1
|
Tolve M, Tutas J, Özer-Yildiz E, Klein I, Petzold A, Fritz VJ, Overhoff M, Silverman Q, Koletsou E, Liebsch F, Schwarz G, Korotkova T, Valtcheva S, Gatto G, Kononenko NL. The endocytic adaptor AP-2 maintains Purkinje cell function by balancing cerebellar parallel and climbing fiber synapses. Cell Rep 2025; 44:115256. [PMID: 39918958 DOI: 10.1016/j.celrep.2025.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/02/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
The loss of cerebellar Purkinje cells is a hallmark of neurodegenerative movement disorders, but the mechanisms remain enigmatic. We show that endocytic adaptor protein complex 2 (AP-2) is crucial for Purkinje cell survival. Using mouse genetics, viral tracing, calcium imaging, and kinematic analysis, we demonstrate that loss of the AP-2 μ subunit in Purkinje cells leads to early-onset ataxia and progressive degeneration. Synaptic dysfunction, marked by an overrepresentation of parallel fibers (PFs) over climbing fibers (CFs), precedes Purkinje cell loss. Mechanistically, AP-2 interacts with the PF-enriched protein GRID2IP, and its loss triggers GRID2IP degradation and glutamate δ2 receptor (GLURδ2) accumulation, leading to an excess of PFs while CFs are reduced. The overrepresentation of PFs increases Purkinje cell network activity, which is mitigated by enhancing glutamate clearance with ceftriaxone. These findings highlight the role of AP-2 in regulating GRID2IP levels in Purkinje cells to maintain PF-CF synaptic balance and prevent motor dysfunction.
Collapse
Affiliation(s)
- Marianna Tolve
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Janine Tutas
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ebru Özer-Yildiz
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ines Klein
- Neurology Department, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Anne Petzold
- Institute for Systems Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veronika J Fritz
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Melina Overhoff
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Quinn Silverman
- Neurology Department, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Ellie Koletsou
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Filip Liebsch
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Tatiana Korotkova
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Institute for Systems Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Silvana Valtcheva
- Institute for Systems Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Graziana Gatto
- Neurology Department, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Natalia L Kononenko
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Institute of Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Qiu C, Zhang L, Yong C, Hu R, Sun Y, Wang B, Fang L, Zhu GJ, Lu Q, Wang J, Ma X, Zhang L, Wan G. Stub1 promotes degradation of the activated Diaph3: A negative feedback regulatory mechanism of the actin nucleator. J Biol Chem 2024; 300:107813. [PMID: 39322015 PMCID: PMC11736009 DOI: 10.1016/j.jbc.2024.107813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
The formin protein Diaph3 is an actin nucleator that regulates numerous cytoskeleton-dependent cellular processes through the activation of actin polymerization. Expression and activity of Diaph3 is tightly regulated: lack of Diaph3 results in developmental defects and embryonic lethality in mice, while overexpression of Diaph3 causes auditory neuropathy. It is known that Diaph3 homophilic interactions include the intramolecular interaction of its Dia-inhibitory domain (DID)-diaphanous autoregulatory domain (DAD) domains and the intermolecular interactions of DD-DD domains or FH2-FH2 domains. However, the physiological significance of these interactions in Diaph3 protein stability and activity is not fully understood. In this study, we show that FH2-FH2 interaction promotes Diaph3 activity, while DID-DAD and DD-DD interactions inhibit Diaph3 activity through distinct mechanisms. DID-DAD interaction is responsible for the autoinhibition of Diaph3 protein, which is disrupted by binding of Rho GTPases. Interestingly, we find that DID-DAD interaction stabilizes the expression of each DID or DAD domain against proteasomal-mediated degradation. Disruption of DID-DAD interaction by RhoA binding or M1041A mutation causes increased Diaph3 activity and accelerated degradation of the activated Diaph3 protein. Further, the activated Diaph3 is ubiquitinated at K1142/1143/1144 lysine residues by the E3 ligase Stub1. Expression of Stub1 is causally related to the stability and activity of Diaph3. Knockdown of Stub1 in mouse cochlea results in hair cell stereocilia defects, neuronal degeneration, and hearing loss, resembling the phenotypes of mice overexpressing Diaph3. Thus, our study reports a novel regulatory mechanism of Diaph3 protein expression and activity whereby the active but not inactive Diaph3 is readily degraded to prevent excessive actin polymerization.
Collapse
Affiliation(s)
- Cui Qiu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Linqing Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Chenxuan Yong
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Ruixing Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yuecen Sun
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Busong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Medical School, Nanjing University, Nanjing, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Medical School, Nanjing University, Nanjing, China
| | - Guang-Jie Zhu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China; Research Institute of Otolaryngology, Nanjing, China
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Junguo Wang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China; Research Institute of Otolaryngology, Nanjing, China.
| | - Xiaofeng Ma
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China; Research Institute of Otolaryngology, Nanjing, China.
| | - Luping Zhang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital, Nantong University, Nantong, China.
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Medical School, Nanjing University, Nanjing, China; Research Institute of Otolaryngology, Nanjing, China.
| |
Collapse
|
3
|
Srapyan S, Tran DP, Loo JA, Grintsevich EE. Mapping Molecular Interaction Interface Between Diaphanous Formin-2 and Neuron-Specific Drebrin A. J Mol Biol 2023; 435:168334. [PMID: 37898384 DOI: 10.1016/j.jmb.2023.168334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Actin cytoskeleton is critical for neuronal shape and function. Drebrin and formins are key regulators of neuronal actin networks. Neuron-specific drebrin A is highly enriched in dendritic spines (postsynaptic terminals) of mature excitatory neurons. Decreased levels of drebrin in dendritic spines is a hallmark of Alzheimer's disease, epilepsy, and other complex disorders, which calls for better understanding of its regulatory functions. Drebrin A was previously shown to inhibit actin nucleation and bundling by the diaphanous formin-2 (mDia2) - an actin nucleator that is involved in the initiation of dendritic spines. Characterization of the molecular binding interface between mDia2 and drebrin is necessary to better understand the functional consequences of this interaction and its biological relevance. Prior work suggested a multi-pronged interface between mDia2 and drebrin, which involves both N-terminal and C-terminal regions of the drebrin molecule. Here we used mass spectrometry analysis, deletion mutagenesis, and an array of synthetic peptides of neuronal drebrin A to map its formin-binding interface. The mDia2-interacting interface on drebrin was narrowed down to three highly conserved 9-16 residue sequences that were used to identify some of the key residues involved in this interaction. Deletion of the C-terminal region of drebrin greatly reduces its binding to mDia2 and the extent of its inhibition of formin-driven actin assembly. Moreover, our experiments with formins from different subfamilies showed that drebrin is a specific rather than general inhibitor of these proteins. This work contributes to a molecular level understanding of the formin-drebrin interaction and will help to unravel its biological significance.
Collapse
Affiliation(s)
- Sargis Srapyan
- Department of Chemistry and Biochemistry, California State University, Long Beach (CSULB), Long Beach, CA 90840, USA
| | - Denise P Tran
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Sydney Mass Spectrometry, The University of Sydney (USyd), Sydney, New South Wales 2006, Australia
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Elena E Grintsevich
- Department of Chemistry and Biochemistry, California State University, Long Beach (CSULB), Long Beach, CA 90840, USA.
| |
Collapse
|
4
|
Ávila-Flores A, Sánchez-Cabezón JJ, Ochoa-Echeverría A, Checa AI, Rosas-García J, Téllez-Araiza M, Casado S, Liébana R, Santos-Mendoza T, Mérida I. Identification of Host PDZ-Based Interactions with the SARS-CoV-2 E Protein in Human Monocytes. Int J Mol Sci 2023; 24:12793. [PMID: 37628973 PMCID: PMC10454406 DOI: 10.3390/ijms241612793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Proteins containing PDZ (post-synaptic density, PSD-95/disc large, Dlg/zonula occludens, ZO-1) domains assemble signaling complexes that orchestrate cell responses. Viral pathogens target host PDZ proteins by coding proteins containing a PDZ-binding motif (PBM). The presence of a PBM in the SARS-CoV-2 E protein contributes to the virus's pathogenicity. SARS-CoV-2 infects epithelia, but also cells from the innate immune response, including monocytes and alveolar macrophages. This process is critical for alterations of the immune response that are related to the deaths caused by SARS-CoV-2. Identification of E-protein targets in immune cells might offer clues to understanding how SARS-CoV-2 alters the immune response. We analyzed the interactome of the SARS-CoV-2 E protein in human monocytes. The E protein was expressed fused to a GFP tag at the amino terminal in THP-1 monocytes, and associated proteins were identified using a proteomic approach. The E-protein interactome provided 372 partners; only 8 of these harbored PDZ domains, including the cell polarity protein ZO-2, the chemoattractant IL-16, and syntenin. We addressed the expression and localization of the identified PDZ proteins along the differentiation of primary and THP-1 monocytes towards macrophages and dendritic cells. Our data highlight the importance of identifying the functions of PDZ proteins in the maintenance of immune fitness and the viral alteration of inflammatory response.
