1
|
Morrow A, Smale L, Meek PD, Lundrigan B. Trade-Offs in the Sensory Brain between Diurnal and Nocturnal Rodents. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:123-143. [PMID: 38569487 PMCID: PMC11346379 DOI: 10.1159/000538090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Transitions in temporal niche have occurred many times over the course of mammalian evolution. These are associated with changes in sensory stimuli available to animals, particularly with visual cues, because levels of light are so much higher during the day than at night. This relationship between temporal niche and available sensory stimuli elicits the expectation that evolutionary transitions between diurnal and nocturnal lifestyles will be accompanied by modifications of sensory systems that optimize the ability of animals to receive, process, and react to important stimuli in the environment. METHODS This study examines the influence of temporal niche on investment in sensory brain tissue of 13 rodent species (five diurnal; eight nocturnal). Animals were euthanized and the brains immediately frozen on dry ice; olfactory bulbs were subsequently dissected and weighed, and the remaining brain was weighed, sectioned, and stained. Stereo Investigator was used to calculate volumes of four sensory regions that function in processing visual (lateral geniculate nucleus, superior colliculus) and auditory (medial geniculate nucleus, inferior colliculus) information. A phylogenetic framework was used to assess the influence of temporal niche on the relative sizes of these brain structures and of olfactory bulb weights. RESULTS Compared to nocturnal species, diurnal species had larger visual regions, whereas nocturnal species had larger olfactory bulbs than their diurnal counterparts. Of the two auditory structures examined, one (medial geniculate nucleus) was larger in diurnal species, while the other (inferior colliculus) did not differ significantly with temporal niche. CONCLUSION Our results indicate a possible indirect association between temporal niche and auditory investment and suggest probable trade-offs of investment between olfactory and visual areas of the brain, with diurnal species investing more in processing visual information and nocturnal species investing more in processing olfactory information.
Collapse
Affiliation(s)
- Andrea Morrow
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution, Michigan State University, East Lansing, MI, USA
| | - Laura Smale
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution, Michigan State University, East Lansing, MI, USA
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Paul Douglas Meek
- Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Coffs Harbour, NSW, Australia
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Barbara Lundrigan
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution, Michigan State University, East Lansing, MI, USA
- Michigan State University Museum, East Lansing, MI, USA
| |
Collapse
|
2
|
Enomoto T, Wakui K, Hirota J. Bcl11b is required for proper odorant receptor expression in the mouse septal organ. Cell Tissue Res 2021; 384:643-653. [PMID: 33783611 DOI: 10.1007/s00441-021-03444-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/01/2021] [Indexed: 11/24/2022]
Abstract
Individual olfactory sensory neurons (OSNs) in the mouse main olfactory epithelium express a single odorant receptor (OR) gene from the repertoire of either class I or class II ORs. The transcription factor Bcl11b determines the OR class to be expressed in OSNs. The septal organ (SO), a small neuroepithelium located at the ventral base of the nasal septum, is considered as an olfactory subsystem because it expresses a specific subset of ORs. However, the mechanisms underlying the generation and differentiation of SO-OSN remain unknown. In the present study, we show that the generation and differentiation of SO-OSN employ the same genetic pathway as in the OSN lineage, which is initiated by the neuronal fate determinant factor Ascl1. Additionally, the key role of Bcl11b in the SO is demonstrated by the abnormal phenotypes of Bcl11b-deficient mice: significant reduction in the expression of OR genes and in the number of mature SO-OSNs. Although SO-OSNs are specified to express a subset of class II OR genes in wild-type mice, the Bcl11b deletion led to the expression of class I OR genes, while the expression of class II OR genes was significantly decreased, with one exception of Olfr15. These results indicate that Bcl11b is necessary for proper OR expression in SO-OSNs.
Collapse
Affiliation(s)
- Takayuki Enomoto
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan
| | - Koji Wakui
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Junji Hirota
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan. .,Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
3
|
Zimmerman AD, Munger SD. Olfactory subsystems associated with the necklace glomeruli in rodents. Cell Tissue Res 2021; 383:549-557. [PMID: 33404845 DOI: 10.1007/s00441-020-03388-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/07/2020] [Indexed: 01/27/2023]
Abstract
The necklace glomeruli are a loosely defined group of glomeruli encircling the caudal main olfactory bulb in rodents. Initially defined by the expression of various immunohistochemical markers, they are now better understood in the context of the specialized chemosensory neurons of the main olfactory epithelium and Grueneberg ganglion that innervate them. It has become clear that the necklace region of the rodent main olfactory bulb is composed of multiple distinct groups of glomeruli, defined at least in part by their afferent inputs. In this review, we will explore the necklace glomeruli and the chemosensory neurons that innervate them.
Collapse
Affiliation(s)
- Arthur D Zimmerman
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, PO Box 100267, Gainesville, FL, 32610, USA
- Center for Smell and Taste, University of Florida, PO Box 100127, Gainesville, FL, 32610, USA
- Training Program in Chemosensory Science, University of Florida, PO Box 100127, Gainesville, FL, 32610, USA
| | - Steven D Munger
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, PO Box 100267, Gainesville, FL, 32610, USA.
- Center for Smell and Taste, University of Florida, PO Box 100127, Gainesville, FL, 32610, USA.
- Training Program in Chemosensory Science, University of Florida, PO Box 100127, Gainesville, FL, 32610, USA.
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, PO Box 100266, Gainesville, FL, 32610, USA.
| |
Collapse
|
4
|
Enomoto T, Nishida H, Iwata T, Fujita A, Nakayama K, Kashiwagi T, Hatanaka Y, Kondo H, Kajitani R, Itoh T, Ohmoto M, Matsumoto I, Hirota J. Bcl11b controls odorant receptor class choice in mice. Commun Biol 2019; 2:296. [PMID: 31396576 PMCID: PMC6685970 DOI: 10.1038/s42003-019-0536-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/09/2019] [Indexed: 11/24/2022] Open
Abstract
Each olfactory sensory neuron (OSN) expresses a single odorant receptor (OR) gene from the class I or class II repertoire in mice. The mechanisms that regulate OR class choice in OSNs remain unknown. Here, we show that the transcription factor Bcl11b determines the OR class to be expressed in OSNs. Both loss- and gain-of-function analyses demonstrate that class I is a default fate of OSNs and that Bcl11b dictates a class II OR choice by suppressing the effect of the J-element, a class I-OR enhancer. We further demonstrate that OSN-specific genetic manipulations of Bcl11b bias the OR class choice, generating mice with "class I-dominant" and "class II-dominant" noses, which display contrasting innate olfactory behaviors to two distinct aversive odorants. Overall, these findings reveal a unique transcriptional mechanism mediating a binary switch for OR class choice that is crucial to both the anatomical and functional organization of the olfactory system.
