1
|
Prashar V, Arora T, Singh R, Sharma A, Parkash J. Hypothalamic Kisspeptin Neurons: Integral Elements of the GnRH System. Reprod Sci 2023; 30:802-822. [PMID: 35799018 DOI: 10.1007/s43032-022-01027-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/23/2022] [Indexed: 12/19/2022]
Abstract
Highly sophisticated and synchronized interactions of various cells and hormonal signals are required to make organisms competent for reproduction. GnRH neurons act as a common pathway for multiple cues for the onset of puberty and attaining reproductive function. GnRH is not directly receptive to most of the signals required for the GnRH secretion during the various phases of the ovarian cycle. Kisspeptin neurons of the hypothalamus convey these signals required for the synchronized release of the GnRH. The steroid-sensitive anteroventral periventricular nucleus (AVPV) kisspeptin and arcuate nucleus (ARC) KNDy neurons convey steroid feedback during the reproductive cycle necessary for GnRH surge and pulse, respectively. AVPV region kisspeptin neurons also communicate with nNOS synthesizing neurons and suprachiasmatic nucleus (SCN) neurons to coordinate the process of the ovarian cycle. Neurokinin B (NKB) and dynorphin play roles in the GnRH pulse stimulation and inhibition, respectively. The loss of NKB and kisspeptin function results in the development of neuroendocrine disorders such as hypogonadotropic hypogonadism (HH) and infertility. Ca2+ signaling is essential for GnRH pulse generation, which is propagated through gap junctions between astrocytes-KNDy and KNDy-KNDy neurons. Impaired functioning of KNDy neurons could develop the characteristics associated with polycystic ovarian syndrome (PCOS) in rodents. Kisspeptin-increased synthesis led to excessive secretion of the LH associated with PCOS. This review provides the latest insights and understanding into the role of the KNDy and AVPV/POA kisspeptin neurons in GnRH secretion and PCOS.
Collapse
Affiliation(s)
- Vikash Prashar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Tania Arora
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Randeep Singh
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Arti Sharma
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Jyoti Parkash
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
2
|
Rivas M, Serantes D, Pascovich C, Peña F, Ferreira A, Torterolo P, Benedetto L. Electrophysiological characterization of medial preoptic neurons in lactating rats and its modulation by hypocretin-1. Neurosci Res 2022; 184:19-29. [PMID: 36030967 DOI: 10.1016/j.neures.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022]
Abstract
The medial preoptic area (mPOA) undergoes through neuroanatomical changes across the postpartum period, during which its neurons play a critical role in the regulation of maternal behavior. In addition, this area is also crucial for sleep-wake regulation. We have previously shown that hypocretins (HCRT) within the mPOA facilitate active maternal behaviors in postpartum rats, while the blockade of endogenous HCRT in this area promotes nursing and sleep. To explore the mechanisms behind these HCRT actions, we aimed to evaluate the effects of juxta-cellular HCRT-1 administration on mPOA neurons in urethane-anesthetized postpartum and virgin female rats. We recorded mPOA single units and the electroencephalogram (EEG) and applied HCRT-1 juxta-cellular by pressure pulses. Our main results show that the electrophysiological characteristics of the mPOA neurons and their relationship with the EEG of postpartum rats did not differ from virgin rats. Additionally, neurons that respond to HCRT-1 had a slower firing rate than those that did not. In addition, administration of HCRT increased the activity in one group of neurons while decreasing it in another, both in postpartum and virgin rats. The mechanisms by which HCRT modulate functions controlled by the mPOA involve different cell populations.
Collapse
Affiliation(s)
- Mayda Rivas
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Diego Serantes
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Claudia Pascovich
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Consciousness and Cognition Laboratory, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Florencia Peña
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Annabel Ferreira
- Sección de Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Luciana Benedetto
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
3
|
Luna-García LA, Meza-Herrera CA, Pérez-Marín CC, Corona R, Luna-Orozco JR, Véliz-Deras FG, Delgado-Gonzalez R, Rodriguez-Venegas R, Rosales-Nieto CA, Bustamante-Andrade JA, Gutierrez-Guzman UN. Goats as Valuable Animal Model to Test the Targeted Glutamate Supplementation upon Antral Follicle Number, Ovulation Rate, and LH-Pulsatility. BIOLOGY 2022; 11:biology11071015. [PMID: 36101396 PMCID: PMC9311901 DOI: 10.3390/biology11071015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022]
Abstract
The potential effect of intravenous administration of glutamate on the ovarian activity and the LH secretion pattern, considering the anestrous yearling goat as an animal model, were assessed. In late April, yearling goats (n = 20) were randomly assigned to either (1) Glutamate supplemented (GLUT; n = 10, Live Weight (LW) = 29.6 ± 1.02 kg, Body Condition (BCS) = 3.4 ± 0.2 units; i.v. supplemented with 7 mg GLUT kg−1 LW) or (2) Non-supplemented (CONT; n = 10; LW = 29.2 ± 1.07 kg, BCS = 3.5 ± 0.2 units; i.v. saline). The oats were estrus-synchronized; blood sampling (6 h × 15 min) was carried out for LH quantification. Response variables included pulsatility (PULSE), time to first pulse (TTFP), amplitude (AMPL), nadir (NAD), and area under the curve (AUC) of LH. Ovaries were ultra-sonographically scanned to assess ovulation rate (OR), number of antral follicles (AF), and total ovarian activity (TOA = OR + AF). LH-PULSE was quantified with the Munro algorithm; significant treatment x time interactions were evaluated across time. The variables LW and BCS did not differ (p > 0.05) between the experimental groups. Nevertheless, OR (1.77 vs. 0.87 ± 0.20 units), TOA (4.11 vs. 1.87 ± 0.47 units) and LH-PULSE (5.0 vs. 2.2 pulses 6 h-1) favored (p < 0.05) to the GLUT group. Our results reveal that targeted glutamate supplementation, the main central nervous system neurotransmitter, arose as an interesting strategy to enhance the hypothalamic−hypophyseal−ovarian response considering the anestrous-yearling goat as an animal model, with thought-provoking while promising translational applications.
Collapse
Affiliation(s)
- Luis A. Luna-García
- Universidad Autónoma Chapingo, Unidad Regional Universitaria de Zonas Áridas, Bermejillo 35230, Durango, Mexico;
- Departamento de Medicina y Cirugía Animal, Campus Rabanales, Universidad de Córdoba, 14014 Córdoba, Spain;
| | - César A. Meza-Herrera
- Universidad Autónoma Chapingo, Unidad Regional Universitaria de Zonas Áridas, Bermejillo 35230, Durango, Mexico;
- Correspondence: or
| | - Carlos C. Pérez-Marín
- Departamento de Medicina y Cirugía Animal, Campus Rabanales, Universidad de Córdoba, 14014 Córdoba, Spain;
| | - Rebeca Corona
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neuroanatomía Funcional y Neuroendocrinología, Instituto de Neurobiología, UNAM, Querétaro 76230, Mexico;
| | - Juan R. Luna-Orozco
- Centro de Bachillerato Tecnológico Agropecuario No. 1, Torreón 27000, Coahuila, Mexico;
| | - Francisco G. Véliz-Deras
- Universidad Autónoma Agraria Antonio Narro, Unidad Laguna, Torreón 27054, Coahuila, Mexico; (F.G.V.-D.); (R.D.-G.); (R.R.-V.)
| | - Ramón Delgado-Gonzalez
- Universidad Autónoma Agraria Antonio Narro, Unidad Laguna, Torreón 27054, Coahuila, Mexico; (F.G.V.-D.); (R.D.-G.); (R.R.-V.)
| | - Rafael Rodriguez-Venegas
- Universidad Autónoma Agraria Antonio Narro, Unidad Laguna, Torreón 27054, Coahuila, Mexico; (F.G.V.-D.); (R.D.-G.); (R.R.-V.)
| | - Cesar A. Rosales-Nieto
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico;
| | - Jorge A. Bustamante-Andrade
- Facultad de Agricultura y Zootecnia, Universidad Juárez del Estado de Durango, Venecia Durango 35111, Mexico; (J.A.B.-A.); (U.N.G.-G.)
| | - Ulises N. Gutierrez-Guzman
- Facultad de Agricultura y Zootecnia, Universidad Juárez del Estado de Durango, Venecia Durango 35111, Mexico; (J.A.B.-A.); (U.N.G.-G.)
| |
Collapse
|
4
|
Constantin S, Moenter SM, Piet R. The electrophysiologic properties of gonadotropin-releasing hormone neurons. J Neuroendocrinol 2022; 34:e13073. [PMID: 34939256 PMCID: PMC9163209 DOI: 10.1111/jne.13073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022]
Abstract
For about two decades, recordings of identified gonadotropin-releasing hormone (GnRH) neurons have provided a wealth of information on their properties. We describe areas of consensus and debate the intrinsic electrophysiologic properties of these cells, their response to fast synaptic and neuromodulatory input, Ca2+ imaging correlates of action potential firing, and signaling pathways regulating these aspects. How steroid feedback and development change these properties, functions of GnRH neuron subcompartments and local networks, as revealed by chemo- and optogenetic approaches, are also considered.