Collapse
Affiliation(s)
- Antonia Ávila-Flores
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, 28049 Madrid, Spain; (J.J.S.-C.); (A.O.-E.); (A.I.C.); (S.C.); (R.L.)
| | - Juan José Sánchez-Cabezón
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, 28049 Madrid, Spain; (J.J.S.-C.); (A.O.-E.); (A.I.C.); (S.C.); (R.L.)
| | - Ane Ochoa-Echeverría
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, 28049 Madrid, Spain; (J.J.S.-C.); (A.O.-E.); (A.I.C.); (S.C.); (R.L.)
| | - Ana I. Checa
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, 28049 Madrid, Spain; (J.J.S.-C.); (A.O.-E.); (A.I.C.); (S.C.); (R.L.)
| | - Jorge Rosas-García
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-G.); (M.T.-A.); (T.S.-M.)
| | - Mariana Téllez-Araiza
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-G.); (M.T.-A.); (T.S.-M.)
| | - Sara Casado
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, 28049 Madrid, Spain; (J.J.S.-C.); (A.O.-E.); (A.I.C.); (S.C.); (R.L.)
| | - Rosa Liébana
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, 28049 Madrid, Spain; (J.J.S.-C.); (A.O.-E.); (A.I.C.); (S.C.); (R.L.)
| | - Teresa Santos-Mendoza
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-G.); (M.T.-A.); (T.S.-M.)
| | - Isabel Mérida
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, 28049 Madrid, Spain; (J.J.S.-C.); (A.O.-E.); (A.I.C.); (S.C.); (R.L.)
| |
Collapse
|
5
|
Dutta P, Bharti P, Kumar J, Maiti S. Role of actin cytoskeleton in the organization and function of ionotropic glutamate receptors. Curr Res Struct Biol 2021; 3:277-289. [PMID: 34766008 PMCID: PMC8569634 DOI: 10.1016/j.crstbi.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/04/2021] [Accepted: 10/09/2021] [Indexed: 12/22/2022] Open
Abstract
Neural networks with precise connection are compulsory for learning and memory. Various cellular events occur during the genesis of dendritic spines to their maturation, synapse formation, stabilization of the synapse, and proper signal transmission. The cortical actin cytoskeleton and its multiple regulatory proteins are crucial for the above cellular events. The different types of ionotropic glutamate receptors (iGluRs) present on the postsynaptic density (PSD) are also essential for learning and memory. Interaction of the iGluRs in association of their auxiliary proteins with actin cytoskeleton regulated by actin-binding proteins (ABPs) are required for precise long-term potentiation (LTP) and long-term depression (LTD). There has been a quest to understand the mechanistic detail of synapse function involving these receptors with dynamic actin cytoskeleton. A major, emerging area of investigation is the relationship between ABPs and iGluRs in synapse development. In this review we have summarized the current understanding of iGluRs functioning with respect to the actin cytoskeleton, scaffolding proteins, and their regulators. The AMPA, NMDA, Delta and Kainate receptors need the stable underlying actin cytoskeleton to anchor through synaptic proteins for precise synapse formation. The different types of ABPs present in neurons play a critical role in dynamizing/stabilizing the actin cytoskeleton needed for iGluRs function.
Collapse
Affiliation(s)
- Priyanka Dutta
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Pratibha Bharti
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Janesh Kumar
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Sankar Maiti
- Indian Institute of Science Education and Research, Kolkata, 741246, India
| |
Collapse
|
6
|
Chin AC, Lau AY. Structural biology and thermodynamics of GluD receptors. Neuropharmacology 2021; 191:108542. [PMID: 33845075 DOI: 10.1016/j.neuropharm.2021.108542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
Glutamate delta (GluD) receptors are a functionally enigmatic subfamily of ionotropic glutamate receptors. Despite sharing similar sequences and structures with AMPA, NMDA, and kainate receptors, GluD receptors do not bind glutamate nor function as ligand-gated ion channels. Binding d-serine and engaging in transsynaptic protein-protein interactions, GluD receptors are thought to undergo complex conformational rearrangements for non-ionotropic signaling that regulates synaptic plasticity. Recent structural, biochemical, and computational studies have elucidated multiple conformational and thermodynamic factors governing the unique properties of GluD receptors. Here, we review advances in biophysical insights into GluD receptors and discuss the structural thermodynamic relationships that underpin their neurobiological functions.
Collapse
Affiliation(s)
- Alfred C Chin
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Albert Y Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Inoshita T, Hirano T. Norepinephrine Facilitates Induction of Long-term Depression through β-Adrenergic Receptor at Parallel Fiber-to-Purkinje Cell Synapses in the Flocculus. Neuroscience 2020; 462:141-150. [PMID: 32502572 DOI: 10.1016/j.neuroscience.2020.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Abstract
The cerebellum is involved in motor learning, and long-term depression (LTD) at parallel fiber-to-Purkinje cell (PF-PC) synapses has been considered to be a primary cellular mechanism for motor learning. In addition, the contribution of norepinephrine (NE) to cerebellum-dependent learning paradigms has been reported. Thus, the roles of LTD and of NE in motor learning have been studied separately, and the relationship between the effects of NE and LTD remains unclear. Here, we examined effects of β-adrenergic receptor (β-AR) activity on the synaptic transmission and LTD at PF-PC synapses in the cerebellar flocculus. The flocculus regulates adaptation of oculomotor reflexes, and we previously reported the involvement of both LTD and β-AR in adaptation of an oculomotor reflex. Here we found that specific agonists for β-AR or NE did not directly change synaptic transmission, but lowered the threshold for LTD induction at PF-PC synapses in the flocculus. In addition, protein kinase A (PKA), which is activated downstream of β-AR, facilitated the LTD induction. Altogether, these results suggest that NE facilitates LTD induction at PF-PC synapses in the flocculus by activating PKA through β-AR.
Collapse
Affiliation(s)
- Takuma Inoshita
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomoo Hirano
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
8
|
Mahurkar-Joshi S, Chang L. Epigenetic Mechanisms in Irritable Bowel Syndrome. Front Psychiatry 2020; 11:805. [PMID: 32922317 PMCID: PMC7456856 DOI: 10.3389/fpsyt.2020.00805] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a brain-gut axis disorder characterized by abdominal pain and altered bowel habits. IBS is a multifactorial, stress-sensitive disorder with evidence for familial clustering attributed to genetic or shared environmental factors. However, there are weak genetic associations reported with IBS and a lack of evidence to suggest that major genetic factor(s) contribute to IBS pathophysiology. Studies on animal models of stress, including early life stress, suggest a role for environmental factors, specifically, stress associated with dysregulation of corticotropin releasing factor and hypothalamus-pituitary-adrenal (HPA) axis pathways in the pathophysiology of IBS. Recent evidence suggests that epigenetic mechanisms, which constitute molecular changes not driven by a change in gene sequence, can mediate environmental effects on central and peripheral function. Epigenetic alterations including DNA methylation changes, histone modifications, and differential expression of non-coding RNAs (microRNA [miRNA] and long non-coding RNA) have been associated with several diseases. The objective of this review is to elucidate the molecular factors in the pathophysiology of IBS with an emphasis on epigenetic mechanisms. Emerging evidence for epigenetic changes in IBS includes changes in DNA methylation in animal models of IBS and patients with IBS, and various miRNAs that have been associated with IBS and endophenotypes, such as increased visceral sensitivity and intestinal permeability. DNA methylation, in particular, is an emerging field in the realm of complex diseases and a promising mechanism which can provide important insights into IBS pathogenesis and identify potential targets for treatment.
Collapse
Affiliation(s)
- Swapna Mahurkar-Joshi
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine at UCLA, Los Angeles, CA, United States
| | - Lin Chang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
9
|
Roesler MK, Lombino FL, Freitag S, Schweizer M, Hermans-Borgmeyer I, Schwarz JR, Kneussel M, Wagner W. Myosin XVI Regulates Actin Cytoskeleton Dynamics in Dendritic Spines of Purkinje Cells and Affects Presynaptic Organization. Front Cell Neurosci 2019; 13:330. [PMID: 31474830 PMCID: PMC6705222 DOI: 10.3389/fncel.2019.00330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/04/2019] [Indexed: 11/29/2022] Open
Abstract
The actin cytoskeleton is crucial for function and morphology of neuronal synapses. Moreover, altered regulation of the neuronal actin cytoskeleton has been implicated in neuropsychiatric diseases such as autism spectrum disorder (ASD). Myosin XVI is a neuronally expressed unconventional myosin known to bind the WAVE regulatory complex (WRC), a regulator of filamentous actin (F-actin) polymerization. Notably, the gene encoding the myosin’s heavy chain (MYO16) shows genetic association with neuropsychiatric disorders including ASD. Here, we investigated whether myosin XVI plays a role for actin cytoskeleton regulation in the dendritic spines of cerebellar Purkinje cells (PCs), a neuronal cell type crucial for motor learning, social cognition and vocalization. We provide evidence that both myosin XVI and the WRC component WAVE1 localize to PC spines. Fluorescence recovery after photobleaching (FRAP) analysis of GFP-actin in cultured PCs shows that Myo16 knockout as well as PC-specific Myo16 knockdown, lead to faster F-actin turnover in the dendritic spines of PCs. We also detect accelerated F-actin turnover upon interference with the WRC, and upon inhibition of Arp2/3 that drives formation of branched F-actin downstream of the WRC. In contrast, inhibition of formins that are responsible for polymerization of linear actin filaments does not cause faster F-actin turnover. Together, our data establish myosin XVI as a regulator of the postsynaptic actin cytoskeleton and suggest that it is an upstream activator of the WRC-Arp2/3 pathway in PC spines. Furthermore, ultra-structural and electrophysiological analyses of Myo16 knockout cerebellum reveals the presence of reduced numbers of synaptic vesicles at presynaptic terminals in the absence of the myosin. Therefore, we here define myosin XVI as an F-actin regulator important for presynaptic organization in the cerebellum.
