1
|
De Plano LM, Saitta A, Oddo S, Caccamo A. Navigating Alzheimer's Disease Mouse Models: Age-Related Pathology and Cognitive Deficits. Biomolecules 2024; 14:1405. [PMID: 39595581 PMCID: PMC11592094 DOI: 10.3390/biom14111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Since the mid-1990s, scientists have been generating mouse models of Alzheimer's disease to elucidate key mechanisms underlying the onset and progression of the disease and aid in developing potential therapeutic approaches. The first successful mouse model of Alzheimer's disease was reported in 1995 with the generation of the PDAPP mice, which were obtained by the overexpression of gene coding for the amyloid precursor protein (APP). Since then, scientists have used different approaches to develop other APP overexpression mice, mice overexpressing tau, or a combination of them. More recently, Saito and colleagues generated a mouse model by knocking in mutations associated with familial Alzheimer's disease into the APP gene. In this review, we will describe the most used animal models and provide a practical guide for the disease's age of onset and progression. We believe that this guide will be valuable for the planning and experimental design of studies utilizing these mouse models.
Collapse
Affiliation(s)
| | | | | | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (L.M.D.P.); (A.S.); (S.O.)
| |
Collapse
|
2
|
Zhang XW, Zhu XX, Tang DS, Lu JH. Targeting autophagy in Alzheimer's disease: Animal models and mechanisms. Zool Res 2023; 44:1132-1145. [PMID: 37963840 PMCID: PMC10802106 DOI: 10.24272/j.issn.2095-8137.2023.294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related progressive neurodegenerative disorder that leads to cognitive impairment and memory loss. Emerging evidence suggests that autophagy plays an important role in the pathogenesis of AD through the regulation of amyloid-beta (Aβ) and tau metabolism, and that autophagy dysfunction exacerbates amyloidosis and tau pathology. Therefore, targeting autophagy may be an effective approach for the treatment of AD. Animal models are considered useful tools for investigating the pathogenic mechanisms and therapeutic strategies of diseases. This review aims to summarize the pathological alterations in autophagy in representative AD animal models and to present recent studies on newly discovered autophagy-stimulating interventions in animal AD models. Finally, the opportunities, difficulties, and future directions of autophagy targeting in AD therapy are discussed.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 99078, China
| | - Xiang-Xing Zhu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Gene Editing Technology Center of Guangdong Province, Foshan University, Foshan, Guangdong 528225, China
| | - Dong-Sheng Tang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Gene Editing Technology Center of Guangdong Province, Foshan University, Foshan, Guangdong 528225, China. E-mail:
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 99078, China. E-mail:
| |
Collapse
|
3
|
Sokol DK, Lahiri DK. APPlications of amyloid-β precursor protein metabolites in macrocephaly and autism spectrum disorder. Front Mol Neurosci 2023; 16:1201744. [PMID: 37799731 PMCID: PMC10548831 DOI: 10.3389/fnmol.2023.1201744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 10/07/2023] Open
Abstract
Metabolites of the Amyloid-β precursor protein (APP) proteolysis may underlie brain overgrowth in Autism Spectrum Disorder (ASD). We have found elevated APP metabolites (total APP, secreted (s) APPα, and α-secretase adamalysins in the plasma and brain tissue of children with ASD). In this review, we highlight several lines of evidence supporting APP metabolites' potential contribution to macrocephaly in ASD. First, APP appears early in corticogenesis, placing APP in a prime position to accelerate growth in neurons and glia. APP metabolites are upregulated in neuroinflammation, another potential contributor to excessive brain growth in ASD. APP metabolites appear to directly affect translational signaling pathways, which have been linked to single gene forms of syndromic ASD (Fragile X Syndrome, PTEN, Tuberous Sclerosis Complex). Finally, APP metabolites, and microRNA, which regulates APP expression, may contribute to ASD brain overgrowth, particularly increased white matter, through ERK receptor activation on the PI3K/Akt/mTOR/Rho GTPase pathway, favoring myelination.
Collapse
Affiliation(s)
- Deborah K. Sokol
- Department of Neurology, Section of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Alzheimer Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
4
|
Zott B, Konnerth A. Impairments of glutamatergic synaptic transmission in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:24-34. [PMID: 35337739 DOI: 10.1016/j.semcdb.2022.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/31/2022]
Abstract
One of the hallmarks of Alzheimer's disease (AD) is structural cell damage and neuronal death in the brains of affected individuals. As these changes are irreversible, it is important to understand their origins and precursors in order to develop treatment strategies against AD. Here, we review evidence for AD-specific impairments of glutamatergic synaptic transmission by relating evidence from human AD subjects to functional studies in animal models of AD. The emerging picture is that early in the disease, the accumulation of toxic β-amyloid aggregates, particularly dimers and low molecular weight oligomers, disrupts glutamate reuptake, which leads to its extracellular accumulation causing neuronal depolarization. This drives the hyperactivation of neurons and might facilitate neuronal damage and degeneration through glutamate neurotoxicity.
Collapse
Affiliation(s)
- Benedikt Zott
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany; Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany; Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany.
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany; Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| |
Collapse
|
5
|
Azizi Z, Choopani S, Salimi M, Majlessi N, Naghdi N. Protein Kinase C Involvement in Neuroprotective Effects of Thymol and Carvacrol Against Toxicity Induced by Amyloid-β in Rat Hippocampal Neurons. Basic Clin Neurosci 2022; 13:295-304. [PMID: 36457884 PMCID: PMC9706300 DOI: 10.32598/bcn.2021.666.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/03/2021] [Accepted: 02/25/2021] [Indexed: 06/17/2023] Open
Abstract
INTRODUCTION We have reported that thymol and carvacrol can improve cognitive abilities in Alzheimer Disease (AD) rat models. However, the mechanism of their action is not yet fully understood. Recently, our in vitro results suggested that PC12 cell death induced by Aβ25-35 can be protected by thymol and carvacrol via Protein Kinase C (PKC) and Reactive Oxygen Species (ROS) pathways. So, we hypothesize that the mechanisms of thymol and carvacrol in improving the learning impairment in the AD rat model may be related to their effects on PKC. So, the activity of PKC and protein expression levels of PKCα were examined in the hippocampal cells of the AD rat model. METHODS To examine the thymol and carvacrol effects, we performed a behavioral test in AD rat models induced by Aβ25-35 neurotoxicity. To access the underlying mechanism of the protective effects, western blotting was performed with antibodies against PKCα. We also measured the PKC activity assay by Elisa. Histopathological studies were carried out in the hippocampus with Hematoxylin and Eosin (H&E) staining. RESULTS The escape latency increased in Aβ-received rats compared to the control group, and thymol and carvacrol reversed this deficit. Furthermore, these compounds could enhance the PKC activity and increase the PKCα expression ratio. Moreover, H&E staining showed that Aβ caused shrinkage of the CA1 pyramidal neurons. However, thymol and carvacrol treatments could prevent this effect of Aβ peptides. CONCLUSION This study suggests that Amyloid-Beta (Aβ) results in memory decline and histochemical disturbances in the hippocampus. Moreover, these results revealed that thymol and carvacrol could have protective effects on cognition in AD-like models via PKC activation. HIGHLIGHTS Rat's ability to find the invisible platform in the Morris Water Maze (MWM) was impaired by Amyloid-Beta (Aβ) infusion in the hippocampus, while this effect was reversed by thymol or carvacrol administration.Aβ significantly downregulated the Protein Kinase C (PKC) activity in rats' hippocampus.Western blot analysis demonstrated that Aβ significantly reduced PKCα protein expression in AD rat model hippocampal cells.The expression ratio of PKCα was upregulated following the injection of thymol and carvacrol in rats.Injection of Aβ in the hippocampus resulted in histochemical disturbances in CA1 pyramidal neurons.Carvacrol and thymol can prevent several histological changes induced by Aβ. PLAIN LANGUAGE SUMMARY Alzheimer's disease is one of the most important brain diseases in which the learning and memory are impaired. One of the main causes of Alzheimer's disease is the presence of amyloid beta plaques in the neurons. Protein kinase C enzyme reduces amyloid production and accumulation in the brain. In the present study, we tested the possible effects of carvacrol and thymol in a rat model of Alzheimer's disease. Memory impairment was induced in adult rats by intra-cerebral infusion of amyloid β. One week later, the memory-impaired animals were treated with carvacrol and thymol. Finally, we tested their memory in a Morris water maze apparatus. Furthermore, their hippocampus was dissected and PKC activity and the neuronal injury was evaluated. Our findings exhibited that thymol and carvacrol improved rats' memory performance. In addition, thymol and carvacrol significantly increased PKC activity and prevented neuronal cell loss in the rat hippocampus. This study shows that thymol and carvacrol have beneficial effects on memory and cognitive function via PKC activation.
Collapse
Affiliation(s)
- Zahra Azizi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Choopani
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Salimi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Nahid Majlessi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Nasser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Schober J, Polina J, Walters F, Scott N, Lodholz E, Crider A, Sandoval K, Witt K. NNC 26-9100 increases Aβ1-42 phagocytosis, inhibits nitric oxide production and decreases calcium in BV2 microglia cells. PLoS One 2021; 16:e0254242. [PMID: 34237100 PMCID: PMC8266108 DOI: 10.1371/journal.pone.0254242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022] Open
Abstract
Microglia are the resident immune cell of the brain involved in the development and progression of Alzheimer's disease (AD). Modulation of microglia activity represents a potential mechanism for treating AD. Herein, the compound NNC 26-9100 (NNC) was evaluated in toxicity, nitric oxide release, Aβ1-42 uptake and cytosolic calcium assays during lipopolysaccharide (LPS)-activated conditions using mouse BV2 microglia cells. After 24 hours, LPS increased cell toxicity in the alamar blue and lactate dehydrogenase assays, increased nitrite release, and increase cytoplasmic calcium. Addition of NNC decreased the LPS-induce lactate dehydrogenase release, had no effect in the alamar blue assay, decreased nitrite release and decreased cytosolic calcium. In the absence of LPS, NNC increased uptake of FITC-tagged Aβ1-42. These data demonstrate that NNC treatment decreases nitrosative stress and microglia cell damage during LPS-induced activation and enhances phagocytosis of Aβ1-42 during non-inflammatory conditions. Thus, NNC 26-9100 may have beneficial effects in AD and in inflammatory diseases of the brain through enhancement of microglial Aβ clearance, and cell protective effects through prevention of elevated cytosolic calcium and inhibition of nitric oxide release.