Collapse
Affiliation(s)
- Takayuki Enomoto
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Hidefumi Nishida
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Tetsuo Iwata
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Akito Fujita
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Kanako Nakayama
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Takahiro Kashiwagi
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Yasue Hatanaka
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Hiro Kondo
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Rei Kajitani
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Takehiko Itoh
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Makoto Ohmoto
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
- Monell Chemical Senses Center, Philadelphia, PA 19104 USA
| | | | - Junji Hirota
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| |
Collapse
|
5
|
Zhang R, Pan Y, Ahmed L, Block E, Zhang Y, Batista VS, Zhuang H. A Multispecific Investigation of the Metal Effect in Mammalian Odorant Receptors for Sulfur-Containing Compounds. Chem Senses 2019; 43:357-366. [PMID: 29659735 DOI: 10.1093/chemse/bjy022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Metal-coordinating compounds are generally known to have strong smells, a phenomenon that can be attributed to the fact that odorant receptors for intense-smelling compounds, such as those containing sulfur, may be metalloproteins. We previously identified a mouse odorant receptor (OR), Olfr1509, that requires copper ions for sensitive detection of a series of metal-coordinating odorants, including (methylthio)methanethiol (MTMT), a strong-smelling component of male mouse urine that attracts female mice. By combining mutagenesis and quantum mechanics/molecular mechanics (QM/MM) modeling, we identified candidate binding sites in Olfr1509 that may bind to the copper-MTMT complex. However, whether there are other receptors utilizing metal ions for ligand-binding and other sites important for receptor activation is still unknown. In this study, we describe a second mouse OR for MTMT with a copper effect, namely Olfr1019. In an attempt to investigate the functional changes of metal-coordinating ORs in multiple species and to decipher additional sites involved in the metal effect, we cloned various mammalian orthologs of the 2 mouse MTMT receptors, and a third mouse MTMT receptor, Olfr15, that does not have a copper effect. We found that the function of all 3 MTMT receptors varies greatly among species and that the response to MTMT always co-occurred with the copper effect. Furthermore, using ancestral reconstruction and QM/MM modeling combined with receptor functional assay, we found that the amino acid residue R260 in Olfr1509 and the respective R261 site in Olfr1019 may be important for receptor activation.
Collapse
Affiliation(s)
- Ruina Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, P. R. China
| | - Yi Pan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, P. R. China
| | - Lucky Ahmed
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Eric Block
- Department of Chemistry, University at Albany, State University of New York, NY, USA
| | - Yuetian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, P. R. China
| | | | - Hanyi Zhuang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, P. R. China
- Institute of Health Sciences, Shanghai Jiaotong University School of Medicine/Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences, Xuhui District, Shanghai, P. R. China
| |
Collapse
|
6
|
Ramos MF, Baker J, Atzpodien EA, Bach U, Brassard J, Cartwright J, Farman C, Fishman C, Jacobsen M, Junker-Walker U, Kuper F, Moreno MCR, Rittinghausen S, Schafer K, Tanaka K, Teixeira L, Yoshizawa K, Zhang H. Nonproliferative and Proliferative Lesions of the Ratand Mouse Special Sense Organs(Ocular [eye and glands], Olfactory and Otic). J Toxicol Pathol 2018; 31:97S-214S. [PMID: 30158741 PMCID: PMC6108092 DOI: 10.1293/tox.31.97s] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Julia Baker
- Member of eye subgroup
- Charles River Laboratories, Inc., Frederick, MD, USA
| | | | - Ute Bach
- Member of eye subgroup
- Bayer AG, Wuppertal, Germany
| | | | | | | | - Cindy Fishman
- Member of eye subgroup
- Member of glands of the eye subgroup
- GlaxoSmithKline, King of Prussia, PA, USA
| | | | | | - Frieke Kuper
- Member of olfactory subgroup
- Retired; formerly The Netherlands Organization for Applied
Scientific Research (TNO), Zeist, the Netherlands
| | | | | | - Ken Schafer
- Member of eye subgroup
- Member of otic subgroup
- Vet Path Services, Inc., Mason, OH, USA
| | - Kohji Tanaka
- Member of eye subgroup
- Nippon Boehringer Ingelheim, Japan
| | | | | | | |
Collapse
|
7
|
Crespo C, Liberia T, Blasco-Ibáñez JM, Nácher J, Varea E. Cranial Pair I: The Olfactory Nerve. Anat Rec (Hoboken) 2018; 302:405-427. [PMID: 29659152 DOI: 10.1002/ar.23816] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/29/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022]
Abstract
The olfactory nerve constitutes the first cranial pair. Compared with other cranial nerves, it depicts some atypical features. First, the olfactory nerve does not form a unique bundle. The olfactory axons join other axons and form several small bundles or fascicles: the fila olfactoria. These fascicles leave the nasal cavity, pass through the lamina cribrosa of the ethmoid bone and enter the brain. The whole of these fascicles is what is known as the olfactory nerve. Second, the olfactory sensory neurons, whose axons integrate the olfactory nerve, connect the nasal cavity and the brain without any relay. Third, the olfactory nerve is composed by unmyelinated axons. Fourth, the olfactory nerve contains neither Schwann cells nor oligodendrocytes wrapping its axons. But it contains olfactory ensheathing glia, which is a type of glia unique to this nerve. Fifth, the olfactory axons participate in the circuitry of certain spherical structures of neuropil that are unique in the brain: the olfactory glomeruli. Sixth, the axons of the olfactory nerve are continuously replaced and their connections in the central nervous system are remodeled continuously. Therefore, the olfactory nerve is subject to lifelong plasticity. Finally seventh, the olfactory nerve can be a gateway for the direct entrance of viruses, neurotoxins and other xenobiotics to the brain. In the same way, it can be used as a portal of entry to the brain for therapeutic substances, bypassing the blood-brain barrier. In this article, we analyze some features of the anatomy and physiology of the first cranial pair. Anat Rec, 302:405-427, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carlos Crespo
- Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Teresa Liberia
- Departments of Neurosurgery and Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - José Miguel Blasco-Ibáñez
- Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Juan Nácher
- Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Emilio Varea
- Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| |
Collapse
|
8
|
Block E, Batista VS, Matsunami H, Zhuang H, Ahmed L. The role of metals in mammalian olfaction of low molecular weight organosulfur compounds. Nat Prod Rep 2017; 34:529-557. [PMID: 28471462 PMCID: PMC5542778 DOI: 10.1039/c7np00016b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Covering: up to the end of 2017While suggestions concerning the possible role of metals in olfaction and taste date back 50 years, only recently has it been possible to confirm these proposals with experiments involving individual olfactory receptors (ORs). A detailed discussion of recent experimental results demonstrating the key role of metals in enhancing the response of human and other vertebrate ORs to specific odorants is presented against the backdrop of our knowledge of how the sense of smell functions both at the molecular and whole animal levels. This review emphasizes the role of metals in the detection of low molecular weight thiols, sulfides, and other organosulfur compounds, including those found in strong-smelling animal excretions and plant volatiles, and those used in gas odorization. Alternative theories of olfaction are described, with evidence favoring the modified "shape" theory. The use of quantum mechanical/molecular modeling (QM/MM), site-directed mutagenesis and saturation-transfer-difference (STD) NMR is discussed, providing support for biological studies of mouse and human receptors, MOR244-3 and OR OR2T11, respectively. Copper is bound at the active site of MOR244-3 by cysteine and histidine, while cysteine, histidine and methionine are involved with OR2T11. The binding pockets of these two receptors are found in different locations in the three-dimensional seven transmembrane models. Another recently deorphaned human olfactory receptor, OR2M3, highly selective for a thiol from onions, and a broadly-tuned thiol receptor, OR1A1, are also discussed. Other topics covered include the effects of nanoparticles and heavy metal toxicants on vertebrate and fish ORs, intranasal zinc products and the loss of smell (anosmia).