Collapse
Affiliation(s)
- Mona Katrin Roesler
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franco Luis Lombino
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Freitag
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Electron Microscopy Unit, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Transgenic Animal Unit, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jürgen R Schwarz
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Wagner
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Ginosyan AA, Grintsevich EE, Reisler E. Neuronal drebrin A directly interacts with mDia2 formin to inhibit actin assembly. Mol Biol Cell 2019; 30:646-657. [PMID: 30625038 PMCID: PMC6589693 DOI: 10.1091/mbc.e18-10-0639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Dendritic spines (DS) are actin-rich postsynaptic terminals of neurons that are critical for higher-order brain functions. Maturation of DS is accompanied by a change in actin architecture from linear to branched filamentous structures. Presumably, the underlying cause of this is a switch in a mode of actin assembly from formin-driven to Arp2/3-mediated via an undefined mechanism. Here we present data suggesting that neuron-specific actin-binding drebrin A may be a part of such a switch. It is well documented that DS are highly enriched in drebrin A, which is critical for their plasticity and function. At the same time, mDia2 is known to mediate the formation of filopodia-type (immature) spines. We found that neuronal drebrin A directly interacts with mDia2 formin. Drebrin inhibits formin-mediated nucleation of actin and abolishes mDia2-induced actin bundling. Using truncated protein constructs we identified the domain requirements for drebrin–mDia2 interaction. We hypothesize that accumulation of drebrin A in DS (that coincides with spine maturation) leads to inhibition of mDia2-driven actin polymerization and, therefore, may contribute to a change in actin architecture from linear to branched filaments.
Collapse
Affiliation(s)
- Anush A Ginosyan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Elena E Grintsevich
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
11
|
Multiple roles of the actin and microtubule-regulating formins in the developing brain. Neurosci Res 2019; 138:59-69. [DOI: 10.1016/j.neures.2018.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023]
|
12
|
Silkworth WT, Kunes KL, Nickel GC, Phillips ML, Quinlan ME, Vizcarra CL. The neuron-specific formin Delphilin nucleates nonmuscle actin but does not enhance elongation. Mol Biol Cell 2017; 29:610-621. [PMID: 29282276 PMCID: PMC6004577 DOI: 10.1091/mbc.e17-06-0363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/06/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022] Open
Abstract
The formin Delphilin binds the glutamate receptor, GluRδ2, in dendritic spines of Purkinje cells. Both proteins play a role in learning. To understand how Delphilin functions in neurons, we studied the actin assembly properties of this formin. Formins have a conserved formin homology 2 domain, which nucleates and associates with the fast-growing end of actin filaments, influencing filament growth together with the formin homology 1 (FH1) domain. The strength of nucleation and elongation varies widely across formins. Additionally, most formins have conserved domains that regulate actin assembly through an intramolecular interaction. Delphilin is distinct from other formins in several ways: its expression is limited to Purkinje cells, it lacks classical autoinhibitory domains, and its FH1 domain has minimal proline-rich sequence. We found that Delphilin is an actin nucleator that does not accelerate elongation, although it binds to the barbed end of filaments. In addition, Delphilin exhibits a preference for actin isoforms, nucleating nonmuscle actin but not muscle actin, which has not been described or systematically studied in other formins. Finally, Delphilin is the first formin studied that is not regulated by intramolecular interactions. We speculate how the activity we observe is consistent with its localization in the small dendritic spines.
Collapse
Affiliation(s)
- William T Silkworth
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Kristina L Kunes
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Grace C Nickel
- Department of Chemistry, Barnard College, New York, NY 10027
| | - Martin L Phillips
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095 .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | | |
Collapse
|
13
|
Pruyne D. Probing the origins of metazoan formin diversity: Evidence for evolutionary relationships between metazoan and non-metazoan formin subtypes. PLoS One 2017; 12:e0186081. [PMID: 28982189 PMCID: PMC5628938 DOI: 10.1371/journal.pone.0186081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/25/2017] [Indexed: 11/18/2022] Open
Abstract
Formins are proteins that assist in regulating cytoskeletal organization through interactions with actin filaments and microtubules. Metazoans encode nine distinct formin subtypes based on sequence similarity, potentially allowing for great functional diversity for these proteins. Through the evolution of the eukaryotes, formins are believed to have repeatedly undergone rounds of gene duplications, followed by diversification and domain shuffling, but previous phylogenetic analyses have shed only a little light on the specific origins of different formin subtypes. To improve our understanding of this in the case of the metazoan formins, phylogenetic comparisons were made here of a broad range of metazoan and non-metazoan formin sequences. This analysis suggests a model in which eight of the nine metazoan formin subtypes arose from two ancestral proteins that were present in an ancient unikont ancestor. Additionally, evidence is shown suggesting the common ancestor of unikonts and bikonts was likely to have encoded at least two formins, a canonical Drf-type protein and a formin bearing a PTEN-like domain.
Collapse
Affiliation(s)
- David Pruyne
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States of America
- * E-mail:
| |
Collapse
|
14
|
Non diaphanous formin delphilin acts as a barbed end capping protein. Exp Cell Res 2017; 357:163-169. [PMID: 28527698 DOI: 10.1016/j.yexcr.2017.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 05/09/2017] [Accepted: 05/14/2017] [Indexed: 10/19/2022]
Abstract
Formins are multi domain proteins present ubiquitously in all eukaryotes from lower fungi to higher vertebrates. Formins are characterized by the presence of formin homology domain-2 (FH2) and formin homology domain-1 (FH1). There are fifteen different formins present in mouse and human. Among these metazoan formins, Delphilin is a unique formin having two PDZ domains at the N-terminus and FH1, FH2 domain at the C-terminus respectively. In this study we observed that Delphilin binds to actin filaments, and Delphilin inhibits actin filament elongation like barbed end capping protein CapZ. In vitro, Delphilin stabilized actin filaments by inhibiting actin filament depolymerisation. Therefore, our study demonstrates Delphilin as an actin-filament capping protein.
Collapse
|
15
|
Cai P, Liu S, Piao X, Hou N, You H, McManus DP, Chen Q. A next-generation microarray further reveals stage-enriched gene expression pattern in the blood fluke Schistosoma japonicum. Parasit Vectors 2017; 10:19. [PMID: 28069074 PMCID: PMC5223471 DOI: 10.1186/s13071-016-1947-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/21/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Schistosomiasis is caused by infection with blood flukes of the genus Schistosoma, and ranks, in terms of disability-adjusted life years (DALYs), as the third most important neglected tropical disease. Schistosomes have several discrete life stages involving dramatic morphological changes during their development, which require subtle gene expression modulations to complete the complex life-cycle. RESULTS In the current study, we employed a second generation schistosome DNA chip printed with the most comprehensive probe array for studying the Schistosoma japonicum transcriptome, to explore stage-associated gene expression in different developmental phases of S. japonicum. A total of 328, 95, 268 and 532 mRNA transcripts were enriched in cercariae, hepatic schistosomula, adult worms and eggs, respectively. In general, genes associated with transcriptional regulation, cell signalling and motor activity were readily expressed in cercariae; the expression of genes involved in neuronal activities, apoptosis and renewal was modestly upregulated in hepatic schistosomula; transcripts involved in egg production, nutrition metabolism and glycosylation were enriched in adult worms; while genes involved in cell division, microtubule-associated mobility, and host-parasite interplay were relatively highly expressed in eggs. CONCLUSIONS The study further highlights the expressional features of stage-associated genes in schistosomes with high accuracy. The results provide a better perspective of the biological characteristics among different developmental stages, which may open new avenues for identification of novel vaccine candidates and the development of novel control interventions against schistosomiasis.
Collapse
Affiliation(s)
- Pengfei Cai
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China. .,Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| | - Shuai Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xianyu Piao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Nan Hou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| | - Qijun Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China. .,Key Laboratory of Zoonosis, Shenyang Agriculture University, Shenyang, People's Republic of China.
| |
Collapse
|
16
|
Lei W, Omotade OF, Myers KR, Zheng JQ. Actin cytoskeleton in dendritic spine development and plasticity. Curr Opin Neurobiol 2016; 39:86-92. [PMID: 27138585 DOI: 10.1016/j.conb.2016.04.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 01/20/2023]
Abstract
Synapses are the basic unit of neuronal communication and their disruption is associated with many neurological disorders. Significant progress has been made towards understanding the molecular and genetic regulation of synapse formation, modulation, and dysfunction, but the underlying cellular mechanisms remain incomplete. The actin cytoskeleton not only provides the structural foundation for synapses, but also regulates a diverse array of cellular activities underlying synaptic function. Here we will discuss the regulation of the actin cytoskeleton in dendritic spines, the postsynaptic compartment of excitatory synapses. We will focus on a select number of actin regulatory processes, highlighting recent advances, the complexity of crosstalk between different pathways, and the challenges of understanding their precise impact on the structure and function of synapses.