Collapse
Affiliation(s)
- Stephanie Constantin
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892-3703, USA
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Suzanne M Moenter
- Departments of Molecular & Integrative Physiology, Internal Medicine, Obstetrics & Gynecology, and the Reproductive Sciences Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Richard Piet
- Brain Health Research Institute & Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
5
|
Ogawa S, Parhar IS. Heterogeneity in GnRH and kisspeptin neurons and their significance in vertebrate reproductive biology. Front Neuroendocrinol 2022; 64:100963. [PMID: 34798082 DOI: 10.1016/j.yfrne.2021.100963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023]
Abstract
Vertebrate reproduction is essentially controlled by the hypothalamus-pituitary-gonadal (HPG) axis, which is a central dogma of reproductive biology. Two major hypothalamic neuroendocrine cell groups containing gonadotropin-releasing hormone (GnRH) and kisspeptin are crucial for control of the HPG axis in vertebrates. GnRH and kisspeptin neurons exhibit high levels of heterogeneity including their cellular morphology, biochemistry, neurophysiology and functions. However, the molecular foundation underlying heterogeneities in GnRH and kisspeptin neurons remains unknown. More importantly, the biological and physiological significance of their heterogeneity in reproductive biology is poorly understood. In this review, we first describe the recent advances in the neuroendocrine functions of kisspeptin-GnRH pathways. We then view the recent emerging progress in the heterogeneity of GnRH and kisspeptin neurons using morphological and single-cell transcriptomic analyses. Finally, we discuss our views on the significance of functional heterogeneity of reproductive endocrine cells and their potential relevance to reproductive health.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
6
|
Grigsby KB, Kovarik CM, Mao X, Booth FW. Medial preoptic estrogen receptor-beta blunts the estrogen receptor-alpha mediated increases in wheel-running behavior of female rats. Behav Brain Res 2020; 379:112341. [PMID: 31711895 DOI: 10.1016/j.bbr.2019.112341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 11/17/2022]
Abstract
Estrogens are believed to enhance rodent voluntary wheel-running through medial preoptic (mPOA) estrogen receptor α (ERα) signaling, with little role attributed to estrogen receptor β (ERβ). Systemic ERβ activation has been shown to mitigate ERα driven increases in wheel-running. Therefore, the present goal was to determine whether ERβ signaling in the mPOA plays a similar modulatory role over ERα. We utilized outbred wild-type (WT) and rats selectively bred for low voluntary running (LVR) behavior to address whether mPOA ERβ signaling blunts ERα driven wheel-running behavior and immediate-early gene (Fos, Zif268, and Homer1) mRNA induction. Further, we addressed baseline mPOA mRNA expressions and circulating 17β-estradiol levels between female WT and LVR rats. Following ovariectomy, WT rats reduced running behavior ∼40 %, with no effect in LVR rats. Intra-medial preoptic injection of the ERα-agonist propylpyrazoletriol (PPT) increased wheel-running ∼3.5-fold in WT rats, while injections of the ERβ-agonist diarylpropionitrile (DPN) or a combination of the two agonists had no effect. Similarly, ERα-agonism (PPT) increased Fos and Homer1 induction ∼3-fold in WT and LVR isolated mPOA neurons, with no effect of the ERβ-agonist DPN alone or in combination with PPT, suggesting medial-preoptic ERβ activity may blunt ERα signaling. LVR rats exhibited higher mPOA mRNA expressions of Esr1, Esr2 and Cyp19a1, lower normalized uterine wet weights and lower 17β-estradiol plasma levels compared to WT, suggesting their low running may be due to low circulating estrogen levels. Collectively, these findings highlight mPOA ERβ as a potential neuro-molecular modulator of the estrogenic control of wheel-running behavior.
Collapse
Affiliation(s)
- Kolter B Grigsby
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States.
| | - Cathleen M Kovarik
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Xuansong Mao
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
7
|
Spergel DJ. Modulation of Gonadotropin-Releasing Hormone Neuron Activity and Secretion in Mice by Non-peptide Neurotransmitters, Gasotransmitters, and Gliotransmitters. Front Endocrinol (Lausanne) 2019; 10:329. [PMID: 31178828 PMCID: PMC6538683 DOI: 10.3389/fendo.2019.00329] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neuron activity and GnRH secretion are essential for fertility in mammals. Here, I review findings from mouse studies on the direct modulation of GnRH neuron activity and GnRH secretion by non-peptide neurotransmitters (GABA, glutamate, dopamine, serotonin, norepinephrine, epinephrine, histamine, ATP, adenosine, and acetylcholine), gasotransmitters (nitric oxide and carbon monoxide), and gliotransmitters (prostaglandin E2 and possibly GABA, glutamate, and ATP). These neurotransmitters, gasotransmitters, and gliotransmitters have been shown to directly modulate activity and/or GnRH secretion in GnRH neurons in vivo or ex vivo (brain slices), from postnatal through adult mice, or in embryonic or immortalized mouse GnRH neurons. However, except for GABA, nitric oxide, and prostaglandin E2, which appear to be essential for normal GnRH neuron activity, GnRH secretion, and fertility in males and/or females, the biological significance of their direct modulation of GnRH neuron activity and/or GnRH secretion in the central regulation of reproduction remains largely unknown and requires further exploration.
Collapse
|
8
|
Grigsby KB, Kovarik CM, Rottinghaus GE, Booth FW. High and low nightly running behavior associates with nucleus accumbens N-Methyl-d-aspartate receptor (NMDAR) NR1 subunit expression and NMDAR functional differences. Neurosci Lett 2018; 671:50-55. [PMID: 29425730 DOI: 10.1016/j.neulet.2018.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 11/19/2022]
Abstract
The extent to which N-Methyl-d-aspartate (NMDA) receptors facilitate the motivation to voluntarily wheel-run in rodents has yet to be determined. In so, we utilized female Wistar rats selectively bred to voluntarily run high (HVR) and low (LVR) nightly distances in order to examine if endogenous differences in nucleus accumbens (NAc) NMDA receptor expression and function underlies the propensity for high or low motivation to voluntarily wheel-run. 12-14 week old HVR and LVR females were used to examine: 1.) NAc mRNA and protein expression of NMDA subunits NR1, NR2A and NR2B; 2.) NMDA current responses in isolated medium spiny neurons (MSNs) and 3.) NMDA-evoked dopamine release in an ex vivo preparation of NAc punches. Expectedly, there was a large divergence in nightly running distance and time between HVR and LVR rats. We saw a significantly higher mRNA and protein expression of NR1 in HVR compared to LVR rats, while seeing no difference in the expression of NR2A or NR2B. There was a greater current response to a 500 ms application of 300 μM of NMDA in medium-spiny neurons isolated from the NAc HVR compared to LVR animals. On average, NMDA-evoked punches (50 μM of NMDA for 10 min) taken from HVR rats retained ∼54% of the dopamine content compared to their bilateral non-evoked sides, while evoked punches from LVR animals showed no statistical decrease in dopamine content compared to their non-evoked sides. Collectively, these data suggest a potential link between NAc NR1 subunit expression as well as NMDA function and the predisposition for nightly voluntary running behavior in rats. In light of the epidemic rise in physical inactivity, these findings have the potential to explain a neuro-molecular mechanism that regulates the motivation to be physically active.
Collapse
Affiliation(s)
- Kolter B Grigsby
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States.
| | - Cathleen M Kovarik
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - George E Rottinghaus
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
9
|
Constantin S. Progress and Challenges in the Search for the Mechanisms of Pulsatile Gonadotropin-Releasing Hormone Secretion. Front Endocrinol (Lausanne) 2017; 8:180. [PMID: 28790978 PMCID: PMC5523686 DOI: 10.3389/fendo.2017.00180] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/10/2017] [Indexed: 12/05/2022] Open
Abstract
Fertility relies on the proper functioning of the hypothalamic-pituitary-gonadal axis. The hormonal cascade begins with hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH) into the hypophyseal portal system. In turn, the GnRH-activated gonadotrophs in the anterior pituitary release gonadotropins, which then act on the gonads to regulate gametogenesis and sex steroidogenesis. Finally, sex steroids close this axis by feeding back to the hypothalamus. Despite this seeming straightforwardness, the axis is orchestrated by a complex neuronal network in the central nervous system. For reproductive success, GnRH neurons, the final output of this network, must integrate and translate a wide range of cues, both environmental and physiological, to the gonadotrophs via pulsatile GnRH secretion. This secretory profile is critical for gonadotropic function, yet the mechanisms underlying these pulses remain unknown. Literature supports both intrinsically and extrinsically driven GnRH neuronal activity. However, the caveat of the techniques supporting either one of the two hypotheses is the gap between events recorded at a single-cell level and GnRH secretion measured at the population level. This review aims to compile data about GnRH neuronal activity focusing on the physiological output, GnRH secretion.
Collapse
Affiliation(s)
- Stephanie Constantin
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Stephanie Constantin,
| |
Collapse
|
10
|
Mu-opioid receptor inhibition decreases voluntary wheel running in a dopamine-dependent manner in rats bred for high voluntary running. Neuroscience 2016; 339:525-537. [DOI: 10.1016/j.neuroscience.2016.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/15/2016] [Accepted: 10/03/2016] [Indexed: 01/06/2023]
|
11
|
Shpak G, Zylbertal A, Wagner S. Transient and sustained afterdepolarizations in accessory olfactory bulb mitral cells are mediated by distinct mechanisms that are differentially regulated by neuromodulators. Front Cell Neurosci 2015; 8:432. [PMID: 25642164 PMCID: PMC4294165 DOI: 10.3389/fncel.2014.00432] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/01/2014] [Indexed: 11/29/2022] Open
Abstract
Social interactions between mammalian conspecifics rely heavily on molecular communication via the main and accessory olfactory systems. These two chemosensory systems show high similarity in the organization of information flow along their early stages: social chemical cues are detected by the sensory neurons of the main olfactory epithelium and the vomeronasal organ. These neurons then convey sensory information to the main (MOB) and accessory (AOB) olfactory bulbs, respectively, where they synapse upon mitral cells that project to higher brain areas. Yet, the functional difference between these two chemosensory systems remains unclear. We have previously shown that MOB and AOB mitral cells exhibit very distinct intrinsic biophysical properties leading to different types of information processing. Specifically, we found that unlike MOB mitral cells, AOB neurons display persistent firing responses to strong stimuli. These prolonged responses are mediated by long-lasting calcium-activated non-selective cationic current (Ican). In the current study we further examined the firing characteristics of these cells and their modulation by several neuromodulators. We found that AOB mitral cells display transient depolarizing afterpotentials (DAPs) following moderate firing. These DAPs are not found in MOB mitral cells that show instead robust hyperpolarizing afterpotentials. Unlike Ican, the DAPs of AOB mitral cells are activated by low levels of intracellular calcium and are relatively insensitive to flufenamic acid. Moreover, the cholinergic agonist carbachol exerts opposite effects on the persistent firing and DAPs of AOB mitral cells. We conclude that these phenomena are mediated by distinct biophysical mechanisms that may serve to mediate different types of information processing in the AOB at distinct brain states.
Collapse
Affiliation(s)
- Guy Shpak
- Department of Psychiatry, Erasmus University Medical Center (Erasmus MC) Rotterdam, Netherlands ; Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| | - Asaph Zylbertal
- Department of Neurobiology, Institute for Life Sciences, Edmond and Lily Safra Center for Brain Sciences, Hebrew University Jerusalem, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| |
Collapse
|
12
|
Optogenetic activation of GnRH neurons reveals minimal requirements for pulsatile luteinizing hormone secretion. Proc Natl Acad Sci U S A 2014; 111:18387-92. [PMID: 25489105 DOI: 10.1073/pnas.1415226112] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanisms responsible for generating the pulsatile release of gonadotropins from the pituitary gland are unknown. We develop here a methodology in mice for controlling the activity of the gonadotropin-releasing hormone (GnRH) neurons in vivo to establish the minimal parameters of activation required to evoke a pulse of luteinizing hormone (LH) secretion. Injections of Cre-dependent channelrhodopsin (ChR2)-bearing adeno-associated virus into the median eminence of adult GnRH-Cre mice resulted in the selective expression of ChR2 in hypophysiotropic GnRH neurons. Acute brain slice experiments demonstrated that ChR2-expressing GnRH neurons could be driven to fire with high spike fidelity with blue-light stimulation frequencies up to 40 Hz for periods of seconds and up to 10 Hz for minutes. Anesthetized, ovariectomized mice had optical fibers implanted in the vicinity of GnRH neurons within the rostral preoptic area. Optogenetic activation of GnRH neurons for 30-s to 5-min time periods over a range of different frequencies revealed that 10 Hz stimulation for 2 min was the minimum required to generate a pulse-like increment of LH. The same result was found for optical activation of GnRH projections in the median eminence. Increases in LH secretion were compared with endogenous LH pulse parameters measured from ovariectomized mice. Driving GnRH neurons to exhibit simultaneous burst firing was ineffective at altering LH secretion. These observations provide an insight into how GnRH neurons generate pulsatile LH secretion in vivo.