Collapse
Affiliation(s)
- Eric Block
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, USA.
| | | | | | | | | |
Collapse
|
9
|
Responsiveness of G protein-coupled odorant receptors is partially attributed to the activation mechanism. Proc Natl Acad Sci U S A 2015; 112:14966-71. [PMID: 26627247 DOI: 10.1073/pnas.1517510112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammals detect and discriminate numerous odors via a large family of G protein-coupled odorant receptors (ORs). However, little is known about the molecular and structural basis underlying OR response properties. Using site-directed mutagenesis and computational modeling, we studied ORs sharing high sequence homology but with different response properties. When tested in heterologous cells by diverse odorants, MOR256-3 responded broadly to many odorants, whereas MOR256-8 responded weakly to a few odorants. Out of 36 mutant MOR256-3 ORs, the majority altered the responses to different odorants in a similar manner and the overall response of an OR was positively correlated with its basal activity, an indication of ligand-independent receptor activation. Strikingly, a single mutation in MOR256-8 was sufficient to confer both high basal activity and broad responsiveness to this receptor. These results suggest that broad responsiveness of an OR is at least partially attributed to its activation likelihood.
Collapse
|
10
|
Fleischer J, Bumbalo R, Bautze V, Strotmann J, Breer H. Expression of odorant receptor Olfr78 in enteroendocrine cells of the colon. Cell Tissue Res 2015; 361:697-710. [DOI: 10.1007/s00441-015-2165-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
|
11
|
G protein-coupled odorant receptors underlie mechanosensitivity in mammalian olfactory sensory neurons. Proc Natl Acad Sci U S A 2014; 112:590-5. [PMID: 25550517 DOI: 10.1073/pnas.1418515112] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanosensitive cells are essential for organisms to sense the external and internal environments, and a variety of molecules have been implicated as mechanical sensors. Here we report that odorant receptors (ORs), a large family of G protein-coupled receptors, underlie the responses to both chemical and mechanical stimuli in mouse olfactory sensory neurons (OSNs). Genetic ablation of key signaling proteins in odor transduction or disruption of OR-G protein coupling eliminates mechanical responses. Curiously, OSNs expressing different OR types display significantly different responses to mechanical stimuli. Genetic swap of putatively mechanosensitive ORs abolishes or reduces mechanical responses of OSNs. Furthermore, ectopic expression of an OR restores mechanosensitivity in loss-of-function OSNs. Lastly, heterologous expression of an OR confers mechanosensitivity to its host cells. These results indicate that certain ORs are both necessary and sufficient to cause mechanical responses, revealing a previously unidentified mechanism for mechanotransduction.
Collapse
|
12
|
Abstract
Chemical communication plays an important role in the social lives of various mammalian species. Some of these chemicals are called pheromones. Rats release a specific odor into the air when stressed. This stress-related odor increases the anxiety levels of other rats; therefore, it is possible that the anxiety-causing molecules are present in the stress-related odorants. Here, we have tried to identify the responsible molecules by using the acoustic startle reflex as a bioassay system to detect anxiogenic activity. After successive fractionation of the stress-related odor, we detected 4-methylpentanal and hexanal in the final fraction that still possessed anxiogenic properties. Using synthetic molecules, we found that minute amounts of the binary mixture, but not either molecule separately, increased anxiety in rats. Furthermore, we determined that the mixture increased a specific type of anxiety and evoked anxiety-related behavioral responses in an experimental model that was different from the acoustic startle reflex. Analyses of neural mechanisms proposed that the neural circuit related to anxiety was only activated when the two molecules were simultaneously perceived by two olfactory systems. We concluded that the mixture is a pheromone that increases anxiety in rats. To our knowledge, this is the first study identifying a rat pheromone. Our results could aid further research on rat pheromones, which would enhance our understanding of chemical communication in mammals.
Collapse
|
13
|
Barrios AW, Sánchez-Quinteiro P, Salazar I. Dog and mouse: toward a balanced view of the mammalian olfactory system. Front Neuroanat 2014; 8:106. [PMID: 25309347 PMCID: PMC4174761 DOI: 10.3389/fnana.2014.00106] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/09/2014] [Indexed: 11/23/2022] Open
Abstract
Although the most intensively studied mammalian olfactory system is that of the mouse, in which olfactory chemical cues of one kind or another are detected in four different nasal areas [the main olfactory epithelium (MOE), the septal organ (SO), Grüneberg's ganglion, and the sensory epithelium of the vomeronasal organ (VNO)], the extraordinarily sensitive olfactory system of the dog is also an important model that is increasingly used, for example in genomic studies of species evolution. Here we describe the topography and extent of the main olfactory and vomeronasal sensory epithelia of the dog, and we report finding no structures equivalent to the Grüneberg ganglion and SO of the mouse. Since we examined adults, newborns, and fetuses we conclude that these latter structures are absent in dogs, possibly as the result of regression or involution. The absence of a vomeronasal component based on VR2 receptors suggests that the VNO may be undergoing a similar involutionary process.
Collapse
Affiliation(s)
| | | | - Ignacio Salazar
- Unit of Anatomy and Embryology, Department of Anatomy and Animal Production, Faculty of Veterinary, University of Santiago de CompostelaLugo, Spain
| |
Collapse
|
14
|
|
15
|
Zhao S, Tian H, Ma L, Yuan Y, Yu CR, Ma M. Activity-dependent modulation of odorant receptor gene expression in the mouse olfactory epithelium. PLoS One 2013; 8:e69862. [PMID: 23922828 PMCID: PMC3726745 DOI: 10.1371/journal.pone.0069862] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/12/2013] [Indexed: 01/15/2023] Open
Abstract
Activity plays critical roles in development and maintenance of the olfactory system, which undergoes considerable neurogenesis throughout life. In the mouse olfactory epithelium, each olfactory sensory neuron (OSN) stably expresses a single odorant receptor (OR) type out of a repertoire of ∼1200 and the OSNs with the same OR identity are distributed within one of the few broadly-defined zones. However, it remains elusive whether and how activity modulates such OR expression patterns. Here we addressed this question by investigating OR gene expression via in situ hybridization when sensory experience or neuronal excitability is manipulated. We first examined the expression patterns of fifteen OR genes in mice which underwent neonatal, unilateral naris closure. After four-week occlusion, the cell density in the closed (sensory-deprived) side was significantly lower (for four ORs), similar (for three ORs), or significantly higher (for eight ORs) as compared to that in the open (over-stimulated) side, suggesting that sensory inputs have differential effects on OSNs expressing different OR genes. We next examined the expression patterns of seven OR genes in transgenic mice in which mature OSNs had reduced neuronal excitability. Neuronal silencing led to a significant reduction in the cell density for most OR genes tested and thinner olfactory epithelium with an increased density of apoptotic cells. These results suggest that sensory experience plays important roles in shaping OR gene expression patterns and the neuronal activity is critical for survival of OSNs.
Collapse
Affiliation(s)
- Shaohua Zhao
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Huikai Tian
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Limei Ma
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Ying Yuan
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - C. Ron Yu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
Lapid H, Hummel T. Recording odor-evoked response potentials at the human olfactory epithelium. Chem Senses 2012; 38:3-17. [PMID: 22944611 DOI: 10.1093/chemse/bjs073] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electro-olfactogram (EOG) represents the sum of generator potentials of olfactory receptor neurons in response to an olfactory stimulus. Although this measurement technique has been used extensively in animal research, its use in human olfaction research has been relatively limited. To understand the promises and limitations of this technique, this review provides an overview of the olfactory epithelium structure and function, and summarizes EOG characteristics and conventions. It describes methodological pitfalls and their possible solutions, artifacts, and questions of debate in the field. In summary, EOG measurements provide a rare opportunity of recording neuronal input from the peripheral olfactory system, while simultaneously obtaining psychophysical responses in awake humans.