Collapse
Affiliation(s)
- Joseph Schober
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Jahnavi Polina
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Field Walters
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Nathan Scott
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Eric Lodholz
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Albert Crider
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Karin Sandoval
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Ken Witt
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| |
Collapse
|
7
|
March-Diaz R, Lara-Ureña N, Romero-Molina C, Heras-Garvin A, Ortega-de San Luis C, Alvarez-Vergara MI, Sanchez-Garcia MA, Sanchez-Mejias E, Davila JC, Rosales-Nieves AE, Forja C, Navarro V, Gomez-Arboledas A, Sanchez-Mico MV, Viehweger A, Gerpe A, Hodson EJ, Vizuete M, Bishop T, Serrano-Pozo A, Lopez-Barneo J, Berra E, Gutierrez A, Vitorica J, Pascual A. Hypoxia compromises the mitochondrial metabolism of Alzheimer's disease microglia via HIF1. NATURE AGING 2021; 1:385-399. [PMID: 37117599 DOI: 10.1038/s43587-021-00054-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/08/2021] [Indexed: 04/30/2023]
Abstract
Genetic Alzheimer's disease (AD) risk factors associate with reduced defensive amyloid β plaque-associated microglia (AβAM), but the contribution of modifiable AD risk factors to microglial dysfunction is unknown. In AD mouse models, we observe concomitant activation of the hypoxia-inducible factor 1 (HIF1) pathway and transcription of mitochondrial-related genes in AβAM, and elongation of mitochondria, a cellular response to maintain aerobic respiration under low nutrient and oxygen conditions. Overactivation of HIF1 induces microglial quiescence in cellulo, with lower mitochondrial respiration and proliferation. In vivo, overstabilization of HIF1, either genetically or by exposure to systemic hypoxia, reduces AβAM clustering and proliferation and increases Aβ neuropathology. In the human AD hippocampus, upregulation of HIF1α and HIF1 target genes correlates with reduced Aβ plaque microglial coverage and an increase of Aβ plaque-associated neuropathology. Thus, hypoxia (a modifiable AD risk factor) hijacks microglial mitochondrial metabolism and converges with genetic susceptibility to cause AD microglial dysfunction.
Collapse
Affiliation(s)
- Rosana March-Diaz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Nieves Lara-Ureña
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Carmen Romero-Molina
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Antonio Heras-Garvin
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Clara Ortega-de San Luis
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- School of Biochemistry and Immunology, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Maria I Alvarez-Vergara
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Manuel A Sanchez-Garcia
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Medical Research Council Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Elisabeth Sanchez-Mejias
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Universidad de Málaga, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Jose C Davila
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Universidad de Málaga, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Alicia E Rosales-Nieves
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Cristina Forja
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Victoria Navarro
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Angela Gomez-Arboledas
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Universidad de Málaga, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Maria V Sanchez-Mico
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Adrian Viehweger
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Pediatric Radiology, University Clinic Leipzig, Leipzig, Germany
| | - Almudena Gerpe
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Marisa Vizuete
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | | | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jose Lopez-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Edurne Berra
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Antonia Gutierrez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Universidad de Málaga, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Javier Vitorica
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
8
|
The Role of Acupuncture Improving Cognitive Deficits due to Alzheimer's Disease or Vascular Diseases through Regulating Neuroplasticity. Neural Plast 2021; 2021:8868447. [PMID: 33505460 PMCID: PMC7815402 DOI: 10.1155/2021/8868447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/29/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Dementia affects millions of elderly worldwide causing remarkable costs to society, but effective treatment is still lacking. Acupuncture is one of the complementary therapies that has been applied to cognitive deficits such as Alzheimer's disease (AD) and vascular cognitive impairment (VCI), while the underlying mechanisms of its therapeutic efficiency remain elusive. Neuroplasticity is defined as the ability of the nervous system to adapt to internal and external environmental changes, which may support some data to clarify mechanisms how acupuncture improves cognitive impairments. This review summarizes the up-to-date and comprehensive information on the effectiveness of acupuncture treatment on neurogenesis and gliogenesis, synaptic plasticity, related regulatory factors, and signaling pathways, as well as brain network connectivity, to lay ground for fully elucidating the potential mechanism of acupuncture on the regulation of neuroplasticity and promoting its clinical application as a complementary therapy for AD and VCI.
Collapse
|
9
|
Shekari A, Fahnestock M. Cholinergic neurodegeneration in Alzheimer disease mouse models. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:191-209. [PMID: 34266592 DOI: 10.1016/b978-0-12-819973-2.00013-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cholinergic signaling is critical for cognitive function. The basal forebrain is the major cholinergic output of the central nervous system. Degeneration of basal forebrain cholinergic neurons is a hallmark of Alzheimer's disease (AD). Mouse models are invaluable tools in disease research and have been used to study AD for over 25 years. However, animal models of AD vary greatly with respect to the degree of cholinergic degeneration observed. The following review will outline the most influential animal models of AD with an emphasis on the basal forebrain cholinergic system.
Collapse
Affiliation(s)
- Arman Shekari
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
10
|
Neuron Loss in Alzheimer's Disease: Translation in Transgenic Mouse Models. Int J Mol Sci 2020; 21:ijms21218144. [PMID: 33143374 PMCID: PMC7663280 DOI: 10.3390/ijms21218144] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Transgenic mouse models represent an essential tool for the exploration of Alzheimer’s disease (AD) pathological mechanisms and the development of novel treatments, which at present provide only symptomatic and transient effects. While a variety of mouse models successfully reflects the main neuropathological hallmarks of AD, such as extracellular amyloid-β (Aβ) deposits, intracellular accumulation of Tau protein, the development of micro- and astrogliosis, as well as behavioral deficits, substantial neuron loss, as a key feature of the disease, seems to be more difficult to achieve. In this review, we summarize information on classic and more recent transgenic mouse models for AD, focusing in particular on loss of pyramidal, inter-, and cholinergic neurons. Although the cause of neuron loss in AD is still a matter of scientific debate, it seems to be linked to intraneuronal Aβ accumulation in several transgenic mouse models, especially in pyramidal neurons.
Collapse
|
11
|
Manji Z, Rojas A, Wang W, Dingledine R, Varvel NH, Ganesh T. 5xFAD Mice Display Sex-Dependent Inflammatory Gene Induction During the Prodromal Stage of Alzheimer's Disease. J Alzheimers Dis 2020; 70:1259-1274. [PMID: 31322556 DOI: 10.3233/jad-180678] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) pathology consists of extracellular deposits of amyloid-β peptides (Aβ) and intracellular neurofibrillary tangles. These pathological alterations are accompanied by a neuroinflammatory response consisting of increased expression of inflammatory mediators. An anti-inflammatory strategy designed to prevent or delay the development of AD would benefit from knowing when neuroinflammation appears in the transgenic models during prodromal disease stages relative to Aβ pathology. We investigated the expression patterns of inflammatory mediators in the brain of 5xFAD mice in comparison to development of Aβ deposition. Expression changes in inflammatory mediators and glial markers are more robust in female mice starting at three months of age, in contrast to males in which there is no clear trend through five months. Female and male 5xFAD mice also displayed an age-dependent increase in cortical Aβ deposition congruent with neuroinflammation. Thus, in the 5xFAD mouse model of AD, administration of an anti-inflammatory agent would be most efficacious when administered before three months of age.
Collapse
Affiliation(s)
- Zahra Manji
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Asheebo Rojas
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Wenyi Wang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Raymond Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas H Varvel
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
12
|
Das S, Li Z, Noori A, Hyman BT, Serrano-Pozo A. Meta-analysis of mouse transcriptomic studies supports a context-dependent astrocyte reaction in acute CNS injury versus neurodegeneration. J Neuroinflammation 2020; 17:227. [PMID: 32736565 PMCID: PMC7393869 DOI: 10.1186/s12974-020-01898-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Background Neuronal damage in acute CNS injuries and chronic neurodegenerative diseases is invariably accompanied by an astrocyte reaction in both mice and humans. However, whether and how the nature of the CNS insult—acute versus chronic—influences the astrocyte response, and whether astrocyte transcriptomic changes in these mouse models faithfully recapitulate the astrocyte reaction in human diseases remains to be elucidated. We hypothesized that astrocytes set off different transcriptomic programs in response to acute versus chronic insults, besides a shared “pan-injury” signature common to both types of conditions, and investigated the presence of these mouse astrocyte signatures in transcriptomic studies from human neurodegenerative diseases. Methods We performed a meta-analysis of 15 published astrocyte transcriptomic datasets from mouse models of acute injury (n = 6) and chronic neurodegeneration (n = 9) and identified pan-injury, acute, and chronic signatures, with both upregulated (UP) and downregulated (DOWN) genes. Next, we investigated these signatures in 7 transcriptomic datasets from various human neurodegenerative diseases. Results In mouse models, the number of UP/DOWN genes per signature was 64/21 for pan-injury and 109/79 for acute injury, whereas only 13/27 for chronic neurodegeneration. The pan-injury-UP signature was represented by the classic cytoskeletal hallmarks of astrocyte reaction (Gfap and Vim), plus extracellular matrix (i.e., Cd44, Lgals1, Lgals3, Timp1), and immune response (i.e., C3, Serping1, Fas, Stat1, Stat2, Stat3). The acute injury-UP signature was enriched in protein synthesis and degradation (both ubiquitin-proteasome and autophagy systems), intracellular trafficking, and anti-oxidant defense genes, whereas the acute injury-DOWN signature included genes that regulate chromatin structure and transcriptional activity, many of which are transcriptional repressors. The chronic neurodegeneration-UP signature was further enriched in astrocyte-secreted extracellular matrix proteins (Lama4, Cyr61, Thbs4), while the DOWN signature included relevant genes such as Agl (glycogenolysis), S1pr1 (immune modulation), and Sod2 (anti-oxidant). Only the pan-injury-UP mouse signature was clearly present in some human neurodegenerative transcriptomic datasets. Conclusions Acute and chronic CNS injuries lead to distinct astrocyte gene expression programs beyond their common astrocyte reaction signature. However, caution should be taken when extrapolating astrocyte transcriptomic findings from mouse models to human diseases.