Collapse
|
13
|
Nunemaker CS, Satin LS. Episodic hormone secretion: a comparison of the basis of pulsatile secretion of insulin and GnRH. Endocrine 2014; 47:49-63. [PMID: 24610206 PMCID: PMC4382805 DOI: 10.1007/s12020-014-0212-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/13/2014] [Indexed: 01/01/2023]
Abstract
Rhythms govern many endocrine functions. Examples of such rhythmic systems include the insulin-secreting pancreatic beta-cell, which regulates blood glucose, and the gonadotropin-releasing hormone (GnRH) neuron, which governs reproductive function. Although serving very different functions within the body, these cell types share many important features. Both GnRH neurons and beta-cells, for instance, are hypothesized to generate at least two rhythms endogenously: (1) a burst firing electrical rhythm and (2) a slower rhythm involving metabolic or other intracellular processes. This review discusses the importance of hormone rhythms to both physiology and disease and compares and contrasts the rhythms generated by each system.
Collapse
Affiliation(s)
- Craig S. Nunemaker
- Division of Endocrinology and Metabolism, Department of, Medicine, University of Virginia, P.O. Box 801413, Charlottesville, VA 22901, USA,
| | - Leslie S. Satin
- Pharmacology Department, University of Michigan Medical School, 5128 Brehm Tower, Ann Arbor, MI 48105, USA
- Brehm Diabetes Research Center, University of Michigan, Medical School, 5128 Brehm Tower, Ann Arbor, MI 48105, USA
| |
Collapse
|
14
|
Leshan RL, Pfaff DW. The hypothalamic ventral premammillary nucleus: A key site in leptin's regulation of reproduction. J Chem Neuroanat 2014; 61-62:239-47. [PMID: 25172030 DOI: 10.1016/j.jchemneu.2014.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 11/24/2022]
Abstract
Reproduction is an energy-expensive process that relies on indicators of energy availability to adjust its proper functioning. The adipokine leptin provides one such metabolic signal, with leptin receptor-expressing neurons at sites widespread within the CNS, including regions associated with the neuroendocrine reproductive axis. One substantial population lies within the hypothalamic ventral premammillary nucleus (PMv), a region itself linked to reproductive control, which may provide a strategic site for the integration of energy availability, sensory and gonadal cues. Here we review our current understanding of leptin and PMv regulation of reproduction, including emerging details about intracellular mechanisms of leptin action at this site.
Collapse
Affiliation(s)
- Rebecca L Leshan
- Laboratory of Neurobiology and Behavior, Rockefeller University, Box 275, 1230 York Avenue, New York, NY 10065, United States
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, Rockefeller University, Box 275, 1230 York Avenue, New York, NY 10065, United States.
| |
Collapse
|
15
|
Zhang C, Bosch MA, Rønnekleiv OK, Kelly MJ. Kisspeptin activation of TRPC4 channels in female GnRH neurons requires PIP2 depletion and cSrc kinase activation. Endocrinology 2013; 154:2772-83. [PMID: 23744639 PMCID: PMC3713215 DOI: 10.1210/en.2013-1180] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Kisspeptin signaling via its Gαq-coupled receptor GPR54 plays a crucial role in modulating GnRH neuronal excitability, which controls pituitary gonadotropins secretion and ultimately reproduction. Kisspeptin potently depolarizes GnRH neurons primarily through the activation of canonical transient receptor potential (TRPC) channels, but the intracellular signaling cascade has not been elucidated. Presently, we have established that kisspeptin activation of TRPC channels requires multiple membrane and intracellular signaling molecules. First, phosphatidylinositol-4,5-bisphosphate (PIP(2)) hydrolysis by phospholipase Cβ is required because whole-cell dialysis of Dioctanoylglycerol-PIP(2) (DiC8-PIP(2)) inhibited the kisspeptin activation of TRPC channels, and the phosphatidylinositol 4-kinase inhibitor wortmannin, which attenuates PIP(2) synthesis, prolonged TRPC channel activation. Using single cell RT-PCR, we identified that the mRNA for the PIP(2)-interacting TRPC channel subunit, TRPC4α, is expressed in GnRH neurons. Depletion of intracellular Ca(2+) stores by thapsigargin and inositol 1,4,5-trisphosphate had no effect, indicating that the TRPC channels are not store-operated. Neither removing extracellular Ca(2+) nor buffering intracellular Ca(2+) with EGTA or BAPTA had any effect on the kisspeptin activation of the TRPC channels. However, the Ca(2+) channel blocker Ni(2+) inhibited the kisspeptin-induced inward current. Moreover, inhibition of protein kinase C by bisindolylmaleimide-I or calphostin C had no effect, but activation of protein kinase C by phorbol 12,13-dibutyrate occluded the kisspeptin-activated current. Finally, inhibition of the cytoplasmic tyrosine kinase cSrc by genistein or the pyrazolo-pyrimidine PP2 blocked the activation of TRPC channels by kisspeptin. Therefore, TRPC channels in GnRH neurons are receptor-operated, and kisspeptin activates TRPC channels through PIP(2) depletion and cSrc tyrosine kinase activation, which is a novel signaling pathway for peptidergic excitation of GnRH neurons.
Collapse
Affiliation(s)
- Chunguang Zhang
- Departments of Physiology and Pharmacology, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
16
|
Norberg R, Campbell R, Suter KJ. Ion channels and information processing in GnRH neuron dendrites. Channels (Austin) 2013; 7:135-45. [PMID: 23519241 PMCID: PMC3710340 DOI: 10.4161/chan.24228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent findings indicate that a majority of action potentials originate from dendrites of GnRH neurons. This localization of the dendrite as the principle site of action potential initiation has sparked considerable interest in the nature of ionic channels throughout GnRH neurons. This paper will review the ionic conductances described within GnRH neurons and their implications for physiological output, such as sensitivity to steroids and diurnal state. To date, a majority of information regarding ionic conductances in GnRH neurons pertains to somata and the first 50–100 µm of dendrite length. Thus, unraveling the tapestry created by the nature and distribution of dendritic conductances in GnRH neurons lies at the forefront of understanding the control of reproductive hormone secretion.
Collapse
Affiliation(s)
- Rachael Norberg
- Department of Biology, University of Texas San Antonio, San Antonio, TX, USA
| | | | | |
Collapse
|
17
|
Clarke IJ, Caraty A. Kisspeptin and seasonality of reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:411-30. [PMID: 23550017 DOI: 10.1007/978-1-4614-6199-9_19] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Wild and domesticated species display seasonality in reproductive function, controlled predominantly by photoperiod. Seasonal alterations in breeding status are caused by changes in the secretion of gonadotropin-releasing hormone (GnRH) that are mediated by upstream neuronal afferents that regulate the GnRH cells. In particular, kisspeptin appears to play a major role in seasonality of reproduction, transducing the feedback effect of gonadal steroids as well as having an independent (nonsteroid dependent) circannual rhythm. A substantial body of data on this issue has been obtained from studies in sheep and hamsters and this is reviewed here in detail. Kisspeptin function is upregulated during the breeding season in sheep, stimulating reproductive function, but contradictory data are found in Siberian and Syrian hamsters. The relative quiescence of kisspeptin cells in the nonbreeding season can be counteracted by administration of the peptide, leading to activation of reproductive function. Although there is a major role for melatonin in the transduction of photoperiod to the reproductive system, kisspeptin cells do not appear to express the melatonin receptor, so the means by which seasonality changes the level of kisspeptin activity remains unknown.
Collapse
Affiliation(s)
- Iain J Clarke
- Department of Physiology, Monash University, Australia.
| | | |
Collapse
|
18
|
Rønnekleiv OK, Kelly MJ. Kisspeptin excitation of GnRH neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:113-31. [PMID: 23550004 PMCID: PMC4019505 DOI: 10.1007/978-1-4614-6199-9_6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Kisspeptin binding to its cognate G protein-coupled receptor (GPR54, aka Kiss1R) in gonadotropin-releasing hormone (GnRH) neurons stimulates peptide release and activation of the reproductive axis in mammals. Kisspeptin has pronounced pre- and postsynaptic effects, with the latter dominating the excitability of GnRH neurons. Presynaptically, kisspeptin increases the excitatory drive (both GABA-A and glutamate) to GnRH neurons and postsynaptically, kisspeptin inhibits an A-type and inwardly rectifying K(+) (Kir 6.2 and GIRK) currents and activates nonselective cation (TRPC) currents to cause long-lasting depolarization and increased action potential firing. The signaling cascades and the multiple intracellular targets of kisspeptin actions in native GnRH neurons are continuing to be elucidated. This review summarizes our current state of knowledge about kisspeptin signaling in GnRH neurons.
Collapse
Affiliation(s)
- Oline K Rønnekleiv
- Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.
| | | |
Collapse
|
19
|
Lee K, Liu X, Herbison AE. Burst firing in gonadotrophin-releasing hormone neurones does not require ionotrophic GABA or glutamate receptor activation. J Neuroendocrinol 2012; 24:1476-83. [PMID: 22831560 DOI: 10.1111/j.1365-2826.2012.02360.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/11/2012] [Accepted: 07/19/2012] [Indexed: 11/28/2022]
Abstract
Burst firing is a feature of many neuroendocrine cell types, including the hypothalamic gonadotrophin-releasing hormone (GnRH) neurones that control fertility. The role of intrinsic and extrinsic influences in generating GnRH neurone burst firing is presently unclear. In the present study, we investigated the role of fast amino acid transmission in burst firing by examining the effects of receptor antagonists on bursting displayed by green fluorescent protein GnRH neurones in sagittal brain slices prepared from adult male mice. Blockade of AMPA and NMDA glutamate receptors with a cocktail of CNQX and AP5 was found to have no effects on burst firing in GnRH neurones. The frequency of bursts, dynamics of individual bursts, or percentage of firing clustered in bursts was not altered. Similarly, GABA(A) receptor antagonists bicuculline and picrotoxin had no effects upon burst firing in GnRH neurones. To examine the importance of both glutamate and GABA ionotrophic signalling, a cocktail including picrotoxin, CNQX and AP5 was used but, again, this was found to have no effects on GnRH neurone burst firing. To further question the impact of endogenous amino acid release on burst firing, electrical activation of anteroventral periventricular nuclei GABA/glutamate inputs to GnRH neurones was undertaken and found to have no impact on burst firing. Taken together, these observations indicate that bursting in GnRH neurones is not dependent upon acute ionotrophic GABA and glutamate signalling and suggest that extrinsic inputs to GnRH neurones acting through AMPA, NMDA and GABA(A) receptors are unlikely to be required for burst initiation in these cells.
