1
|
Sato W, Kochiyama T, Uono S. Neural Electrical Correlates of Subjective Happiness. Hum Brain Mapp 2025; 46:e70224. [PMID: 40421899 DOI: 10.1002/hbm.70224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/17/2025] [Accepted: 04/27/2025] [Indexed: 05/28/2025] Open
Abstract
Happiness is a subjective experience that can serve as the ultimate goal for humans. A recent study that employed resting-state functional magnetic resonance imaging (fMRI) reported that spontaneous fluctuation (fractional amplitude of low-frequency fluctuation: fALFF) in the precuneus is negatively associated with subjective happiness. However, little is known about the neural electrical correlates of subjective happiness, which can provide direct evidence of neural activity and insights regarding the underlying psychological, cellular, and neurotransmitter mechanisms. Therefore, we measured 400-channel whole-head magnetoencephalography (MEG) during resting state in participants whose subjective happiness was evaluated using questionnaires. We conducted source reconstruction analysis utilizing bandpass-filtered MEG data and analyzed the fALFF of the band-limited power time series as an index of spontaneous neural fluctuation. Gamma-band fALFF values in the right precuneus were negatively associated with subjective happiness scores (partial correlation coefficient = -0.56). These findings indicate that subjective happiness has a neural electrical correlate of reduced spontaneous fluctuation of gamma-band neuronal oscillations in the right precuneus, and that it could be mediated by a reduction in wandering, clinging self-consciousness through heightened N-methyl-d-aspartate-dependent gamma-aminobutyric acid-ergic parvalbumin inhibitory interneuron activity.
Collapse
Affiliation(s)
- Wataru Sato
- Psychological Process Research Team, Guardian Robot Project, RIKEN, Kyoto, Japan
| | | | - Shota Uono
- Division of Disability Sciences, Institute of Human Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Deane KE, Binder DK, Razak KA. Cortical layer-specific abnormalities in auditory responses in a mouse model of Fragile X Syndrome. Neurobiol Dis 2025; 212:106963. [PMID: 40393552 DOI: 10.1016/j.nbd.2025.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025] Open
Abstract
Fragile X Syndrome (FXS) is a leading genetic cause of autism spectrum disorders (ASD)- associated behaviors, including sensory processing deficits. Sensory sensitivity and temporal processing deficits in the auditory domain will affect development of language and cognitive functions. The mouse model for FXS, Fmr1 KO, has shown remarkably similar auditory processing phenotypes to patients with FXS. In vitro cortical slice recordings show layer-specific differences in Fmr1 KO mouse local circuits, but it is unclear how these differences translate to changes in sensory processing. In this study, we used a depth multielectrode to record in vivo spikes and local field potentials across layers of the auditory cortex in Fmr1 KO and wildtype mice (WT), converting the latter to current source density (CSD) profiles for improved spatial resolution analysis. We observed reduced CSD sink amplitudes and inter-trial phase coherence, and an increase in trial-to-trial variability for temporally modulated stimuli in the KO mice. Results indicated a differential cortical layer pattern of activity in KO mice, with higher baseline gamma power in superficial and deep layers and higher resting delta and theta power in granular layers. Significantly elevated inter-trial variability was observed for CSD and spikes in KO mice. Auditory steady state responses to clicks or gaps at 40 Hz showed considerable trial-to-trial variability in a layer-specific manner in KO mice. Neural generators in the Fmr1 KO mouse auditory cortex failed to detect short gaps in noise, indicating severe temporal processing deficits. Altogether, this study indicates layer-specific cortical mechanisms of sensory hypersensitivity and temporal processing deficits in FXS.
Collapse
Affiliation(s)
- Katrina E Deane
- Psychology Department, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA
| | - Devin K Binder
- Graduate Neuroscience Program, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA; Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA
| | - Khaleel A Razak
- Psychology Department, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA; Graduate Neuroscience Program, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA.
| |
Collapse
|
3
|
Hussain A, Razak KA. Perineuronal net degradation causes a delayed change in resting and sound evoked responses in the mouse auditory cortex. Neuroscience 2025; 577:252-263. [PMID: 40389125 DOI: 10.1016/j.neuroscience.2025.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/30/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025]
Abstract
Perineuronal nets (PNNs) are extracellular matrix assemblies that preferentially cover parvalbumin-expressing (PV+) interneurons in the neocortex. PV+ cells and PNNs are impaired in a variety of neurodevelopmental disorders including Fragile X Syndrome and schizophrenia. In both of these disorders, electroencephalograph (EEG) recordings show similar phenotypes, including elevated resting gamma band power and reduced temporal fidelity in the 40 Hz auditory steady state response (ASSR). Whether there is a causal link between PNN integrity and EEG abnormalities remains unclear. We tested this link by recording EEG responses in the auditory cortex (AC) in wildtype mice in which PNNs were enzymatically degraded (Chondroitinase ABC or ChABC). EEGs were recorded at two different time points (4- or 14-days post injection, cross-sectional design). In comparison to saline control, ChABC injected mice showed a ∼50 % reduction in PNN density after 4-days. However, there was no difference in resting EEG power spectral density, auditory event-related potential amplitudes or ASSR temporal fidelity between saline and ChABC mice. At the 14-day time point, there was a recovery of PNN density in the AC. Interestingly, EEG responses were abnormal at this time point, with elevated gamma band activity and reduced ASSR temporal fidelity. Thus, the electrophysiological consequences of PNN loss are not seen acutely, but over a delayed time course, suggesting abnormal plasticity after a circuit perturbation. Taken together, these data indicate acute shaping of auditory cortical responses is less dependent on PNNs, but long-term stability of responses following a circuit perturbation depends on the integrity of PNNs.
Collapse
Affiliation(s)
- A Hussain
- Graduate Neuroscience Program, University of California, Riverside, USA
| | - K A Razak
- Graduate Neuroscience Program, University of California, Riverside, USA; Department of Psychology, University of California, Riverside, USA.
| |
Collapse
|
4
|
Li C, Xu X, Luo Q, Yang J, Shen P, Yuan X, Zhang X, Zhang L. A multilevel study on the genetic relationship between schizophrenia and inflammatory bowel disease. Hum Immunol 2025; 86:111330. [PMID: 40373620 DOI: 10.1016/j.humimm.2025.111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/17/2025]
Abstract
BACKGROUND Schizophrenia (SCZ) and Inflammatory Bowel Disease (IBD) represent significant clinical challenges, frequently co-morbid and potentially linked by a genetic correlation. However, the precise mechanism underlying this correlation remains elusive. METHODS we utilized genome-wide association study (GWAS) data for SCZ and IBD to evaluate their genetic correlation. Initially, we performed an overall assessment using Linkage Disequilibrium Score Regression (LDSC), Genetic Covariance Analysis (GNOVA), and High-Dimensional Likelihood (HDL) methods. Subsequently, we conducted a more detailed local analysis using the Local Analysis of Variant Association (LAVA) method. To quantify the genetic overlap between these traits, we employed the Conditional/Joint False Discovery Rate (cond/conjFDR) statistical framework. Finally, by integrating the conjFDR analysis with Multi-Trait GWAS (MTAG), we successfully identified multiple shared genetic loci, shedding light on the genetic intersection between these two traits. RESULTS At the genomic level, three independent methods confirmed the overall genetic correlation between SCZ and IBD, including CD and UC. Local genetic correlations were also observed across multiple chromosomal regions. At the single-nucleotide polymorphism (SNP) level, we performed a conjFDR analysis, which indicated a genetic overlap between the two traits. By integrating conjFDR analysis with MTAG, we successfully identified several shared genetic loci, including SLC39A8, BACH2, ZNF365, NOD2, PLCL1, and KIF21B. CONCLUSION The present study provides a novel perspective on the correlation between SCZ and IBD, potentially advancing the understanding of the genetic architecture and mechanisms of co-morbidities in both diseases.
Collapse
Affiliation(s)
- Chaofeng Li
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiaofeng Xu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qinghua Luo
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jingying Yang
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Pan Shen
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiao Yuan
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiaonan Zhang
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Leichang Zhang
- Department of Anorectal Surgery, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China; Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Jiangxi, China.
| |
Collapse
|
5
|
Sharma D, Lupkin SM, McGinty VB. Orbitofrontal High-Gamma Reflects Spike-Dissociable Value and Decision Mechanisms. J Neurosci 2025; 45:e0789242025. [PMID: 40032521 PMCID: PMC12079734 DOI: 10.1523/jneurosci.0789-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 12/06/2024] [Accepted: 02/09/2025] [Indexed: 03/05/2025] Open
Abstract
The orbitofrontal cortex (OFC) plays a crucial role in value-based decisions. While much is known about how OFC neurons represent values, far less is known about information encoded in OFC local field potentials (LFPs). LFPs are important because they can reflect subthreshold activity not directly coupled to spiking and because they are potential targets for less invasive forms of brain-machine interface (BMI). We recorded neural activity in the OFC of male macaques performing a two-option value-based decision task. We compared the value- and decision-coding properties of high-gamma LFPs (HG, 50-150 Hz) to the coding properties of spiking multiunit activity (MUA) recorded concurrently on the same electrodes. HG and MUA both represented the values of decision targets, but HG signals had value-coding features that were distinct from concurrently measured MUA. On average HG amplitude increased monotonically with value, whereas in MUA the value encoding was net neutral on average. HG encoded a signal consistent with a comparison between target values, a signal which was negligible in MUA. In individual channels, HG could predict choice outcomes more accurately than MUA; however, when channels were combined in a population-based decoder, MUA was more accurate than HG. In summary, HG signals reveal value-coding features in OFC that could not be observed from spiking activity, including representation of value comparisons and more accurate behavioral predictions. These results have implications for the role of OFC in value-based decisions and suggest that high-frequency LFPs may be a viable-or even preferable-target for BMIs to assist cognitive function.