Collapse
Affiliation(s)
- Sudeshna Das
- MGH BioMedical Informatics Core (BMIC), Cambridge, MA, 02139, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Massachusetts Alzheimer's Disease Research Center, 114 16th street, Suite 2012, Charlestown, MA, 02129, USA.,Harvard Medical School, Boston, MA, 02116, USA
| | - Zhaozhi Li
- MGH BioMedical Informatics Core (BMIC), Cambridge, MA, 02139, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ayush Noori
- MGH BioMedical Informatics Core (BMIC), Cambridge, MA, 02139, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Massachusetts Alzheimer's Disease Research Center, 114 16th street, Suite 2012, Charlestown, MA, 02129, USA.,Harvard Medical School, Boston, MA, 02116, USA
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA. .,Massachusetts Alzheimer's Disease Research Center, 114 16th street, Suite 2012, Charlestown, MA, 02129, USA. .,Harvard Medical School, Boston, MA, 02116, USA.
| |
Collapse
|
13
|
Hüttenrauch M, Ogorek I, Klafki H, Otto M, Stadelmann C, Weggen S, Wiltfang J, Wirths O. Glycoprotein NMB: a novel Alzheimer's disease associated marker expressed in a subset of activated microglia. Acta Neuropathol Commun 2018; 6:108. [PMID: 30340518 PMCID: PMC6194687 DOI: 10.1186/s40478-018-0612-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is an irreversible, devastating neurodegenerative brain disorder characterized by the loss of neurons and subsequent cognitive decline. Despite considerable progress in the understanding of the pathophysiology of AD, the precise molecular mechanisms that cause the disease remain elusive. By now, there is ample evidence that activated microglia have a critical role in the initiation and progression of AD. The present study describes the identification of Glycoprotein nonmetastatic melanoma protein B (GPNMB) as a novel AD-related factor in both transgenic mice and sporadic AD patients by expression profiling, immunohistochemistry and ELISA measurements. We show that GPNMB levels increase in an age-dependent manner in transgenic AD models showing profound cerebral neuron loss and demonstrate that GPNMB co-localizes with a distinct population of IBA1-positive microglia cells that cluster around amyloid plaques. Our data further indicate that GPNMB is part of a microglia activation state that is only present under neurodegenerative conditions and that is characterized by the up-regulation of a subset of genes including TREM2, APOE and CST7. In agreement, we provide in vitro evidence that soluble Aβ has a direct effect on GPNMB expression in an immortalized microglia cell line. Importantly, we show for the first time that GPNMB is elevated in brain samples and cerebrospinal fluid (CSF) of sporadic AD patients when compared to non-demented controls. The current findings indicate that GPNMB represents a novel disease-associated marker that appears to play a role in the neuroinflammatory response of AD.
Collapse
|
14
|
Panagaki T, Gengler S, Hölscher C. The Novel DA–CH3 Dual Incretin Restores Endoplasmic Reticulum Stress and Autophagy Impairments to Attenuate Alzheimer-Like Pathology and Cognitive Decrements in the APPSWE/PS1ΔE9 Mouse Model. J Alzheimers Dis 2018; 66:195-218. [DOI: 10.3233/jad-180584] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Theodora Panagaki
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Simon Gengler
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Christian Hölscher
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
15
|
Bilkei-Gorzo A, Albayram O, Ativie F, Chasan S, Zimmer T, Bach K, Zimmer A. Cannabinoid 1 receptor signaling on GABAergic neurons influences astrocytes in the ageing brain. PLoS One 2018; 13:e0202566. [PMID: 30114280 PMCID: PMC6095551 DOI: 10.1371/journal.pone.0202566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/06/2018] [Indexed: 01/27/2023] Open
Abstract
Astrocytes, key regulators of brain homeostasis, interact with neighboring glial cells, neurons and the vasculature through complex processes involving different signaling pathways. It is not entirely clear how these interactions change in the ageing brain and which factors influence astrocyte ageing. Here, we investigate the role of endocannabinoid signaling, because it is an important modulator of neuron and astrocyte functions, as well as brain ageing. We demonstrate that mice with a specific deletion of CB1 receptors on GABAergic neurons (GABA-Cnr1-/- mice), which show a phenotype of accelerated brain ageing, affects age-related changes in the morphology of astrocytes in the hippocampus. Thus, GABA-Cnr1-/- mice showed a much more pronounced age-related and layer-specific increase in GFAP-positive areas in the hippocampus compared to wild-type animals. The number of astrocytes, in contrast, was similar between the two genotypes. Astrocytes in the hippocampus of old GABA-Cnr1-/- mice also showed a different morphology with enhanced GFAP-positive process branching and a less polarized intrahippocampal distribution. Furthermore, astrocytic TNFα levels were higher in GABA-Cnr1-/- mice, indicating that these morphological changes were accompanied by a more pro-inflammatory function. These findings demonstrate that the disruption of endocannabinoid signaling on GABAergic neurons is accompanied by functional changes in astrocyte activity, which are relevant to brain ageing.
Collapse
Affiliation(s)
- Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty of the University of Bonn, Bonn, Germany
- * E-mail:
| | - Onder Albayram
- Institute of Molecular Psychiatry, Medical Faculty of the University of Bonn, Bonn, Germany
| | - Frank Ativie
- Institute of Molecular Psychiatry, Medical Faculty of the University of Bonn, Bonn, Germany
| | - Safak Chasan
- Institute of Molecular Psychiatry, Medical Faculty of the University of Bonn, Bonn, Germany
| | - Till Zimmer
- Institute of Molecular Psychiatry, Medical Faculty of the University of Bonn, Bonn, Germany
| | - Karsten Bach
- Institute of Molecular Psychiatry, Medical Faculty of the University of Bonn, Bonn, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty of the University of Bonn, Bonn, Germany
| |
Collapse
|
16
|
Perez-Nievas BG, Serrano-Pozo A. Deciphering the Astrocyte Reaction in Alzheimer's Disease. Front Aging Neurosci 2018; 10:114. [PMID: 29922147 PMCID: PMC5996928 DOI: 10.3389/fnagi.2018.00114] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
Reactive astrocytes were identified as a component of senile amyloid plaques in the cortex of Alzheimer's disease (AD) patients several decades ago. However, their role in AD pathophysiology has remained elusive ever since, in part owing to the extrapolation of the literature from primary astrocyte cultures and acute brain injury models to a chronic neurodegenerative scenario. Recent accumulating evidence supports the idea that reactive astrocytes in AD acquire neurotoxic properties, likely due to both a gain of toxic function and a loss of their neurotrophic effects. However, the diversity and complexity of this glial cell is only beginning to be unveiled, anticipating that astrocyte reaction might be heterogeneous as well. Herein we review the evidence from mouse models of AD and human neuropathological studies and attempt to decipher the main conundrums that astrocytes pose to our understanding of AD development and progression. We discuss the morphological features that characterize astrocyte reaction in the AD brain, the consequences of astrocyte reaction for both astrocyte biology and AD pathological hallmarks, and the molecular pathways that have been implicated in this reaction.
Collapse
Affiliation(s)
| | - Alberto Serrano-Pozo
- Alzheimer's Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
17
|
Chinta SJ, Woods G, Demaria M, Rane A, Zou Y, McQuade A, Rajagopalan S, Limbad C, Madden DT, Campisi J, Andersen JK. Cellular Senescence Is Induced by the Environmental Neurotoxin Paraquat and Contributes to Neuropathology Linked to Parkinson's Disease. Cell Rep 2018; 22:930-940. [PMID: 29386135 PMCID: PMC5806534 DOI: 10.1016/j.celrep.2017.12.092] [Citation(s) in RCA: 355] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/06/2017] [Accepted: 12/24/2017] [Indexed: 12/16/2022] Open
Abstract
Exposure to the herbicide paraquat (PQ) is associated with an increased risk of idiopathic Parkinson's disease (PD). Therapies based on PQ's presumed mechanisms of action have not, however, yielded effective disease therapies. Cellular senescence is an anticancer mechanism that arrests proliferation of replication-competent cells and results in a pro-inflammatory senescence-associated secretory phenotype (SASP) capable of damaging neighboring tissues. Here, we demonstrate that senescent cell markers are preferentially present within astrocytes in PD brain tissues. Additionally, PQ was found to induce astrocytic senescence and an SASP in vitro and in vivo, and senescent cell depletion in the latter protects against PQ-induced neuropathology. Our data suggest that exposure to certain environmental toxins promotes accumulation of senescent cells in the aging brain, which can contribute to dopaminergic neurodegeneration. Therapies that target senescent cells may constitute a strategy for treatment of sporadic PD, for which environmental exposure is a major risk factor.
Collapse
Affiliation(s)
- Shankar J Chinta
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Touro University California, College of Pharmacy, 1310 Club Dr., Vallejo, CA 94592, USA
| | - Georgia Woods
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Marco Demaria
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Anand Rane
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Ying Zou
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Amanda McQuade
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | | | - Chandani Limbad
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Comparative Biochemistry Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David T Madden
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Touro University California, College of Pharmacy, 1310 Club Dr., Vallejo, CA 94592, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Julie K Andersen
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA.
| |
Collapse
|
18
|
Jankowsky JL, Zheng H. Practical considerations for choosing a mouse model of Alzheimer's disease. Mol Neurodegener 2017; 12:89. [PMID: 29273078 PMCID: PMC5741956 DOI: 10.1186/s13024-017-0231-7] [Citation(s) in RCA: 313] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 12/07/2017] [Indexed: 01/06/2023] Open
Abstract
Alzheimer’s disease (AD) is behaviorally identified by progressive memory impairment and pathologically characterized by the triad of β-amyloid plaques, neurofibrillary tangles, and neurodegeneration. Genetic mutations and risk factors have been identified that are either causal or modify the disease progression. These genetic and pathological features serve as basis for the creation and validation of mouse models of AD. Efforts made in the past quarter-century have produced over 100 genetically engineered mouse lines that recapitulate some aspects of AD clinicopathology. These models have been valuable resources for understanding genetic interactions that contribute to disease and cellular reactions that are engaged in response. Here we focus on mouse models that have been widely used stalwarts of the field or that are recently developed bellwethers of the future. Rather than providing a summary of each model, we endeavor to compare and contrast the genetic approaches employed and to discuss their respective advantages and limitations. We offer a critical account of the variables which may contribute to inconsistent findings and the factors that should be considered when choosing a model and interpreting the results. We hope to present an insightful review of current AD mouse models and to provide a practical guide for selecting models best matched to the experimental question at hand.
Collapse
Affiliation(s)
- Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Neurology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Hui Zheng
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Amyloid polymorphisms constitute distinct clouds of conformational variants in different etiological subtypes of Alzheimer's disease. Proc Natl Acad Sci U S A 2017; 114:13018-13023. [PMID: 29158413 DOI: 10.1073/pnas.1713215114] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The molecular architecture of amyloids formed in vivo can be interrogated using luminescent conjugated oligothiophenes (LCOs), a unique class of amyloid dyes. When bound to amyloid, LCOs yield fluorescence emission spectra that reflect the 3D structure of the protein aggregates. Given that synthetic amyloid-β peptide (Aβ) has been shown to adopt distinct structural conformations with different biological activities, we asked whether Aβ can assume structurally and functionally distinct conformations within the brain. To this end, we analyzed the LCO-stained cores of β-amyloid plaques in postmortem tissue sections from frontal, temporal, and occipital neocortices in 40 cases of familial Alzheimer's disease (AD) or sporadic (idiopathic) AD (sAD). The spectral attributes of LCO-bound plaques varied markedly in the brain, but the mean spectral properties of the amyloid cores were generally similar in all three cortical regions of individual patients. Remarkably, the LCO amyloid spectra differed significantly among some of the familial and sAD subtypes, and between typical patients with sAD and those with posterior cortical atrophy AD. Neither the amount of Aβ nor its protease resistance correlated with LCO spectral properties. LCO spectral amyloid phenotypes could be partially conveyed to Aβ plaques induced by experimental transmission in a mouse model. These findings indicate that polymorphic Aβ-amyloid deposits within the brain cluster as clouds of conformational variants in different AD cases. Heterogeneity in the molecular architecture of pathogenic Aβ among individuals and in etiologically distinct subtypes of AD justifies further studies to assess putative links between Aβ conformation and clinical phenotype.
