Anterograde labeling of projections from the BSTp of male and female juvenile rats combined with immunohistochemical labeling of GAL-, CCK-, and SP-containing fibers in the anteroventral periventricular preoptic nucleus (AVPV) and the central and medial divisions of the medial preoptic nucleus (MPNc, MPNm, respectively) revealed unique sex differences in each region. In the AVPV, Phaseolus vulgaris leucoagglutinin-labeled fibers were seen at a greater density in males than in females, and higher percentages of these fibers contained GAL in males than in females. In contrast, fibers projecting from the BSTp to the MPNc were more likely to contain SP in females than in males. Treatment of gonadectomized, peripubertal males and females with exogenous testosterone and estradiol did not alter the densities of GAL-, CCK-, or SP-containing fibers in any of the three brain areas examined. Collectively, these results suggest that patterns of neuropeptide expression in BSTp projections are established during development, resulting in a distinct, stable, and sex-specific chemoarchitectural profile for each projection pathway.
Collapse
Affiliation(s)
- Eva K Polston
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA
| | | |
Collapse
|
35
|
Chakraborty TR, Ng L, Gore AC. Age-related changes in estrogen receptor beta in rat hypothalamus: a quantitative analysis. Endocrinology 2003; 144:4164-71. [PMID: 12933691 DOI: 10.1210/en.2003-0052] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the estrogen receptor beta (ER beta) is a major target for actions of estrogen on the brain, little is known about its neural expression during aging, when levels and the mode of estrogen release undergo substantial changes. Therefore, in the present study we examined effects of aging and estrogen treatment on the number of cells expressing the ER beta in female rats. Two regions relevant to reproductive function were analyzed: the anteroventral periventricular nucleus (AVPV) and the principal nucleus of the bed nucleus of the stria terminalis (pBST). The numbers of ER beta-expressing cells were quantified using an unbiased stereological approach. Female rats were used at three ages [young (3-4 months), middle-aged (10-12 months), and old (24-26 months)], with or without estrogen replacement. Because the estrogen milieu impacts the function of neurotransmitter receptors such as the N-methyl-D-aspartate receptor in the brain, we also investigated the colocalization of ER beta and the obligatory N-methyl-D-aspartate receptor subunit, NR1. We observed a significant age-related decrease in ER beta cell number in the AVPV, but not the pBST. No significant effect of estrogen on ER beta cell number was detected in either brain region at any age. Approximately 10% and 3% of cells expressing ER beta also coexpressed NR1 in AVPV and pBST, respectively, and this did not differ with age or treatment. Taken together, our results demonstrate 1) there are age-related changes in ER beta cell number that are region specific; 2) this expression is not altered by estrogen replacement; and 3) a subset of ER beta-positive cells coexpresses NR1.
Collapse
Affiliation(s)
- Tandra R Chakraborty
- Kastor Neurobiology of Aging Laboratories, Fishberg Research Center for Neurobiology, and Brookdale Department of Geriatrics and Adult Development, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
36
|
Gu G, Cornea A, Simerly RB. Sexual differentiation of projections from the principal nucleus of the bed nuclei of the stria terminalis. J Comp Neurol 2003; 460:542-62. [PMID: 12717713 DOI: 10.1002/cne.10677] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The principal nucleus of the bed nuclei of the stria terminalis (BSTp) is sexually dimorphic and participates in several aspects of reproduction. A detailed analysis of its projections revealed that the BSTp provides major inputs to forebrain regions that are sexually dimorphic and contain high densities of neurons that express receptors for sex steroid hormones in a pattern that is remarkably similar to that of the medial amygdaloid nucleus. The BSTp sends its strongest outputs to the periventricular zone of the hypothalamus and innervates structures thought to play important roles in regulating hormone secretion from the anterior pituitary, but it also provides strong inputs to the medial preoptic and ventromedial nuclei of the hypothalamus. The BSTp also sends a strong return projection to the medial nucleus of the amygdala. The projections of the BSTp appear to be more robust in males with striking sex differences observed in most, but not all, major terminal fields. Moreover, various terminal fields appeared to differ in their developmental sensitivity to manipulation of circulating levels of sex steroids during the neonatal period. Thus, the organization of projections from the BSTp suggests that it plays a particularly important role in regulating neuroendocrine function and that neurons in this nucleus may relay olfactory information to the hypothalamus differently in male and female rats. Furthermore, the differential action of sex steroids on the density of afferents from the BSTp in various regions indicates that these hormones exert a target-specific influence on the development of BSTp projections.