Collapse
Affiliation(s)
- Hadas Lapid
- Department of Neurobiology, Hebrew University of Jerusalem, Israel.
| | | |
Collapse
|
17
|
Abstract
Odorant receptors (ORs) in olfactory sensory neurons (OSNs) mediate detection of volatile odorants. Divalent sulfur compounds, such as thiols and thioethers, are extremely potent odorants. We identify a mouse OR, MOR244-3, robustly responding to (methylthio)methanethiol (MeSCH(2)SH; MTMT) in heterologous cells. Found specifically in male mouse urine, strong-smelling MTMT [human threshold 100 parts per billion (ppb)] is a semiochemical that attracts female mice. Nonadjacent thiol and thioether groups in MTMT suggest involvement of a chelated metal complex in MOR244-3 activation. Metal ion involvement in thiol-OR interactions was previously proposed, but whether these ions change thiol-mediated OR activation remained unknown. We show that copper ion among all metal ions tested is required for robust activation of MOR244-3 toward ppb levels of MTMT, structurally related sulfur compounds, and other metal-coordinating odorants (e.g., strong-smelling trans-cyclooctene) among >125 compounds tested. Copper chelator (tetraethylenepentamine, TEPA) addition abolishes the response of MOR244-3 to MTMT. Histidine 105, located in the third transmembrane domain near the extracellular side, is proposed to serve as a copper-coordinating residue mediating interaction with the MTMT-copper complex. Electrophysiological recordings of the OSNs in the septal organ, abundantly expressing MOR244-3, revealed neurons responding to MTMT. Addition of copper ion and chelator TEPA respectively enhanced and reduced the response of some MTMT-responding neurons, demonstrating the physiological relevance of copper ion in olfaction. In a behavioral context, an olfactory discrimination assay showed that mice injected with TEPA failed to discriminate MTMT. This report establishes the role of metal ions in mammalian odor detection by ORs.
Collapse
|
18
|
Ma M. Odor and pheromone sensing via chemoreceptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 739:93-106. [PMID: 22399397 DOI: 10.1007/978-1-4614-1704-0_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Evolutionally, chemosensation is an ancient but yet enigmatic sense. All organisms ranging from the simplest unicellular form to the most advanced multicellular creature possess the capability to detect chemicals in the surroundings. Conversely, all living things emit some forms of smells, either as communicating signals or as by-products of metabolism. Many species (from worms, insects to mammals) rely on the olfactory systems which express a large number of chemoreceptors to locate food and mates and to avoid danger. Most chemoreceptors expressed in olfactory organs are G-protein coupled receptors (GPCRs) and can be classified into two major categories: odorant receptors (ORs) and pheromone receptors, which principally detect general odors and pheromones, respectively. In vertebrates, these two types of receptors are often expressed in two distinct apparatuses: The main olfactory epithelium (MOE) and the vomeronasal organ (VNO), respectively. Each olfactory sensory neuron (OSN) in the MOE typically expresses one type of OR from a large repertoire. General odors activate ORs and their host OSNs (ranging from narrowly- to broadly-tuned) in a combinatorial manner and the information is sent to the brain via the main olfactory system leading to perception of smells. In contrast, pheromones stimulate relatively narrowly-tuned receptors and their host VNO neurons and the information is sent to the brain via the accessory olfactory system leading to behavioral and endocrinological changes. Recent studies indicate that the functional separation between these two systems is blurred in some cases and there are more subsystems serving chemosensory roles. This chapter focuses on the molecular and cellular mechanisms underlying odor and pheromone sensing in rodents, the best characterized vertebrate models.
Collapse
Affiliation(s)
- Minghong Ma
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
19
|
Changing Senses: Chemosensory Signaling and Primate Evolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 739:206-17. [DOI: 10.1007/978-1-4614-1704-0_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
|
20
|
Genetics of canine olfaction and receptor diversity. Mamm Genome 2011; 23:132-43. [PMID: 22080304 DOI: 10.1007/s00335-011-9371-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/23/2011] [Indexed: 01/06/2023]
Abstract
Olfaction is a particularly important sense in the dog. Humans selected for this capacity during the domestication process, and selection has continued to be employed to enhance this ability. In this review we first describe the different olfactory systems that exist and the different odorant receptors that are expressed in those systems. We then focus on the dog olfactory receptors by describing the olfactory receptor gene repertoire and its polymorphisms. Finally, we discuss the different uses of dog olfaction and the questions that still need to be studied.
Collapse
|
21
|
Sela L, Sobel N. Human olfaction: a constant state of change-blindness. Exp Brain Res 2010; 205:13-29. [PMID: 20603708 PMCID: PMC2908748 DOI: 10.1007/s00221-010-2348-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 06/21/2010] [Indexed: 12/01/2022]
Abstract
Paradoxically, although humans have a superb sense of smell, they don’t trust their nose. Furthermore, although human odorant detection thresholds are very low, only unusually high odorant concentrations spontaneously shift our attention to olfaction. Here we suggest that this lack of olfactory awareness reflects the nature of olfactory attention that is shaped by the spatial and temporal envelopes of olfaction. Regarding the spatial envelope, selective attention is allocated in space. Humans direct an attentional spotlight within spatial coordinates in both vision and audition. Human olfactory spatial abilities are minimal. Thus, with no olfactory space, there is no arena for olfactory selective attention. Regarding the temporal envelope, whereas vision and audition consist of nearly continuous input, olfactory input is discreet, made of sniffs widely separated in time. If similar temporal breaks are artificially introduced to vision and audition, they induce “change blindness”, a loss of attentional capture that results in a lack of awareness to change. Whereas “change blindness” is an aberration of vision and audition, the long inter-sniff-interval renders “change anosmia” the norm in human olfaction. Therefore, attentional capture in olfaction is minimal, as is human olfactory awareness. All this, however, does not diminish the role of olfaction through sub-attentive mechanisms allowing subliminal smells a profound influence on human behavior and perception.
Collapse
Affiliation(s)
- Lee Sela
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Noam Sobel
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, 76100 Israel
| |
Collapse
|
22
|
Abstract
The current consensus model in mammalian olfaction is that the detection of millions of odorants requires a large number of odorant receptors (ORs) and that each OR interacts selectively with a small subset of odorants, which are typically related in structure. Here, we report the odorant response properties of an OR that deviates from this model: SR1, a mouse OR that is abundantly expressed in sensory neurons of the septal organ and also of the main olfactory epithelium. Patch-clamp recordings reveal that olfactory sensory neurons (OSNs) that express SR1 respond to many, structurally unrelated odorants, and over a wide concentration range. Most OSNs expressing a gene-targeted SR1 locus that lacks the SR1 coding sequence do not show this broad responsiveness. Gene transfer in the heterologous expression system Hana3A confirms the broad response profile of SR1. There may be other mouse ORs with such broad response profiles.
Collapse
|
23
|
Kato A, Touhara K. Mammalian olfactory receptors: pharmacology, G protein coupling and desensitization. Cell Mol Life Sci 2009; 66:3743-53. [PMID: 19652915 PMCID: PMC11115879 DOI: 10.1007/s00018-009-0111-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/10/2009] [Accepted: 07/15/2009] [Indexed: 12/14/2022]
Abstract
The vertebrate olfactory system recognizes and discriminates between thousands of structurally diverse odorants. Detection of odorants in mammals is mediated by olfactory receptors (ORs), which comprise the largest superfamily of G protein-coupled receptors (GPCRs). Upon odorant binding, ORs couple to G proteins, resulting in an increase in intracellular cAMP levels and subsequent receptor signaling. In this review, we will discuss recently published studies outlining the molecular basis of odor discrimination, focusing on pharmacology, G protein activation, and desensitization of ORs. A greater understanding of the molecular mechanisms underlying OR activity may help in the discovery of agonists and antagonists of ORs, and of GPCRs with potential therapeutic applications.