Collapse
Affiliation(s)
- Dixit Sharma
- Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, Newark, New Jersey 07102
- Graduate Program in Neuroscience, Rutgers University - Newark, Newark, New Jersey 07102
| | - Shira M Lupkin
- Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, Newark, New Jersey 07102
- Graduate Program in Neuroscience, Rutgers University - Newark, Newark, New Jersey 07102
| | - Vincent B McGinty
- Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, Newark, New Jersey 07102
| |
Collapse
|
6
|
Norman AO, Farooq N, Sahni A, Tapia K, Breiner D, Razak KA, Ethell IM. Differential effects of sound repetition rate on auditory cortex development and behavior in fragile X syndrome mouse model. Exp Neurol 2025; 387:115184. [PMID: 39961384 DOI: 10.1016/j.expneurol.2025.115184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
Fragile X syndrome (FXS) is a leading genetic form of autism and intellectual disability that is associated with a loss-of-function mutation in the Fragile X messenger ribonucleoprotein 1 (Fmr1) gene. The Fmr1 knockout (KO) mouse model displays many aspects of FXS-related phenotypes and is used to study FXS pathophysiology. Sensory manipulations, such as sound exposure, are considered as a non-invasive approach to alleviate FXS phenotypes. However, it is unclear what specific sound attributes may have beneficial effects. In this study, we examined the effects of sound repetition rate on auditory cortex development and FXS-associated behaviors in a mouse model of FXS. KO and wild-type (WT) male littermates were exposed to 14 kHz pure tone trains with 1 Hz or 5 Hz repetition rates during postnatal day (P)9-P21 developmental period. We analyzed the effects of developmental sound exposure on PV cell development, cortical activity and exploratory behaviors in sound-exposed WT and KO mice. We found that parvalbumin (PV) cell density was lower in the auditory cortex (AuC) of KO compared to WT mice raised in sound-attenuated environment, but was increased following the exposure to both 1 Hz and 5 Hz sound trains. However, PV protein levels were upregulated only in AuC of 5 Hz rate exposed KO mice. Interestingly, analysis of baseline cortical activity using electroencephalography (EEG) recordings showed that sound attenuation or exposure to sound trains with 5 Hz, but not 1 Hz, repetition rates corrected enhanced resting state gamma power in AuC of KO mice to WT levels. In addition, sound attenuation and exposure to 5 Hz showed some beneficial effects on the synchronization to frequency-modulated chirp in the frontal cortex (FC) of both WT and KO mice. Analysis of event-related potentials (ERP) in response to broadband sound showed increased ongoing responses and decreased habituation to noise stimuli in the AuC and FC of naive KO mice. While sound-attenuation and exposure to 5 Hz showed no significant effects on the power of onset and ongoing responses, exposure to 1 Hz further enhanced ongoing responses and decreased habituation to sound in both WT and KO mice. Finally, developmental exposure to sound trains with 5 Hz, but not 1 Hz, repetition rates normalized exploratory behaviors and improved social novelty preference but not hyperactivity in KO mice. Summarizing, our results show that developmental exposure of mice to sound trains with 5 Hz, but not 1 Hz, repetition rate had beneficial effects on PV cell development, overall cortical activity and behaviors in KO mice. While sound attenuation alone normalized some EEG phenotypes, it did not improve PV development or behaviors. These findings may have a significant impact on developing new approaches to alleviate FXS phenotypes and open possibilities for a combination of sound exposure with drug treatment which may offer highly novel therapeutic approaches.
Collapse
Affiliation(s)
- A O Norman
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - N Farooq
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - A Sahni
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - K Tapia
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - D Breiner
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - K A Razak
- Graduate Neuroscience Program, University of California Riverside, Riverside, CA, USA; Department of Psychology, University of California Riverside, Riverside, CA, USA
| | - I M Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA; Graduate Neuroscience Program, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
7
|
Cao Q, Xu X, Wang X, He F, Lin Y, Guo D, Bai W, Guo B, Zheng X, Liu T. Mesoscale brain-wide fluctuation analysis: revealing ketamine's rapid antidepressant across multiple brain regions. Transl Psychiatry 2025; 15:155. [PMID: 40253356 PMCID: PMC12009331 DOI: 10.1038/s41398-025-03375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/16/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025] Open
Abstract
Depression has been linked to cortico-limbic brain regions, and ketamine is known for its rapid antidepressant effects. However, how these brain regions encode depression collaboratively and how ketamine regulates these regions to exert its prompt antidepressant effects through mesoscale brain-wide fluctuations remain elusive. In this study, we used a multidisciplinary approach, including multi-region in vivo recordings in mice, chronic social defeat stress (CSDS), and machine learning, to construct a Mesoscale Brain-Wide Fluctuation Analysis platform (MBFA-platform). This platform analyzes the mesoscale brain-wide fluctuations of multiple brain regions from the perspective of local field potential oscillations and network dynamics. The decoder results demonstrate that our MBFA platform can accurately classify the Control/CSDS and ketamine/saline-treated groups based on neural oscillation and network activities among the eight brain regions. We found that multiple-region LFPs patterns are disrupted in CSDS-induced social avoidance, with the basolateral amygdala playing a key role. Ketamine primarily exerts the compensatory effects through network dynamics, contributing to its rapid antidepressant effect. These findings highlight the MBFA platform as an interdisciplinary tool for revealing mesoscale brain-wide fluctuations underlying complex emotional pathologies, providing insights into the etiology of psychiatry. Furthermore, the platform's evaluation capabilities present a novel approach for psychiatric therapeutic interventions.
Collapse
Affiliation(s)
- Qingying Cao
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Xiaojun Xu
- Bioland Laboratory, Guangdong Province, Guangzhou, China
| | - Xinyu Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Fengkai He
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Yichao Lin
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Dongyong Guo
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenwen Bai
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xuyuan Zheng
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
8
|
Dubois AEE, Audet-Duchesne E, Knoth IS, Martin CO, Jizi K, Tamer P, Younis N, Jacquemont S, Dumas G, Lippé S. Genetic modulation of brain dynamics in neurodevelopmental disorders: the impact of copy number variations on resting-state EEG. Transl Psychiatry 2025; 15:139. [PMID: 40216767 PMCID: PMC11992136 DOI: 10.1038/s41398-025-03324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 01/21/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
Research has shown that many copy number variations (CNVs) increase the risk of neurodevelopmental disorders (e.g., autism, ADHD, schizophrenia). However, little is known about the effects of CNVs on brain development and function. Resting-state electroencephalography (EEG) is a suitable method to study the disturbances of neuronal functioning in CNVs. We aimed to determine whether there are resting-state EEG signatures that are characteristic of children with pathogenic CNVs. EEG resting-state brain activity of 109 CNV carriers (66 deletion carriers, 43 duplication carriers) aged 3 to 17 years was recorded for 4 minutes. To better account for developmental variations, EEG indices (power spectral density and functional connectivity) were corrected with a normative model estimated from 256 Healthy Brain Network controls. Results showed a decreased exponent of the aperiodic activity and a reduced alpha peak frequency in CNV carriers. Additionally, the study showed altered periodic components and connectivity in several frequency bands. Deletion and duplication carriers exhibited a similar overall pattern of deviations in spectral and connectivity measures, although the significance and effect sizes relative to the control group varied across frequency bands. Deletion and duplication carriers can be differentiated by their periodic power in the gamma band and connectivity in the low alpha band, with duplication carriers showing more disrupted alterations than deletion carriers. The distinctive alterations in spectral patterns were found to be most prominent during adolescence. The results suggest that CNV carriers show electrophysiological alterations compared to neurotypical controls, regardless of the gene dosage effect and their affected genomic region. At the same time, while duplications and deletions share common electrophysiological alterations, each exhibits distinct brain alteration signatures that reflect gene dosage-specific effects.
Collapse
Affiliation(s)
- Adrien E E Dubois
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, H3C 3J7, Canada
| | - Elisabeth Audet-Duchesne
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
- Department of Psychology, University of Montreal, Montreal, QC, H2V 2S9, Canada
| | - Inga Sophia Knoth
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
| | - Charles-Olivier Martin
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
| | - Khadije Jizi
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
| | - Petra Tamer
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
| | - Nadine Younis
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
| | - Sébastien Jacquemont
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada
- Department of Pediatrics, University de Montreal, Montreal, QC, H3T 1C5, Canada
| | - Guillaume Dumas
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada.
- Department of Psychiatry and Addictology, University of Montreal, Montreal, QC, H3T 1J4, Canada.
- Mila - Québec AI Institute, University of Montreal, Montreal, QC, Canada.
| | - Sarah Lippé
- Research Center of the Sainte-Justine Mother and Child University Hospital Center (CHU Sainte-Justine), Montreal, QC, H3T 1C5, Canada.