Collapse
|
20
|
Jalewa J, Sharma MK, Gengler S, Hölscher C. A novel GLP-1/GIP dual receptor agonist protects from 6-OHDA lesion in a rat model of Parkinson's disease. Neuropharmacology 2017; 117:238-248. [DOI: 10.1016/j.neuropharm.2017.02.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 12/25/2022]
|
21
|
Ramos-Miguel A, García-Sevilla JA, Barr AM, Bayer TA, Falkai P, Leurgans SE, Schneider JA, Bennett DA, Honer WG, García-Fuster MJ. Decreased cortical FADD protein is associated with clinical dementia and cognitive decline in an elderly community sample. Mol Neurodegener 2017; 12:26. [PMID: 28320441 PMCID: PMC5360099 DOI: 10.1186/s13024-017-0168-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/09/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND FADD (Fas-associated death domain) adaptor is a crucial protein involved in the induction of cell death but also mediates non-apoptotic actions via a phosphorylated form (p-Ser194-FADD). This study investigated the possible association of FADD forms with age-related neuropathologies, cognitive function, and the odds of dementia in an elderly community sample. METHODS FADD forms were quantified by western blot analysis in dorsolateral prefrontal cortex (DLPFC) samples from a large cohort of participants in a community-based aging study (Memory and Aging Project, MAP), experiencing no-(NCI, n = 51) or mild-(MCI, n = 42) cognitive impairment, or dementia (n = 57). RESULTS Cortical FADD was lower in subjects with dementia and lower FADD was associated with a greater load of amyloid-β pathology, fewer presynaptic terminal markers, poorer cognitive function and increased odds of dementia. Together with the observations of FADD redistribution into tangles and dystrophic neurites within plaques in Alzheimer's disease brains, and its reduction in APP23 mouse cortex, the results suggest this multifunctional protein might participate in the mechanisms linking amyloid and tau pathologies during the course of the illness. CONCLUSIONS The present data suggests FADD as a putative biomarker for pathological processes associated with the course of clinical dementia.
Collapse
Affiliation(s)
- Alfredo Ramos-Miguel
- BC Mental Health and Addictions Research Institute, Vancouver, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Jesús A. García-Sevilla
- IUNICS, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de Baleares, Palma de Mallorca, Spain
| | - Alasdair M. Barr
- BC Mental Health and Addictions Research Institute, Vancouver, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Thomas A. Bayer
- Department of Psychiatry, University Medicine Goettingen, Goettingen, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sue E. Leurgans
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, USA
| | - William G. Honer
- BC Mental Health and Addictions Research Institute, Vancouver, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - M. Julia García-Fuster
- IUNICS, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de Baleares, Palma de Mallorca, Spain
| |
Collapse
|
22
|
Janssen L, Dubbelaar ML, Holtman IR, de Boer-Bergsma J, Eggen BJL, Boddeke HWGM, De Deyn PP, Van Dam D. Aging, microglia and cytoskeletal regulation are key factors in the pathological evolution of the APP23 mouse model for Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2016; 1863:395-405. [PMID: 27838490 DOI: 10.1016/j.bbadis.2016.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/21/2016] [Accepted: 11/08/2016] [Indexed: 02/01/2023]
Abstract
Aging is the key risk factor for Alzheimer's disease (AD). In addition, the amyloid-beta (Aβ) peptide is considered a critical neurotoxic agent in AD pathology. However, the connection between these factors is unclear. We aimed to provide an extensive characterization of the gene expression profiles of the amyloidosis APP23 model for AD and control mice and to evaluate the effect of aging on these profiles. We also correlated our findings to changes in soluble Aβ-levels and other pathological and symptomatic features of the model. We observed a clear biphasic expression profile. The first phase displayed a maturation profile, which resembled features found in young carriers of familial AD mutations. The second phase reflected aging processes and showed similarities to the progression of human AD pathology. During this phase, the model displayed a clear upregulation of microglial activation and lysosomal pathways and downregulation of neuron differentiation and axon guidance pathways. Interestingly, the changes in expression were all correlated to aging in general, but appeared more extensive/accelerated in APP23 mice.
Collapse
Affiliation(s)
- Leen Janssen
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Marissa L Dubbelaar
- Department of Neuroscience, Medical Physiology Section, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Inge R Holtman
- Department of Neuroscience, Medical Physiology Section, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Jelkje de Boer-Bergsma
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Neuroscience, Medical Physiology Section, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Hendrikus W G M Boddeke
- Department of Neuroscience, Medical Physiology Section, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium; University of Groningen, University Medical Center Groningen (UMCG), Department of Neurology and Alzheimer Research Center, Groningen, The Netherlands; Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium.
| |
Collapse
|
23
|
Schelle J, Häsler LM, Göpfert JC, Joos TO, Vanderstichele H, Stoops E, Mandelkow EM, Neumann U, Shimshek DR, Staufenbiel M, Jucker M, Kaeser SA. Prevention of tau increase in cerebrospinal fluid of APP transgenic mice suggests downstream effect of BACE1 inhibition. Alzheimers Dement 2016; 13:701-709. [PMID: 27750032 DOI: 10.1016/j.jalz.2016.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/23/2016] [Accepted: 09/12/2016] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The inhibition of the β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is a main therapeutic approach for the treatment of Alzheimer's disease (AD). We previously reported an age-related increase of tau protein in the cerebrospinal fluid (CSF) of amyloid β (Aβ) precursor protein (APP) transgenic mice. METHODS APP transgenic mice were treated with a potent BACE1 inhibitor. CSF tau and CSF Aβ levels were assessed. A novel high-sensitivity tau sandwich immunoassay was developed. RESULTS We demonstrate that long-term BACE1 inhibition prevents CSF tau increase both in early-depositing APP transgenic mice and APP transgenic mice with moderate Aβ pathology. DISCUSSION Our results demonstrate that BACE1 inhibition not only reduces Aβ generation but also downstream AD pathophysiology. The tight correlation between Aβ aggregation in brain and CSF tau levels renders CSF tau a valuable marker to predict the effectiveness of BACE1 inhibitors in current clinical trials.
Collapse
Affiliation(s)
- Juliane Schelle
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany; Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Lisa M Häsler
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany; Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Jens C Göpfert
- Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Thomas O Joos
- Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | | | | - Eva-Maria Mandelkow
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany; CAESAR Research Center, Bonn, Germany
| | | | - Derya R Shimshek
- Novartis Institutes for BioMedical Research, Neuroscience, Basel, Switzerland
| | - Matthias Staufenbiel
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany.
| | - Stephan A Kaeser
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany.
| |
Collapse
|
24
|
PPARγ-coactivator-1α gene transfer reduces neuronal loss and amyloid-β generation by reducing β-secretase in an Alzheimer's disease model. Proc Natl Acad Sci U S A 2016; 113:12292-12297. [PMID: 27791018 DOI: 10.1073/pnas.1606171113] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Current therapies for Alzheimer's disease (AD) are symptomatic and do not target the underlying Aβ pathology and other important hallmarks including neuronal loss. PPARγ-coactivator-1α (PGC-1α) is a cofactor for transcription factors including the peroxisome proliferator-activated receptor-γ (PPARγ), and it is involved in the regulation of metabolic genes, oxidative phosphorylation, and mitochondrial biogenesis. We previously reported that PGC-1α also regulates the transcription of β-APP cleaving enzyme (BACE1), the main enzyme involved in Aβ generation, and its expression is decreased in AD patients. We aimed to explore the potential therapeutic effect of PGC-1α by generating a lentiviral vector to express human PGC-1α and target it by stereotaxic delivery to hippocampus and cortex of APP23 transgenic mice at the preclinical stage of the disease. Four months after injection, APP23 mice treated with hPGC-1α showed improved spatial and recognition memory concomitant with a significant reduction in Aβ deposition, associated with a decrease in BACE1 expression. hPGC-1α overexpression attenuated the levels of proinflammatory cytokines and microglial activation. This effect was accompanied by a marked preservation of pyramidal neurons in the CA3 area and increased expression of neurotrophic factors. The neuroprotective effects were secondary to a reduction in Aβ pathology and neuroinflammation, because wild-type mice receiving the same treatment were unaffected. These results suggest that the selective induction of PGC-1α gene in specific areas of the brain is effective in targeting AD-related neurodegeneration and holds potential as therapeutic intervention for this disease.
Collapse
|
25
|
A novel dual GLP-1 and GIP incretin receptor agonist is neuroprotective in a mouse model of Parkinson’s disease by reducing chronic inflammation in the brain. Neuroreport 2016; 27:384-91. [DOI: 10.1097/wnr.0000000000000548] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Kudoh C, Arita R, Honda M, Kishi T, Komatsu Y, Asou H, Mimura M. Effect of ninjin'yoeito, a Kampo (traditional Japanese) medicine, on cognitive impairment and depression in patients with Alzheimer's disease: 2 years of observation. Psychogeriatrics 2016; 16:85-92. [PMID: 25918972 DOI: 10.1111/psyg.12125] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 01/13/2015] [Accepted: 02/22/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Only a few approved drugs are capable of alleviating the cognitive and behavioural symptoms of people living with Alzheimer's disease (AD). In recent years, however, the number of studies examining the clinical effects of herbal medicines on cognitive function in patients with AD has increased considerably. This study evaluated the long-term effects of a traditional Japanese medicine (Kampo medicine) known as ninjin'yoeito (NYT) on cognitive impairment and mood status in patients with AD over a 2-year period. METHODS Twenty-three patients with mild-to-moderate probable AD according to the National Institute of Neurological and Communicative Disorders and Stroke and Alzheimer's Disease and Related Disorders Association criteria were included. Each participant had exhibited an insufficient response to treatment with donepezil alone before the start of the trial. Eleven patients received treatment with donepezil alone, and the remaining patients received a combined treatment of donepezil and NYT for 2 years. Patients were assessed by the Mini-Mental State Examination and the Alzheimer's Disease Assessment Scale-cognitive component-Japanese version for cognitive function, and the Neuropsychiatric Inventory was used to evaluate the patients' mood status at baseline and every 6 months for 2 years. RESULTS The Mini-Mental State Examination results showed no significant differences between the two groups. Significant improvements were observed on the Alzheimer's Disease Assessment Scale-cognitive component-Japanese version and the Neuropsychiatric Inventory depression scores of patients who received the combined therapy with donepezil and NYT (Alzheimer's Disease Assessment Scale-cognitive component-Japanese version, 12 months: P < 0.01, 18 months: P = 0.04, 24 months: P < 0.01; Neuropsychiatric Inventory depression, 6 months: P < 0.05, 24 months: P < 0.05). CONCLUSIONS A 2-year follow-up of patients receiving donepezil and NYT treatment showed an improved cognitive outcome and alleviation of AD-related depression.