Collapse
Affiliation(s)
- K Lee
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
20
|
Abstract
Gonadotrophin-releasing hormone (GnRH) neurones fire spontaneous bursts of action potentials, although little is understood about the underlying mechanisms. In the present study, we report evidence for two types of bursting/oscillation driven by different mechanisms. Properties of these different types are clarified using mathematical modelling and a recently developed active-phase/silent-phase correlation technique. The first type of GnRH neurone (1-2%) exhibits slow (∼0.05 Hz) spontaneous oscillations in membrane potential. Action potential bursts are often observed during oscillation depolarisation, although some oscillations were entirely subthreshold. Oscillations persist after blockade of fast sodium channels with tetrodotoxin (TTX) and blocking receptors for ionotropic fast synaptic transmission, indicating that they are intrinsically generated. In the second type of GnRH neurone, bursts were irregular and TTX caused a stable membrane potential. The two types of bursting cells exhibited distinct active-phase/silent-phase correlation patterns, which is suggestive of distinct mechanisms underlying the rhythms. Further studies of type 1 oscillating cells revealed that the oscillation period was not affected by current or voltage steps, although amplitude was sometimes damped. Oestradiol, an important feedback regulator of GnRH neuronal activity, acutely and markedly altered oscillations, specifically depolarising the oscillation nadir and initiating or increasing firing. Blocking calcium-activated potassium channels, which are rapidly reduced by oestradiol, had a similar effect on oscillations. Kisspeptin, a potent activator of GnRH neurones, translated the oscillation to more depolarised potentials, without altering period or amplitude. These data show that there are at least two distinct types of GnRH neurone bursting patterns with different underlying mechanisms.
Collapse
Affiliation(s)
- Zhiguo Chu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Maurizio Tomaiuolo
- Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Suzanne M. Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109
- Corresponding author: Suzanne M. Moenter current address 7725 Medical Sciences II, University of Michigan, Ann Arbor, MI 48109-5622, 734-647-1755, fax 734-936-8813
| |
Collapse
|
21
|
Wang Y, Kuehl-Kovarik MC. Estradiol directly attenuates sodium currents and depolarizing afterpotentials in isolated gonadotropin-releasing hormone neurons. Brain Res 2012; 1436:81-91. [PMID: 22209345 DOI: 10.1016/j.brainres.2011.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/23/2011] [Accepted: 12/07/2011] [Indexed: 10/14/2022]
Abstract
The gonadotropin-releasing hormone (GnRH) neuron is the pivotal control center in a tightly regulated reproductive axis. The release of GnRH controls estradiol production by the ovary, and estradiol acts at the hypothalamus to regulate GnRH release. However, the mechanisms of estradiol feedback are just beginning to be understood. We have previously shown that estradiol administered to the female mouse modulates sodium currents in fluorescently-labeled GnRH neurons. In the current studies, estradiol (1 nM) was applied directly, for 16-24h, to hypothalamic cultures from young or aged female ovariectomized mice. The direct application of estradiol modulated a tetrodotoxin-sensitive sodium current in isolated GnRH neurons from both young and aged animals. Estradiol, and the specific estrogen receptor-β agonist DPN, decreased current amplitude measured in the morning (AM), but had no effect on afternoon currents. These compounds also decreased the rise and decay slope of the current response, increased the width of the current, and increased action potential width in AM recordings. In addition, estradiol decreased the amplitude of the depolarizing afterpotential (DAP); this effect was not time-of-day dependent. The ER-β agonist DPN did not mimic the effect of estradiol on DAPs, and the modulation of DAPs by estradiol was no longer present in cells from postreproductive animals. These results indicate that estradiol can affect the physiology of GnRH neurons via multiple pathways that are differentially regulated during the transition to reproductive senescence, suggesting that estradiol regulation of GnRH neuronal output is modulated during the aging process.
Collapse
Affiliation(s)
- Yong Wang
- Department of Biological Engineering, University of Missouri, Dalton Cardiovascular Research Center, 134 Research Park Drive, Columbia, MO 65211, USA
| | | |
Collapse
|
22
|
Abstract
17β-Oestradiol (E(2)) is essential for cyclical gonadotrophin-releasing hormone (GnRH) neuronal activity and secretion. In particular, E(2) increases the excitability of GnRH neurones during the afternoon of pro-oestrus in the rodent, which is associated with increased synthesis and secretion of GnRH. It is well established that E(2) regulates the activity of GnRH neurones through both presynaptic and postsynaptic mechanisms. E(2) significantly modulates the mRNA expression of numerous ion channels in GnRH neurones and alters the associated endogenous conductances, including potassium (K(ATP) , A-type) currents and low-voltage T-type and high-voltage L-type calcium currents. Notably, K(ATP) channels are critical for maintaining GnRH neurones in a hyperpolarised state for recruiting the T-type calcium channels, which are important for burst firing in GnRH neurones. In addition, there are other critical channels contributing to burst firing pattern, including the small conductance Ca(2+) -activated K(+) channels that may be modulated by E(2) . Despite these advances, the cellular mechanisms underlying the cyclical GnRH neuronal activity and GnRH release are largely unknown. Ultimately, the ensemble of both pre- and postsynaptic targets of the actions of E(2) will dictate the excitability and activity pattern of GnRH neurones.
Collapse
Affiliation(s)
- O K Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| | | | | |
Collapse
|
23
|
Control of GnRH secretion: one step back. Front Neuroendocrinol 2011; 32:367-75. [PMID: 21216259 DOI: 10.1016/j.yfrne.2011.01.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/17/2010] [Accepted: 01/03/2011] [Indexed: 01/09/2023]
Abstract
The reproductive system is controlled by gonadotropin releasing hormone (GnRH) secretion from the brain, which is finely modulated by a number of factors including gonadal sex steroids. GnRH cells do not express estrogen receptor α, but feedback is transmitted by neurons that are at least 'one step back' from the GnRH cells. Modulation by season, stress and nutrition are effected by neuronal pathways that converge on the GnRH cells. Kisspeptin and gonadotropin inhibitory hormone (GnIH) neurons are regulators of GnRH secretion, the former being a major conduit for transmission of sex steroid feedback. GnIH cells project to GnRH cells and may play a role in the seasonal changes in reproductive activity in sheep. GnIH also modulates the action of GnRH at the level of the pituitary gonadotrope. This review focuses on the role that kisspeptin and GnIH neurons play, as modulators that are 'one step back' from GnRH neurons.
Collapse
|
24
|
Akazome Y, Kanda S, Oka Y. Expression of vesicular glutamate transporter-2.1 in medaka terminal nerve gonadotrophin-releasing hormone neurones. J Neuroendocrinol 2011; 23:570-6. [PMID: 21518030 DOI: 10.1111/j.1365-2826.2011.02142.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There are three paralogous genes for gonadotrophin-releasing hormone (GnRH) peptides of vertebrates in general. GnRH1, the protein product of gnrh1 gene, is the hypophysiotrophic neuropeptide, and is a critical regulator of gonadotrophin secretion, whereas GnRH2 and GnRH3 are regarded to have neuromodulatory functions. In some teleost species, the terminal nerve (TN) GnRH3 neuronal system, which expresses GnRH3, has been shown to project extensively throughout the brain and regulate the motivational state for some behavioural repertoires. In recent years, it has been considered that most, if not all, peptidergic and aminergic neurones synthesise and release more than one neurotransmitter, and the cotransmission of conventional small-molecule neurotransmitters, such as GABA, glutamate or acetylcholine together with neuropeptides, is regarded as a common feature of such neurones. For a functional characterisation of the GnRH3 neuronal system, we examined the possible co-expression of conventional neurotransmitters, GABA, acetylcholine and glutamate, in addition to GnRH in the TN-GnRH3 neurone by reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ hybridisation of recently identified marker genes for neurotransmitters using a teleost fish medaka (Oryzias latipes). By RT-PCR and dual-label in situ hybridisation, we demonstrated the co-expression of GnRH3 and vesicular transporter for glutamate (VGluT) 2.1. in a single TN-GnRH3 neurone. We therefore suggest that the TN-GnRH3 neurones use glutamate as a cotransmitter of GnRH.
Collapse
Affiliation(s)
- Y Akazome
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
25
|
A simple integrative electrophysiological model of bursting GnRH neurons. J Comput Neurosci 2011; 32:119-36. [PMID: 21667154 DOI: 10.1007/s10827-011-0343-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 04/29/2011] [Accepted: 05/22/2011] [Indexed: 10/18/2022]
Abstract
In this paper a modular model of the GnRH neuron is presented. For the aim of simplicity, the currents corresponding to fast time scales and action potential generation are described by an impulsive system, while the slower currents and calcium dynamics are described by usual ordinary differential equations (ODEs). The model is able to reproduce the depolarizing afterpotentials, afterhyperpolarization, periodic bursting behavior and the corresponding calcium transients observed in the case of GnRH neurons.
Collapse
|
26
|
Rønnekleiv OK, Bosch MA, Zhang C. Regulation of endogenous conductances in GnRH neurons by estrogens. Brain Res 2010; 1364:25-34. [PMID: 20816765 PMCID: PMC2992606 DOI: 10.1016/j.brainres.2010.08.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/24/2010] [Accepted: 08/27/2010] [Indexed: 11/20/2022]
Abstract
17β-estradiol (E2) regulates the activity of the gonadotropin-releasing hormone (GnRH) neurons through both presynaptic and postsynaptic mechanisms, and this ovarian steroid hormone is essential for cyclical GnRH neuronal activity and secretion. E2 has significant actions to modulate the mRNA expression of numerous ion channels in GnRH neurons and/or to enhance (suppress) endogenous conductances (currents) including potassium (K(ATP), A-type) and calcium low voltage T-type and high voltage L-type currents. Also, it is well documented that E2 can alter the excitability of GnRH neurons via direct action, but the intracellular signaling cascades mediating these actions are not well understood. As an example, K(ATP) channels are critical ion channels needed for maintaining GnRH neurons in a hyperpolarized state for recruiting T-type calcium channels that are important for burst firing in GnRH neurons. E2 modulates the activity of K(ATP) channels via a membrane-initiated signaling pathway in GnRH neurons. Obviously there are other channels, including the small conductance activated K(+) (SK) channels, that maybe modulated by this signaling pathway, but the ensemble of mER-, ERα-, and ERβ-mediated effects both pre- and post-synaptic will ultimately dictate the excitability of GnRH neurons.
Collapse
Affiliation(s)
- Oline K Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
27
|
Moenter SM. Identified GnRH neuron electrophysiology: a decade of study. Brain Res 2010; 1364:10-24. [PMID: 20920482 DOI: 10.1016/j.brainres.2010.09.066] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/15/2010] [Accepted: 09/17/2010] [Indexed: 12/27/2022]
Abstract
Over the past decade, the existence of transgenic mouse models in which reporter genes are expressed under the control of the gonadotropin-releasing hormone (GnRH) promoter has made possible the electrophysiological study of these cells. Here, we review the intrinsic and synaptic properties of these cells that have been revealed by these approaches, with a particular regard to burst generation. Advances in our understanding of neuromodulation of GnRH neurons and synchronization of this network are also discussed.