- Department of Psychology, University of Montreal, Montreal, QC, H2V 2S9, Canada.
| |
Collapse
|
9
|
Kornfeld-Sylla SS, Gelegen C, Norris JE, Chaloner FA, Lee M, Khela M, Heinrich MJ, Finnie PSB, Ethridge LE, Erickson CA, Schmitt LM, Cooke SF, Wilkinson CL, Bear MF. A human electrophysiological biomarker of Fragile X Syndrome is shared in V1 of Fmr1 KO mice and caused by loss of FMRP in cortical excitatory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644144. [PMID: 40166357 PMCID: PMC11957138 DOI: 10.1101/2025.03.19.644144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Predicting clinical therapeutic outcomes from preclinical animal studies remains an obstacle to developing treatments for neuropsychiatric disorders. Electrophysiological biomarkers analyzed consistently across species could bridge this divide. In humans, alpha oscillations in the resting state electroencephalogram (rsEEG) are altered in many disorders, but these disruptions have not yet been characterized in animal models. Here, we employ a uniform analytical method to show in males with fragile X syndrome (FXS) that the slowed alpha oscillations observed in adults are also present in children and in visual cortex of adult and juvenile Fmr1 -/y mice. We find that alpha-like oscillations in mice reflect the differential activity of two classes of inhibitory interneurons, but the phenotype is caused by deletion of Fmr1 specifically in cortical excitatory neurons. These results provide a framework for studying alpha oscillation disruptions across species, advance understanding of a critical rsEEG signature in the human brain and inform the cellular basis for a putative biomarker of FXS.
Collapse
|
10
|
Luo Q, An M, Wu Y, Wang J, Mao Y, Zhang L, Wang C. Genetic overlap between schizophrenia and constipation: insights from a genome-wide association study in a European population. Ann Gen Psychiatry 2025; 24:11. [PMID: 40033405 DOI: 10.1186/s12991-025-00551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Patients with schizophrenia (SCZ) experience constipation at significantly higher rates compared with the general population. This relationship suggests a potential genetic overlap between these two conditions. METHODS We analyzed genome-wide association study (GWAS) data for both SCZ and constipation using a five-part approach. The first and second parts assessed the overall and local genetic correlations using methods such as linkage disequilibrium score regression (LDSC) and heritability estimation from summary statistics (HESS). The third part investigated the causal association between the two traits using Mendelian randomization (MR). The fourth part employed conditional/conjunctional false discovery rate (cond/conjFDR) to analyze the genetic overlap with different traits based on the statistical theory. Finally, an LDSC-specifically expressed gene (LDSC-SEG) analysis was conducted to explore the tissue-level associations. RESULTS Our analyses revealed both overall and specific genetic correlations between SCZ and constipation at the genomic level. The MR analysis suggests a positive causal relationship between SCZ and constipation. The ConjFDR analysis confirms the genetic overlap between the two conditions and identifies two genetic risk loci (rs7583622 and rs842766) and seven mapped genes (GPR75-ASB3, ASB3, CHAC2, ERLEC1, GPR75, PSME4, and ACYP2). Further investigation into the functions of these genes could provide valuable insights. Interestingly, disease-related tissue analysis revealed associations between SCZ and constipation in eight brain regions (substantia nigra, anterior cingulate cortex, hypothalamus, cortex, hippocampus, cortex, amygdala, and spinal cord). CONCLUSION This study provides the first genetic evidence for the comorbidity of SCZ and constipation, enhancing our understanding of the pathophysiology of both conditions.
Collapse
Affiliation(s)
- Qinghua Luo
- Department of Anorectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Mingwei An
- Department of Anorectal Surgery, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yunxiang Wu
- Department of Anorectal Surgery, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jiawen Wang
- Department of Anorectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanting Mao
- Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Anorectal Surgery, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Leichang Zhang
- Department of Anorectal Surgery, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China.
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Jiangxi, China.
| | - Chen Wang
- Department of Anorectal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
11
|
Tao X, Croom K, Newman-Tancredi A, Varney M, Razak KA. Acute administration of NLX-101, a Serotonin 1A receptor agonist, improves auditory temporal processing during development in a mouse model of Fragile X Syndrome. J Neurodev Disord 2025; 17:1. [PMID: 39754065 PMCID: PMC11697955 DOI: 10.1186/s11689-024-09587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is a leading known genetic cause of intellectual disability and autism spectrum disorders (ASD)-associated behaviors. A consistent and debilitating phenotype of FXS is auditory hypersensitivity that may lead to delayed language and high anxiety. Consistent with findings in FXS human studies, the mouse model of FXS, the Fmr1 knock out (KO) mouse, shows auditory hypersensitivity and temporal processing deficits. In electroencephalograph (EEG) recordings from humans and mice, these deficits manifest as increased N1 amplitudes in event-related potentials (ERP), increased gamma band single trial power (STP) and reduced phase locking to rapid temporal modulations of sound. In our previous study, we found that administration of the selective serotonin-1 A (5-HT1A)receptor biased agonist, NLX-101, protected Fmr1 KO mice from auditory hypersensitivity-associated seizures. Here we tested the hypothesis that NLX-101 will normalize EEG phenotypes in developing Fmr1 KO mice. METHODS To test this hypothesis, we examined the effect of NLX-101 on EEG phenotypes in male and female wildtype (WT) and Fmr1 KO mice. Using epidural electrodes, we recorded auditory event related potentials (ERP) and auditory temporal processing with a gap-in-noise auditory steady state response (ASSR) paradigm at two ages, postnatal (P) 21 and 30 days, from both auditory and frontal cortices of awake, freely moving mice, following NLX-101 (at 1.8 mg/kg i.p.) or saline administration. RESULTS Saline-injected Fmr1 KO mice showed increased N1 amplitudes, increased STP and reduced phase locking to auditory gap-in-noise stimuli versus wild-type mice, reproducing previously published EEG phenotypes. An acute injection of NLX-101 did not alter ERP amplitudes at either P21 or P30, but significantly reduces STP at P30. Inter-trial phase clustering was significantly increased in both age groups with NLX-101, indicating improved temporal processing. The differential effects of serotonin modulation on ERP, background power and temporal processing suggest different developmental mechanisms leading to these phenotypes. CONCLUSIONS These results suggest that NLX-101 could constitute a promising treatment option for targeting post-synaptic 5-HT1A receptors to improve auditory temporal processing, which in turn may improve speech and language function in FXS.
Collapse
Affiliation(s)
- Xin Tao
- Graduate Neuroscience Program, University of California, Riverside, CA, USA
| | - Katilynne Croom
- Graduate Neuroscience Program, University of California, Riverside, CA, USA
| | | | | | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, CA, USA.
- Department of Psychology, University of California, 900 University Avenue, Riverside, CA, 92521, USA.
| |
Collapse
|
12
|
Hernandez J, Lina JM, Dubé J, Lafrenière A, Gagnon JF, Montplaisir JY, Postuma RB, Carrier J. Electroencephalogram rhythmic and arrhythmic spectral components and functional connectivity at resting state may predict the development of synucleinopathies in idiopathic rapid eye movement sleep behavior disorder. Sleep 2024; 47:zsae074. [PMID: 38497896 PMCID: PMC11632188 DOI: 10.1093/sleep/zsae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/25/2024] [Indexed: 03/19/2024] Open
Abstract
STUDY OBJECTIVES Idiopathic/isolated rapid eye movement-sleep behavior disorder (iRBD) often precedes the onset of synucleinopathies. Here, we investigated whether baseline resting-state EEG advanced spectral power and functional connectivity differed between iRBD patients who converted towards a synucleinopathy at follow-up and those who did not. METHODS Eighty-one participants with iRBD (66.89 ± 6.91 years) underwent a baseline resting-state EEG recording, a neuropsychological assessment, and a neurological examination. We estimated EEG power spectral density using standard analyses and derived spectral estimates of rhythmic and arrhythmic components. Global and pairwise EEG functional connectivity analyses were computed using the weighted phase-lag index (wPLI). Pixel-based permutation tests were used to compare groups. RESULTS After a mean follow-up of 5.01 ± 2.76 years, 34 patients were diagnosed with a synucleinopathy (67.81 ± 7.34 years) and 47 remained disease-free (65.53 ± 7.09 years). Among patients who converted, 22 were diagnosed with Parkinson's disease and 12 with dementia with Lewy bodies. As compared to patients who did not convert, patients who converted exhibited at baseline higher relative theta standard power, steeper slopes of the arrhythmic component and higher theta rhythmic power mostly in occipital regions. Furthermore, patients who converted showed higher beta global wPLI but lower alpha wPLI between left temporal and occipital regions. CONCLUSIONS Analyses of resting-state EEG rhythmic and arrhythmic components and functional connectivity suggest an imbalanced excitatory-to-inhibitory activity within large-scale networks, which is associated with later development of a synucleinopathy in patients with iRBD.