Collapse
Affiliation(s)
- Wenliang Lei
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Omotola F Omotade
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Kenneth R Myers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - James Q Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, United States; Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
17
|
Ek WE, Reznichenko A, Ripke S, Niesler B, Zucchelli M, Rivera NV, Schmidt PT, Pedersen NL, Magnusson P, Talley NJ, Holliday EG, Houghton L, Gazouli M, Karamanolis G, Rappold G, Burwinkel B, Surowy H, Rafter J, Assadi G, Li L, Papadaki E, Gambaccini D, Marchi S, Colucci R, Blandizzi C, Barbaro R, Karling P, Walter S, Ohlsson B, Tornblom H, Bresso F, Andreasson A, Dlugosz A, Simren M, Agreus L, Lindberg G, Boeckxstaens G, Bellini M, Stanghellini V, Barbara G, Daly MJ, Camilleri M, Wouters MM, D'Amato M. Exploring the genetics of irritable bowel syndrome: a GWA study in the general population and replication in multinational case-control cohorts. Gut 2015; 64:1774-1782. [PMID: 25248455 DOI: 10.1136/gutjnl-2014-307997] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/21/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE IBS shows genetic predisposition, but adequately powered gene-hunting efforts have been scarce so far. We sought to identify true IBS genetic risk factors by means of genome-wide association (GWA) and independent replication studies. DESIGN We conducted a GWA study (GWAS) of IBS in a general population sample of 11,326 Swedish twins. IBS cases (N=534) and asymptomatic controls (N=4932) were identified based on questionnaire data. Suggestive association signals were followed-up in 3511 individuals from six case-control cohorts. We sought genotype-gene expression correlations through single nucleotide polymorphism (SNP)-expression quantitative trait loci interactions testing, and performed in silico prediction of gene function. We compared candidate gene expression by real-time qPCR in rectal mucosal biopsies of patients with IBS and controls. RESULTS One locus at 7p22.1, which includes the genes KDELR2 (KDEL endoplasmic reticulum protein retention receptor 2) and GRID2IP (glutamate receptor, ionotropic, delta 2 (Grid2) interacting protein), showed consistent IBS risk effects in the index GWAS and all replication cohorts and reached p=9.31×10(-6) in a meta-analysis of all datasets. Several SNPs in this region are associated with cis effects on KDELR2 expression, and a trend for increased mucosal KDLER2 mRNA expression was observed in IBS cases compared with controls. CONCLUSIONS Our results demonstrate that general population-based studies combined with analyses of patient cohorts provide good opportunities for gene discovery in IBS. The 7p22.1 and other risk signals detected in this study constitute a good starting platform for hypothesis testing in future functional investigations.
Collapse
Affiliation(s)
- Weronica E Ek
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Anna Reznichenko
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Stephan Ripke
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Beate Niesler
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Marco Zucchelli
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Natalia V Rivera
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Peter T Schmidt
- Department of Gastroenterology and Hepatology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas J Talley
- Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Elizabeth G Holliday
- Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Lesley Houghton
- Faculty of Medical and Human Sciences, Institute of Inflammation and Repair, University of Manchester, Manchester, UK Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Maria Gazouli
- Laboratory of Biology, School of Medicine, University of Athens, Athens, Greece
| | - George Karamanolis
- Academic Department of Gastroenterology, School of Medicine, University of Athens, Athens, Greece
| | - Gudrun Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Barbara Burwinkel
- Molecular Epidemiology Group, German Cancer Research Centre (DKFZ) Heidelberg, Heidelberg, Germany Division of Molecular Biology of Breast Cancer, Department of Gynaecology and Obstetrics, University Women's Clinic, University Heidelberg, Heidelberg, Germany
| | - Harald Surowy
- Molecular Epidemiology Group, German Cancer Research Centre (DKFZ) Heidelberg, Heidelberg, Germany Division of Molecular Biology of Breast Cancer, Department of Gynaecology and Obstetrics, University Women's Clinic, University Heidelberg, Heidelberg, Germany
| | - Joseph Rafter
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Ghazaleh Assadi
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Ling Li
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Evangelia Papadaki
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Dario Gambaccini
- Gastroenterology Unit, Department of Gastroenterology, University of Pisa, Pisa, Italy
| | - Santino Marchi
- Gastroenterology Unit, Department of Gastroenterology, University of Pisa, Pisa, Italy
| | - Rocchina Colucci
- Division of Pharmacology and Chemotherapy, Department of Clinical and Experimental Medicine University of Pisa, Pisa, Italy
| | - Corrado Blandizzi
- Division of Pharmacology and Chemotherapy, Department of Clinical and Experimental Medicine University of Pisa, Pisa, Italy
| | - Raffaella Barbaro
- Department of Medical and Surgical Sciences, University of Bologna, St. Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Susanna Walter
- Division of Gastroenterology, Institution of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Bodil Ohlsson
- Department of Clinical Sciences, Skånes University Hospital, Malmoe, Sweden
| | - Hans Tornblom
- Department of Internal Medicine & Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Francesca Bresso
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden Department of Gastroenterology and Hepatology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anna Andreasson
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Aldona Dlugosz
- Department of Gastroenterology and Hepatology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Simren
- Department of Internal Medicine & Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Agreus
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Greger Lindberg
- Department of Gastroenterology and Hepatology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Guy Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders, Leuven University, Leuven, Belgium
| | - Massimo Bellini
- Gastroenterology Unit, Department of Gastroenterology, University of Pisa, Pisa, Italy
| | - Vincenzo Stanghellini
- Department of Medical and Surgical Sciences, University of Bologna, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Mira M Wouters
- Translational Research Center for Gastrointestinal Disorders, Leuven University, Leuven, Belgium
| | - Mauro D'Amato
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Expression of multiple formins in adult tissues and during developmental stages of mouse brain. Gene Expr Patterns 2015; 19:52-9. [DOI: 10.1016/j.gep.2015.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/16/2015] [Accepted: 07/28/2015] [Indexed: 01/05/2023]
|
19
|
Keenan S, Lewis PA, Wetherill SJ, Dunning CJR, Evans GJO. The N2-Src neuronal splice variant of C-Src has altered SH3 domain ligand specificity and a higher constitutive activity than N1-Src. FEBS Lett 2015; 589:1995-2000. [PMID: 26026271 PMCID: PMC4509517 DOI: 10.1016/j.febslet.2015.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/18/2015] [Accepted: 05/19/2015] [Indexed: 10/25/2022]
Abstract
N2-Src is a poorly understood neuronal splice variant of the ubiquitous C-Src tyrosine kinase, containing a 17 amino acid insert in its Src homology 3 (SH3) domain. To characterise the properties of N2-Src we directly compared its SH3 domain specificity and kinase activity with C- and N1-Src in vitro. N2- and N1-Src had a similar low affinity for the phosphorylation of substrates containing canonical C-Src SH3 ligands and synaptophysin, an established neuronal substrate for C-Src. N2-Src also had a higher basal kinase activity than N1- and C-Src in vitro and in cells, which could be explained by weakened intramolecular interactions. Therefore, N2-Src is a highly active kinase that is likely to phosphorylate alternative substrates to C-Src in the brain.
Collapse
Affiliation(s)
- Sarah Keenan
- Department of Biology and Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
| | - Philip A Lewis
- Department of Biology and Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
| | - Sarah J Wetherill
- Department of Biology and Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
| | - Christopher J R Dunning
- Department of Biology and Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
| | - Gareth J O Evans
- Department of Biology and Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
20
|
Cognition and hippocampal plasticity in the mouse is altered by monosomy of a genomic region implicated in Down syndrome. Genetics 2014; 197:899-912. [PMID: 24752061 PMCID: PMC4096369 DOI: 10.1534/genetics.114.165241] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Down syndrome (DS) is due to increased copy number of human chromosome 21. The contribution of different genetic regions has been tested using mouse models. As shown previously, the Abcg1-U2af1 genetic region contributes to cognitive defects in working and short-term recognition memory in Down syndrome mouse models. Here we analyzed the impact of monosomy of the same genetic interval, using a new mouse model, named Ms2Yah. We used several cognitive paradigms and did not detect defects in the object recognition or the Morris water maze tests. However, surprisingly, Ms2Yah mice displayed increased associative memory in a pure contextual fear-conditioning test and decreased social novelty interaction along with a larger long-term potentiation recorded in the CA1 area following stimulation of Schaffer collaterals. Whole-genome expression studies carried out on hippocampus showed that the transcription of only a small number of genes is affected, mainly from the genetic interval (Cbs, Rsph1, Wdr4), with a few additional ones, including the postsynaptic Gabrr2, Gabbr1, Grid2p, Park2, and Dlg1 and the components of the Ubiquitin-mediated proteolysis (Anapc1, Rnf7, Huwe1, Park2). The Abcg1–U2af1 region is undeniably encompassing dosage-sensitive genes or elements whose change in copy number directly affects learning and memory, synaptic function, and autistic related behavior.