Collapse
Affiliation(s)
- Aya Kato
- Department of Integrated Biosciences, The University of Tokyo, Room 201, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562 Japan
| | - Kazushige Touhara
- Department of Integrated Biosciences, The University of Tokyo, Room 201, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562 Japan
| |
Collapse
|
24
|
Salazar I, Quinteiro PS. The risk of extrapolation in neuroanatomy: the case of the Mammalian vomeronasal system. Front Neuroanat 2009; 3:22. [PMID: 19949452 PMCID: PMC2782799 DOI: 10.3389/neuro.05.022.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 10/05/2009] [Indexed: 12/13/2022] Open
Abstract
The sense of smell plays a crucial role in mammalian social and sexual behaviour, identification of food, and detection of predators. Nevertheless, mammals vary in their olfactory ability. One reason for this concerns the degree of development of their pars basalis rhinencephali, an anatomical feature that has been considered in classifying this group of animals as macrosmatic, microsmatic or anosmatic. In mammals, different structures are involved in detecting odours: the main olfactory system, the vomeronasal system (VNS), and two subsystems, namely the ganglion of Grüneberg and the septal organ. Here, we review and summarise some aspects of the comparative anatomy of the VNS and its putative relationship to other olfactory structures. Even in the macrosmatic group, morphological diversity is an important characteristic of the VNS, specifically of the vomeronasal organ and the accessory olfactory bulb. We conclude that it is a big mistake to extrapolate anatomical data of the VNS from species to species, even in the case of relatively close evolutionary proximity between them. We propose to study other mammalian VNS than those of rodents in depth as a way to clarify its exact role in olfaction. Our experience in this field leads us to hypothesise that the VNS, considered for all mammalian species, could be a system undergoing involution or regression, and could serve as one more integrated olfactory subsystem.
Collapse
Affiliation(s)
- Ignacio Salazar
- Unit of Anatomy and Embryology, Department of Anatomy and Animal Production, Faculty of Veterinary, University of Santiago de CompostelaLugo, Spain
| | - Pablo Sánchez Quinteiro
- Unit of Anatomy and Embryology, Department of Anatomy and Animal Production, Faculty of Veterinary, University of Santiago de CompostelaLugo, Spain
| |
Collapse
|
25
|
Abstract
Remarkable advances in our understanding of olfactory perception have been made in recent years, including the discovery of new mechanisms of olfactory signaling and new principles of olfactory processing. Here, we discuss the insight that has been gained into the receptors, cells, and circuits that underlie the sense of smell.
Collapse
Affiliation(s)
| | | | - John R. Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven 06520, USA
| |
Collapse
|
26
|
Abstract
The mammalian olfactory system senses an almost unlimited number of chemical stimuli and initiates a process of neural recognition that influences nearly every aspect of life. This review examines the organizational principles underlying the recognition of olfactory stimuli. The olfactory system is composed of a number of distinct subsystems that can be distinguished by the location of their sensory neurons in the nasal cavity, the receptors they use to detect chemosensory stimuli, the signaling mechanisms they employ to transduce those stimuli, and their axonal projections to specific regions of the olfactory forebrain. An integrative approach that includes gene targeting methods, optical and electrophysiological recording, and behavioral analysis has helped to elucidate the functional significance of this subsystem organization for the sense of smell.
Collapse
Affiliation(s)
- Steven D Munger
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | |
Collapse
|
27
|
Fleischer J, Breer H, Strotmann J. Mammalian olfactory receptors. Front Cell Neurosci 2009; 3:9. [PMID: 19753143 PMCID: PMC2742912 DOI: 10.3389/neuro.03.009.2009] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 08/07/2009] [Indexed: 11/30/2022] Open
Abstract
Perception of chemical stimuli from the environment is essential to most animals; accordingly, they are equipped with a complex olfactory system capable of receiving a nearly unlimited number of odorous substances and pheromones. This enormous task is accomplished by olfactory sensory neurons (OSNs) arranged in several chemosensory compartments in the nose. The sensitive and selective responsiveness of OSNs to odorous molecules and pheromones is based on distinct receptors in their chemosensory membrane; consequently, olfactory receptors play a key role for a reliable recognition and an accurate processing of chemosensory information. They are therefore considered as key elements for an understanding of the principles and mechanisms underlying the sense of smell. The repertoire of olfactory receptors in mammals encompasses hundreds of different receptor types which are highly diverse and expressed in distinct subcompartments of the nose. Accordingly, they are categorized into several receptor families, including odorant receptors (ORs), vomeronasal receptors (V1Rs and V2Rs), trace amine-associated receptors (TAARs), formyl peptide receptors (FPRs), and the membrane guanylyl cyclase GC-D. This large and complex receptor repertoire is the basis for the enormous chemosensory capacity of the olfactory system.
Collapse
Affiliation(s)
- Joerg Fleischer
- Institute of Physiology, University of Hohenheim Stuttgart, Germany
| | | | | |
Collapse
|
28
|
Klimmeck D, Daiber PC, Brühl A, Baumann A, Frings S, Möhrlen F. Bestrophin 2: an anion channel associated with neurogenesis in chemosensory systems. J Comp Neurol 2009; 515:585-99. [PMID: 19480000 DOI: 10.1002/cne.22075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The chemosensory neuroepithelia of the vertebrate olfactory system share a life-long ability to regenerate. Novel neurons proliferate from basal stem cells that continuously replace old or damaged sensory neurons. The sensory neurons of the mouse and rat olfactory system specifically express bestrophin 2, a member of the bestrophin family of calcium-activated chloride channels. This channel was recently proposed to operate as a transduction channel in olfactory sensory cilia. We raised a polyclonal antibody against bestrophin 2 and characterized the expression pattern of this protein in the mouse main olfactory epithelium, septal organ of Masera, and vomeronasal organ. Comparison with the maturation markers growth-associated protein 43 and olfactory marker protein revealed that bestrophin 2 was expressed in developing sensory neurons of all chemosensory neuroepithelia, but was restricted to proximal cilia in mature sensory neurons. Our results suggest that bestrophin 2 plays a critical role during differentiation and growth of axons and cilia. In mature olfactory receptor neurons, it appears to support growth and function of sensory cilia.
Collapse
Affiliation(s)
- Daniel Klimmeck
- Department of Molecular Physiology, Institute of Zoology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
In recent years, considerable progress has been achieved in the comprehension of the profound effects of pheromones on reproductive physiology and behavior. Pheromones have been classified as molecules released by individuals and responsible for the elicitation of specific behavioral expressions in members of the same species. These signaling molecules, often chemically unrelated, are contained in body fluids like urine, sweat, specialized exocrine glands, and mucous secretions of genitals. The standard view of pheromone sensing was based on the assumption that most mammals have two separated olfactory systems with different functional roles: the main olfactory system for recognizing conventional odorant molecules and the vomeronasal system specifically dedicated to the detection of pheromones. However, recent studies have reexamined this traditional interpretation showing that both the main olfactory and the vomeronasal systems are actively involved in pheromonal communication. The current knowledge on the behavioral, physiological, and molecular aspects of pheromone detection in mammals is discussed in this review.