Collapse
Affiliation(s)
- Guibao Gu
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
37
|
Han TM, De Vries GJ. Organizational effects of testosterone, estradiol, and dihydrotestosterone on vasopressin mRNA expression in the bed nucleus of the stria terminalis. JOURNAL OF NEUROBIOLOGY 2003; 54:502-10. [PMID: 12532400 DOI: 10.1002/neu.10157] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In adulthood, male rats express higher levels of arginine vasopressin (AVP) mRNA in the bed nucleus of the stria terminalis (BST) than do female rats. We tested whether this sex difference is primarily due to differences in neonatal levels of testosterone. Male and female rats were gonadectomized on the day of birth and treated with testosterone propionate (TP) or vehicle on postnatal days 1, 3, and 5 (P1, P3, and P5). Three months later, all rats were implanted with testosterone-filled capsules. Two weeks later, brains were processed for in situ hybridization to detect AVP mRNA. We found that neonatal TP treatment significantly increased the number of vasopressinergic cells in the BST over control injections. We then sought to determine the effects of testosterone metabolites, estradiol and dihydrotestosterone, given alone or in combination, on AVP expression in the BST. Rat pups were treated as described above, except that instead of testosterone, estradiol benzoate (EB), dihydrotestosterone propionate (DHTP), a combination of EB and DHTP (EB+DHTP), or vehicle was injected neonatally. Neonatal treatment with either EB or EB+DHTP increased the number of vasopressinergic cells in the BST over that of DHTP or oil treatment. However, treatment with DHTP also significantly increased the number of vasopressinergic cells over that of oil treatment. Hence, in addition to bolstering evidence that estradiol is the more potent metabolite of testosterone in causing sexual differentiation of the brain, these data provide the first example of a masculinizing effect of a nonaromatizable androgen on a sexually dimorphic neuropeptide system.
Collapse
Affiliation(s)
- Tina M Han
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | |
Collapse
|
38
|
Scordalakes EM, Shetty SJ, Rissman EF. Roles of estrogen receptor alpha and androgen receptor in the regulation of neuronal nitric oxide synthase. J Comp Neurol 2002; 453:336-44. [PMID: 12389206 DOI: 10.1002/cne.10413] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In brain and peripheral tissues, steroid hormones regulate nitric oxide synthase (nNOS). We asked whether estrogen receptor-alpha (ERalpha) and/or androgen receptor (AR) regulated nNOS immunoreactivity in mouse brain. First, we quantified cells singly labeled for nNOS immunoreactivity or labeled dually with ERalpha-immunoreactive (-ir) or AR-ir cells in the nucleus accumbens (Acb), preoptic area (POA), bed nucleus of the stria terminalis (BNST), posterior dorsal and posterior ventral regions of the medial amygdala (MePD and MePV, respectively), and paraventricular nucleus (PVN). The POA and MePD contained the greatest number of double-labeled cells. More nNOS-ir cells were colabeled with ERalpha immunoreactivity compared with AR immunoreactivity. Next, by using a double mutant mouse in which males lacked functional ERalpha, AR, or both, we investigated the roles of these steroid receptors in nNOS-ir cell numbers and immunoreactive area staining under testosterone (T) and estradiol (E2) conditions. Our data show that functional ERalpha is correlated with more nNOS-ir cells under T conditions and more immunoreactive area staining in the POA under both T and E2 conditions. However, ERalpha decreases nNOS-ir cell number in the BNST under E2 treatment. In summary, the data suggest that AR has organizational actions on nNOS-ir cell numbers in the MePV, that interactions between ERalpha and AR genes occur in PVN, and that sex differences in nNOS-ir area staining are limited to the POA. Thus, we show that ERalpha and AR interact to regulate nNOS in male and female brain in a site-specific manner.
Collapse
Affiliation(s)
- Elka M Scordalakes
- Biology Department, University of Virginia, Charlottesville, Virginia 22903, USA
| | | | | |
Collapse
|
39
|
Simerly RB. Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain. Annu Rev Neurosci 2002; 25:507-36. [PMID: 12052919 DOI: 10.1146/annurev.neuro.25.112701.142745] [Citation(s) in RCA: 515] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mammalian reproduction depends on the coordinated expression of behavior with precisely timed physiological events that are fundamentally different in males and females. An improved understanding of the neuroanatomical relationships between sexually dimorphic parts of the forebrain has contributed to a significant paradigm shift in how functional neural systems are approached experimentally. This review focuses on the organization of interconnected limbic-hypothalamic pathways that participate in the neural control of reproduction and summarizes what is known about the developmental neurobiology of these pathways. Sex steroid hormones such as estrogen and testosterone have much in common with neurotrophins and regulate cell death, neuronal migration, neurogenesis, and neurotransmitter plasticity. In addition, these hormones direct formation of sexually dimorphic circuits by influencing axonal guidance and synaptogenesis. The signaling events underlying the developmental activities of sex steroids involve interactions between nuclear hormone receptors and other transcriptional regulators, as well as interactions at multiple levels with neurotrophin and neurotransmitter signal transduction pathways.
Collapse
Affiliation(s)
- Richard B Simerly
- Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health and Sciences University, Beaverton 97006, USA.
| |
Collapse
|