Collapse
Affiliation(s)
- Jimmy Hernandez
- Center for Advanced Research in Sleep Medicine, Research center, CIUSSS du Nord de l’Île-de-Montréal, Montreal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, Research center, CIUSSS du Nord de l’Île-de-Montréal, Montreal, QC, Canada
- Department of electrical engineering, École de technologie supérieure, Montreal, QC, Canada
| | - Jonathan Dubé
- Center for Advanced Research in Sleep Medicine, Research center, CIUSSS du Nord de l’Île-de-Montréal, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Alexandre Lafrenière
- Center for Advanced Research in Sleep Medicine, Research center, CIUSSS du Nord de l’Île-de-Montréal, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Jean-François Gagnon
- Center for Advanced Research in Sleep Medicine, Research center, CIUSSS du Nord de l’Île-de-Montréal, Montreal, QC, Canada
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
| | - Jacques-Yves Montplaisir
- Center for Advanced Research in Sleep Medicine, Research center, CIUSSS du Nord de l’Île-de-Montréal, Montreal, QC, Canada
- Department of psychiatry, Université de Montréal, Montreal, QC, Canada
| | - Ronald B Postuma
- Center for Advanced Research in Sleep Medicine, Research center, CIUSSS du Nord de l’Île-de-Montréal, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, QC, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Research center, CIUSSS du Nord de l’Île-de-Montréal, Montreal, QC, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
13
|
Jadhav V, Carreno-Munoz MI, Chehrazi P, Michaud JL, Chattopadhyaya B, Di Cristo G. Developmental Syngap1 Haploinsufficiency in Medial Ganglionic Eminence-Derived Interneurons Impairs Auditory Cortex Activity, Social Behavior, and Extinction of Fear Memory. J Neurosci 2024; 44:e0946242024. [PMID: 39406516 PMCID: PMC11622180 DOI: 10.1523/jneurosci.0946-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 12/06/2024] Open
Abstract
Mutations in SYNGAP1, a protein enriched at glutamatergic synapses, cause intellectual disability associated with epilepsy, autism spectrum disorder, and sensory dysfunctions. Several studies showed that Syngap1 regulates the time course of forebrain glutamatergic synapse maturation; however, the developmental role of Syngap1 in inhibitory GABAergic neurons is less clear. GABAergic neurons can be classified into different subtypes based on their morphology, connectivity, and physiological properties. Whether Syngap1 expression specifically in parvalbumin (PV)-expressing and somatostatin (SST)-expressing interneurons, which are derived from the medial ganglionic eminence (MGE), plays a role in the emergence of distinct brain functions remains largely unknown. We used genetic strategies to generate Syngap1 haploinsufficiency in (1) prenatal interneurons derived from the medial ganglionic eminence, (2) in postnatal PV cells, and (3) in prenatal SST interneurons. We further performed in vivo recordings and behavioral assays to test whether and how these different genetic manipulations alter brain function and behavior in mice of either sex. Mice with prenatal-onset Syngap1 haploinsufficiency restricted to Nkx2.1-expressing neurons show abnormal cortical oscillations and increased entrainment induced by 40 Hz auditory stimulation but lack stimulus-specific adaptation. This latter phenotype was reproduced in mice with Syngap1 haploinsufficiency restricted to PV, but not SST, interneurons. Prenatal-onset Syngap1 haploinsufficiency in Nkx2.1-expressing neurons led to impaired social behavior and inability to extinguish fear memories; however, neither postnatal PV- nor prenatal SST-specific mutant mice show these phenotypes. We speculate that Syngap1 haploinsufficiency in prenatal/perinatal PV interneurons may contribute to cortical activity and cognitive alterations associated with Syngap1 mutations.
Collapse
Affiliation(s)
- Vidya Jadhav
- CHU Sainte-Justine Azrieli Research Centre (CHUSJ), Montréal, Quebec H3T 1C5, Canada
- Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Maria Isabel Carreno-Munoz
- CHU Sainte-Justine Azrieli Research Centre (CHUSJ), Montréal, Quebec H3T 1C5, Canada
- Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Pegah Chehrazi
- CHU Sainte-Justine Azrieli Research Centre (CHUSJ), Montréal, Quebec H3T 1C5, Canada
- Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Jacques L Michaud
- CHU Sainte-Justine Azrieli Research Centre (CHUSJ), Montréal, Quebec H3T 1C5, Canada
- Department of Pediatrics, Université de Montréal, Montréal, Quebec H3T 1C5, Canada
| | | | - Graziella Di Cristo
- CHU Sainte-Justine Azrieli Research Centre (CHUSJ), Montréal, Quebec H3T 1C5, Canada
- Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| |
Collapse
|
14
|
Kokash J, Rumschlag JA, Razak KA. Cortical region-specific recovery of auditory temporal processing following noise-induced hearing loss. Neuroscience 2024; 560:143-157. [PMID: 39284433 DOI: 10.1016/j.neuroscience.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Noise-induced hearing loss (NIHL) studies have focused on the lemniscal auditory pathway, but little is known about how NIHL impacts different cortical regions. Here we compared response recovery trajectories in the auditory and frontal cortices (AC, FC) of mice following NIHL. We recorded EEG responses from awake mice (male n = 15, female n = 14) before and following NIHL (longitudinal design) to quantify event related potentials and gap-in-noise temporal processing. Hearing loss was verified by measuring the auditory brainstem response (ABR) before and at 1-, 10-, 23-, and 45-days after noise-exposure. Resting EEG, event related potentials (ERP) and auditory steady state responses (ASSR) were recorded at the same time-points after NIHL. The inter-trial phase coherence (ITPC) of the ASSR was measured to quantify the ability of AC and FC to synchronize responses to short gaps embedded in noise. Despite the absence of click-evoked ABRs up to 90 dB SPL and up to 45-days post-exposure, ERPs from the AC and FC showed full recovery in ∼ 50 % of the mice to pre-NIHL levels in both AC and FC. The ASSR ITPC was reduced following NIHL in AC and FC in all the mice on day 1 after NIHL. The AC showed full recovery of ITPC over 45-days. Despite ERP amplitude recovery, the FC does not show recovery of ASSR ITPC. These results indicate post-NIHL plasticity with similar response amplitude recovery across AC and FC, but cortical region-specific trajectories in temporal processing recovery.
Collapse
Affiliation(s)
- J Kokash
- Graduate Neuroscience Program, University of California, Riverside, United States
| | - J A Rumschlag
- Graduate Neuroscience Program, University of California, Riverside, United States
| | - K A Razak
- Graduate Neuroscience Program, University of California, Riverside, United States; Department of Psychology, University of California, Riverside, United States.
| |
Collapse
|
15
|
Olson RJ, Bartlett L, Sonneborn A, Milton R, Bretton-Granatoor Z, Firdous A, Harris AZ, Abbas AI. Decoupling of cortical activity from behavioral state following administration of the classic psychedelic DOI. Neuropharmacology 2024; 257:110030. [PMID: 38851531 PMCID: PMC11260522 DOI: 10.1016/j.neuropharm.2024.110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Administration or consumption of classic psychedelics (CPs) leads to profound changes in experience which are often described as highly novel and meaningful. They have shown substantial promise in treating depressive symptoms and may be therapeutic in other situations. Although research suggests that the therapeutic response is correlated with the intensity of the experience, the neural circuit basis for the alterations in experience caused by CPs requires further study. The medial prefrontal cortex (mPFC), where CPs have been shown to induce rapid, 5-HT2A receptor-dependent structural and neurophysiological changes, is believed to be a key site of action. To investigate the acute neural circuit changes induced by CPs, we recorded single neurons and local field potentials in the mPFC of freely behaving male mice after administration of the 5-HT2A/2C receptor-selective CP, 2,5-Dimethoxy-4-iodoamphetamine (DOI). We segregated recordings into active and rest periods in order to examine cortical activity during desynchronized (active) and synchronized (rest) states. We found that DOI induced a robust decrease in low frequency power when animals were at rest, attenuating the usual synchronization that occurs during less active behavioral states. DOI also increased broadband gamma power and suppressed activity in fast-spiking neurons in both active and rest periods. Together, these results suggest that the CP DOI induces persistent desynchronization in mPFC, including during rest when mPFC typically exhibits more synchronized activity. This shift in cortical dynamics may in part underlie the longer-lasting effects of CPs on plasticity, and may be critical to their therapeutic properties.
Collapse
Affiliation(s)
- Randall J Olson
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland OR 97239, USA
| | - Lowell Bartlett
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland OR 97239, USA
| | - Alex Sonneborn
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland OR 97239, USA
| | - Russell Milton
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland OR 97239, USA
| | | | - Ayesha Firdous
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10034, USA
| | - Alexander Z Harris
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10034, USA; Department of Psychiatry, Columbia University, New York, NY, 10034, USA
| | - Atheir I Abbas
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland OR 97239, USA; Department of Psychiatry, Oregon Health and Science University, Portland OR 97239, USA; VA Portland Health Care System, Portland OR, 97239, USA.
| |
Collapse
|
16
|
Kaboodvand N, Karimi H, Iravani B. Preparatory activity of anterior insula predicts conflict errors: integrating convolutional neural networks and neural mass models. Sci Rep 2024; 14:16682. [PMID: 39030222 PMCID: PMC11271609 DOI: 10.1038/s41598-024-67034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Preparatory brain activity is a cornerstone of proactive cognitive control, a top-down process optimizing attention, perception, and inhibition, fostering cognitive flexibility and adaptive attention control in the human brain. In this study, we proposed a neuroimaging-informed convolutional neural network model to predict cognitive control performance from the baseline pre-stimulus preparatory electrophysiological activity of core cognitive control regions. Particularly, combined with perturbation-based occlusion sensitivity analysis, we pinpointed regions with the most predictive preparatory activity for proactive cognitive control. We found that preparatory arrhythmic broadband neural dynamics in the right anterior insula, right precentral gyrus, and the right opercular part of inferior frontal gyrus (posterior ventrolateral prefrontal cortex), are highly predictive of prospective cognitive control performance. The pre-stimulus preparatory activity in these regions corresponds to readiness for conflict detection, inhibitory control, and overall elaborate attentional processing. We integrated the convolutional neural network with biologically inspired Jansen-Rit neural mass model to investigate neurostimulation effects on cognitive control. High-frequency stimulation (130 Hz) of the left anterior insula provides significant cognitive enhancement, especially in reducing conflict errors, despite the right anterior insula's higher predictive value for prospective cognitive control performance. Thus, effective neurostimulation targets may differ from regions showing biomarker activity. Finally, we validated our theoretical finding by evaluating intrinsic neuromodulation through neurofeedback-guided volitional control in an independent dataset. We found that left anterior insula was intrinsically modulated in real-time by volitional control of emotional valence, but not arousal. Our findings further highlight central role of anterior insula in orchestrating proactive cognitive control processes, positioning it at the top of hierarchy for cognitive control.