Collapse
Affiliation(s)
- Chiaki Kudoh
- KUDOH Clinic for Neurosurgery and Neurology, Tokyo, Japan.,Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ryutaro Arita
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mitsuru Honda
- Department of General Medicine and Emergency Care, Toho University School of Medicine, Tokyo, Japan
| | - Taichi Kishi
- Department of Educational Planning and Development, Toho University School of Medicine, Tokyo, Japan
| | - Yasuhiro Komatsu
- Laboratory of Biochemical Pharmacology for Phytomedicine, Kirasato University, Kitasato Institute for Life Science, Tokyo, Japan
| | - Hiroaki Asou
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Olmos-Alonso A, Schetters STT, Sri S, Askew K, Mancuso R, Vargas-Caballero M, Holscher C, Perry VH, Gomez-Nicola D. Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer's-like pathology. Brain 2016; 139:891-907. [PMID: 26747862 PMCID: PMC4766375 DOI: 10.1093/brain/awv379] [Citation(s) in RCA: 371] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/29/2015] [Indexed: 01/24/2023] Open
Abstract
The proliferation and activation of microglial cells is a hallmark of several neurodegenerative conditions. This mechanism is regulated by the activation of the colony-stimulating factor 1 receptor (CSF1R), thus providing a target that may prevent the progression of conditions such as Alzheimer’s disease. However, the study of microglial proliferation in Alzheimer’s disease and validation of the efficacy of CSF1R-inhibiting strategies have not yet been reported. In this study we found increased proliferation of microglial cells in human Alzheimer’s disease, in line with an increased upregulation of the CSF1R-dependent pro-mitogenic cascade, correlating with disease severity. Using a transgenic model of Alzheimer’s-like pathology (APPswe, PSEN1dE9; APP/PS1 mice) we define a CSF1R-dependent progressive increase in microglial proliferation, in the proximity of amyloid-β plaques. Prolonged inhibition of CSF1R in APP/PS1 mice by an orally available tyrosine kinase inhibitor (GW2580) resulted in the blockade of microglial proliferation and the shifting of the microglial inflammatory profile to an anti-inflammatory phenotype. Pharmacological targeting of CSF1R in APP/PS1 mice resulted in an improved performance in memory and behavioural tasks and a prevention of synaptic degeneration, although these changes were not correlated with a change in the number of amyloid-β plaques. Our results provide the first proof of the efficacy of CSF1R inhibition in models of Alzheimer’s disease, and validate the application of a therapeutic strategy aimed at modifying CSF1R activation as a promising approach to tackle microglial activation and the progression of Alzheimer’s disease.
Collapse
Affiliation(s)
- Adrian Olmos-Alonso
- 1 Centre for Biological Sciences, University of Southampton, Southampton, UK
| | | | - Sarmi Sri
- 1 Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Katharine Askew
- 1 Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Renzo Mancuso
- 1 Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Mariana Vargas-Caballero
- 1 Centre for Biological Sciences, University of Southampton, Southampton, UK 2 Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Christian Holscher
- 3 Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
| | - V Hugh Perry
- 1 Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Diego Gomez-Nicola
- 1 Centre for Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
28
|
A novel dual-glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide receptor agonist is neuroprotective in transient focal cerebral ischemia in the rat. Neuroreport 2016; 27:23-32. [DOI: 10.1097/wnr.0000000000000490] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Eslamizade MJ, Madjd Z, Rasoolijazi H, Saffarzadeh F, Pirhajati V, Aligholi H, Janahmadi M, Mehdizadeh M. Impaired Memory and Evidence of Histopathology in CA1 Pyramidal Neurons through Injection of Aβ1-42 Peptides into the Frontal Cortices of Rat. Basic Clin Neurosci 2016; 7:31-41. [PMID: 27303597 PMCID: PMC4892328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, which has much benefited from animal models to find the basics of its pathophysiology. In our previous work (Haghani, Shabani, Javan, Motamedi, & Janahmadi, 2012), a non-transgenic rat model of AD was used in electrophysiological studies. However, we did not investigate the histological aspects in the mentioned study. METHODS An AD model was developed through bilateral injection of amyloid-β peptides (Aβ) into the frontal cortices. Behavioral and histological methods were used to assess alterations in the memory and (ultra)structures. Furthermore, melatonin has been administered to assess its efficacy on this AD model. RESULTS Passive avoidance showed a progressive decline in the memory following Aβ injection. Furthermore, Nissl staining showed that Aβ neurotoxicity caused shrinkage of the CA1 pyramidal neurons. Neurodegeneration was clearly evident from Fluoro-jade labeled neurons in Aβ treated rats. Moreover, higher NF-κB immunoreactive CA1 pyramidal neurons were remarkably observed in Aβ treated rats. Ultrastructural analysis using electron microscopy also showed the evidence of subcellular abnormalities. Melatonin treatment in this model of AD prevented Aβ-induced increased NF-κB from immunoreaction and neurodegeneration. DISCUSSION This study suggests that injection of Aβ into the frontal cortices results in the memory decline and histochemical disturbances in CA1 pyramidal neurons. Furthermore, melatonin can prevent several histological changes induced by Aβ.
Collapse
Affiliation(s)
- Mohammad Javad Eslamizade
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Shefa Neuroscience Research Center, Khatam Al-anbia Hospital, Tehran, Iran
| | - Zahra Madjd
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Homa Rasoolijazi
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saffarzadeh
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Shefa Neuroscience Research Center, Khatam Al-anbia Hospital, Tehran, Iran
| | - Vahid Pirhajati
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Aligholi
- Shefa Neuroscience Research Center, Khatam Al-anbia Hospital, Tehran, Iran
| | - Mahyar Janahmadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Corresponding Author: Mehdi Mehdizadeh, PhD, Address: Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran. Tel/Fax: +98 (21) 88622689, E-mail:
| |
Collapse
|
30
|
Ye L, Hamaguchi T, Fritschi SK, Eisele YS, Obermüller U, Jucker M, Walker LC. Progression of Seed-Induced Aβ Deposition within the Limbic Connectome. Brain Pathol 2015; 25:743-52. [PMID: 25677332 PMCID: PMC4530099 DOI: 10.1111/bpa.12252] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/02/2015] [Indexed: 12/16/2022] Open
Abstract
An important early event in the pathogenesis of Alzheimer's disease (AD) is the aberrant polymerization and extracellular accumulation of amyloid-β peptide (Aβ). In young transgenic mice expressing the human Aβ-precursor protein (APP), deposits of Aβ can be induced by the inoculation of minute amounts of brain extract containing Aβ aggregates ("Aβ seeds"), indicative of a prion-like seeding phenomenon. Moreover, focal intracerebral injection of Aβ seeds can induce deposits not only in the immediate vicinity of the injection site, but, with time, also in distal regions of the brain. However, it remains uncertain whether the spatial progression of Aβ deposits occurs via nonsystematic diffusion from the injection site to proximal regions or via directed transit along neuroanatomical pathways. To address this question, we analyzed the spatiotemporal emergence of Aβ deposits in two different APP-transgenic mouse models that had been previously inoculated with Aβ seeds into the hippocampal formation. The results revealed a specific, neuroanatomically constrained pattern of induced Aβ deposits in structures corresponding to the limbic connectome, supporting the hypothesis that neuronal pathways act as conduits for the movement of proteopathic agents among brain regions, thereby facilitating the progression of disease.
Collapse
Affiliation(s)
- Lan Ye
- Department of Cellular NeurologyHertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
- Graduate School of Cellular and Molecular NeuroscienceUniversity of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Tsuyoshi Hamaguchi
- Department of Cellular NeurologyHertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Sarah K. Fritschi
- Department of Cellular NeurologyHertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
- Graduate School of Cellular and Molecular NeuroscienceUniversity of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Yvonne S. Eisele
- Department of Cellular NeurologyHertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Ulrike Obermüller
- Department of Cellular NeurologyHertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Mathias Jucker
- Department of Cellular NeurologyHertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Lary C. Walker
- Department of Cellular NeurologyHertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
- Yerkes National Primate Research CenterEmory UniversityAtlantaGA
- Department of NeurologyEmory UniversityAtlantaGA
| |
Collapse
|
31
|
Sun X, Zhou Z, Liu T, Zhao M, Zhao S, Xiao T, Jolkkonen J, Zhao C. Fluoxetine Enhances Neurogenesis in Aged Rats with Cortical Infarcts, but This is not Reflected in a Behavioral Recovery. J Mol Neurosci 2015; 58:233-42. [PMID: 26474565 DOI: 10.1007/s12031-015-0662-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/05/2015] [Indexed: 01/28/2023]
Abstract
Age is associated with poor outcome and impaired functional recovery after stroke. Fluoxetine, which is widely used in clinical practice, can regulate hippocampal neurogenesis in young rodents. As the rate of neurogenesis is dramatically reduced during aging, we studied the effect of post-stroke fluoxetine treatment on neurogenesis in the subventricular zone (SVZ) and subgranular zone (SGZ) of dentate gyrus (DG) and whether this would be associated with any behavioral recovery after the cortical infarct in aged rats. Aged rats were randomly assigned to four groups: sham-operated rats, sham-operated rats treated with fluoxetine, rats subjected to cerebral ischemia, and rats with ischemia treated with fluoxetine. Focal cortical ischemia was induced by intracranial injection of vasoconstrictive peptide, endothelin-1 (ET-1). Fluoxetine was administered in the drinking water for 3 weeks starting 1 week after ischemia at a dose of 18 mg/kg/day. Behavioral recovery was evaluated on post-stroke days 29 to 31 after which the survival rate and fate of proliferating cells in the SVZ and DG were assessed by immunohistochemistry. Apoptosis was measured with the TUNEL assay. The results indicated that chronic fluoxetine treatment after stroke enhanced the proliferation of newborn neurons in the SVZ, but not in SGZ, and it suppressed perilesional apoptosis. Fluoxetine treatment did not affect the survival or differentiation of newly generated cells in the SVZ i.e., the enhanced neurogenesis was not translated into a behavioral outcome.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Neurology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Zhike Zhou
- Neurology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Tingting Liu
- Neurology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Mei Zhao
- Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shanshan Zhao
- Neurology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China
| | - Ting Xiao
- Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, Shenyang, China
| | - Jukka Jolkkonen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland
| | - Chuansheng Zhao
- Neurology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
32
|
Varvel NH, Grathwohl SA, Degenhardt K, Resch C, Bosch A, Jucker M, Neher JJ. Replacement of brain-resident myeloid cells does not alter cerebral amyloid-β deposition in mouse models of Alzheimer's disease. ACTA ACUST UNITED AC 2015; 212:1803-9. [PMID: 26458770 PMCID: PMC4612086 DOI: 10.1084/jem.20150478] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/11/2015] [Indexed: 01/08/2023]