Collapse
|
30
|
Abstract
Sensing the chemical environment is critical for all organisms. Diverse animals from insects to mammals utilize highly organized olfactory system to detect, encode, and process chemostimuli that may carry important information critical for health, survival, social interactions and reproduction. Therefore, for animals to properly interpret and react to their environment it is imperative that the olfactory system recognizes chemical stimuli with appropriate selectivity and sensitivity. Because olfactory receptor proteins play such an essential role in the specific recognition of diverse stimuli, understanding how they interact with and transduce their cognate ligands is a high priority. In the nearly two decades since the discovery that the mammalian odorant receptor gene family constitutes the largest group of G protein-coupled receptor (GPCR) genes, much attention has been focused on the roles of GPCRs in vertebrate and invertebrate olfaction. However, is has become clear that the 'family' of olfactory receptors is highly diverse, with roles for enzymes and ligand-gated ion channels as well as GPCRs in the primary detection of olfactory stimuli.
Collapse
Affiliation(s)
- Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
31
|
Better smelling through genetics: mammalian odor perception. Curr Opin Neurobiol 2008; 18:364-9. [PMID: 18938244 PMCID: PMC2590501 DOI: 10.1016/j.conb.2008.09.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 09/22/2008] [Indexed: 11/21/2022]
Abstract
The increasing availability of genomic and genetic tools to study olfaction-the sense of smell-has brought important new insights into how this chemosensory modality functions in different species. Newly sequenced mammalian genomes-from platypus to dog-have made it possible to infer how smell has evolved to suit the needs of a given species and how variation within a species may affect individual olfactory perception. This review will focus on recent advances in the genetics and genomics of mammalian smell, with a primary focus on rodents and humans.
Collapse
|
32
|
Activity plays a role in eliminating olfactory sensory neurons expressing multiple odorant receptors in the mouse septal organ. Mol Cell Neurosci 2008; 38:484-8. [PMID: 18538580 DOI: 10.1016/j.mcn.2008.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/04/2008] [Accepted: 04/09/2008] [Indexed: 01/13/2023] Open
Abstract
A fundamental belief in the field of olfaction is that each olfactory sensory neuron (OSN) expresses only one odorant receptor (OR) type. Here we report that coexpression of multiple receptors in single neurons does occur at a low frequency. This was tested by double in situ hybridization in the septal organ in which greater than 90% of the sensory neurons express one of nine identified ORs. Notably, the coexpression frequency is nearly ten times higher in newborn than in young adult mice, suggesting a reduction of the sensory neurons with multiple ORs during postnatal development. In addition, such reduction is prevented by four-week sensory deprivation or impaired apoptosis. Furthermore, the high coexpression frequency is restored following four-week naris closure performed in young adult mice. The results indicate that activity induced by sensory inputs plays a role in ensuring the one cell-one receptor rule in a subset of olfactory sensory neurons.
Collapse
|
33
|
Abstract
Most animals have evolved multiple olfactory systems to detect general odors as well as social cues. The sophistication and interaction of these systems permit precise detection of food, danger, and mates, all crucial elements for survival. In most mammals, the nose contains two well described chemosensory apparatuses (the main olfactory epithelium and the vomeronasal organ), each of which comprises several subtypes of sensory neurons expressing distinct receptors and signal transduction machineries. In many species (e.g., rodents), the nasal cavity also includes two spatially segregated clusters of neurons forming the septal organ of Masera and the Grueneberg ganglion. Results of recent studies suggest that these chemosensory systems perceive diverse but overlapping olfactory cues and that some neurons may even detect the pressure changes carried by the airflow. This review provides an update on how chemosensory neurons transduce chemical (and possibly mechanical) stimuli into electrical signals, and what information each system brings into the brain. Future investigation will focus on the specific ligands that each system detects with a behavioral context and the processing networks that each system involves in the brain. Such studies will lead to a better understanding of how the multiple olfactory systems, acting in concert, offer a complete representation of the chemical world.
Collapse
Affiliation(s)
- Minghong Ma
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
34
|
Tian H, Ma M. Differential development of odorant receptor expression patterns in the olfactory epithelium: a quantitative analysis in the mouse septal organ. Dev Neurobiol 2008; 68:476-86. [PMID: 18214836 PMCID: PMC2266684 DOI: 10.1002/dneu.20612] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The rodent olfactory epithelium expresses more than 1000 odorant receptors (ORs) with distinct patterns, yet it is unclear how such patterns are established during development. In the current study, we investigated development of the expression patterns of different ORs in the septal organ, a small patch of olfactory epithelium predominantly expressing nine identified ORs. The presumptive septal organ first appears at about embryonic day 16 (E16) and it completely separates from the main olfactory epithelium (MOE) at about postnatal day 7 (P7). Using in situ hybridization, we quantified the densities of the septal organ neurons labeled by specific RNA probes of the nine abundant OR genes from E16 to postnatal 3 months. The results indicate that olfactory sensory neurons (OSNs) expressing different ORs have asynchronous temporal onsets. For instance, MOR256-17 and MOR236-1 cells are present in the septal organ at E16; however, MOR0-2 cells do not appear until P0. In addition, OSNs expressing different ORs show distinct developmental courses and reach their maximum densities at different stages ranging from E16 (e.g. MOR256-17) to 1 month (e.g. MOR256-3 and MOR235-1). Furthermore, early onset does not correlate with high abundance in adult. This study reveals a dynamic composition of the OSNs expressing different ORs in the developing olfactory epithelium.
Collapse
Affiliation(s)
- Huikai Tian
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
35
|
Walz A, Feinstein P, Khan M, Mombaerts P. Axonal wiring of guanylate cyclase-D-expressing olfactory neurons is dependent on neuropilin 2 and semaphorin 3F. Development 2007; 134:4063-72. [PMID: 17942483 DOI: 10.1242/dev.008722] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The olfactory system of the mouse includes several subsystems that project axons from the olfactory epithelium to the olfactory bulb. Among these is a subset of neurons that do not express the canonical pathway of olfactory signal transduction, but express guanylate cyclase-D (GC-D). These GC-D-positive (GC-D+) neurons are not known to express odorant receptors. Axons of GC-D+ neurons project to the necklace glomeruli, which reside between the main and accessory olfactory bulbs. To label the subset of necklace glomeruli that receive axonal input from GC-D+ neurons, we generated two strains of mice with targeted mutations in the GC-D gene (Gucy2d). These mice co-express GC-D with an axonal marker, tau-beta-galactosidase or tauGFP, by virtue of a bicistronic strategy that leaves the coding region of the Gucy2d gene intact. With these strains, the patterns of axonal projections of GC-D+ neurons to necklace glomeruli can be visualized in whole mounts. We show that deficiency of one of the neuropilin 2 ligands of the class III semaphorin family, Sema3f, but not Sema3b, phenocopies the loss of neuropilin 2 (Nrp2) for axonal wiring of GC-D+ neurons. Some glomeruli homogeneously innervated by axons of GC-D+ neurons form ectopically within the glomerular layer, across wide areas of the main olfactory bulb. Similarly, axonal wiring of some vomeronasal sensory neurons is perturbed by a deficiency of Nrp2 or Sema3f, but not Sema3b or Sema3c. Our findings provide genetic evidence for a Nrp2-Sema3f interaction as a determinant of the wiring of axons of GC-D+ neurons into the unusual configuration of necklace glomeruli.