Collapse
Affiliation(s)
- Neda Kaboodvand
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Hanie Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Iravani
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
Fox R, Santana-Gomez C, Shamas M, Pavade A, Staba R, Harris NG. Different Trajectories of Functional Connectivity Captured with Gamma-Event Coupling and Broadband Measures of EEG in the Rat Fluid Percussion Injury Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597056. [PMID: 38895342 PMCID: PMC11185526 DOI: 10.1101/2024.06.02.597056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Functional connectivity (FC) after TBI is affected by an altered excitatory-inhibitory balance due to neuronal dysfunction, and the mechanistic changes observed could be reflected differently by contrasting methods. Local gamma event coupling FC (GEC-FC) is believed to represent multiunit fluctuations due to inhibitory dysfunction, and we hypothesized that FC derived from widespread, broadband amplitude signal (BBA-FC) would be different, reflecting broader mechanisms of functional disconnection. We tested this during sleep and active periods defined by high delta and theta EEG activity, respectively, at 1,7 and 28d after rat fluid-percussion-injury (FPI) or sham injury (n=6/group) using 10 indwelling, bilateral cortical and hippocampal electrodes. We also measured seizure and high-frequency oscillatory activity (HFOs) as markers of electrophysiological burden. BBA-FC analysis showed early hyperconnectivity constrained to ipsilateral sensory-cortex-to-CA1-hippocampus that transformed to mainly ipsilateral FC deficits by 28d compared to shams. These changes were conserved over active epochs, except at 28d when there were no differences to shams. In comparison, GEC-FC analysis showed large regions of hyperconnectivity early after injury within similar ipsilateral and intrahemispheric networks. GEC-FC weakened with time, but hyperconnectivity persisted at 28d compared to sham. Edge- and global connectivity measures revealed injury-related differences across time in GEC-FC as compared to BBA-FC, demonstrating greater sensitivity to FC changes post-injury. There was no significant association between sleep fragmentation, HFOs, or seizures with FC changes. The within-animal, spatial-temporal differences in BBA-FC and GEC-FC after injury may represent different mechanisms driving FC changes as a result of primary disconnection and interneuron loss. Significance statement The present study adds to the understanding of functional connectivity changes in preclinical models of traumatic brain injury. In previously reported literature, there is heterogeneity in the directionality of connectivity changes after injury, resulting from factors such as severity of injury, frequency band studied, and methodology used to calculate FC. This study aims to further clarify differential mechanisms that result in altered network topography after injury, by using Broadband Amplitude-Derived FC and Gamma Event Coupling-Derived FC in EEG. We found post-injury changes that differ in complexity and directionality between measures at and across timepoints. In conjunction with known results and future studies identifying different neural drivers underlying these changes, measures derived from this study could provide useful means from which to minimally-invasively study temporally-evolving pathology after TBI.
Collapse
|
18
|
Jonak CR, Assad SA, Garcia TA, Sandhu MS, Rumschlag JA, Razak KA, Binder DK. Phenotypic analysis of multielectrode array EEG biomarkers in developing and adult male Fmr1 KO mice. Neurobiol Dis 2024; 195:106496. [PMID: 38582333 DOI: 10.1016/j.nbd.2024.106496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
Fragile X Syndrome (FXS) is a leading known genetic cause of intellectual disability with symptoms that include increased anxiety and social and sensory processing deficits. Recent electroencephalographic (EEG) studies in humans with FXS have identified neural oscillation deficits that include increased resting state gamma power, increased amplitude of auditory evoked potentials, and reduced phase locking of sound-evoked gamma oscillations. Similar EEG phenotypes are present in mouse models of FXS, but very little is known about the development of such abnormal responses. In the current study, we employed a 30-channel mouse multielectrode array (MEA) system to record and analyze resting and stimulus-evoked EEG signals in male P21 and P91 WT and Fmr1 KO mice. This led to several novel findings. First, P91, but not P21, Fmr1 KO mice have significantly increased resting EEG power in the low- and high-gamma frequency bands. Second, both P21 and P91 Fmr1 KO mice have markedly attenuated inter-trial phase coherence (ITPC) to spectrotemporally dynamic auditory stimuli as well as to 40 Hz and 80 Hz auditory steady-state response (ASSR) stimuli. This suggests abnormal temporal processing from early development that may lead to abnormal speech and language function in FXS. Third, we found hemispheric asymmetry of fast temporal processing in the mouse auditory cortex in WT but not Fmr1 KO mice. Together, these findings define a set of EEG phenotypes in young and adult mice that can serve as translational targets for genetic and pharmacological manipulation in phenotypic rescue studies.
Collapse
Affiliation(s)
- Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Samantha A Assad
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Terese A Garcia
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Manbir S Sandhu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Jeffrey A Rumschlag
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, United States of America
| | - Khaleel A Razak
- Neuroscience Graduate Program, University of California, Riverside, CA, United States of America; Department of Psychology, University of California, Riverside, CA, United States of America
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America; Neuroscience Graduate Program, University of California, Riverside, CA, United States of America.
| |
Collapse
|
19
|
Misrani A, Tabassum S, Wang T, Huang H, Jiang J, Diao H, Zhao Y, Huang Z, Tan S, Long C, Yang L. Vibration-reduced anxiety-like behavior relies on ameliorating abnormalities of the somatosensory cortex and medial prefrontal cortex. Neural Regen Res 2024; 19:1351-1359. [PMID: 37905885 PMCID: PMC11467954 DOI: 10.4103/1673-5374.385840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/30/2023] [Accepted: 07/19/2023] [Indexed: 11/02/2023] Open
Abstract
Tibetan singing bowls emit low-frequency sounds and produce perceptible harmonic tones and vibrations through manual tapping. The sounds the singing bowls produce have been shown to enhance relaxation and reduce anxiety. However, the underlying mechanism remains unclear. In this study, we used chronic restraint stress or sleep deprivation to establish mouse models of anxiety that exhibit anxiety-like behaviors. We then supplied treatment with singing bowls in a bottomless cage placed on the top of a cushion. We found that unlike in humans, the combination of harmonic tones and vibrations did not improve anxiety-like behaviors in mice, while individual vibration components did. Additionally, the vibration of singing bowls increased the level of N-methyl-D-aspartate receptor 1 in the somatosensory cortex and prefrontal cortex of the mice, decreased the level of γ-aminobutyric acid A (GABA) receptor α 1 subtype, reduced the level of CaMKII in the prefrontal cortex, and increased the number of GABAergic interneurons. At the same time, electrophysiological tests showed that the vibration of singing bowls significantly reduced the abnormal low-frequency gamma oscillation peak frequency in the medial prefrontal cortex caused by stress restraint pressure and sleep deprivation. Results from this study indicate that the vibration of singing bowls can alleviate anxiety-like behaviors by reducing abnormal molecular and electrophysiological events in somatosensory and medial prefrontal cortex.
Collapse
Affiliation(s)
- Afzal Misrani
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Sidra Tabassum
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Tintin Wang
- Guangzhou Hongai Cultural Development, Inc., Guangzhou, Guangdong Province, China
- Yinguo Health Management Team, Guangzhou, Guangdong Province, China
| | - Huixian Huang
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Jinxiang Jiang
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Hongjun Diao
- Guangzhou Hongai Cultural Development, Inc., Guangzhou, Guangdong Province, China
- Yinguo Health Management Team, Guangzhou, Guangdong Province, China
| | - Yanping Zhao
- College of Biophotonics, South China Normal University, Guangzhou, Guangdong Province, China
| | - Zhen Huang
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
| | - Shaohua Tan
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
| | - Cheng Long
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, Guangdong Province, China
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| |
Collapse
|
20
|
Brünner H, Kim H, Ährlund-Richter S, van Lunteren JA, Crestani AP, Meletis K, Carlén M. Cell-type-specific representation of spatial context in the rat prefrontal cortex. iScience 2024; 27:109743. [PMID: 38711459 PMCID: PMC11070673 DOI: 10.1016/j.isci.2024.109743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/09/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
The ability to represent one's own position in relation to cues, goals, or threats is crucial to successful goal-directed behavior. Using optotagging in knock-in rats expressing Cre recombinase in parvalbumin (PV) neurons (PV-Cre rats), we demonstrate cell-type-specific encoding of spatial and movement variables in the medial prefrontal cortex (mPFC) during goal-directed reward seeking. Single neurons encoded the conjunction of the animal's spatial position and the run direction, referred to as the spatial context. The spatial context was most prominently represented by the inhibitory PV interneurons. Movement toward the reward was signified by increased local field potential (LFP) oscillations in the gamma band but this LFP signature was not related to the spatial information in the neuronal firing. The results highlight how spatial information is incorporated into cognitive operations in the mPFC. The presented PV-Cre line opens the door for expanded research approaches in rats.