Abstract
Immune cells of myeloid lineage cluster around amyloid-β plaques in the Alzheimer’s disease brain. However, assigning functional roles to myeloid subtypes, namely brain-resident microglia versus peripherally derived monocytes, has been problematic. Now, Varvel et al. use a model of central nervous system myeloid cell depletion to demonstrate that repopulation by peripheral monocytes is insufficient to eliminate plaques. The findings indicate that myeloid replacement therapy by itself may not be an effective therapeutic strategy in Alzheimer’s disease. Immune cells of myeloid lineage are encountered in the Alzheimer’s disease (AD) brain, where they cluster around amyloid-β plaques. However, assigning functional roles to myeloid cell subtypes has been problematic, and the potential for peripheral myeloid cells to alleviate AD pathology remains unclear. Therefore, we asked whether replacement of brain-resident myeloid cells with peripheral monocytes alters amyloid deposition in two mouse models of cerebral β-amyloidosis (APP23 and APPPS1). Interestingly, early after repopulation, infiltrating monocytes neither clustered around plaques nor showed Trem2 expression. However, with increasing time in the brain, infiltrating monocytes became plaque associated and also Trem2 positive. Strikingly, however, monocyte repopulation for up to 6 mo did not modify amyloid load in either model, independent of the stage of pathology at the time of repopulation. Our results argue against a long-term role of peripheral monocytes that is sufficiently distinct from microglial function to modify cerebral β-amyloidosis. Therefore, myeloid replacement by itself is not likely to be effective as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Nicholas H Varvel
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Stefan A Grathwohl
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Karoline Degenhardt
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Claudia Resch
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Andrea Bosch
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Jonas J Neher
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| |
Collapse
|
33
|
Liu W, Li Y, Jalewa J, Saunders-Wood T, Li L, Hölscher C. Neuroprotective effects of an oxyntomodulin analogue in the MPTP mouse model of Parkinson's disease. Eur J Pharmacol 2015; 765:284-90. [DOI: 10.1016/j.ejphar.2015.08.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 11/26/2022]
|
34
|
Zhang Y, Chen Y, Li L, Hölscher C. Neuroprotective effects of (Val8)GLP-1-Glu-PAL in the MPTP Parkinson’s disease mouse model. Behav Brain Res 2015; 293:107-13. [DOI: 10.1016/j.bbr.2015.07.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 12/25/2022]
|
35
|
Liu W, Jalewa J, Sharma M, Li G, Li L, Hölscher C. Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Neuroscience 2015; 303:42-50. [DOI: 10.1016/j.neuroscience.2015.06.054] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/16/2015] [Accepted: 06/24/2015] [Indexed: 12/25/2022]
|
36
|
Song MS, Learman CR, Ahn KC, Baker GB, Kippe J, Field EM, Dunbar GL. In vitro validation of effects of BDNF-expressing mesenchymal stem cells on neurodegeneration in primary cultured neurons of APP/PS1 mice. Neuroscience 2015; 307:37-50. [PMID: 26297896 DOI: 10.1016/j.neuroscience.2015.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/23/2015] [Accepted: 08/05/2015] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), the most common type of dementia, is characterized by the presence of senile plaques, neurofibrillary tangles, and neuronal loss in defined regions of the brain including the hippocampus and cortex. Transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) offers a safe and potentially effective tool for treating neurodegenerative disorders. However, the therapeutic effects of BM-MSCs on AD pathology remain unclear and their mechanisms at cellular and molecular levels still need to be addressed. In this study, we developed a unique neuronal culture made from 5xFAD mouse, an APP/PS1 transgenic mouse model (FAD neurons) to investigate progressive neurodegeneration associated with AD pathology and efficacy of brain-derived neurotrophic factor expressing-MSCs (BDNF-MSCs). Analyses of the expression of brain-derived neurotrophic factor (BDNF), synaptic markers and survival/apoptotic signals indicate that pathological features of cultured neurons made from these mice accurately mimic AD pathology, suggesting that our protocol provided a valid in vitro model of AD. We also demonstrated amelioration of AD pathology by MSCs in vitro when these FAD neurons were co-cultured with MSCs, a paradigm that mimics the in vivo environment of post-transplantation of MSCs into damaged regions of brains. To overcome failed delivery of BDNF to the brain and to enhance MSCs releasing BDNF effect, we created BDNF-MSCs and found that MSCs protection was enhanced by BDNF-MSCs. This protection was abolished by BDNF-blocking peptides, suggesting that BDNF supply from BDNF-MSCs was enough to prevent AD pathology.
Collapse
Affiliation(s)
- M-S Song
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Program of Neuroscience, Central Michigan University, Mt Pleasant, MI, USA.
| | - C R Learman
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Program of Neuroscience, Central Michigan University, Mt Pleasant, MI, USA
| | - K-C Ahn
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - G B Baker
- Neurochemical Research Unit, University of Alberta, AB, Canada
| | - J Kippe
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Program of Neuroscience, Central Michigan University, Mt Pleasant, MI, USA
| | - E M Field
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA
| | - G L Dunbar
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Program of Neuroscience, Central Michigan University, Mt Pleasant, MI, USA.
| |
Collapse
|
37
|
Hall VJ, Lindblad MM, Jakobsen JE, Gunnarsson A, Schmidt M, Rasmussen MA, Volke D, Zuchner T, Hyttel P. Impaired APP activity and altered Tau splicing in embryonic stem cell-derived astrocytes obtained from an APPsw transgenic minipig. Dis Model Mech 2015; 8:1265-78. [PMID: 26398935 PMCID: PMC4610230 DOI: 10.1242/dmm.019489] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 07/27/2015] [Indexed: 01/09/2023] Open
Abstract
Animal models of familial juvenile onset of Alzheimer's disease (AD) often fail to produce diverse pathological features of the disease by modification of single gene mutations that are responsible for the disease. They can hence be poor models for testing and development of novel drugs. Here, we analyze in vitro-produced stem cells and their derivatives from a large mammalian model of the disease created by overexpression of a single mutant human gene (APPsw). We produced hemizygous and homozygous radial glial-like cells following culture and differentiation of embryonic stem cells (ESCs) isolated from embryos obtained from mated hemizygous minipigs. These cells were confirmed to co-express varying neural markers, including NES, GFAP and BLBP, typical of type one radial glial cells (RGs) from the subgranular zone. These cells had altered expression of CCND1 and NOTCH1 and decreased expression of several ribosomal RNA genes. We found that these cells were able to differentiate into astrocytes upon directed differentiation. The astrocytes produced had decreased α- and β-secretase activity, increased γ-secretase activity and altered splicing of tau. This indicates novel aspects of early onset mechanisms related to cell renewal and function in familial AD astrocytes. These outcomes also highlight that radial glia could be a potentially useful population of cells for drug discovery, and that altered APP expression and altered tau phosphorylation can be detected in an in vitro model of the disease. Finally, it might be possible to use large mammal models to model familial AD by insertion of only a single mutation. Summary: Insight into astrocyte and radial glia pathology in an in vitro culture system derived from the APPsw pig.
Collapse
Affiliation(s)
- Vanessa J Hall
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Maiken M Lindblad
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Jannik E Jakobsen
- Department of Biomedicine, Aarhus University, Faculty of Health, DK-8000 Aarhus, Denmark
| | - Anders Gunnarsson
- Department of Biomedicine, Aarhus University, Faculty of Health, DK-8000 Aarhus, Denmark
| | - Mette Schmidt
- Department of Large Animal Sciences, Faculty of Life Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | | | - Daniela Volke
- Center for Biotechnology and Biomedicine, Institute of Bioanalytical Chemistry, University of Leipzig, 04103 Leipzig, Germany
| | - Thole Zuchner
- Octapharma Biopharmaceuticals GmbH, 69120 Heidelberg, Germany
| | - Poul Hyttel
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| |
Collapse
|
38
|
Prophylactic liraglutide treatment prevents amyloid plaque deposition, chronic inflammation and memory impairment in APP/PS1 mice. Behav Brain Res 2015. [PMID: 26205827 DOI: 10.1016/j.bbr.2015.07.024] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes is a risk factor for Alzheimer's disease (AD). Previously, we have shown that the diabetes drug liraglutide is protective in middle aged and in old APP/PS1 mice. Here, we show that liraglutide has prophylactic properties. When injecting liraglutide once-daily ip. in two months old mice for 8 months, the main hallmarks of AD were much reduced. Memory formation in object recognition and Morris water maze were normalised and synapse loss and the loss of synaptic plasticity was prevented. In addition, amyloid plaque load, including dense core congophilic plaques, was much reduced. Chronic inflammation (activated microglia) was also reduced in the cortex, and neurogenesis was enhanced in the dentate gyrus. The results demonstrate that liraglutide may protect from progressive neurodegeneration that develops in AD. The drug is currently in clinical trials in patients with AD.
Collapse
|
39
|
Djelti F, Braudeau J, Hudry E, Dhenain M, Varin J, Bièche I, Marquer C, Chali F, Ayciriex S, Auzeil N, Alves S, Langui D, Potier MC, Laprevote O, Vidaud M, Duyckaerts C, Miles R, Aubourg P, Cartier N. CYP46A1 inhibition, brain cholesterol accumulation and neurodegeneration pave the way for Alzheimer's disease. Brain 2015; 138:2383-98. [PMID: 26141492 DOI: 10.1093/brain/awv166] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/17/2015] [Indexed: 12/20/2022] Open
Abstract
Abnormalities in neuronal cholesterol homeostasis have been suspected or observed in several neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and Huntington's disease. However, it has not been demonstrated whether an increased abundance of cholesterol in neurons in vivo contributes to neurodegeneration. To address this issue, we used RNA interference methodology to inhibit the expression of cholesterol 24-hydroxylase, encoded by the Cyp46a1 gene, in the hippocampus of normal mice. Cholesterol 24-hydroxylase controls cholesterol efflux from the brain and thereby plays a major role in regulating brain cholesterol homeostasis. We used an adeno-associated virus vector encoding short hairpin RNA directed against the mouse Cyp46a1 mRNA to decrease the expression of the Cyp46a1 gene in hippocampal neurons of normal mice. This increased the cholesterol concentration in neurons, followed by cognitive deficits and hippocampal atrophy due to apoptotic neuronal death. Prior to neuronal death, the recruitment of the amyloid protein precursor to lipid rafts was enhanced leading to the production of β-C-terminal fragment and amyloid-β peptides. Abnormal phosphorylation of tau and endoplasmic reticulum stress were also observed. In the APP23 mouse model of Alzheimer's disease, the abundance of amyloid-β peptides increased following inhibition of Cyp46a1 expression, and neuronal death was more widespread than in normal mice. Altogether, these results suggest that increased amounts of neuronal cholesterol within the brain may contribute to inducing and/or aggravating Alzheimer's disease.