Collapse
|
21
|
Cvrčková F. Formins and membranes: anchoring cortical actin to the cell wall and beyond. FRONTIERS IN PLANT SCIENCE 2013; 4:436. [PMID: 24204371 PMCID: PMC3817587 DOI: 10.3389/fpls.2013.00436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/13/2013] [Indexed: 05/03/2023]
Abstract
Formins are evolutionarily conserved eukaryotic proteins participating in actin and microtubule organization. Land plants have three formin clades, with only two - Class I and II - present in angiosperms. Class I formins are often transmembrane proteins, residing at the plasmalemma and anchoring the cortical cytoskeleton across the membrane to the cell wall, while Class II formins possess a PTEN-related membrane-binding domain. Lower plant Class III and non-plant formins usually contain domains predicted to bind RHO GTPases that are membrane-associated. Thus, some kind of membrane anchorage appears to be a common formin feature. Direct interactions between various non-plant formins and integral or peripheral membrane proteins have indeed been reported, with varying mechanisms and biological implications. Besides of summarizing new data on Class I and Class II formin-membrane relationships, this review surveys such "non-classical" formin-membrane interactions and examines which, if any, of them may be evolutionarily conserved and operating also in plants. FYVE, SH3 and BAR domain-containing proteins emerge as possible candidates for such conserved membrane-associated formin partners.
Collapse
Affiliation(s)
- Fatima Cvrčková
- *Correspondence: Fatima Cvrčková, Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43, Prague, Czech Republic e-mail:
| |
Collapse
|
22
|
Krainer EC, Ouderkirk JL, Miller EW, Miller MR, Mersich AT, Blystone SD. The multiplicity of human formins: Expression patterns in cells and tissues. Cytoskeleton (Hoboken) 2013; 70:424-38. [PMID: 23629878 DOI: 10.1002/cm.21113] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/17/2013] [Indexed: 11/06/2022]
Abstract
Formins are actin-binding proteins conserved across species from plants to humans. The formin family is defined by their common formin homology (FH2) domains. The 15 distinct human formins are involved in a broad range of cellular functions, including cell adhesion, cytokinesis, cell polarity, and cell morphogenesis. Their commonality is actin polymerization activity inherent to FH2 domains. Although still requiring much study, biochemical activity of formins has been carefully described. In contrast, much less is known of their activities in complex living systems. With the diversity of the formin family and the actin structures that they affect, an extensive future of study beckons. In this study, we report the expression level of all 15 formins in 22 different human cell and tissue types using quantitative real-time PCR. Identification of major themes in formin expression and documentation of expression profiles should facilitate the cellular study of formins.
Collapse
Affiliation(s)
- Elisabeth C Krainer
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, 13210
| | | | | | | | | | | |
Collapse
|
23
|
The δ2 glutamate receptor gates long-term depression by coordinating interactions between two AMPA receptor phosphorylation sites. Proc Natl Acad Sci U S A 2013; 110:E948-57. [PMID: 23431139 DOI: 10.1073/pnas.1218380110] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Long-term depression (LTD) commonly affects learning and memory in various brain regions. Although cerebellar LTD absolutely requires the δ2 glutamate receptor (GluD2) that is expressed in Purkinje cells, LTD in other brain regions does not; why and how cerebellar LTD is regulated by GluD2 remains unelucidated. Here, we show that the activity-dependent phosphorylation of serine 880 (S880) in GluA2 AMPA receptor subunit, which is an essential step for AMPA receptor endocytosis during LTD induction, was impaired in GluD2-null cerebellum. In contrast, the basal phosphorylation levels of tyrosine 876 (Y876) in GluA2 were increased in GluD2-null cerebellum. An in vitro phosphorylation assay revealed that Y876 phosphorylation inhibited subsequent S880 phosphorylation. Conversely, Y876 dephosphorylation was sufficient to restore S880 phosphorylation and LTD induction in GluD2-null Purkinje cells. Furthermore, megakaryocyte protein tyrosine phosphatase (PTPMEG), which binds to the C terminus of GluD2, directly dephosphorylated Y876. These data indicate that GluD2 gates LTD by coordinating interactions between the two phosphorylation sites of the GluA2.
Collapse
|
24
|
Kawakita I, Uchigashima M, Konno K, Miyazaki T, Yamasaki M, Watanabe M. Type 2 K+ -Cl- cotransporter is preferentially recruited to climbing fiber synapses during development and the stellate cell-targeting dendritic zone at adulthood in cerebellar Purkinje cells. Eur J Neurosci 2013; 37:532-43. [PMID: 23216656 DOI: 10.1111/ejn.12076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/01/2012] [Accepted: 11/02/2012] [Indexed: 11/26/2022]
Abstract
Postnatal expression of the type 2 K(+) -Cl(-) cotransporter (KCC2) in neurons lowers the Cl(-) equilibrium potential to values that are more negative than the resting potential, thereby converting the action of Cl(-) -permeable GABA(A) and glycine receptors from excitatory to inhibitory. In the present study, we investigated the spatiotemporal expression of KCC2 in mouse cerebella, particularly focusing on Purkinje cells (PCs). First, we confirmed the fundamental expression profiles of KCC2 in the cerebellum, i.e. neuron-specific expression, somatodendritic distribution, and postnatal upregulation. We also found preferential recruitment to climbing fiber (CF) synapses during the second and third postnatal weeks, when perisomatic innervation in PCs switches from CFs to basket cell axons (BAs) and also when single winner CFs translocate from somata to dendrites. In parallel with this synaptic recruitment, the intracellular distribution shifted from a diffuse cytoplasmic to a predominantly cell surface pattern. In adult PCs, CF synapse-associated accumulation was obscured. Instead, significantly high expression was noted on the surface of PC dendrites in the superficial two-thirds of the molecular layer, in which stellate cells reside and project axons to innervate PC dendrites. Thus, the somatodendritic distribution in PCs is regulated in relation to particular inputs or input zones. During development, timed recruitment of KCC2 to CF synapses will augment inhibitory GABAergic actions by incoming BAs, promoting the CF-to-BA switchover in perisomatic PC innervation. In adulthood, enriched KCC2 expression at the stellate cell-targeting territory of PC dendrites might help in maintaining intracellular Cl(-) homeostasis and the polarity of GABA(A) receptor-mediated responses upon sustained activity of this interneuron.
Collapse
Affiliation(s)
- Issei Kawakita
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Glutamate-receptor-like molecule GluRδ2 involved in synapse formation at parallel fiber-Purkinje neuron synapses. THE CEREBELLUM 2012; 11:71-7. [PMID: 20387025 DOI: 10.1007/s12311-010-0170-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glutamate-receptor-like molecule δ2 (GluRδ2, GluD2) has been classified as an ionotropic glutamate receptor subunit. It is selectively expressed on the postsynaptic membrane at parallel fiber-Purkinje neuron synapses in the cerebellum. Mutant mice deficient in GluRδ2 show impaired synaptic plasticity, the decrease in the number of parallel fiber-Purkinje neuron synapses, multiple innervation of climbing fibers on a Purkinje neuron, and defects in motor control and learning. Thus, GluRδ2 plays crucial roles in the cerebellar function. Recent studies on GluRδ2 have shown that it has synaptogenic activity. GluRδ2 expressed in a non-neuronal cell induces presynaptic differentiation of granule neurons in a co-culture preparation. This synaptogenic activity depends on an extracellular N-terminal leucine/isoleucine/valine binding protein-like domain of GluRδ2. GluRδ2 plays critical roles in formation, maturation, and/or maintenance of granule neuron-Purkinje neuron synapses.
Collapse
|
26
|
Murk K, Wittenmayer N, Michaelsen-Preusse K, Dresbach T, Schoenenberger CA, Korte M, Jockusch BM, Rothkegel M. Neuronal profilin isoforms are addressed by different signalling pathways. PLoS One 2012; 7:e34167. [PMID: 22470532 PMCID: PMC3314592 DOI: 10.1371/journal.pone.0034167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/23/2012] [Indexed: 01/29/2023] Open
Abstract
Profilins are prominent regulators of actin dynamics. While most mammalian cells express only one profilin, two isoforms, PFN1 and PFN2a are present in the CNS. To challenge the hypothesis that the expression of two profilin isoforms is linked to the complex shape of neurons and to the activity-dependent structural plasticity, we analysed how PFN1 and PFN2a respond to changes of neuronal activity. Simultaneous labelling of rodent embryonic neurons with isoform-specific monoclonal antibodies revealed both isoforms in the same synapse. Immunoelectron microscopy on brain sections demonstrated both profilins in synapses of the mature rodent cortex, hippocampus and cerebellum. Both isoforms were significantly more abundant in postsynaptic than in presynaptic structures. Immunofluorescence showed PFN2a associated with gephyrin clusters of the postsynaptic active zone in inhibitory synapses of embryonic neurons. When cultures were stimulated in order to change their activity level, active synapses that were identified by the uptake of synaptotagmin antibodies, displayed significantly higher amounts of both isoforms than non-stimulated controls. Specific inhibition of NMDA receptors by the antagonist APV in cultured rat hippocampal neurons resulted in a decrease of PFN2a but left PFN1 unaffected. Stimulation by the brain derived neurotrophic factor (BDNF), on the other hand, led to a significant increase in both synaptic PFN1 and PFN2a. Analogous results were obtained for neuronal nuclei: both isoforms were localized in the same nucleus, and their levels rose significantly in response to KCl stimulation, whereas BDNF caused here a higher increase in PFN1 than in PFN2a. Our results strongly support the notion of an isoform specific role for profilins as regulators of actin dynamics in different signalling pathways, in excitatory as well as in inhibitory synapses. Furthermore, they suggest a functional role for both profilins in neuronal nuclei.