Collapse
Affiliation(s)
- Suzanne M Moenter
- Department of Molecular and Integrative Physiology, 7725 Med Sci II, 1301 E Catherine St., Ann Arbor, MI 48109-5622, USA.
| |
Collapse
|
28
|
Zhang C, Kelly MJ, Rønnekleiv OK. 17 β-estradiol rapidly increases ATP-sensitive potassium channel activity in gonadotropin-releasing hormone neurons [corrected] via a protein kinase signaling pathway. Endocrinology 2010; 151:4477-84. [PMID: 20660067 PMCID: PMC2940490 DOI: 10.1210/en.2010-0177] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 06/09/2010] [Indexed: 11/19/2022]
Abstract
17Beta-estradiol (E2) both inhibits and excites GnRH neurons via presynaptic as well as postsynaptic mechanisms. Although it has been demonstrated that E2 can alter the excitability of GnRH neurons via direct actions, the intracellular signaling cascades mediating these actions are not well understood. Previously we have shown that the activity of one of the critical ion channels needed for maintaining GnRH neurons in a hyperpolarized state, the ATP-sensitive potassium channel (K(ATP)) channel, is augmented by E2 in ovariectomized females. However, the mRNA expression of the K(ATP) channel subunits Kir6.2 and SUR1 are unchanged with in vivo E2 treatment. Therefore, to elucidate the cellular signaling mechanism(s) modulating the channel activity, we did whole-cell patch-clamp recording of enhanced green fluorescent protein-GnRH neurons from ovariectomized female mice to study the acute effects of E2. E2 dose-dependently (EC(50) = 0.6 nM) enhanced the diazoxide (channel opener)-activated K(ATP) channel currents by 1.2- to 2.0-fold, which was antagonized by ICI 182,780. E2-BSA was equally as effective as E2, whereas 17 alpha-estradiol [corrected] had no effect. The protein kinase A (PKA) activator forskolin mimicked the effects of E2, whereas the PKA inhibitor H89 and the protein kinase C (PKC) inhibitor bisindolylmaleimide I blocked the effects of E2. Similar to E2, STX, a membrane estrogen receptor (ER) agonist that does not bind to ERalpha or ERbeta, also potentiated the diazoxide-induced K(ATP) channel current by 1.5-fold. Therefore, E2 can potentiate K(ATP) channel activity in GnRH neurons through a membrane ER-activated PKC-PKA signaling pathway.
Collapse
Affiliation(s)
- Chunguang Zhang
- Department of Physiology and Pharmacology, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon 97239-3089, USA
| | | | | |
Collapse
|
29
|
Iremonger KJ, Constantin S, Liu X, Herbison AE. Glutamate regulation of GnRH neuron excitability. Brain Res 2010; 1364:35-43. [PMID: 20807514 DOI: 10.1016/j.brainres.2010.08.071] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/18/2010] [Accepted: 08/21/2010] [Indexed: 11/28/2022]
Abstract
The gonadotropin-releasing hormone (GnRH) neuronal network is the master controller of the reproductive axis. It is widely accepted that the amino acid transmitters GABA and glutamate play important roles in controlling GnRH neuron excitability. However, remarkably few studies have examined the functional role of direct glutamate regulation of GnRH neurons. Dual-labeling investigations have shown that GnRH neurons express receptor subunits required for AMPA, NMDA and kainate signaling in a heterogeneous manner. Electrophysiological and calcium imaging studies have confirmed this heterogeneity and shown that while the majority of adult GnRH neurons express AMPA/kainate receptors, only small sub-populations have functional NMDA or metabotropic glutamate receptors. Accumulating evidence suggests that one important role of direct glutamate signaling at GnRH neurons is for their activation at the time of puberty. Whereas in vivo studies have indicated the importance of NMDA signaling within the whole of the GnRH neuronal network, including afferent neurons and glia, investigations at the level of the GnRH neuron suggest that peripubertal changes in AMPA receptor expression may be dominant in the mouse. The sources of glutamatergic inputs to the GnRH neurons are only just beginning to be examined and include the anteroventral periventricular nucleus as well as the possibility that GnRH neurons may use glutamate as a neurotransmitter in recurrent collateral innervation. It is expected that a full understanding of the glutamatergic regulation of GnRH neurons will provide significant insight into the mechanisms underlying their control of reproductive function.
Collapse
Affiliation(s)
- Karl J Iremonger
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | | | | | | |
Collapse
|
30
|
Christian CA, Moenter SM. The neurobiology of preovulatory and estradiol-induced gonadotropin-releasing hormone surges. Endocr Rev 2010; 31:544-77. [PMID: 20237240 PMCID: PMC3365847 DOI: 10.1210/er.2009-0023] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 02/18/2010] [Indexed: 12/14/2022]
Abstract
Ovarian steroids normally exert homeostatic negative feedback on GnRH release. During sustained exposure to elevated estradiol in the late follicular phase of the reproductive cycle, however, the feedback action of estradiol switches to positive, inducing a surge of GnRH release from the brain, which signals the pituitary LH surge that triggers ovulation. In rodents, this switch appears dependent on a circadian signal that times the surge to a specific time of day (e.g., late afternoon in nocturnal species). Although the precise nature of this daily signal and the mechanism of the switch from negative to positive feedback have remained elusive, work in the past decade has provided much insight into the role of circadian/diurnal and estradiol-dependent signals in GnRH/LH surge regulation and timing. Here we review the current knowledge of the neurobiology of the GnRH surge, in particular the actions of estradiol on GnRH neurons and their synaptic afferents, the regulation of GnRH neurons by fast synaptic transmission mediated by the neurotransmitters gamma-aminobutyric acid and glutamate, and the host of excitatory and inhibitory neuromodulators including kisspeptin, vasoactive intestinal polypeptide, catecholamines, neurokinin B, and RFamide-related peptides, that appear essential for GnRH surge regulation, and ultimately ovulation and fertility.
Collapse
Affiliation(s)
- Catherine A Christian
- Departments of Medicine and Cell Biology, University of Virginia, Charlottesville, 22908, USA.
| | | |
Collapse
|
31
|
Wang Y, Kuehl-Kovarik MC. Flufenamic acid modulates multiple currents in gonadotropin-releasing hormone neurons. Brain Res 2010; 1353:94-105. [PMID: 20655884 DOI: 10.1016/j.brainres.2010.07.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/12/2010] [Accepted: 07/14/2010] [Indexed: 11/26/2022]
Abstract
Reproduction in mammals is dependent upon the appropriate neurosecretion of gonadotropin-releasing hormone (GnRH), yet the endogenous generation of activity underlying GnRH secretion remains poorly understood. We have demonstrated that the depolarizing afterpotential (DAP), which modulates bursting activity, is reduced in isolated GnRH neurons from aged animals. Calcium-activated non-specific cation (CAN) channels contribute to the DAP in other vertebrate neurosecretory cells. We used the CAN channel blocker flufenamic acid (FFA) to examine the contribution of CAN channels to the DAP in GnRH neurons during aging. Recordings were performed on isolated fluorescent GnRH neurons from young, middle-aged and aged female mice. Flufenamic acid inhibited spontaneous activity, but significantly increased the DAP in neurons from young and middle-aged animals. Apamin did not significantly potentiate the DAP, but did reduce the effects of FFA, suggesting that the increased DAP is partially due to blockade of apamin-sensitive SK channels. Flufenamic acid increased the current underlying the DAP (I(ADP)) and decreased the preceding fast outward current (I(OUT)) at all ages. These current responses were not affected by apamin, but TEA evoked similar changes. Thus, a potassium current, likely mediated through BK channels, contributes to the fast AHP and appears to offset the DAP; this current is sensitive to FFA, but insensitive to age. The effect of FFA on the DAP, but not I(ADP), is diminished in aged animals, possibly reflecting an age-related modulation of the apamin-sensitive SK channel. Future studies will examine the expression of SK channels during the aging process in GnRH neurons.
Collapse
Affiliation(s)
- Yong Wang
- Department of Biological Engineering, University of Missouri, Dalton Cardiovascular Research Center, Columbia, MO 65211, USA
| | | |
Collapse
|
32
|
Estradiol attenuates multiple tetrodotoxin-sensitive sodium currents in isolated gonadotropin-releasing hormone neurons. Brain Res 2010; 1345:137-45. [PMID: 20580637 DOI: 10.1016/j.brainres.2010.05.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 05/06/2010] [Accepted: 05/11/2010] [Indexed: 12/19/2022]
Abstract
Secretion from gonadotropin-releasing hormone (GnRH) neurons is necessary for the production of gametes and hormones from the gonads. Subsequently, GnRH release is regulated by steroid feedback. However, the mechanisms by which steroids, specifically estradiol, modulate GnRH secretion are poorly understood. We have previously shown that estradiol administered to the female mouse decreases inward currents in fluorescently labeled GnRH neurons. The purpose of this study was to examine the contribution of sodium currents in the negative feedback action of estradiol. Electrophysiology was performed on GnRH neurons dissociated from young, middle-aged, or old female mice. All mice were ovariectomized; half were estradiol replaced. The amplitude of the sodium current underlying the action potential was significantly decreased in GnRH neurons from young estradiol-treated animals. In addition, in vivo estradiol significantly decreased the transient sodium current amplitude, but prolonged the sodium current inactivation time constant. Estradiol decreased the persistent sodium current amplitude, and induced a significant negative shift in peak current potential. In contrast to results obtained from cells from young reproductive animals, estradiol did not significantly attenuate the sodium current underlying the action potential in cells isolated from middle-aged or old mice. Sodium channels can modulate cell threshold, latency of firing, and action potential characteristics. The reduction of sodium current amplitude by estradiol suggests a negative feedback on GnRH neurons, which could lead to a downregulation of cell excitability and hormone release. The attenuation of estradiol regulation in peripostreproductive and postreproductive animals could lead to dysregulated hormone release with advancing age.
Collapse
|
33
|
Tanaka N, Ishii H, Yin C, Koyama M, Sakuma Y, Kato M. Voltage-gated Ca2+ channel mRNAs and T-type Ca2+ currents in rat gonadotropin-releasing hormone neurons. J Physiol Sci 2010; 60:195-204. [PMID: 20101487 PMCID: PMC10717889 DOI: 10.1007/s12576-010-0085-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 01/05/2010] [Indexed: 10/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons play a pivotal role in the neuroendocrine regulation of reproduction. We have previously reported that rat GnRH neurons exhibit voltage-gated Ca(2+) currents. In this study, oligo-cell RT-PCR was carried out to identify subtypes of the alpha(1) subunit of voltage-gated Ca(2+) channels in adult rat GnRH neurons. GnRH neurons expressed mRNAs for all five types of voltage-gated Ca(2+) channels. For T-type Ca(2+) channels, alpha(1H) was dominantly expressed in GnRH neurons. Electrophysiological analysis in acute slice preparations revealed that GnRH neurons from adult rats exhibited T-type Ca(2+) currents with fast inactivation kinetics (~20 ms at -30 mV) and a time constant of recovery from inactivation of ~0.6 s. These results indicate that rat GnRH neurons express subtypes of the alpha(1) subunit for all five types of voltage-gated Ca(2+) channel, and that alpha(1H) was the dominant subtype in T-type Ca(2+) channels.