Collapse
Affiliation(s)
- Fathia Djelti
- 1 INSERM U1169 Le Kremlin-Bicêtre and Université Paris-Sud, 91400 Orsay, France
| | - Jerome Braudeau
- 1 INSERM U1169 Le Kremlin-Bicêtre and Université Paris-Sud, 91400 Orsay, France
| | - Eloise Hudry
- 1 INSERM U1169 Le Kremlin-Bicêtre and Université Paris-Sud, 91400 Orsay, France
| | - Marc Dhenain
- 2 CNRS URA2210 MIRCen CEA Fontenay aux Roses 92265, and Université Paris-Sud, 91400 Orsay, France
| | - Jennifer Varin
- 3 EA7331, Université Paris Descartes Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - Ivan Bièche
- 3 EA7331, Université Paris Descartes Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - Catherine Marquer
- 4 UMR S1127, and INSERM U1127, and CNRS UMR7225, and ICM, Sorbonne Université, UPMC Univ Paris 06 75013, Paris, France
| | - Farah Chali
- 4 UMR S1127, and INSERM U1127, and CNRS UMR7225, and ICM, Sorbonne Université, UPMC Univ Paris 06 75013, Paris, France
| | - Sophie Ayciriex
- 5 Chimie-Toxicologie Analytique et Cellulaire, EA 4463, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - Nicolas Auzeil
- 5 Chimie-Toxicologie Analytique et Cellulaire, EA 4463, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - Sandro Alves
- 1 INSERM U1169 Le Kremlin-Bicêtre and Université Paris-Sud, 91400 Orsay, France
| | - Dominique Langui
- 4 UMR S1127, and INSERM U1127, and CNRS UMR7225, and ICM, Sorbonne Université, UPMC Univ Paris 06 75013, Paris, France
| | - Marie-Claude Potier
- 4 UMR S1127, and INSERM U1127, and CNRS UMR7225, and ICM, Sorbonne Université, UPMC Univ Paris 06 75013, Paris, France
| | - Olivier Laprevote
- 5 Chimie-Toxicologie Analytique et Cellulaire, EA 4463, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - Michel Vidaud
- 3 EA7331, Université Paris Descartes Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - Charles Duyckaerts
- 4 UMR S1127, and INSERM U1127, and CNRS UMR7225, and ICM, Sorbonne Université, UPMC Univ Paris 06 75013, Paris, France
| | - Richard Miles
- 4 UMR S1127, and INSERM U1127, and CNRS UMR7225, and ICM, Sorbonne Université, UPMC Univ Paris 06 75013, Paris, France
| | - Patrick Aubourg
- 1 INSERM U1169 Le Kremlin-Bicêtre and Université Paris-Sud, 91400 Orsay, France
| | - Nathalie Cartier
- 1 INSERM U1169 Le Kremlin-Bicêtre and Université Paris-Sud, 91400 Orsay, France
| |
Collapse
|
40
|
Brendel M, Jaworska A, Grießinger E, Rötzer C, Burgold S, Gildehaus FJ, Carlsen J, Cumming P, Baumann K, Haass C, Steiner H, Bartenstein P, Herms J, Rominger A. Cross-sectional comparison of small animal [18F]-florbetaben amyloid-PET between transgenic AD mouse models. PLoS One 2015; 10:e0116678. [PMID: 25706990 PMCID: PMC4338066 DOI: 10.1371/journal.pone.0116678] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/11/2014] [Indexed: 12/13/2022] Open
Abstract
We aimed to compare [18F]-florbetaben PET imaging in four transgenic mouse strains modelling Alzheimer’s disease (AD), with the main focus on APPswe/PS2 mice and C57Bl/6 mice serving as controls (WT). A consistent PET protocol (N = 82 PET scans) was used, with cortical standardized uptake value ratio (SUVR) relative to cerebellum as the endpoint. We correlated methoxy-X04 staining of β-amyloid with PET results, and undertook ex vivo autoradiography for further validation of a partial volume effect correction (PVEC) of PET data. The SUVR in APPswe/PS2 increased from 0.95±0.04 at five months (N = 5) and 1.04±0.03 (p<0.05) at eight months (N = 7) to 1.07±0.04 (p<0.005) at ten months (N = 6), 1.28±0.06 (p<0.001) at 16 months (N = 6) and 1.39±0.09 (p<0.001) at 19 months (N = 6). SUVR was 0.95±0.03 in WT mice of all ages (N = 22). In APPswe/PS1G384A mice, the SUVR was 0.93/0.98 at five months (N = 2) and 1.11 at 16 months (N = 1). In APPswe/PS1dE9 mice, the SUVR declined from 0.96/0.96 at 12 months (N = 2) to 0.91/0.92 at 24 months (N = 2), due to β-amyloid plaques in cerebellum. PVEC reduced the discrepancy between SUVR-PET and autoradiography from −22% to +2% and increased the differences between young and aged transgenic animals. SUVR and plaque load correlated highly between strains for uncorrected (R = 0.94, p<0.001) and PVE-corrected (R = 0.95, p<0.001) data. We find that APPswe/PS2 mice may be optimal for longitudinal amyloid-PET monitoring in planned interventions studies.
Collapse
Affiliation(s)
- Matthias Brendel
- Dept. of Nuclear Medicine, University of Munich, Munich, Germany
| | - Anna Jaworska
- Dept. of Translational Research I, German Center for Neurodegenerative Diseases (DZNE)—site Munich, University of Munich, Munich, Germany
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Eric Grießinger
- Dept. of Translational Research I, German Center for Neurodegenerative Diseases (DZNE)—site Munich, University of Munich, Munich, Germany
| | - Christina Rötzer
- Dept. of Nuclear Medicine, University of Munich, Munich, Germany
| | - Steffen Burgold
- Dept. of Translational Research I, German Center for Neurodegenerative Diseases (DZNE)—site Munich, University of Munich, Munich, Germany
| | | | - Janette Carlsen
- Dept. of Nuclear Medicine, University of Munich, Munich, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, University of Erlangen, Erlangen, Germany
- Department of Neuroscience and Pharmacology, Copenhagen University, Copenhagen, Denmark
| | | | - Christian Haass
- Adolf-Butenandt-Institute, Biochemistry, University of Munich, Munich, Germany
- DZNE–German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Harald Steiner
- Adolf-Butenandt-Institute, Biochemistry, University of Munich, Munich, Germany
- DZNE–German Center for Neurodegenerative Diseases, Munich, Germany
| | - Peter Bartenstein
- Dept. of Nuclear Medicine, University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jochen Herms
- Dept. of Translational Research I, German Center for Neurodegenerative Diseases (DZNE)—site Munich, University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Axel Rominger
- Dept. of Nuclear Medicine, University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- * E-mail:
| |
Collapse
|
41
|
Qu H, Zhao M, Zhao S, Xiao T, Song C, Cao Y, Jolkkonen J, Zhao C. Forced limb-use enhanced neurogenesis and behavioral recovery after stroke in the aged rats. Neuroscience 2015; 286:316-24. [DOI: 10.1016/j.neuroscience.2014.11.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/21/2014] [Accepted: 11/10/2014] [Indexed: 11/25/2022]
|
42
|
Li XY, Bao XJ, Wang RZ. Potential of neural stem cell-based therapies for Alzheimer's disease. J Neurosci Res 2015; 93:1313-24. [PMID: 25601591 DOI: 10.1002/jnr.23555] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/23/2014] [Accepted: 12/15/2014] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD), known to be a leading cause of dementia that causes heavy social and financial burdens worldwide, is characterized by progressive loss of neurons and synaptic connectivity after depositions of amyloid-β (Aβ) protein. Current therapies for AD patients can only alleviate symptoms but cannot deter the neural degeneration, thus providing no long-term recovery. Neural stem cells (NSCs), capable of self-renewal and of differentiation into functional neurons and glia, have been shown to repair damaged networks and reverse memory and learning deficits in animal studies, providing new hope for curing AD patients by cell transplantation. Under AD pathology, the microenvironment also undergoes great alterations that affect the propagation of NSCs and subsequent therapeutic efficiency, calling for measures to improve the hostile environment for cell transplantation. This article reviews the therapeutic potential of both endogenous and exogenous NSCs in the treatment of AD and the challenges to application of stem cells in AD treatment, particularly those from the microenvironmental alterations, in the hope of providing more information for future research in exploiting stem cell-based therapies for AD. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xue-Yuan Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, People's Republic of China
| | - Xin-Jie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, People's Republic of China
| | - Ren-Zhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
43
|
Comparison of the independent and combined effects of sub-chronic therapy with metformin and a stable GLP-1 receptor agonist on cognitive function, hippocampal synaptic plasticity and metabolic control in high-fat fed mice. Neuropharmacology 2014; 86:22-30. [DOI: 10.1016/j.neuropharm.2014.06.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/21/2022]
|
44
|
Fritschi SK, Cintron A, Ye L, Mahler J, Bühler A, Baumann F, Neumann M, Nilsson KPR, Hammarström P, Walker LC, Jucker M. Aβ seeds resist inactivation by formaldehyde. Acta Neuropathol 2014; 128:477-84. [PMID: 25193240 DOI: 10.1007/s00401-014-1339-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 01/07/2023]
Abstract
Cerebral β-amyloidosis can be exogenously induced by the intracerebral injection of brain extracts containing aggregated β-amyloid (Aβ) into young, pre-depositing Aβ precursor protein- (APP) transgenic mice. Previous work has shown that the induction involves a prion-like seeding mechanism in which the seeding agent is aggregated Aβ itself. Here we report that the β-amyloid-inducing activity of Alzheimer's disease (AD) brain tissue or aged APP-transgenic mouse brain tissue is preserved, albeit with reduced efficacy, after formaldehyde fixation. Moreover, spectral analysis with amyloid conformation-sensitive luminescent conjugated oligothiophene dyes reveals that the strain-like properties of aggregated Aβ are maintained in fixed tissues. The resistance of Aβ seeds to inactivation and structural modification by formaldehyde underscores their remarkable durability, which in turn may contribute to their persistence and spread within the body. The present findings can be exploited to establish the relationship between the molecular structure of Aβ aggregates and the variable clinical features and disease progression of AD even in archived, formalin-fixed autopsy material.
Collapse
Affiliation(s)
- Sarah K Fritschi
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fritschi SK, Langer F, Kaeser SA, Maia LF, Portelius E, Pinotsi D, Kaminski CF, Winkler DT, Maetzler W, Keyvani K, Spitzer P, Wiltfang J, Kaminski Schierle GS, Zetterberg H, Staufenbiel M, Jucker M. Highly potent soluble amyloid-β seeds in human Alzheimer brain but not cerebrospinal fluid. ACTA ACUST UNITED AC 2014; 137:2909-2915. [PMID: 25212850 DOI: 10.1093/brain/awu255] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The soluble fraction of brain samples from patients with Alzheimer's disease contains highly biologically active amyloid-β seeds. In this study, we sought to assess the potency of soluble amyloid-β seeds derived from the brain and cerebrospinal fluid. Soluble Alzheimer's disease brain extracts were serially diluted and then injected into the hippocampus of young, APP transgenic mice. Eight months later, seeded amyloid-β deposition was evident even when the hippocampus received subattomole amounts of brain-derived amyloid-β. In contrast, cerebrospinal fluid from patients with Alzheimer's disease, which contained more than 10-fold higher levels of amyloid-β peptide than the most concentrated soluble brain extracts, did not induce detectable seeding activity in vivo. Similarly, cerebrospinal fluid from aged APP-transgenic donor mice failed to induce cerebral amyloid-β deposition. In comparison to the soluble brain fraction, cerebrospinal fluid largely lacked N-terminally truncated amyloid-β species and exhibited smaller amyloid-β-positive particles, features that may contribute to the lack of in vivo seeding by cerebrospinal fluid. Interestingly, the same cerebrospinal fluid showed at least some seeding activity in an in vitro assay. The present results indicate that the biological seeding activity of soluble amyloid-β species is orders of magnitude greater in brain extracts than in the cerebrospinal fluid.