Collapse
Affiliation(s)
- Kai Murk
- Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
| | - Nina Wittenmayer
- Department of Anatomy and Cell Biology, Center of Anatomy, Georg August University Göttingen, Göttingen, Germany
| | | | - Thomas Dresbach
- Department of Anatomy and Cell Biology, Center of Anatomy, Georg August University Göttingen, Göttingen, Germany
| | | | - Martin Korte
- Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
| | | | - Martin Rothkegel
- Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
27
|
Recognition of tandem PxxP motifs as a unique Src homology 3-binding mode triggers pathogen-driven actin assembly. Proc Natl Acad Sci U S A 2010; 107:21743-8. [PMID: 21098279 DOI: 10.1073/pnas.1010243107] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Src homology 3 (SH3) domains are globular protein interaction modules that regulate cell behavior. The classic SH3 ligand-binding site accommodates a hydrophobic PxxP motif and a positively charged specificity-determining residue. We have determined the NMR structure of insulin receptor tyrosine kinase substrate (IRTKS) SH3 domain in complex with a repeat from Escherichia coli-secreted protein F-like protein encoded on prophage U (EspF(U)), a translocated effector of enterohemorrhagic E. coli that commandeers the mammalian actin assembly machinery. EspF(U)-IRTKS interaction is among the highest affinity natural SH3 ligands. Our complex structure reveals a unique type of SH3 interaction based on recognition of tandem PxxP motifs in the ligand. Strikingly, the specificity pocket of IRTKS SH3 has evolved to accommodate a polyproline type II helical peptide analogously to docking of the canonical PxxP by the conserved IRTKS SH3 proline-binding pockets. This cooperative binding explains the high-affinity SH3 interaction and is required for EspF(U)-IRTKS interaction in mammalian cells as well as the formation of localized actin "pedestals" beneath bound bacteria. Importantly, tandem PxxP motifs are also found in mammalian ligands and have been shown to contribute to IRTKS SH3 recognition similarly.
Collapse
|
28
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2708] [Impact Index Per Article: 180.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
For over a decade, the actin-related protein 2/3 (ARP2/3) complex, a handful of nucleation-promoting factors and formins were the only molecules known to directly nucleate actin filament formation de novo. However, the past several years have seen a surge in the discovery of mammalian proteins with roles in actin nucleation and dynamics. Newly recognized nucleation-promoting factors, such as WASP and SCAR homologue (WASH), WASP homologue associated with actin, membranes and microtubules (WHAMM), and junction-mediating regulatory protein (JMY), stimulate ARP2/3 activity at distinct cellular locations. Formin nucleators with additional biochemical and cellular activities have also been uncovered. Finally, the Spire, cordon-bleu and leiomodin nucleators have revealed new ways of overcoming the kinetic barriers to actin polymerization.
Collapse
|
30
|
Liu R, Linardopoulou EV, Osborn GE, Parkhurst SM. Formins in development: orchestrating body plan origami. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1803:207-25. [PMID: 18996154 PMCID: PMC2838992 DOI: 10.1016/j.bbamcr.2008.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 08/21/2008] [Accepted: 09/26/2008] [Indexed: 01/21/2023]
Abstract
Formins, proteins defined by the presence of an FH2 domain and their ability to nucleate linear F-actin de novo, play a key role in the regulation of the cytoskeleton. Initially thought to primarily regulate actin, recent studies have highlighted a role for formins in the regulation of microtubule dynamics, and most recently have uncovered the ability of some formins to coordinate the organization of both the microtubule and actin cytoskeletons. While biochemical analyses of this family of proteins have yielded many insights into how formins regulate diverse cytoskeletal reorganizations, we are only beginning to appreciate how and when these functional properties are relevant to biological processes in a developmental or organismal context. Developmental genetic studies in fungi, Dictyostelium, vertebrates, plants and other model organisms have revealed conserved roles for formins in cell polarity, actin cable assembly and cytokinesis. However, roles have also been discovered for formins that are specific to particular organisms. Thus, formins perform both global and specific functions, with some of these roles concurring with previous biochemical data and others exposing new properties of formins. While not all family members have been examined across all organisms, the analyses to date highlight the significance of the flexibility within the formin family to regulate a broad spectrum of diverse cytoskeletal processes during development.
Collapse
Affiliation(s)
- Raymond Liu
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Elena V. Linardopoulou
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Gregory E. Osborn
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Susan M. Parkhurst
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| |
Collapse
|
31
|
Schönichen A, Geyer M. Fifteen formins for an actin filament: a molecular view on the regulation of human formins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:152-63. [PMID: 20102729 DOI: 10.1016/j.bbamcr.2010.01.014] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/24/2009] [Accepted: 01/11/2010] [Indexed: 10/19/2022]
Abstract
The regulation of the actin cytoskeleton is a key process for the stability and motility of eukaryotic cells. Besides the Arp2/3 complex and its nucleation promoting factors, WH2 domain-containing proteins and a diverse family of formin proteins have recently been recognized as actin nucleators and potent polymerization factors of actin filaments. Formins are defined by the presence of a catalytic formin homology 2 (FH2) domain, yet, the modular domain architecture appears significantly different for the eight formin families identified in humans. A diverse picture of protein localization, interaction partners and cell specific regulation emerged, suggesting various functions of formins in the building and maintenance of actin filaments. This review focuses on the domain architecture of human formins, the regulation mechanisms of their activation and the diversity in formin cellular functions.
Collapse
Affiliation(s)
- André Schönichen
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Physikalische Biochemie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | | |
Collapse
|
32
|
Chesarone MA, DuPage AG, Goode BL. Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rev Mol Cell Biol 2009; 11:62-74. [PMID: 19997130 DOI: 10.1038/nrm2816] [Citation(s) in RCA: 408] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Formins are highly conserved proteins that have essential roles in remodelling the actin and microtubule cytoskeletons to influence eukaryotic cell shape and behaviour. Recent work has identified numerous cellular factors that locally recruit, activate or inactivate formins to bridle and unleash their potent effects on actin nucleation and elongation. The effects of formins on microtubules have also begun to be described, which places formins in a prime position to coordinate actin and microtubule dynamics. The emerging complexity in the mechanisms governing formins mirrors the wide range of essential functions that they perform in cell motility, cell division and cell and tissue morphogenesis.
Collapse
Affiliation(s)
- Melissa A Chesarone
- Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
33
|
Paul AS, Pollard TD. Review of the mechanism of processive actin filament elongation by formins. ACTA ACUST UNITED AC 2009; 66:606-17. [PMID: 19459187 DOI: 10.1002/cm.20379] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We review recent structural and biophysical studies of the mechanism of action of formins, proteins that direct the assembly of unbranched actin filaments for cytokinetic contractile rings and other cellular structures. Formins use free actin monomers to nucleate filaments and then remain bound to the barbed ends of these filaments as they elongate. In addition to variable regulatory domains, formins typically have formin homology 1 (FH1) and formin homology 2 (FH2) domains. FH1 domains have multiple binding sites for profilin, an abundant actin monomer binding protein. FH2 homodimers encircle the barbed end of a filament. Most FH2 domains inhibit actin filament elongation, but FH1 domains concentrate multiple profilin-actin complexes near the end of the filament. FH1 domains transfer actin very rapidly onto the barbed end of the filament, allowing elongation at rates that exceed the rate of elongation by the addition of free actin monomers diffusing in solution. Binding of actin to the end of the filament provides the energy for the highly processive movement of the FH2 as a filament adds thousands of actin subunits. These biophysical insights provide the context to understand how formins contribute to actin assembly in cells. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Aditya S Paul
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
34
|
Torashima T, Iizuka A, Horiuchi H, Mitsumura K, Yamasaki M, Koyama C, Takayama K, Iino M, Watanabe M, Hirai H. Rescue of abnormal phenotypes in δ2 glutamate receptor-deficient mice by the extracellular N-terminal and intracellular C-terminal domains of the δ2 glutamate receptor. Eur J Neurosci 2009; 30:355-65. [DOI: 10.1111/j.1460-9568.2009.06841.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Miura E, Matsuda K, Morgan JI, Yuzaki M, Watanabe M. Cbln1 accumulates and colocalizes with Cbln3 and GluRdelta2 at parallel fiber-Purkinje cell synapses in the mouse cerebellum. Eur J Neurosci 2009; 29:693-706. [PMID: 19250438 DOI: 10.1111/j.1460-9568.2009.06632.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cbln1 (a.k.a. precerebellin) is secreted from cerebellar granule cells as homohexamer or in heteromeric complexes with Cbln3. Cbln1 plays crucial roles in regulating morphological integrity of parallel fiber (PF)-Purkinje cell (PC) synapses and synaptic plasticity. Cbln1-knockout mice display severe cerebellar phenotypes that are essentially indistinguishable from those in glutamate receptor GluRdelta2-null mice, and include severe reduction in the number of PF-PC synapses and loss of long-term depression of synaptic transmission. To understand better the relationship between Cbln1, Cbln3 and GluRdelta2, we performed light and electron microscopic immunohistochemical analyses using highly specific antibodies and antigen-exposing methods, i.e. pepsin pretreatment for light microscopy and postembedding immunogold for electron microscopy. In conventional immunohistochemistry, Cbln1 was preferentially associated with non-terminal portions of PF axons in the molecular layer but rarely overlapped with Cbln3. In contrast, antigen-exposing methods not only greatly intensified Cbln1 immunoreactivity in the molecular layer, but also revealed its high accumulation in the synaptic cleft of PF-PC synapses. No such synaptic accumulation was evident at other PC synapses. Furthermore, Cbln1 now came to overlap almost completely with Cbln3 and GluRdelta2 at PF-PC synapses. Therefore, the convergence of all three molecules provides the anatomical basis for a common signaling pathway regulating circuit development and synaptic plasticity in the cerebellum.