Collapse
Affiliation(s)
- Hans Brünner
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Hoseok Kim
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Ana Paula Crestani
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroscience and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Marie Carlén
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Dusing MR, LaSarge CL, Drake AW, Westerkamp GC, McCoy C, Hetzer SM, Kraus KL, Pedapati EV, Danzer SC. Transient Seizure Clusters and Epileptiform Activity Following Widespread Bilateral Hippocampal Interneuron Ablation. eNeuro 2024; 11:ENEURO.0317-23.2024. [PMID: 38575351 PMCID: PMC11036118 DOI: 10.1523/eneuro.0317-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
Interneuron loss is a prominent feature of temporal lobe epilepsy in both animals and humans and is hypothesized to be critical for epileptogenesis. As loss occurs concurrently with numerous other potentially proepileptogenic changes, however, the impact of interneuron loss in isolation remains unclear. For the present study, we developed an intersectional genetic approach to induce bilateral diphtheria toxin-mediated deletion of Vgat-expressing interneurons from dorsal and ventral hippocampus. In a separate group of mice, the same population was targeted for transient neuronal silencing with DREADDs. Interneuron ablation produced dramatic seizure clusters and persistent epileptiform activity. Surprisingly, after 1 week seizure activity declined precipitously and persistent epileptiform activity disappeared. Occasional seizures (≈1/day) persisted to the end of the experiment at 4 weeks. In contrast to the dramatic impact of interneuron ablation, transient silencing produced large numbers of interictal spikes, a significant but modest increase in seizure occurrence and changes in EEG frequency band power. Taken together, findings suggest that the hippocampus regains relative homeostasis-with occasional breakthrough seizures-in the face of an extensive and abrupt loss of interneurons.
Collapse
Affiliation(s)
- Mary R Dusing
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
| | - Candi L LaSarge
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Austin W Drake
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229-3039
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039
| | - Grace C Westerkamp
- Division of Child Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
| | - Carlie McCoy
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
| | - Shelby M Hetzer
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229-3039
| | - Kimberly L Kraus
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229-3039
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039
| | - Ernest V Pedapati
- Division of Child Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229-3039
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039
| |
Collapse
|
22
|
Gulati D, Ray S. Auditory and Visual Gratings Elicit Distinct Gamma Responses. eNeuro 2024; 11:ENEURO.0116-24.2024. [PMID: 38604776 PMCID: PMC11046261 DOI: 10.1523/eneuro.0116-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Sensory stimulation is often accompanied by fluctuations at high frequencies (>30 Hz) in brain signals. These could be "narrowband" oscillations in the gamma band (30-70 Hz) or nonoscillatory "broadband" high-gamma (70-150 Hz) activity. Narrowband gamma oscillations, which are induced by presenting some visual stimuli such as gratings and have been shown to weaken with healthy aging and the onset of Alzheimer's disease, hold promise as potential biomarkers. However, since delivering visual stimuli is cumbersome as it requires head stabilization for eye tracking, an equivalent auditory paradigm could be useful. Although simple auditory stimuli have been shown to produce high-gamma activity, whether specific auditory stimuli can also produce narrowband gamma oscillations is unknown. We tested whether auditory ripple stimuli, which are considered an analog to visual gratings, could elicit narrowband oscillations in auditory areas. We recorded 64-channel electroencephalogram from male and female (18 each) subjects while they either fixated on the monitor while passively viewing static visual gratings or listened to stationary and moving ripples, played using loudspeakers, with their eyes open or closed. We found that while visual gratings induced narrowband gamma oscillations with suppression in the alpha band (8-12 Hz), auditory ripples did not produce narrowband gamma but instead elicited very strong broadband high-gamma response and suppression in the beta band (14-26 Hz). Even though we used equivalent stimuli in both modalities, our findings indicate that the underlying neuronal circuitry may not share ubiquitous strategies for stimulus processing.
Collapse
Affiliation(s)
- Divya Gulati
- Centre for Neuroscience, Indian Institute of Science, Bengaluru 560012, India
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
23
|
Spencer KM. Gamma Oscillations as a Biomarker of Neural Circuit Function in Psychosis: Where Are We, and Where Do We Go from Here? ADVANCES IN NEUROBIOLOGY 2024; 40:321-349. [PMID: 39562450 DOI: 10.1007/978-3-031-69491-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
This chapter is a selective and critical review of the literature on gamma oscillations in schizophrenia and related studies in other relevant fields that pertain to the hypothesis that abnormal gamma oscillations underlie symptoms of psychosis in individuals with schizophrenia. These gamma abnormalities result from deficient recurrent inhibition, in which parvalbumin-expressing, fast-spiking inhibitory interneurons do not receive sufficient excitation from N-methyl-D-aspartate receptors, resulting in a loss of phasic control over pyramidal cell spiking and impairment of gamma generation. The evidence for this hypothesis is critically reviewed, focusing on studies in the areas of visual feature binding, auditory steady-state response, and spontaneous gamma activity. The current state of the field is discussed, and recommendations for future directions are presented.
Collapse
Affiliation(s)
- Kevin M Spencer
- Research Service, VA Boston Healthcare System, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Bhaskaran AA, Gauvrit T, Vyas Y, Bony G, Ginger M, Frick A. Endogenous noise of neocortical neurons correlates with atypical sensory response variability in the Fmr1 -/y mouse model of autism. Nat Commun 2023; 14:7905. [PMID: 38036566 PMCID: PMC10689491 DOI: 10.1038/s41467-023-43777-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
Excessive neural variability of sensory responses is a hallmark of atypical sensory processing in autistic individuals with cascading effects on other core autism symptoms but unknown neurobiological substrate. Here, by recording neocortical single neuron activity in a well-established mouse model of Fragile X syndrome and autism, we characterized atypical sensory processing and probed the role of endogenous noise sources in exaggerated response variability in males. The analysis of sensory stimulus evoked activity and spontaneous dynamics, as well as neuronal features, reveals a complex cellular and network phenotype. Neocortical sensory information processing is more variable and temporally imprecise. Increased trial-by-trial and inter-neuronal response variability is strongly related to key endogenous noise features, and may give rise to behavioural sensory responsiveness variability in autism. We provide a novel preclinical framework for understanding the sources of endogenous noise and its contribution to core autism symptoms, and for testing the functional consequences for mechanism-based manipulation of noise.
Collapse
Affiliation(s)
- Arjun A Bhaskaran
- INSERM, U1215 Neurocentre Magendie, 33077, Bordeaux, France
- University of Bordeaux, 33000, Bordeaux, France
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Théo Gauvrit
- INSERM, U1215 Neurocentre Magendie, 33077, Bordeaux, France
- University of Bordeaux, 33000, Bordeaux, France
| | - Yukti Vyas
- INSERM, U1215 Neurocentre Magendie, 33077, Bordeaux, France
- University of Bordeaux, 33000, Bordeaux, France
| | - Guillaume Bony
- INSERM, U1215 Neurocentre Magendie, 33077, Bordeaux, France
- University of Bordeaux, 33000, Bordeaux, France
| | - Melanie Ginger
- INSERM, U1215 Neurocentre Magendie, 33077, Bordeaux, France
- University of Bordeaux, 33000, Bordeaux, France
| | - Andreas Frick
- INSERM, U1215 Neurocentre Magendie, 33077, Bordeaux, France.
- University of Bordeaux, 33000, Bordeaux, France.
| |
Collapse
|
25
|
Chen GY, Fu LL, Ye B, Ao M, Yan M, Feng HC. Correlations between schizophrenia and lichen planus: a two-sample bidirectional Mendelian randomization study. Front Psychiatry 2023; 14:1243044. [PMID: 37772069 PMCID: PMC10525345 DOI: 10.3389/fpsyt.2023.1243044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Background Several existing studies have shown a correlation between schizophrenia and lichen planus (LP). However, the causality of this relationship remains uncertain. Thus, this study aimed to examine the causal association between schizophrenia and LP. Methods A two-sample Mendelian randomization (MR) study was carried out to investigate whether schizophrenia is causally related to LP and vice versa, and genetic variants in this study were taken from previous genome-wide association studies. We used the inverse variance weighted (IVW) method as the main analysis. Furthermore, several sensitivity analyses were performed to assess heterogeneity, horizontal pleiotropy, and stability. Results Our results show that schizophrenia has a protective effect on LP (OR = 0.881, 95%CI = 0.795-0.975, p = 0.015). Conversely, we observed no significant relationship between LP and schizophrenia in reverse MR analysis (OR = 0.934, 95%CI = 0.851-1.026, p = 0.156). Conclusion Our two-sample Mendelian randomization study supports a significant causal relationship between LP and schizophrenia and finds that schizophrenia can reduce the incidence of LP. This is in contrast to previous findings and provides new insights into the relationship between LP and schizophrenia, but the exact mechanism needs further investigation.
Collapse
Affiliation(s)
- Guan-Yu Chen
- College of Stomatology, Guizhou Medical University, Guiyang, China
| | - Ling-ling Fu
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
| | - Bin Ye
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
| | - Man Ao
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
| | - Ming Yan
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hong-Chao Feng
- College of Stomatology, Guizhou Medical University, Guiyang, China
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
| |
Collapse
|
26
|
Shan J, Gu Y, Zhang J, Hu X, Wu H, Yuan T, Zhao D. A scoping review of physiological biomarkers in autism. Front Neurosci 2023; 17:1269880. [PMID: 37746140 PMCID: PMC10512710 DOI: 10.3389/fnins.2023.1269880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by pervasive deficits in social interaction, communication impairments, and the presence of restricted and repetitive behaviors. This complex disorder is a significant public health concern due to its escalating incidence and detrimental impact on quality of life. Currently, extensive investigations are underway to identify prospective susceptibility or predictive biomarkers, employing a physiological biomarker-based framework. However, knowledge regarding physiological biomarkers in relation to Autism is sparse. We performed a scoping review to explore putative changes in physiological activities associated with behaviors in individuals with Autism. We identified studies published between January 2000 and June 2023 from online databases, and searched keywords included electroencephalography (EEG), magnetoencephalography (MEG), electrodermal activity markers (EDA), eye-tracking markers. We specifically detected social-related symptoms such as impaired social communication in ASD patients. Our results indicated that the EEG/ERP N170 signal has undergone the most rigorous testing as a potential biomarker, showing promise in identifying subgroups within ASD and displaying potential as an indicator of treatment response. By gathering current data from various physiological biomarkers, we can obtain a comprehensive understanding of the physiological profiles of individuals with ASD, offering potential for subgrouping and targeted intervention strategies.