Collapse
Affiliation(s)
- Sarah K Fritschi
- German Centre for Neurodegenerative Diseases (DZNE), Tübingen, D-72076 Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany.,Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, D-72074 Tübingen, Germany
| | - Franziska Langer
- German Centre for Neurodegenerative Diseases (DZNE), Tübingen, D-72076 Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany
| | - Stephan A Kaeser
- German Centre for Neurodegenerative Diseases (DZNE), Tübingen, D-72076 Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany
| | - Luis F Maia
- German Centre for Neurodegenerative Diseases (DZNE), Tübingen, D-72076 Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany
| | - Erik Portelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, S-43180 Mölndal, Sweden
| | - Dorothea Pinotsi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK
| | - David T Winkler
- Department of Neurology and Institute of Pathology, University Hospital Basel, CH-4003 Basel, Switzerland
| | - Walter Maetzler
- German Centre for Neurodegenerative Diseases (DZNE), Tübingen, D-72076 Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany.,Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, Faculty of Medicine, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Philipp Spitzer
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Centre, D-37075 Göttingen, Germany
| | | | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, S-43180 Mölndal, Sweden.,UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Matthias Staufenbiel
- German Centre for Neurodegenerative Diseases (DZNE), Tübingen, D-72076 Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany
| | - Mathias Jucker
- German Centre for Neurodegenerative Diseases (DZNE), Tübingen, D-72076 Tübingen, Germany.,Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany
| |
Collapse
|
46
|
Zimmer ER, Parent MJ, Cuello AC, Gauthier S, Rosa-Neto P. MicroPET imaging and transgenic models: a blueprint for Alzheimer's disease clinical research. Trends Neurosci 2014; 37:629-41. [PMID: 25151336 DOI: 10.1016/j.tins.2014.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/30/2014] [Accepted: 07/22/2014] [Indexed: 01/23/2023]
Abstract
Over the past decades, developments in neuroimaging have significantly contributed to the understanding of Alzheimer's disease (AD) pathophysiology. Specifically, positron emission tomography (PET) imaging agents targeting amyloid deposition have provided unprecedented opportunities for refining in vivo diagnosis, monitoring disease propagation, and advancing AD clinical trials. Furthermore, the use of a miniaturized version of PET (microPET) in transgenic (Tg) animals has been a successful strategy for accelerating the development of novel radiopharmaceuticals. However, advanced applications of microPET focusing on the longitudinal propagation of AD pathophysiology or therapeutic strategies remain in their infancy. This review highlights what we have learned from microPET imaging in Tg models displaying amyloid and tau pathology, and anticipates cutting-edge applications with high translational value to clinical research.
Collapse
Affiliation(s)
- Eduardo R Zimmer
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada; Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maxime J Parent
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada.
| |
Collapse
|
47
|
Proliferation in the Alzheimer hippocampus is due to microglia, not astroglia, and occurs at sites of amyloid deposition. Neural Plast 2014; 2014:693851. [PMID: 25215243 PMCID: PMC4157009 DOI: 10.1155/2014/693851] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/23/2014] [Indexed: 01/19/2023] Open
Abstract
Microglia and astrocytes contribute to Alzheimer's disease (AD) etiology and may mediate early neuroinflammatory responses. Despite their possible role in disease progression and despite the fact that they can respond to amyloid deposition in model systems, little is known about whether astro- or microglia can undergo proliferation in AD and whether this is related to the clinical symptoms or to local neuropathological changes. Previously, proliferation was found to be increased in glia-rich regions of the presenile hippocampus. Since their phenotype was unknown, we here used two novel triple-immunohistochemical protocols to study proliferation in astro- or microglia in relation to amyloid pathology. We selected different age-matched cohorts to study whether proliferative changes relate to clinical severity or to neuropathological changes. Proliferating cells were found across the hippocampus but never in mature neurons or astrocytes. Almost all proliferating cells were colabeled with Iba1+, indicating that particularly microglia contribute to proliferation in AD. Proliferating Iba1+ cells was specifically seen within the borders of amyloid plaques, indicative of an active involvement in, or response to, plaque accumulation. Thus, consistent with animal studies, proliferation in the AD hippocampus is due to microglia, occurs in close proximity of plaque pathology, and may contribute to the neuroinflammation common in AD.
Collapse
|
48
|
McClean PL, Hölscher C. Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer's disease. Neuropharmacology 2014; 86:241-58. [PMID: 25107586 DOI: 10.1016/j.neuropharm.2014.07.015] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/18/2014] [Accepted: 07/23/2014] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes is a risk factor for developing Alzheimer's disease (AD). In the brains of AD patients, insulin signalling is desensitised. The incretin hormone Glucagon-like peptide-1 (GLP-1) facilitates insulin signalling, and analogues such as liraglutide are on the market as treatments for type 2 diabetes. We have previously shown that liraglutide showed neuroprotective effects in the APPswe/PS1ΔE9 mouse model of AD. Here, we test the GLP-1 receptor agonist lixisenatide in the same mouse model and compare the effects to liraglutide. After ten weeks of daily i.p. injections with liraglutide (2.5 or 25 nmol/kg) or lixisenatide (1 or 10 nmol/kg) or saline of APP/PS1 mice at an age when amyloid plaques had already formed, performance in an object recognition task was improved in APP/PS1 mice by both drugs at all doses tested. When analysing synaptic plasticity in the hippocampus, LTP was strongly increased in APP/PS1 mice by either drug. Lixisenatide (1 nmol/kg) was most effective. The reduction of synapse numbers seen in APP/PS1 mice was prevented by the drugs. The amyloid plaque load and dense-core Congo red positive plaque load in the cortex was reduced by both drugs at all doses. The chronic inflammation response (microglial activation) was also reduced by all treatments. The results demonstrate that the GLP-1 receptor agonists liraglutide and lixisenatide which are on the market as treatments for type 2 diabetes show promise as potential drug treatments of AD. Lixisenatide was equally effective at a lower dose compared to liraglutide in some of the parameters measured.
Collapse
Affiliation(s)
- Paula L McClean
- Clinical Translational Research and Innovation Centre, University of Ulster, Derry/Londonderry, BT47 6SB, Northern Ireland, UK
| | - Christian Hölscher
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK.
| |
Collapse
|
49
|
He P, Staufenbiel M, Li R, Shen Y. Deficiency of patched 1-induced Gli1 signal transduction results in astrogenesis in Swedish mutated APP transgenic mice. Hum Mol Genet 2014; 23:6512-27. [PMID: 25027328 DOI: 10.1093/hmg/ddu370] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Normally, sonic hedgehog (Shh) signaling induces high levels of Patched 1 (Ptc1) and its associated transcription factor Gli1 with genesis of specific neuronal progeny. But their roles in the neural stem cells (NSCs), including glial precursor cells (GPCs), of Alzheimer's disease (AD) are unclear. Here, we show that Ptc1 and Gli1 are significantly deficits in the hippocampus of an aged AD transgenic mouse mode, whereas these two molecules are highly elevated at young ages. Our similar findings in autopsied AD brains validate the discovery in AD mouse models. To examine whether Aβ peptides, which are a main component of the amyloid plaques in AD brains, affected Ptc1-Gli1 signaling, we treated GPCs with Aβ peptides, we found that high dose of Aβ1-42 but not Aβ1-40 significantly decreased Ptc1-Gli1, while Shh itself was elevated in hippocampal NSCs/GPCs. Furthermore, we found that deficits of Ptc1-Gli1 signaling induced NSCs/GPCs into asymmetric division, which results in an increase in the number of dividing cells including transit-amplifying cells and neuroblasts. These precursor cells commit to apoptosis-like death under the toxic conditions. By this way, adult neural precursor cell pool is exhausted and defective neurogenesis happens in AD brains. Our findings suggest that Ptc1-Gli1 signaling deregulation resulting abnormal loss of GPCs may contribute to a cognition decline in AD brains. The novel findings elucidate a new molecular mechanism of adult NSCs/GPCs on neurogenesis and demonstrate a regulatory role for Ptc1-Gli1 in adult neural circuit integrity of the brain.
Collapse
Affiliation(s)
- Ping He
- Center for Advanced Therapeutic Strategies for Brain Disorders and
| | | | - Rena Li
- Center for Hormone Advanced Science and Education, The Roskamp Institute, Sarasota, FL 34243, USA,
| | - Yong Shen
- Center for Advanced Therapeutic Strategies for Brain Disorders and, Department of Neurology, University of Florida College of Medicine, Gainesville FL32610, USA
| |
Collapse
|
50
|
Ulrich JD, Finn MB, Wang Y, Shen A, Mahan TE, Jiang H, Stewart FR, Piccio L, Colonna M, Holtzman DM. Altered microglial response to Aβ plaques in APPPS1-21 mice heterozygous for TREM2. Mol Neurodegener 2014; 9:20. [PMID: 24893973 PMCID: PMC4049806 DOI: 10.1186/1750-1326-9-20] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/20/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Recent genome-wide association studies linked variants in TREM2 to a strong increase in the odds of developing Alzheimer's disease. The mechanism by which TREM2 influences the susceptibility to Alzheimer's disease is currently unknown. TREM2 is expressed by microglia and is thought to regulate phagocytic and inflammatory microglial responses to brain pathology. Given that a single allele of variant TREM2, likely resulting in a loss of function, conferred an increased risk of developing Alzheimer's disease, we tested whether loss of one functional trem2 allele would affect Aβ plaque deposition or the microglial response to Aβ pathology in APPPS1-21 mice. RESULTS There was no significant difference in Aβ deposition in 3-month old or 7-month old APPPS1-21 mice expressing one or two copies of trem2. However, 3-month old mice with one copy of trem2 exhibited a marked decrease in the number and size of plaque-associated microglia. While there were no statistically significant differences in cytokine levels or markers of microglial activation in 3- or 7-month old animals, there were trends towards decreased expression of NOS2, C1qa, and IL1a in 3-month old TREM2+/- vs. TREM2+/+ mice. CONCLUSIONS Loss of a single copy of trem2 had no effect on Aβ pathology, but altered the morphological phenotype of plaque-associated microglia. These data suggest that TREM2 is important for the microglial response to Aβ deposition but that a 50% decrease inTREM2 expression does not affect Aβ plaque burden.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| |
Collapse
|