Collapse
Affiliation(s)
- Eriko Miura
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | |
Collapse
|
36
|
Aspenström P. Formin-binding proteins: modulators of formin-dependent actin polymerization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:174-82. [PMID: 19589360 DOI: 10.1016/j.bbamcr.2009.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 06/22/2009] [Accepted: 06/26/2009] [Indexed: 12/27/2022]
Abstract
Formins represent a major branch of actin nucleators along with the Arp2/3 complex, Spire and Cordon-bleu. Formin-mediated actin nucleation requires the formin homology 2 domain and, although the nucleation per se does not require additional factors, formin-binding proteins have been shown to be essential for the regulation of formin-dependent actin assembly in vivo. This regulation could be accomplished by formin-binding proteins being directly involved in formin-driven actin nucleation, by formin-binding proteins influencing the activated state of the formins, by linking formin-driven actin polymerization to Arp2/3 driven actin polymerization, or by influencing the subcellular localization of the formins. This review article will focus on mammalian formin-binding proteins and their roles during vital cellular processes, such as cell migration, cell division and intracellular trafficking.
Collapse
Affiliation(s)
- Pontus Aspenström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Box 280, Nobels väg 16, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
37
|
Characterization of trans-neuronal trafficking of Cbln1. Mol Cell Neurosci 2009; 41:258-73. [PMID: 19344768 DOI: 10.1016/j.mcn.2009.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/20/2009] [Accepted: 03/23/2009] [Indexed: 01/08/2023] Open
Abstract
Cbln1, a glycoprotein secreted from granule cells and GluRdelta2 in the postsynaptic densities of Purkinje cells are components of an incompletely understood pathway essential for integrity and plasticity of parallel fiber-Purkinje cell synapses. We show that Cbln1 undergoes anterograde transport from granule cells to Purkinje cells and Bergmann glia, and enters the endolysosomal trafficking system, raising the possibility that Cbln1 exerts its activity on or within Purkinje cells and Bergmann glia. Cbln1 is absent in Purkinje cells and Bergmann glia of GluRdelta2-null mice, suggesting a mechanistic convergence on Cbln1 trafficking. Ectopic expression of Cbln1 in Purkinje cells of L7-cbln1 transgenic mice reveals Cbln1 undergoes anterograde and retrograde trans-neuronal trafficking even across synapses that lack GluRDelta2, indicating that it is not universally essential for Cbln1 transport. The L7-cbln1 transgene also ameliorates the locomotor deficits of cbln1-null mice, indicating that the presence and/or release of Cbln1 from the postsynaptic neuron has functional consequences.
Collapse
|
38
|
Janmaat S, Frédéric F, Sjollema K, Luiten P, Mariani J, van der Want J. Formation and maturation of parallel fiber-Purkinje cell synapses in the Staggerer cerebellum ex vivo. J Comp Neurol 2009; 512:467-77. [PMID: 19025990 DOI: 10.1002/cne.21910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In vivo, homozygous staggerer (Rora(sg/sg)) Purkinje cells (PCs) remain in an early stage of development with rudimentary spineless dendrites, associated with a lack of parallel fiber (PF) input and the persistence of multiple climbing fibers (CFs). In this immunocytochemical study we used cerebellar organotypic cultures to monitor the development of Rora(sg/sg) PF-PC synapses in the absence of CF innervation. Ex vivo the vesicular glutamate transporters VGluT1 and VGluT2 reactivity was preferentially localized around the Rora(sg/sg) PC soma and proximal dendrites, which are typically CF domains. The shift from VGluT2 to VGluT1 in PF terminals during development was delayed in Rora(sg/sg) slices. The postsynaptic receptors mGluR1 and GluRdelta2 were differently distributed on Rora(sg/sg) PCs. mGluR1 reactivity was evenly distributed in PC soma and dendrites, whereas GluRdelta2 reactivity, normally restricted at PF synapses, was dense in Rora(sg/sg) PC somata. The presynaptic distribution of VGluT1 and VGluT2 on Rora(sg/sg) PCs matched the postsynaptic distribution of the glutamate receptor GluRdelta2, but not mGluR1.
Collapse
Affiliation(s)
- Sonja Janmaat
- Department of Cell Biology, Molecular Imaging and Electron Microscopy, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
An orphan ionotropic glutamate receptor: The δ2 subunit. Neuroscience 2009; 158:67-77. [DOI: 10.1016/j.neuroscience.2008.02.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/13/2008] [Accepted: 02/22/2008] [Indexed: 11/24/2022]
|
40
|
Santos S, Carvalho A, Caldeira M, Duarte C. Regulation of AMPA receptors and synaptic plasticity. Neuroscience 2009; 158:105-25. [DOI: 10.1016/j.neuroscience.2008.02.037] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/02/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
|
41
|
Uemura T, Mishina M. The amino-terminal domain of glutamate receptor delta2 triggers presynaptic differentiation. Biochem Biophys Res Commun 2008; 377:1315-9. [PMID: 19000899 DOI: 10.1016/j.bbrc.2008.10.170] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 10/21/2008] [Indexed: 11/16/2022]
Abstract
Glutamate receptor (GluR) delta2 selectively expressed in cerebellar Purkinje cells plays key roles in synapse formation, long-term depression and motor learning. We propose that GluRdelta2 regulates synapse formation by making a physical linkage between the active zone and postsynaptic density. To examine the issue, GluRdelta2-transfected 293T cells were cultured with cerebellar neurons. We found numerous punctate signals for presynaptic markers on the surface of 293T cells expressing GluRdelta2. The presynaptic specializations induced by GluRdelta2 were capable of exo- and endocytosis as indicated by FM1-43 dye labeling. Replacement of the extracellular N-terminal domain (NTD) of GluRdelta2 with that of the AMPA receptor GluRalpha1 abolished the inducing activity. The NTD of GluRdelta2 fused to the immunoglobulin constant region successfully induced the accumulation of presynaptic specializations on the surface of beads bearing the fusion protein. These results suggest that GluRdelta2 triggers presynaptic differentiation by direct interaction with presynaptic components through the NTD.
Collapse
Affiliation(s)
- Takeshi Uemura
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
42
|
Chalkia D, Nikolaidis N, Makalowski W, Klein J, Nei M. Origins and evolution of the formin multigene family that is involved in the formation of actin filaments. Mol Biol Evol 2008; 25:2717-33. [PMID: 18840602 DOI: 10.1093/molbev/msn215] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In eukaryotes, the assembly and elongation of unbranched actin filaments is controlled by formins, which are long, multidomain proteins. These proteins are important for dynamic cellular processes such as determination of cell shape, cell division, and cellular interaction. Yet, no comprehensive study has been done about the origins and evolution of this gene family. We therefore performed extensive phylogenetic and motif analyses of the formin genes by examining 597 prokaryotic and 53 eukaryotic genomes. Additionally, we used three-dimensional protein structure data in an effort to uncover distantly related sequences. Our results suggest that the formin homology 2 (FH2) domain, which promotes the formation of actin filaments, is a eukaryotic innovation and apparently originated only once in eukaryotic evolution. Despite the high degree of FH2 domain sequence divergence, the FH2 domains of most eukaryotic formins are predicted to assume the same fold and thus have similar functions. The formin genes have experienced multiple taxon-specific duplications and followed the birth-and-death model of evolution. Additionally, the formin genes experienced taxon-specific genomic rearrangements that led to the acquisition of unrelated protein domains. The evolutionary diversification of formin genes apparently increased the number of formin's interacting molecules and consequently contributed to the development of a complex and precise actin assembly mechanism. The diversity of formin types is probably related to the range of actin-based cellular processes that different cells or organisms require. Our results indicate the importance of gene duplication and domain acquisition in the evolution of the eukaryotic cell and offer insights into how a complex system, such as the cytoskeleton, evolved.