Collapse
Affiliation(s)
- Jiatong Shan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Arts and Sciences, New York University Shanghai, Shanghai, China
| | - Yunhao Gu
- Graduate School of Education, University of Pennsylvania, Philadelphia, PA, United States
| | - Jie Zhang
- Department of Neurology, Institute of Neurology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- HKU, Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Haiyan Wu
- Center for Cognitive and Brain Sciences and Department of Psychology, Macau, China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Zhao
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Nasretdinov A, Barrientos SA, Brys I, Halje P, Petersson P. Systems-level analysis of local field potentials reveals differential effects of lysergic acid diethylamide and ketamine on neuronal activity and functional connectivity. Front Neurosci 2023; 17:1175575. [PMID: 37287794 PMCID: PMC10242129 DOI: 10.3389/fnins.2023.1175575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/05/2023] [Indexed: 06/09/2023] Open
Abstract
Psychedelic substances have in recent years attracted considerable interest as potential treatments for several psychiatric conditions, including depression, anxiety, and addiction. Imaging studies in humans point to a number of possible mechanisms underlying the acute effects of psychedelics, including changes in neuronal firing rates and excitability as well as alterations in functional connectivity between various brain nodes. In addition, animal studies using invasive recordings, have suggested synchronous high-frequency oscillations involving several brain regions as another key feature of the psychedelic brain state. To better understand how the imaging data might be related to high-resolution electrophysiological measurements, we have here analyzed the aperiodic part of the local field potential (LFP) in rodents treated with a classic psychedelic (LSD) or a dissociative anesthetic (ketamine). In addition, functional connectivity, as quantified by mutual information measures in the LFP time series, has been assessed with in and between different structures. Our data suggest that the altered brain states of LSD and ketamine are caused by different underlying mechanisms, where LFP power shifts indicate increased neuronal activity but reduced connectivity following ketamine, while LSD also leads to reduced connectivity but without an accompanying change in LFP broadband power.
Collapse
Affiliation(s)
- Azat Nasretdinov
- The Group for Integrative Neurophysiology, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Sebastian A. Barrientos
- The Group for Integrative Neurophysiology, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ivani Brys
- The Group for Integrative Neurophysiology, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Postgraduate Program in Psychology, Health, and Biological Sciences, Federal University of Vale do São Francisco (UNIVASF), Petrolina, Brazil
| | - Pär Halje
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Per Petersson
- The Group for Integrative Neurophysiology, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- The Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Martinez C, Chen ZS. Identification of atypical sleep microarchitecture biomarkers in children with autism spectrum disorder. Front Psychiatry 2023; 14:1115374. [PMID: 37139324 PMCID: PMC10150704 DOI: 10.3389/fpsyt.2023.1115374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
Importance Sleep disorders are one of the most frequent comorbidities in children with autism spectrum disorder (ASD). However, the link between neurodevelopmental effects in ASD children with their underlying sleep microarchitecture is not well understood. An improved understanding of etiology of sleep difficulties and identification of sleep-associated biomarkers for children with ASD can improve the accuracy of clinical diagnosis. Objectives To investigate whether machine learning models can identify biomarkers for children with ASD based on sleep EEG recordings. Design setting and participants Sleep polysomnogram data were obtained from the Nationwide Children' Health (NCH) Sleep DataBank. Children (ages: 8-16 yrs) with 149 autism and 197 age-matched controls without neurodevelopmental diagnosis were selected for analysis. An additional independent age-matched control group (n = 79) selected from the Childhood Adenotonsillectomy Trial (CHAT) was also used to validate the models. Furthermore, an independent smaller NCH cohort of younger infants and toddlers (age: 0.5-3 yr.; 38 autism and 75 controls) was used for additional validation. Main outcomes and measures We computed periodic and non-periodic characteristics from sleep EEG recordings: sleep stages, spectral power, sleep spindle characteristics, and aperiodic signals. Machine learning models including the Logistic Regression (LR) classifier, Support Vector Machine (SVM), and Random Forest (RF) model were trained using these features. We determined the autism class based on the prediction score of the classifier. The area under the receiver operating characteristics curve (AUC), accuracy, sensitivity, and specificity were used to evaluate the model performance. Results In the NCH study, RF outperformed two other models with a 10-fold cross-validated median AUC of 0.95 (interquartile range [IQR], [0.93, 0.98]). The LR and SVM models performed comparably across multiple metrics, with median AUC 0.80 [0.78, 0.85] and 0.83 [0.79, 0.87], respectively. In the CHAT study, three tested models have comparable AUC results: LR: 0.83 [0.76, 0.92], SVM: 0.87 [0.75, 1.00], and RF: 0.85 [0.75, 1.00]. Sleep spindle density, amplitude, spindle-slow oscillation (SSO) coupling, aperiodic signal's spectral slope and intercept, as well as the percentage of REM sleep were found to be key discriminative features in the predictive models. Conclusion and relevance Our results suggest that integration of EEG feature engineering and machine learning can identify sleep-based biomarkers for ASD children and produce good generalization in independent validation datasets. Microstructural EEG alterations may help reveal underlying pathophysiological mechanisms of autism that alter sleep quality and behaviors. Machine learning analysis may reveal new insight into the etiology and treatment of sleep difficulties in autism.
Collapse
Affiliation(s)
- Caroline Martinez
- Department of Pediatrics, Division of Developmental Pediatrics, Icahn School of Medicine at Mount Sinai, Kravis Children’s Hospital, New York, NY, United States
| | - Zhe Sage Chen
- Department of Psychiatry, Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
29
|
Delgado-Sallent C, Gener T, Nebot P, López-Cabezón C, Puig MV. Neural substrates of cognitive impairment in a NMDAR hypofunction mouse model of schizophrenia and partial rescue by risperidone. Front Cell Neurosci 2023; 17:1152248. [PMID: 37066076 PMCID: PMC10104169 DOI: 10.3389/fncel.2023.1152248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
N-methyl D-aspartate receptor (NMDAR) hypofunction is a pathophysiological mechanism relevant for schizophrenia. Acute administration of the NMDAR antagonist phencyclidine (PCP) induces psychosis in patients and animals while subchronic PCP (sPCP) produces cognitive dysfunction for weeks. We investigated the neural correlates of memory and auditory impairments in mice treated with sPCP and the rescuing abilities of the atypical antipsychotic drug risperidone administered daily for two weeks. We recorded neural activities in the medial prefrontal cortex (mPFC) and the dorsal hippocampus (dHPC) during memory acquisition, short-term, and long-term memory in the novel object recognition test and during auditory processing and mismatch negativity (MMN) and examined the effects of sPCP and sPCP followed by risperidone. We found that the information about the familiar object and its short-term storage were associated with mPFC→dHPC high gamma connectivity (phase slope index) whereas long-term memory retrieval depended on dHPC→mPFC theta connectivity. sPCP impaired short-term and long-term memories, which were associated with increased theta power in the mPFC, decreased gamma power and theta-gamma coupling in the dHPC, and disrupted mPFC-dHPC connectivity. Risperidone rescued the memory deficits and partly restored hippocampal desynchronization but did not ameliorate mPFC and circuit connectivity alterations. sPCP also impaired auditory processing and its neural correlates (evoked potentials and MMN) in the mPFC, which were also partly rescued by risperidone. Our study suggests that the mPFC and the dHPC disconnect during NMDAR hypofunction, possibly underlying cognitive impairment in schizophrenia, and that risperidone targets this circuit to ameliorate cognitive abilities in patients.
Collapse
Affiliation(s)
- Cristina Delgado-Sallent
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, Barcelona, Spain
| | - Thomas Gener
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, Barcelona, Spain
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and BIST, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pau Nebot
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, Barcelona, Spain
| | - Cristina López-Cabezón
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and BIST, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M. Victoria Puig
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, Barcelona, Spain
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and BIST, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- *Correspondence: M. Victoria Puig,
| |
Collapse
|
30
|
Herzog LE, Wang L, Yu E, Choi S, Farsi Z, Song BJ, Pan JQ, Sheng M. Mouse mutants in schizophrenia risk genes GRIN2A and AKAP11 show EEG abnormalities in common with schizophrenia patients. Transl Psychiatry 2023; 13:92. [PMID: 36914641 PMCID: PMC10011509 DOI: 10.1038/s41398-023-02393-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Schizophrenia is a heterogeneous psychiatric disorder with a strong genetic basis, whose etiology and pathophysiology remain poorly understood. Exome sequencing studies have uncovered rare, loss-of-function variants that greatly increase risk of schizophrenia [1], including loss-of-function mutations in GRIN2A (aka GluN2A or NR2A, encoding the NMDA receptor subunit 2A) and AKAP11 (A-Kinase Anchoring Protein 11). AKAP11 and GRIN2A mutations are also associated with bipolar disorder [2], and epilepsy and developmental delay/intellectual disability [1, 3, 4], respectively. Accessible in both humans and rodents, electroencephalogram (EEG) recordings offer a window into brain activity and display abnormal features in schizophrenia patients. Does loss of Grin2a or Akap11 in mice also result in EEG abnormalities? We monitored EEG in heterozygous and homozygous knockout Grin2a and Akap11 mutant mice compared with their wild-type littermates, at 3- and 6-months of age, across the sleep/wake cycle and during auditory stimulation protocols. Grin2a and Akap11 mutants exhibited increased resting gamma power, attenuated auditory steady-state responses (ASSR) at gamma frequencies, and reduced responses to unexpected auditory stimuli during mismatch negativity (MMN) tests. Sleep spindle density was reduced in a gene dose-dependent manner in Akap11 mutants, whereas Grin2a mutants showed increased sleep spindle density. The EEG phenotypes of Grin2a and Akap11 mutant mice show a variety of abnormal features that overlap considerably with human schizophrenia patients, reflecting systems-level changes caused by Grin2a and Akap11 deficiency. These neurophysiologic findings further substantiate Grin2a and Akap11 mutants as genetic models of schizophrenia and identify potential biomarkers for stratification of schizophrenia patients.