Collapse
Affiliation(s)
- Andreas Walz
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
36
|
Young JM, Waters H, Dong C, Fülle HJ, Liman ER. Degeneration of the olfactory guanylyl cyclase D gene during primate evolution. PLoS One 2007; 2:e884. [PMID: 17849013 PMCID: PMC1964805 DOI: 10.1371/journal.pone.0000884] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 08/20/2007] [Indexed: 02/04/2023] Open
Abstract
Background The mammalian olfactory system consists of several subsystems that detect specific sets of chemical cues and underlie a variety of behavioral responses. Within the main olfactory epithelium at least three distinct types of chemosensory neurons can be defined by their expression of unique sets of signal transduction components. In rodents, one set of neurons expresses the olfactory-specific guanylyl cyclase (GC)-D gene (Gucy2d, guanylyl cyclase 2d) and other cell-type specific molecules. GC-D-positive neurons project their axons to a small group of atypical “necklace” glomeruli in the olfactory bulb, some of which are activated in response to suckling in neonatal rodents and to atmospheric CO2 in adult mice. Because GC-D is a pseudogene in humans, signaling through this system appears to have been lost at some point in primate evolution. Principal Findings Here we used a combination of bioinformatic analysis of trace-archive and genome-assembly data and sequencing of PCR-amplified genomic DNA to determine when during primate evolution the functional gene was lost. Our analysis reveals that GC-D is a pseudogene in a large number of primate species, including apes, Old World and New World monkeys and tarsier. In contrast, the gene appears intact and has evolved under purifying selection in mouse, rat, dog, lemur and bushbaby. Conclusions These data suggest that signaling through GC-D-expressing cells was probably compromised more than 40 million years ago, prior to the divergence of New World monkeys from Old World monkeys and apes, and thus cannot be involved in chemosensation in most primates.
Collapse
Affiliation(s)
- Janet M. Young
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail: (EL), (JY)
| | - Hang Waters
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Cora Dong
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Hans-Jürgen Fülle
- Departments of Cell and Neurobiology and Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Emily R. Liman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
- Program in Neuroscience, University of Southern California, Los Angeles, California, United States of America
- * To whom correspondence should be addressed. E-mail: (EL), (JY)
| |
Collapse
|
37
|
Zheng-Fischhöfer Q, Schnichels M, Dere E, Strotmann J, Loscher N, McCulloch F, Kretz M, Degen J, Reucher H, Nagy JI, Peti-Peterdi J, Huston JP, Breer H, Willecke K. Characterization of connexin30.3-deficient mice suggests a possible role of connexin30.3 in olfaction. Eur J Cell Biol 2007; 86:683-700. [PMID: 17728008 DOI: 10.1016/j.ejcb.2007.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 01/05/2007] [Accepted: 01/08/2007] [Indexed: 12/31/2022] Open
Abstract
We have generated connexin30.3-deficient mice in which the coding region of the connexin30.3 gene was replaced by the lacZ reporter gene. The expression pattern of this connexin was characterized using beta-galactosidase staining and immunoblot analyses. In skin, beta-galactosidase/connexin30.3 protein was expressed in the spinous and granulous layers of the epidermis. Specific beta-galactosidase/connexin30.3 expression was also detected in the thin ascending limb of Henle's loop in the kidney. In addition, we found beta-galactosidase/connexin30.3 in progenitor cells of the olfactory epithelium and in a subpopulation of cells in the apical layer of the vomeronasal organ. Connexin30.3-deficient mice were fertile and displayed no abnormalities in the skin or in the chemosensory systems. Furthermore, they showed normal auditory thresholds as measured by brain stem evoked potentials. These mice did, however, exhibit reduced behavioural responses to a vanilla scent.
Collapse
|
38
|
Abstract
Systematic mapping studies involving 365 odorant chemicals have shown that glomerular responses in the rat olfactory bulb are organized spatially in patterns that are related to the chemistry of the odorant stimuli. This organization involves the spatial clustering of principal responses to numerous odorants that share key aspects of chemistry such as functional groups, hydrocarbon structural elements, and/or overall molecular properties related to water solubility. In several of the clusters, responses shift progressively in position according to odorant carbon chain length. These response domains appear to be constructed from orderly projections of sensory neurons in the olfactory epithelium and may also involve chromatography across the nasal mucosa. The spatial clustering of glomerular responses may serve to "tune" the principal responses of bulbar projection neurons by way of inhibitory interneuronal networks, allowing the projection neurons to respond to a narrower range of stimuli than their associated sensory neurons. When glomerular activity patterns are viewed relative to the overall level of glomerular activation, the patterns accurately predict the perception of odor quality, thereby supporting the notion that spatial patterns of activity are the key factors underlying that aspect of the olfactory code. A critical analysis suggests that alternative coding mechanisms for odor quality, such as those based on temporal patterns of responses, enjoy little experimental support.
Collapse
Affiliation(s)
- Brett A Johnson
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA.
| | | |
Collapse
|
39
|
Abstract
The main olfactory epithelium of the mouse is a mosaic of 2000 populations of olfactory sensory neurons (OSNs). Each population expresses one allele of one of the 1000 intact odorant receptor (OR) genes. An OSN projects a single unbranched axon to a single glomerulus, from an array of 1600-1800 glomeruli in the main olfactory bulb. Within a glomerulus the OSN axon synapses with the dendrites of second-order neurons and interneurons. Axons of OSNs that express the same OR project to the same glomeruli-typically one glomerulus per half-bulb and thus four glomeruli per mouse. These glomeruli are located at characteristic positions within the glomerular layer of the bulb. ORs determine both the odorant response profile of the OSN and the projection of its axon to a specific glomerulus. I focus on genetic approaches to the axonal wiring problem, particularly on how ORs may function in axonal wiring.
Collapse
|
40
|
Lévai O, Feistel T, Breer H, Strotmann J. Cells in the vomeronasal organ express odorant receptors but project to the accessory olfactory bulb. J Comp Neurol 2006; 498:476-90. [PMID: 16874801 DOI: 10.1002/cne.21067] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent evidence indicates that the vomeronasal organ (VNO) of mice not only responds to pheromones but also to odorants. To analyze whether genes encoding odorant receptors (ORs) are expressed in the VNO, reverse transcriptase-polymerase chain reaction analyses were performed. These led to the identification of 44 different OR genes, comprising class-I and class-II receptors. The genes encoding these receptors were scattered over several gene clusters. The respective OR genes were concomitantly expressed in cells of the main olfactory epithelium (MOE). Although the cells in the MOE were zonally distributed, no such patterns were displayed in the VNO. Cells expressing ORs in the VNO were positive for the TRP2-channel and Galphai, a marker for vomeronasal neurons of the apical layer. In transgenic mice, which coexpress histological markers with the receptor mOR18-2, characteristic morphological differences between cells expressing this receptor in the VNO compared with the MOE became evident. Visualizing the axonal processes of VNO cells expressing distinct ORs revealed that they project to the accessory olfactory bulb (AOB). Axon fibers were visible exclusively in the anterior subdomain; here, they converged into glomerular-like structures positioned at the very rostral tip of the AOB. The findings that a set of ORs is expressed in cells located in the apical layer of the VNO with typical features of VNO sensory neurons that project their axons to the anterior part of the AOB suggest that this population of sensory cells may be considered as a unique facet of the complex chemosensory system.