Collapse
Affiliation(s)
- Nobuyuki Tanaka
- Department of Physiology, Nippon Medical School, Sendagi 1, Bunkyo, Tokyo, 113-8602 Japan
| | - Hirotaka Ishii
- Department of Physiology, Nippon Medical School, Sendagi 1, Bunkyo, Tokyo, 113-8602 Japan
| | - Chengzhu Yin
- Department of Physiology, Nippon Medical School, Sendagi 1, Bunkyo, Tokyo, 113-8602 Japan
| | - Makiko Koyama
- Department of Physiology, Nippon Medical School, Sendagi 1, Bunkyo, Tokyo, 113-8602 Japan
| | - Yasuo Sakuma
- Department of Physiology, Nippon Medical School, Sendagi 1, Bunkyo, Tokyo, 113-8602 Japan
| | - Masakatsu Kato
- Department of Physiology, Nippon Medical School, Sendagi 1, Bunkyo, Tokyo, 113-8602 Japan
| |
Collapse
|
34
|
Yin W, Mendenhall JM, Monita M, Gore AC. Three-dimensional properties of GnRH neuroterminals in the median eminence of young and old rats. J Comp Neurol 2010; 517:284-95. [PMID: 19757493 DOI: 10.1002/cne.22156] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The decapeptide gonadotropin-releasing hormone (GnRH), which regulates reproduction in all vertebrates, is stored in, and secreted from, large dense-core secretory vesicles in nerve terminals in the median eminence. GnRH is released from these terminals with biological rhythms that are critical for the maintenance of normal reproduction. During reproductive aging in female rats, there is a loss of GnRH pulses and a diminution of the GnRH surge. However, information about the specific role of GnRH nerve terminals is lacking, particularly in the context of aging. We sought to gain novel ultrastructural information about GnRH neuroterminals by performing three-dimensional (3D) reconstructions of GnRH neuroterminals and their surrounding microenvironment in the median eminence of young (4-5 months) and old (22-24 months) ovariectomized Sprague-Dawley female rats. Median eminence tissues were freeze-plunge embedded and serial ultrathin sections were collected on slot grids for immunogold labeling of GnRH immunoreactivity. Sequential images were used to create 3D models of GnRH terminals. These reconstructions provided novel perspectives into the morphological properties of GnRH terminals and their neural and glial environment. We also noted that the cytoarchitectural features of the median eminence became disorganized with aging. Quantitative measures showed a significant decrease in the apposition between GnRH terminal membranes and glial cells. Our data suggest reproductive aging in rats is characterized by structural organizational changes to the GnRH terminal microenvironment in the median eminence.
Collapse
Affiliation(s)
- Weiling Yin
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
35
|
Constantin S, Jasoni CL, Wadas B, Herbison AE. Gamma-aminobutyric acid and glutamate differentially regulate intracellular calcium concentrations in mouse gonadotropin-releasing hormone neurons. Endocrinology 2010; 151:262-70. [PMID: 19864483 DOI: 10.1210/en.2009-0817] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multiple factors regulate the activity of the GnRH neurons responsible for controlling fertility. Foremost among neuronal inputs to GnRH neurons are those using the amino acids glutamate and gamma-aminobutyric acid (GABA). The present study used a GnRH-Pericam transgenic mouse line, enabling live cell imaging of intracellular calcium concentrations ([Ca(2+)](i)) to evaluate the effects of glutamate and GABA signaling on [Ca(2+)](i) in peripubertal and adult mouse GnRH neurons. Activation of GABA(A), N-methyl-d-aspartate, or alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate acid (AMPA) receptors was found to evoke an increase in [Ca(2+)](i), in subpopulations of GnRH neurons. Approximately 70% of GnRH neurons responded to GABA, regardless of postnatal age or sex. Many fewer (approximately 20%) GnRH neurons responded to N-methyl-d-aspartate, and this was not influenced by postnatal age or sex. In contrast, about 65% of adult male and female GnRH neurons responded to AMPA compared with about 14% of male and female peripubertal mice (P < 0.05). The mechanisms underlying the ability of GABA and AMPA to increase [Ca(2+)](i) in adult GnRH neurons were evaluated pharmacologically. Both GABA and AMPA were found to evoke [Ca(2+)](i) increases through a calcium-induced calcium release mechanism involving internal calcium stores and inositol-1,4,5-trisphosphate receptors. For GABA, the initial increase in [Ca(2+)](i) originated from GABA(A) receptor-mediated activation of L-type voltage-gated calcium channels, whereas for AMPA this appeared to involve direct calcium entry through the AMPA receptor. These observations show that all of the principal amino acid receptors are able to control [Ca(2+)](i) in GnRH neurons but that they do so in a postnatal age- and intracellular pathway-specific manner.
Collapse
Affiliation(s)
- Stephanie Constantin
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | | | | | | |
Collapse
|
36
|
An integrated model of electrical spiking, bursting, and calcium oscillations in GnRH neurons. Biophys J 2009; 96:4514-24. [PMID: 19486674 DOI: 10.1016/j.bpj.2009.03.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/28/2009] [Accepted: 03/11/2009] [Indexed: 11/22/2022] Open
Abstract
The plasma membrane electrical activities of neurons that secrete gonadotropin-releasing hormone (GnRH) have been studied extensively. A couple of mathematical models have been developed previously to explain different aspects of these activities. The goal of this article is to develop a single model that accounts for the previously modeled experimental results and some more recent results that have not been accounted for. The latter includes two types of membrane potential bursting mechanisms and their associated cytosolic calcium oscillations. One bursting mechanism has not been reported in experiments and is thus regarded as a model prediction. Although the model is mainly based on data collected in immortalized GnRH cell lines, it is capable of explaining some properties of GnRH neurons observed in several other preparations including mature GnRH neurons in hypothalamic slices. We present a spatial model that incorporates a detailed description of calcium dynamics in a three-dimensional cell body with the ion channels evenly distributed on the cell surface. A phenomenological reduction of the spatial model into a simplified form is also presented. The simplified model will facilitate the study of the roles of plasma membrane electrical activities in the pulsatile release of GnRH.
Collapse
|
37
|
Ducret E, Anderson GM, Herbison AE. RFamide-related peptide-3, a mammalian gonadotropin-inhibitory hormone ortholog, regulates gonadotropin-releasing hormone neuron firing in the mouse. Endocrinology 2009; 150:2799-804. [PMID: 19131572 DOI: 10.1210/en.2008-1623] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The recent discovery that an RFamide termed gonadotropin-inhibitory hormone is likely to be a hypophysiotrophic gonadotropin release-inhibiting hormone in birds has generated interest into the role of LPXRFamide neuropeptides in the control of gonadotropin secretion in mammals. Recent immunocytochemical studies in birds and mammals have suggested that neurons expressing the mammalian LPXRFamides, RFamide-related peptides (RFRPs) 1 and 3, may innervate and regulate GnRH neurons directly. We used cell-attached electrophysiology in adult male and female GnRH-green fluorescent protein-tagged neurons to examine whether RFRP-3 modulated the electrical excitability of GnRH neurons. RFRP-3 was found to exhibit rapid and repeatable inhibitory effects on the firing rate of 41% of GnRH neurons. A small population of GnRH neurons (12%) increased their firing rate in response to RFRP-3, and the remainder was unaffected. No difference was detected in the RFRP-3 responses of GnRH neurons from male, diestrous, or proestrus female mice. The suppressive effect of RFRP-3 was maintained when amino acid transmission was blocked, suggesting a possible direct effect of RFRP-3 upon GnRH neurons. To evaluate the effects of other RFamide neuropeptides on GnRH neurons, we tested the actions of prolactin-releasing peptide-20 and -31. Neither compounds altered the firing rate of GnRH neurons. These studies demonstrate that RFRP-3 has a likely direct suppressive action on the excitability of GnRH neurons, indicating a role for RFRPs in the regulation of gonadotropin secretion in mammals through modulation of GnRH neuron activity.
Collapse
Affiliation(s)
- Eric Ducret
- Department of Physiology, Centre for Neuroendocrinology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | | | | |
Collapse
|
38
|
Zhang C, Bosch MA, Rønnekleiv OK, Kelly MJ. Gamma-aminobutyric acid B receptor mediated inhibition of gonadotropin-releasing hormone neurons is suppressed by kisspeptin-G protein-coupled receptor 54 signaling. Endocrinology 2009; 150:2388-94. [PMID: 19164470 PMCID: PMC2671904 DOI: 10.1210/en.2008-1313] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gamma-aminobutyric acid (GABA) is one of the most important neurotransmitters that regulate the excitability of GnRH neurons. Numerous studies have shown that GABA activates Cl(-) currents in GnRH neurons, and these effects are antagonized by GABA(A) receptor antagonists. The GABA(B) receptor is a heterodimer composed of GABA(B) R1 and R2, and although both subunits have been localized in GnRH neurons, nothing is known about the cellular signaling of this G alpha(i,o)-coupled receptor in GnRH neurons. Using whole-cell recordings from mouse enhanced green fluorescent protein-GnRH neurons, we found that the GABA(B) receptor agonist baclofen hyperpolarized GnRH neurons through activation of an inwardly rectifying K(+) current in a concentration-dependent manner. The effects of baclofen were antagonized by the selective GABA(B) receptor antagonist CGP 52432 with a K(i) (inhibitory constant) of 85 nm. Furthermore, in the presence of the GABA(A) receptor antagonist picrotoxin, GABA hyperpolarized GnRH neurons in a similar manner. Treatment with 17beta-estradiol as compared with oil vehicle did not significantly alter either the EC(50) for the baclofen-induced response (0.8 +/- 0.1 vs. 1.0 +/- 0.1 microM, respectively) or the maximal outward current (10.8 +/- 1.7 pA vs. 11.4 +/- 0.6 pA, respectively) in GnRH neurons. However, the outward current (and membrane hyperpolarization) was abrogated by submaximal concentrations of the G protein-coupled receptor 54 (GPR54) agonist kisspeptin-10 in both groups, indicating that G alpha(q)-coupled (GPR54) can desensitize the GABA(B) receptor-mediated response. Therefore, the activation of GABA(B) receptors in GnRH neurons may provide increased inhibitory tone during estrogen-negative feedback states that is attenuated by kisspeptin during positive feedback.