Collapse
Affiliation(s)
- Dimitra Chalkia
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, USA.
| | | | | | | | | |
Collapse
|
43
|
Young KG, Thurston SF, Copeland S, Smallwood C, Copeland JW. INF1 is a novel microtubule-associated formin. Mol Biol Cell 2008; 19:5168-80. [PMID: 18815276 DOI: 10.1091/mbc.e08-05-0469] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Formin proteins, characterized by the presence of conserved formin homology (FH) domains, play important roles in cytoskeletal regulation via their abilities to nucleate actin filament formation and to interact with multiple other proteins involved in cytoskeletal regulation. The C-terminal FH2 domain of formins is key for actin filament interactions and has been implicated in playing a role in interactions with microtubules. Inverted formin 1 (INF1) is unusual among the formin family in having the conserved FH1 and FH2 domains in its N-terminal half, with its C-terminal half being composed of a unique polypeptide sequence. In this study, we have examined a potential role for INF1 in regulating microtubule structure. INF1 associates discretely with microtubules, and this association is dependent on a novel C-terminal microtubule-binding domain. INF1 expressed in fibroblast cells induced actin stress fiber formation, coalignment of microtubules with actin filaments, and the formation of bundled, acetylated microtubules. Endogenous INF1 showed an association with acetylated microtubules, and knockdown of INF1 resulted in decreased levels of acetylated microtubules. Our data suggests a role for INF1 in microtubule modification and potentially in coordinating microtubule and F-actin structure.
Collapse
Affiliation(s)
- Kevin G Young
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada, K1H 8M5
| | | | | | | | | |
Collapse
|
44
|
To gate or not to gate: are the delta subunits in the glutamate receptor family functional ion channels? Mol Neurobiol 2008; 37:126-41. [PMID: 18521762 DOI: 10.1007/s12035-008-8025-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 05/09/2008] [Indexed: 01/01/2023]
Abstract
The two delta receptor subunits remain the most puzzling enigma within the ionotropic glutamate receptor family. Despite the recent elucidation of the ligand-binding domain structure of delta2, many fundamental questions with regard to the subunits' mechanism of function still remain unanswered. Of necessity, the majority of studies on delta receptors focused on the metabotropic function of delta2, since electrophysiological approaches to date are limited to the characterization of spontaneous currents through the delta2-lurcher mutant. Indeed, accumulated evidence primarily from delta2-deficient transgenic mice suggest that major physiological roles of delta2 are mediated via metabotropic signaling by the subunit's C terminus. Why then would the subunits retain a conserved ion channel domain if they do not form functional ion channels? Any progress with regard to ionotropic function of the two delta subunits has been hampered by their largely unknown pharmacology. Even now that a pharmacological profile for delta2 is being established on the basis of the ligand-binding domain structure, wild-type delta2 channels in heterologous expression systems stay closed in the presence of molecules that have been demonstrated to bind to the receptor's ligand-binding domain. In this paper, we review the current knowledge of delta subunits focusing on the disputed ionotropic function.
Collapse
|
45
|
Enhancement of both long-term depression induction and optokinetic response adaptation in mice lacking delphilin. PLoS One 2008; 3:e2297. [PMID: 18509461 PMCID: PMC2386150 DOI: 10.1371/journal.pone.0002297] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 04/21/2008] [Indexed: 02/06/2023] Open
Abstract
In the cerebellum, Delphilin is expressed selectively in Purkinje cells (PCs) and is localized exclusively at parallel fiber (PF) synapses, where it interacts with glutamate receptor (GluR) delta2 that is essential for long-term depression (LTD), motor learning and cerebellar wiring. Delphilin ablation exerted little effect on the synaptic localization of GluRdelta2. There were no detectable abnormalities in cerebellar histology, PC cytology and PC synapse formation in contrast to GluRdelta2 mutant mice. However, LTD induction was facilitated at PF-PC synapses in Delphilin mutant mice. Intracellular Ca(2+) required for the induction of LTD appeared to be reduced in the mutant mice, while Ca(2+) influx through voltage-gated Ca(2+) channels and metabotropic GluR1-mediated slow synaptic response were similar between wild-type and mutant mice. We further showed that the gain-increase adaptation of the optokinetic response (OKR) was enhanced in the mutant mice. These findings are compatible with the idea that LTD induction at PF-PC synapses is a crucial rate-limiting step in OKR gain-increase adaptation, a simple form of motor learning. As exemplified in this study, enhancing synaptic plasticity at a specific synaptic site of a neural network is a useful approach to understanding the roles of multiple plasticity mechanisms at various cerebellar synapses in motor control and learning.
Collapse
|
46
|
Yasumura M, Uemura T, Yamasaki M, Sakimura K, Watanabe M, Mishina M. Role of the internal Shank-binding segment of glutamate receptor delta2 in synaptic localization and cerebellar functions. Neurosci Lett 2008; 433:146-51. [PMID: 18249497 DOI: 10.1016/j.neulet.2008.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 12/25/2007] [Accepted: 01/03/2008] [Indexed: 10/22/2022]
Abstract
Glutamate receptor (GluR) delta2 selectively expressed in cerebellar Purkinje cells (PCs) plays key roles in cerebellar long-term depression (LTD), motor learning and formation of parallel fiber (PF)-PC synapses. We have recently shown that the PDZ [postsynaptic density (PSD)-95/Discs large/zona occludens-1]-binding domain at the C-terminal, the T site, is essential for LTD induction and the regulation of climbing fiber (CF) territory, but is dispensable for synaptic localization of GluRdelta2, PF-PC synapse formation and CF elimination process. To investigate the functional roles of the S segment, the second PDZ-binding domain in the middle of the C-terminal cytoplasmic region, we generated GluRdelta2DeltaS mice carrying mutant GluRdelta2 lacking this segment. The amount of GluRdelta2DeltaS in mutant mice was reduced compared with that of GluRdelta2 in wild-type mice. However, the extent of decrease was much larger in the PSD fractions than in cerebellar homogenates, suggesting the requirement of the S segment for efficient synaptic localization. Furthermore, mismatched PF synapses and free spines emerged and CF-innervation territory on PC dendrites expanded in GluRdelta2DeltaS mice. On the other hand, the performance in the rotarod test was comparable between wild-type and GluRdelta2DeltaS mice. These results suggest that the S segment and T site, the two PDZ-binding domains in the C-terminal cytoplasmic region, are differentially involved in diverse GluRdelta2 functions.
Collapse
Affiliation(s)
- Misato Yasumura
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Watanabe M. Molecular Mechanisms Governing Competitive Synaptic Wiring in Cerebellar Purkinje Cells. TOHOKU J EXP MED 2008; 214:175-90. [DOI: 10.1620/tjem.214.175] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Kursula P, Kursula I, Massimi M, Song YH, Downer J, Stanley WA, Witke W, Wilmanns M. High-resolution Structural Analysis of Mammalian Profilin 2a Complex Formation with Two Physiological Ligands: The Formin Homology 1 Domain of mDia1 and the Proline-rich Domain of VASP. J Mol Biol 2008; 375:270-90. [DOI: 10.1016/j.jmb.2007.10.050] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 10/15/2007] [Accepted: 10/17/2007] [Indexed: 12/28/2022]
|
49
|
Phosphorylation of Delta2 Glutamate Receptors at Serine 945 is Not Required for Cerebellar Long-term Depression. Keio J Med 2008; 57:105-10. [DOI: 10.2302/kjm.57.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
van den Berk LCJ, Landi E, Walma T, Vuister GW, Dente L, Hendriks WJAJ. An allosteric intramolecular PDZ-PDZ interaction modulates PTP-BL PDZ2 binding specificity. Biochemistry 2007; 46:13629-37. [PMID: 17979300 DOI: 10.1021/bi700954e] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PDZ (acronym of the synapse-associated protein PSD-95/SAP90, the septate junction protein Discs-large, and the tight junction protein ZO-1) domains are abundant small globular protein interaction domains that mainly recognize the carboxyl termini of their target proteins. Detailed knowledge on PDZ domain binding specificity is a prerequisite for understanding the interaction networks they establish. We determined the binding preference of the five PDZ domains in the protein tyrosine phosphatase PTP-BL by screening a random C-terminal peptide lambda phage display library. Interestingly, the potential of PDZ2 to interact with class III-type ligands was found to be modulated by the presence of PDZ1. Structural studies revealed a direct and specific interaction of PDZ1 with a surface on PDZ2 that is opposite the peptide binding groove. Long-range allosteric effects that cause structural changes in the PDZ2 peptide binding groove thus explain the altered PDZ2 binding preference. Our results experimentally corroborate that the molecular embedding of PDZ domains is an important determinant of their ligand binding specificity.
Collapse
|