Collapse
Affiliation(s)
- Olga Lévai
- University of Hohenheim, Institute of Physiology, 70593 Stuttgart, Germany
| | | | | | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Patients with advanced head and neck cancer are being treated with chemo-radiotherapy, and life is being prolonged, with or without persistent disease, for longer than was previously. Hypercalcaemia may present in patients with advanced or disseminated head and neck cancer, and, as such, these patients may present to a larger variety of clinicians for advice concerning their symptoms and illness. Modes of presentation of hypercalcaemia and treatment strategies are reviewed. RECENT FINDINGS There were previously few large series of head and neck cancer patients diagnosed with hypercalcaemia, which may or may not have been related to their cancer being treated. Investigations, by way of blood/serum calcium level, may identify such patients. Patients with cancer-related hypercalcaemia have a poor prognosis, but many may respond temporarily to treatment when offered, with an improvement of their quality of life and death. SUMMARY Hypercalcaemia should and must be considered in all patients who have or possibly have a diagnosis of a head and neck cancer and who present unwell with symptoms of fatigue, lethargy and somnolence. Investigation must include serum calcium (corrected for serum albumin binding) and parathyroid hormone level. Patients may be treated by a combination of rehydration and bisulphonate therapy until the serum calcium is reduced to a level below 3 mmol/l. The majority of patients diagnosed with hypercalcaemia due to head and neck malignancy die of their diseases in the short term, but some may enjoy a prolongation of life with reasonable quality if diagnosed and treated aggressively.
Collapse
Affiliation(s)
- Patrick J Bradley
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital, Nottingham, UK.
| |
Collapse
|
42
|
Abstract
Olfactory sensory neuron (OSN) axonal extension and targeting occur within the olfactory nerve layer (ONL) of the olfactory bulb (OB). The ONL can be differentiated into sublaminae: the outer (ONLo), where axons broadly target regions of the OB in tight fascicles, and inner (ONLi), where axons perform final targeting in loosely organized fascicles. During perinatal development, cadherin-2 and its binding partner, gamma-catenin, are preferentially expressed by OSN axons in the ONLo vs. the ONLi. Given the expression of these cytoskeleton-associated molecules, we hypothesized that cytoskeletal elements of OSN axons may be differentially expressed across the ONL. We therefore examined cytoskeletal organization of OSN axons in the ONL, focusing on the day of birth (P0). We show that microfilaments, microtubules, and the intermediate filament (IF) vimentin are homogeneously expressed across the ONL at P0. In contrast, the IFs peripherin and alpha-internexin are preferentially localized to the ONLo at P0, with alpha-internexin expressed by a restricted subset of OSNs. We also show that OSN axons in the ONLo are significantly smaller than those in the ONLi. The data demonstrate that, as OSN axons begin to exit the ONLo and target a specific region of the OB, there is a down-regulation of cytoskeletal elements and bound extracellular adhesion molecules. The increase in axon diameter may reflect additional mechanisms involved in glomerular targeting or the formation of the large terminal boutons of OSN axons within glomeruli.
Collapse
Affiliation(s)
- Michael R. Akins
- Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Charles A. Greer
- Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, Connecticut 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
43
|
Schoenfeld TA, Cleland TA. Anatomical contributions to odorant sampling and representation in rodents: zoning in on sniffing behavior. Chem Senses 2005; 31:131-44. [PMID: 16339266 DOI: 10.1093/chemse/bjj015] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Odorant sampling behaviors such as sniffing bring odorant molecules into contact with olfactory receptor neurons (ORNs) to initiate the sensory mechanisms of olfaction. In rodents, inspiratory airflow through the nose is structured and laminar; consequently, the spatial distribution of adsorbed odorant molecules during inspiration is predictable. Physicochemical properties such as water solubility and volatility, collectively called sorptiveness, interact with behaviorally regulable variables such as inspiratory flow rate to determine the pattern of odorant deposition along the inspiratory path. Populations of ORNs expressing the same odorant receptor are distributed in strictly delimited regions along this inspiratory path, enabling different deposition patterns of the same odorant to evoke different patterns of neuronal activation across the olfactory epithelium and in the olfactory bulb. We propose that both odorant sorptive properties and the regulation of sniffing behavior may contribute to rodents' olfactory capacities by this mechanism. In particular, we suggest that the motor regulation of sniffing behavior is substantially utilized for purposes of "zonation" or the direction of odorant molecules to defined intranasal regions and hence toward distinct populations of receptor neurons, pursuant to animals' sensory goals.
Collapse
Affiliation(s)
- Thomas A Schoenfeld
- Department of Physiology and Program in Neuroscience, University of Massachusetts Medical School, Biotech 4, 377 Plantation Street, Worcester, MA 01605, USA.
| | | |
Collapse
|
44
|
Fuss SH, Omura M, Mombaerts P. The Grueneberg ganglion of the mouse projects axons to glomeruli in the olfactory bulb. Eur J Neurosci 2005; 22:2649-54. [PMID: 16307607 DOI: 10.1111/j.1460-9568.2005.04468.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
First described in 1973, the Grueneberg ganglion (GG) is an arrow-shaped neuronal structure at the anterior end of the nasal cavity. It lines both sides of the nasal septum, within the nasal vestibule, close to the opening of the naris. The functions of the GG and the pattern of projections to the brain are not known. Here, we report that neurons of the mouse GG express olfactory marker protein, which is normally expressed in mature olfactory or vomeronasal sensory neurons. The approx. 500 cells in each GG are arranged in several densely packed cell clusters. Individual cells give rise to single axons, which fasciculate to form a nerve bundle that projects caudally. The axons terminate in glomeruli of the olfactory bulb, one or two large glomeruli associated with a semicircle of up to 10 smaller, somewhat diffusely organized glomeruli that surround the most anterior part of the accessory olfactory bulb. Development of the GG starts around embryonic day 16 and appears to be completed at birth; cell numbers then undergo a minor decrease during postnatal development. The strategic location of the GG, expression of olfactory marker protein, axonal projections to glomeruli at particular locations in the olfactory bulb and early development suggest that this neuronal structure performs specific chemosensory functions at neonatal stages.
Collapse
Affiliation(s)
- Stefan H Fuss
- The Rockefeller University, 1230 York Avenue, Box 242, New York, NY 10021, USA
| | | | | |
Collapse
|
45
|
Ishii T, Omura M, Mombaerts P. Protocols for two- and three-color fluorescent RNA in situ hybridization of the main and accessory olfactory epithelia in mouse. ACTA ACUST UNITED AC 2005; 33:657-69. [PMID: 16217621 DOI: 10.1007/s11068-005-3334-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 02/16/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
The main and accessory olfactory epithelia of the mouse are composed of many cell populations. Each sensory neuron is thought to express one allele of one of the approximately 1000 odorant or approximately 300 vomeronasal receptor genes. Sensory neurons die and are replaced by new neurons that differentiate from precursor cells throughout the lifetime of the individual. Neuronal replacement is asynchronous, resulting in the co-existence of cells at various stages of differentiation. Receptor gene diversity and ongoing neuronal differentiation produce complex mosaics of gene expression within these epithelia. Accurate description of gene expression patterns will facilitate the understanding of mechanisms of gene choice and differentiation. Here we report a detailed protocol for two- and three-color fluorescent RNA in situ hybridization (ISH) and its combination with immunohistochemistry, or detection of bromodeoxyuridine (BrdU)-incorporated DNA after labeling. The protocol is applied to cryosections of the main and accessory olfactory epithelia in mouse.
Collapse
|