Collapse
Affiliation(s)
- Chunguang Zhang
- Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
39
|
Christian CA, Pielecka-Fortuna J, Moenter SM. Estradiol suppresses glutamatergic transmission to gonadotropin-releasing hormone neurons in a model of negative feedback in mice. Biol Reprod 2009; 80:1128-35. [PMID: 19176881 DOI: 10.1095/biolreprod.108.075077] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A surge of gonadotropin-releasing hormone (GnRH) release from the brain triggers the luteinizing hormone (LH) surge that causes ovulation. The GnRH surge is initiated by a switch in estradiol action from negative to positive feedback. Estradiol signals critical for the surge are likely transmitted to GnRH neurons at least in part via estradiol-sensitive afferents. Using an ovariectomized estradiol-treated (OVX+E) mouse model that exhibits daily LH surges, we examined changes in glutamate transmission to GnRH neurons during negative feedback and positive feedback. Spontaneous glutamatergic excitatory postsynaptic currents (EPSCs) mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/kainate receptors (AMPA/KA Rs) or N-methyl-D-aspartate receptors (NMDARs) were recorded in GnRH neurons from OVX+E and OVX mice. There were no diurnal changes in the percentage of GnRH neurons from OVX mice exhibiting EPSCs. In cells from OVX+E mice, the profile of AMPA/KA R-mediated and NMDAR-mediated EPSCs showed changes dependent on time of day. Comparison of AMPA/KA R-mediated EPSC frequency in OVX+E and OVX cells showed that estradiol suppressed transmission during negative feedback but had no effect during positive feedback. Tetrodotoxin treatment to block action potential firing did not affect AMPA/KA R-mediated EPSC frequency in OVX cells during negative feedback or in OVX+E cells during positive feedback, suggesting that estradiol-induced suppression of glutamate transmission may be primarily due to activity-independent changes. The diurnal removal of estradiol-induced suppression of AMPA/KA R-mediated glutamate transmission to GnRH neurons during positive feedback suggests that the primary role for estradiol-induced changes in glutamate transmission may be in mediating negative feedback.
Collapse
Affiliation(s)
- Catherine A Christian
- Neuroscience Graduate Program, Departments of Medicine and Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
40
|
Choi J, Ha CM, Choi EJ, Jeong CS, Park JW, Baik JH, Park JY, Costa ME, Ojeda SR, Lee BJ. Kinesin superfamily-associated protein 3 is preferentially expressed in glutamatergic neurons and contributes to the excitatory control of female puberty. Endocrinology 2008; 149:6146-56. [PMID: 18703627 PMCID: PMC2613065 DOI: 10.1210/en.2008-0432] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It was earlier shown that expression of kinesin superfamily-associated protein 3 (KAP3), involved in the neuronal anterograde, microtubule-dependent transport of membrane organelles, increases in the hypothalamus of female rats during the juvenile phase of sexual development. KAP3 mRNA is abundant in the hypothalamus, suggesting that it might be expressed in broadly disseminated neuronal systems controlling neuroendocrine function. The present study identifies one of these systems and provides evidence for an involvement of KAP3 in the excitatory control of female puberty. In situ hybridization and immunohistofluorescence studies revealed that the KAP3 gene is expressed in glutamatergic neurons but not in GABAergic or GnRH neurons. Hypothalamic KAP3 mRNA levels increase during the juvenile period of female prepubertal development, remaining elevated throughout puberty. These changes appear to be, at least in part, estradiol dependent because ovariectomy decreases and estradiol increases KAP3 mRNA abundance. Lowering hypothalamic KAP3 protein levels via intraventricular administration of an antisense oligodeoxynucleotide resulted in reduced release of both glutamate and GnRH from the median eminence and delayed the onset of puberty. The median eminence content of vesicular glutamate transporter 2, a glutamate neuron-selective synaptic protein, and synaptophysin, a synaptic vesicle marker, were also reduced, suggesting that the loss of KAP3 diminishes the anterograde transport of these proteins. Altogether, these results support the view that decreased KAP3 synthesis diminishes GnRH output and delays female sexual development by compromising hypothalamic release of glutamate.
Collapse
Affiliation(s)
- Jungil Choi
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Roberts CB, Suter KJ. Emerging methodologies for the study of hypothalamic gonadotropin-releasing-hormone (GnRH) neurons. Integr Comp Biol 2008; 48:548-59. [PMID: 21669816 DOI: 10.1093/icb/icn039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gonadotropin-releasing-hormone (GnRH) neurons form part of a central neural oscillator that controls sexual reproduction through intermittent release of the GnRH peptide. Activity of GnRH neurons, and by extension release of GnRH, has been proposed to reflect intrinsic properties and synaptic input of GnRH neurons. To study GnRH neurons, we used traditional electrophysiology and computational methods. These emerging methodologies enhance the elucidation of processing in GnRH neurons. We used dynamic current-clamping to understand how living GnRH somata process input from glutamate and GABA, two key neurotransmitters in the neuroendocrine hypothalamus. In order to study the impact of synaptic integration in dendrites and neuronal morphology, we have developed full-morphology models of GnRH neurons. Using dynamic clamping, we have demonstrated that small-amplitude glutamatergic currents can drive repetitive firing in GnRH neurons. Furthermore, application of simulated GABAergic synapses with a depolarized reversal potential have revealed two functional subpopulations of GnRH neurons: one population in which GABA chronically depolarizes membrane potential (without inducing action potentials) and a second population in which GABAergic excitation results in slow spiking. Finally, when AMPA-type and GABA-type simulated inputs are applied together, action potentials occur when the AMPA-type conductance occurs during the descending phase of GABAergic excitation and at the nadir of GABAergic inhibition. Compartmental computer models have shown that excitatory synapses at >300 microns from somtata are unable to drive spiking with purely passive dendrites. In models with active dendrites, distal synapses are more efficient at driving spiking than somatic inputs. We then used our models to extend the results from dynamic current clamping at GnRH somata to distribute synaptic inputs along the dendrite. We show that propagation delays for dendritic synapses alter synaptic integration in GnRH neurons by widening the temporal window of interaction for the generation of action potentials. Finally, we have shown that changes in dendrite morphology can modulate the output of GnRH neurons by altering the efficacy of action potential generation in response to after-depolarization potentials (ADPs). Taken together, the methodologies of dynamic current clamping and multi-compartmental modeling can make major contributions to the study of synaptic integration and structure-function relationships in hypothalamic GnRH neurons. Use of these methodological approaches will continue to provide keen insights leading to conceptual advances in our understanding of reproductive hormone secretion in normal and pathological physiology and open the door to understanding whether the mechanisms of pulsatile GnRH release are conserved across species.
Collapse
Affiliation(s)
- Carson B Roberts
- Department of Biology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio TX, 78249; Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary's Street, Boston, MA 02215, USA
| | | |
Collapse
|
42
|
Wang Y, Garro M, Dantzler HA, Taylor JA, Kline DD, Kuehl-Kovarik MC. Age affects spontaneous activity and depolarizing afterpotentials in isolated gonadotropin-releasing hormone neurons. Endocrinology 2008; 149:4938-47. [PMID: 18583421 PMCID: PMC2582911 DOI: 10.1210/en.2008-0308] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuronal activity underlying the pulsatile secretion of GnRH remains poorly understood, as does the endogenous generation of such activity. It is clear that changes at the level of the hypothalamus are taking place during reproductive aging, yet virtually nothing is known about GnRH neuronal physiology in aging and postreproductive animals. In these studies, we performed cell-attached and whole-cell recordings in GnRH-enhanced green fluorescent protein neurons dissociated from young (3 months), middle-aged (10 months), and old (15-18 months) female mice. All mice were ovariectomized; half were estradiol replaced. Neurons from all ages fired spontaneously, most in a short-burst pattern that is characteristic of GnRH neuronal firing. Membrane characteristics were not affected by age. However, firing frequency was significantly reduced in neurons from old animals, as was spike patterning. The amplitude of the depolarizing afterpotential, evoked by a 200-msec current pulse, was significantly smaller in aged animals. In addition, inward whole-cell currents were reduced in estradiol-treated animals, although they were not significantly affected by age. Because depolarizing afterpotentials have been shown to contribute to prolonged discharges of activity after a very brief excitatory input, a decreased depolarizing afterpotential could lead to attenuated pulses in older animals. In addition, decreases in frequency and pattern generation could lead to improper information coding. Therefore, changes in the GnRH neuron during aging could lead to dysregulated activity, potentially resulting in the attenuated LH pulses observed in the transition to reproductive senescence.
Collapse
Affiliation(s)
- Yong Wang
- Department of Biomedical Sciences, E102 Vet Med, 1600 East Rollins, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | |
Collapse
|
43
|
Gill JC, Wadas B, Chen P, Portillo W, Reyna A, Jorgensen E, Mani S, Schwarting GA, Moenter SM, Tobet S, Kaiser UB. The gonadotropin-releasing hormone (GnRH) neuronal population is normal in size and distribution in GnRH-deficient and GnRH receptor-mutant hypogonadal mice. Endocrinology 2008; 149:4596-604. [PMID: 18499748 PMCID: PMC2553368 DOI: 10.1210/en.2008-0403] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypothalamic GnRH neurons are essential for initiation and regulation of reproductive function. In addition to pituitary gonadotrope stimulation, activity of GnRH through its receptor (GnRHR) has been suggested to include autocrine regulation of the GnRH neuron. Two hypogonadal mouse strains, the Gnrh1 mutant (hpg) mice and Gnrhr mutant mice were used to investigate the potential role of GnRH signaling in the proper development and maintenance of GnRH neurons. Immunocytochemical analysis of heterozygous hpg mice revealed a GnRH neuron population that was normal in size and distribution, indicating no effect from reduced Gnrh1 gene dosage on the neurons themselves. To visualize GnRH neurons in homozygous GnRH-deficient hpg mice, heterozygous hpg mice were crossed with GnRH-green fluorescent protein (GFP) transgenic mice with targeted expression of the GFP reporter gene in GnRH neurons. Analysis of forebrains of homozygous hpg/GFP-positive mice immunostained for GFP revealed a normal population size and appropriate distribution of GnRH neurons in hpg mice, with immunoreactive neuronal processes present at the median eminence. Similarly, adult mice deficient in functional GnRHR possessed a full complement of GnRH neurons in the basal forebrain that was indistinguishable from the distribution of GnRH neurons in their wild-type counterparts. Moreover, hpg/GFP neurons retained the ability to generate spontaneous bursts of action potential firing activity, suggesting that GnRH peptide is not required for this function. These data establish that autocrine-paracrine GnRH-signaling is not a prerequisite for the developmental migration of GnRH neurons into the brain or for the projection of GnRH neurosecretory axons.
Collapse
Affiliation(s)
- John C Gill
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bertram R, Rhoads J, Cimbora WP. A Phantom Bursting Mechanism for Episodic Bursting. Bull Math Biol 2008; 70:1979-93. [DOI: 10.1007/s11538-008-9335-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 04/29/2008] [Indexed: 10/21/2022]
|
45
|
Roberts CB, Hemond P, Suter KJ. Synaptic integration in hypothalamic gonadotropin releasing hormone (GnRH) neurons. Neuroscience 2008; 154:1337-51. [PMID: 18556136 DOI: 10.1016/j.neuroscience.2008.04.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/28/2008] [Accepted: 04/29/2008] [Indexed: 11/29/2022]
Abstract
The impact of the A-type GABA (GABA-A) receptor in gonadotropin releasing hormone (GnRH) neurons is controversial. In adult GnRH neurons, the GABA-A receptor conductance has been reported to either hyperpolarize or depolarize GnRH neurons. Regardless of whether GABA is inhibitory or excitatory in GnRH neurons, GABAergic input would be integrated with post-synaptic potentials generated by other synaptic inputs. We used dynamic current clamping and compartmental computer modeling to examine the integration of AMPA-type glutamatergic input and GABA-mediated input in both the hyperpolarizing (inhibitory) and depolarizing (excitatory) modes in GnRH neurons from transgenic mice (Mus Musculus) generated on a C57BL6 background. In both living and model neurons, action potentials were most likely a few ms after a maximum in AMPA conductance coincided with a minimum in inhibitory GABA. Excitatory GABA interacted differently with AMPA, with spikes most likely, in both dynamic clamping of living neurons and in model neurons, when a maximum in AMPA coincided with the decay from peak of a maximum in GABA. Distributing synapses along the dendrite maximized the temporal relationship between AMPA and GABA conductances and therefore, the potential for spiking. Thus, these two dominant neurotransmitters could interact in multiple frames to generate action potentials in GnRH neurons.
Collapse
Affiliation(s)
- C B Roberts
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | |
Collapse
|
46
|
Roberts CB, O'Boyle MP, Suter KJ. Dendrites determine the contribution of after depolarization potentials (ADPs) to generation of repetitive action potentials in hypothalamic gonadotropin releasing-hormone (GnRH) neurons. J Comput Neurosci 2008; 26:39-53. [PMID: 18461432 DOI: 10.1007/s10827-008-0095-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 02/22/2008] [Accepted: 03/31/2008] [Indexed: 11/25/2022]
Abstract
The impact of structure in modulating synaptic signals originating in dendrites is widely recognized. In this study, we focused on the impact of dendrite morphology on a local spike generating mechanism which has been implicated in hormone secretion, the after depolarization potential (ADP). Using multi-compartmental models of hypothalamic GnRH neurons, we systematically truncated dendrite length and determined the consequence on ADP amplitude and repetitive firing. Decreasing the length of the dendrite significantly increased the amplitude of the ADP and increased repetitive firing. These effects were observed in dendrites both with and without active conductances suggesting they largely reflect passive characteristics of the dendrite. In order to test the findings of the model, we performed whole-cell recordings in GnRH neurons and elicited ADPs using current injection. During recordings, neurons were filled with biocytin so that we could determine dendritic and total projection (dendrite plus axon) length. Neurons exhibited ADPs and increasing ADP amplitude was associated with decreasing dendrite length, in keeping with the predictions of the models. Thus, despite the relatively simple morphology of the GnRH neuron's dendrite, it can still exert a substantial impact on the final neuronal output.
Collapse
Affiliation(s)
- C B Roberts
- Department of Biology, University of Texas at San Antonio, 6900 North Loop, 1604 West, San Antonio, TX 78249, USA.
| | | | | |
Collapse
|
47
|
Clasadonte J, Poulain P, Beauvillain JC, Prevot V. Activation of neuronal nitric oxide release inhibits spontaneous firing in adult gonadotropin-releasing hormone neurons: a possible local synchronizing signal. Endocrinology 2008; 149:587-96. [PMID: 18006627 DOI: 10.1210/en.2007-1260] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The activation of nitric oxide (NO) signaling pathways in hypothalamic neurons plays a key role in the control of GnRH secretion that is central to reproductive function. It is unknown whether NO directly modulates the firing behavior of GnRH neurons in the preoptic region of the mature brain. Using patch-clamp recordings from GnRH neurons expressing green fluorescent protein in adult mice brain slices, we demonstrate that the NO precursor, L-arginine (Arg), or the NO donor, diethylamine/NO, induced a robust and reversible reduction in the spontaneous firing activity of GnRH neurons, including bursting activity. The effects of L-Arg were prevented by the NO synthase inhibitor N omega-nitro-L-Arg methyl ester hydrochloride. Histochemical studies revealing a close anatomical relationship between neurons producing NO and GnRH perikarya, together with the loss of the L-Arg-mediated inhibition of GnRH neuronal activity via the selective blockade of neuronal NO synthase, suggested that the primary source of local NO production in the mouse preoptic region was neuronal. Synaptic transmission uncoupling did not alter the effect of NO, suggesting that NO affects the firing pattern of GnRH neurons by acting at a postsynaptic site. We also show that the NO-mediated changes in membrane properties in the GnRH neurons require soluble guanylyl cyclase activity and may involve potassium conductance. By revealing that NO is a direct modulator of GnRH neuronal activity, our results introduce the intriguing possibility that this gaseous neurotransmitter may be used by the sexual brain to modulate burst firing patterns. It may set into phase the bursting activity of GnRH neurons at key stages of reproductive physiology.
Collapse
Affiliation(s)
- Jérôme Clasadonte
- Inserm, Jean-Pierre Aubert Research Center, Unité 837, Development and Plasticity of the Postnatal Brain, Place de Verdun, 59045, Lille Cedex, France
| | | | | | | |
Collapse
|
48
|
Rasier G, Parent AS, Gérard A, Denooz R, Lebrethon MC, Charlier C, Bourguignon JP. Mechanisms of interaction of endocrine-disrupting chemicals with glutamate-evoked secretion of gonadotropin-releasing hormone. Toxicol Sci 2007; 102:33-41. [PMID: 18032409 DOI: 10.1093/toxsci/kfm285] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In previous studies, we detected a dichlorodiphenyltrichloroethane (DDT) derivative in the serum of children with sexual precocity after migration from developing countries. Recently, we reported that DDT stimulated pulsatile gonadotropin-releasing hormone (GnRH) secretion and sexual maturation in the female rat. The aim of this study was to delineate the mechanisms of interaction of endocrine-disrupting chemicals including DDT with GnRH secretion evoked by glutamate in vitro. Using hypothalamic explants obtained from 15-day-old female rats, estradiol (E2) and DDT caused a concentration-related increase in glutamate-evoked GnRH release while p,p'-dichlorodiphenyldichloroethene and methoxychlor had no effect. The effective DDT concentrations in vitro were consistent with the serum concentrations measured in vivo 5 days after exposure of immature rats to 10 mg/kg/day of o,p'-DDT. Bisphenol A induced some stimulatory effect, whereas no change was observed with 4-nonylphenol. The o,p'-DDT effects in vitro were prevented partially by a selective antagonist of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) subtype of glutamate receptors. A complete prevention of o,p'-DDT effects was caused by an estrogen receptor (ER) antagonist as well as an aryl hydrocarbon receptor (AHR) antagonist and inhibitors of protein kinases A and C and mitogen-activated kinases. While an intermittent incubation with E2 caused no change in amplification of the glutamate-evoked GnRH release for 4 h, continuous incubation with E2 or o,p'-DDT caused an increase of this amplification after 3.5 h of incubation. In summary, DDT amplifies the glutamate-evoked GnRH secretion in vitro through rapid and slow effects involving ER, AHR, and AMPA receptor mediation.
Collapse
Affiliation(s)
- Grégory Rasier
- Developmental Neuroendocrinology Unit, Centre for Cellular and Molecular Neurobiology, University of Liège, University Hospital, Belgium
| | | | | | | | | | | | | |
Collapse
|
49
|
Bian X, Yanagawa Y, Chen WR, Luo M. Cortical-like functional organization of the pheromone-processing circuits in the medial amygdala. J Neurophysiol 2007; 99:77-86. [PMID: 17977926 DOI: 10.1152/jn.00902.2007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The medial amygdala (MeA) is a critical center for processing pheromonal signals that regulate social and reproductive behaviors, but the fundamental cellular mechanisms underlying signal processing in the MeA have remained largely unknown. Some studies suggest that the MeA belongs to the striatum and provides inhibitory output to hypothalamic areas including the ventromedial hypothalamus (VMH). By combining tract tracing, genetic labeling of GABAergic neurons, and immunostaining against markers for glutamatergic synapses, we found that a majority of MeA neurons projecting to the VMH are glutamatergic. Whole cell patch-clamp recordings revealed that VMH-projecting neurons form a homogeneous population in terms of morphological and intrinsic properties. Nearly all cells possess I(h) and I(T) and in some cases they can give rise to postinhibitory rebound spikes. Morphological analysis of neurobiotin-filled cells revealed neurons with long dendritic arbors that extend to the MeA external layer and within the amygdala. Thus the VMH-projecting neurons in the MeA differ from the medium spiny neurons, the principal neurons of striatum, in terms of intrinsic physiological properties and morphology. In contrast, they resemble a subset of pyramidal cells in deep piriform cortex. Similar to pyramidal cells in piriform cortex, the VMH-projecting neurons in the MeA received direct excitatory input from their upstream sensory areas and inhibitory input from local GABAergic neurons. We conclude that pheromonal signals relayed to the VMH are processed by unique cortical, but not striatal, circuitry in the MeA.
Collapse
Affiliation(s)
- Xiling Bian
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
50
|
Campbell RE. Defining the gonadotrophin-releasing hormone neuronal network: transgenic approaches to understanding neurocircuitry. J Neuroendocrinol 2007; 19:561-73. [PMID: 17532792 DOI: 10.1111/j.1365-2826.2007.01561.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The gonadotrophin-releasing hormone (GnRH) neurones are the final downstream effector neurones driving the central regulation of reproductive function and fertility in all mammalian species. Although it is abundantly clear that successful fertility relies upon the communication of a variety signals regarding internal and external cues to the GnRH neuronal population, how this is achieved remains poorly understood. A range of technical limitations has posed significant hurdles to defining, with any certainty, the complexities of the synaptic neuronal network regulating GnRH neurones. However, recent advances in transgenic technology have opened up new avenues to reconsider questions aimed at understanding this critical network. This article addresses some of the latest advances that use transgenic mouse models as tools to understand the neuronal circuitry underpinning the regulation of the GnRH neurones. By incorporating standard morphological and viral tract tracing techniques with innovative transgenic tools, recent studies have uncovered previously unappreciated qualities of the GnRH neurone, including extensive dendritic lengths, numerous somal and dendritic spines and plasticity over pubertal development, along with beginning to define the primary and higher-order afferents that make up the GnRH neuronal network.
Collapse
Affiliation(s)
- R E Campbell
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Medical Sciences, Dunedin, New Zealand.
| |
Collapse
|