Collapse
Affiliation(s)
- Linnea E Herzog
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Lei Wang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eunah Yu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Soonwook Choi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zohreh Farsi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bryan J Song
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Morgan Sheng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
31
|
Haaf M, Curic S, Rauh J, Steinmann S, Mulert C, Leicht G. Opposite Modulation of the NMDA Receptor by Glycine and S-Ketamine and the Effects on Resting State EEG Gamma Activity: New Insights into the Glutamate Hypothesis of Schizophrenia. Int J Mol Sci 2023; 24:ijms24031913. [PMID: 36768234 PMCID: PMC9916476 DOI: 10.3390/ijms24031913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
NMDA-receptor hypofunction is increasingly considered to be an important pathomechanism in schizophrenia. However, to date, it has not been possible to identify patients with relevant NMDA-receptor hypofunction who would respond to glutamatergic treatments. Preclinical models, such as the ketamine model, could help identify biomarkers related to NMDA-receptor function that respond to glutamatergic modulation, for example, via activation of the glycine-binding site. We, therefore, aimed to investigate the effects of opposing modulation of the NMDA receptor on gamma activity (30-100 Hz) at rest, the genesis of which appears to be highly dependent on NMDA receptors. The effects of subanesthetic doses of S-ketamine and pretreatment with glycine on gamma activity at rest were examined in twenty-five healthy male participants using 64-channel electroencephalography. Psychometric scores were assessed using the PANSS and the 5D-ASC. While S-ketamine significantly increased psychometric scores and gamma activity at the scalp and in the source space, pretreatment with glycine did not significantly attenuate any of these effects when controlled for multiple comparisons. Our results question whether increased gamma activity at rest constitutes a suitable biomarker for the target engagement of glutamatergic drugs in the preclinical ketamine model. They might further point to a differential role of NMDA receptors in gamma activity generation.
Collapse
Affiliation(s)
- Moritz Haaf
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Correspondence: ; Tel.: +49-(0)40-741059514
| | - Stjepan Curic
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jonas Rauh
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Saskia Steinmann
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christoph Mulert
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Center of Psychiatry, Justus-Liebig University, 35392 Giessen, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
32
|
The effect of ketamine and D-cycloserine on the high frequency resting EEG spectrum in humans. Psychopharmacology (Berl) 2023; 240:59-75. [PMID: 36401646 PMCID: PMC9816261 DOI: 10.1007/s00213-022-06272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
RATIONALE Preclinical studies indicate that high-frequency oscillations, above 100 Hz (HFO:100-170 Hz), are a potential translatable biomarker for pharmacological studies, with the rapid acting antidepressant ketamine increasing both gamma (40-100 Hz) and HFO. OBJECTIVES To assess the effect of the uncompetitive NMDA antagonist ketamine, and of D-cycloserine (DCS), which acts at the glycine site on NMDA receptors on HFO in humans. METHODS We carried out a partially double-blind, 4-way crossover study in 24 healthy male volunteers. Each participant received an oral tablet and an intravenous infusion on each of four study days. The oral treatment was either DCS (250 mg or 1000 mg) or placebo. The infusion contained 0.5 mg/kg ketamine or saline placebo. The four study conditions were therefore placebo-placebo, 250 mg DCS-placebo, 1000 mg DCS-placebo, or placebo-ketamine. RESULTS Compared with placebo, frontal midline HFO magnitude was increased by ketamine (p = 0.00014) and 1000 mg DCS (p = 0.013). Frontal gamma magnitude was also increased by both these treatments. However, at a midline parietal location, only HFO were increased by DCS, and not gamma, whilst ketamine increased both gamma and HFO at this location. Ketamine induced psychomimetic effects, as measured by the PSI scale, whereas DCS did not increase the total PSI score. The perceptual distortion subscale scores correlated with the posterior low gamma to frontal high beta ratio. CONCLUSIONS Our results suggest that, at high doses, a partial NMDA agonist (DCS) has similar effects on fast neural oscillations as an NMDA antagonist (ketamine). As HFO were induced without psychomimetic effects, they may prove a useful drug development target.
Collapse
|
33
|
Spencer KM, Nakhnikian A, Hirano Y, Levin M. The contribution of gamma bursting to spontaneous gamma activity in schizophrenia. Front Hum Neurosci 2023; 17:1130897. [PMID: 37206313 PMCID: PMC10188978 DOI: 10.3389/fnhum.2023.1130897] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/07/2023] [Indexed: 05/21/2023] Open
Abstract
Increased spontaneous gamma (30-100 Hz) activity (SGA) has been reported in the auditory cortex in schizophrenia. This phenomenon has been correlated with psychotic symptoms such as auditory hallucinations and could reflect the dysfunction of NMDA receptors on parvalbumin-expressing inhibitory interneurons. Previous findings are from time-averaged spectra, so it is unknown whether increased spontaneous gamma occurs at a constant level, or rather in bursts. To better understand the dynamical nature of spontaneous gamma activity in schizophrenia, here we examined the contribution of gamma bursting and the slope of the EEG spectrum to this phenomenon. The main results from this data set were previously reported. Participants were 24 healthy control participants (HC) and 24 matched participants with schizophrenia (SZ). The data were from EEG recordings during auditory steady-state stimulation, which were localized to bilateral pairs of dipoles in auditory cortex. Time-frequency analysis was performed using Morlet wavelets. Oscillation bursts in the gamma range were defined as periods during which power exceeded 2 standard deviations above the trial-wide average value for at least one cycle. We extracted the burst parameters power, count, and area, as well as non-burst trial power and spectral slope. Gamma burst power and non-burst trial power were greater in SZ than HC, but burst count and area did not differ. Spectral slope was less negative in SZ than HC. Regression modeling found that gamma burst power alone best predicted SGA for both HC and SZ (> = 90% of variance), while spectral slope made a small contribution and non-burst trial power did not influence SGA. Increased SGA in the auditory cortex in schizophrenia is accounted for by increased power within gamma bursts, rather than a tonic increase in gamma-range activity, or a shift in spectral slope. Further research will be necessary to determine if these measures reflect different network mechanisms. We propose that increased gamma burst power is the main component of increased SGA in SZ and could reflect abnormally increased plasticity in cortical circuits due to enhanced plasticity of synapses on parvalbumin-expressing inhibitory interneurons. Thus, increased gamma burst power may be involved in producing psychotic symptoms and cognitive dysfunction.
Collapse
Affiliation(s)
- Kevin M. Spencer
- Research Service, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- *Correspondence: Kevin M. Spencer,
| | - Alexander Nakhnikian
- Research Service, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Yoji Hirano
- Research Service, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
34
|
Tempio A, Boulksibat A, Bardoni B, Delhaye S. Fragile X Syndrome as an interneuronopathy: a lesson for future studies and treatments. Front Neurosci 2023; 17:1171895. [PMID: 37188005 PMCID: PMC10176609 DOI: 10.3389/fnins.2023.1171895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability (ID) and a primary genetic cause of autism spectrum disorder (ASD). FXS arises from the silencing of the FMR1 gene causing the lack of translation of its encoded protein, the Fragile X Messenger RibonucleoProtein (FMRP), an RNA-binding protein involved in translational control and in RNA transport along dendrites. Although a large effort during the last 20 years has been made to investigate the cellular roles of FMRP, no effective and specific therapeutic intervention is available to treat FXS. Many studies revealed a role for FMRP in shaping sensory circuits during developmental critical periods to affect proper neurodevelopment. Dendritic spine stability, branching and density abnormalities are part of the developmental delay observed in various FXS brain areas. In particular, cortical neuronal networks in FXS are hyper-responsive and hyperexcitable, making these circuits highly synchronous. Overall, these data suggest that the excitatory/inhibitory (E/I) balance in FXS neuronal circuitry is altered. However, not much is known about how interneuron populations contribute to the unbalanced E/I ratio in FXS even if their abnormal functioning has an impact on the behavioral deficits of patients and animal models affected by neurodevelopmental disorders. We revise here the key literature concerning the role of interneurons in FXS not only with the purpose to better understand the pathophysiology of this disorder, but also to explore new possible therapeutic applications to treat FXS and other forms of ASD or ID. Indeed, for instance, the re-introduction of functional interneurons in the diseased brains has been proposed as a promising therapeutic approach for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Alessandra Tempio
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- Alessandra Tempio,
| | - Asma Boulksibat
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Barbara Bardoni
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- Inserm, Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- *Correspondence: Barbara Bardoni,
| | - Sébastien Delhaye
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| |
Collapse
|
35
|
Jonak CR, Pedapati EV, Schmitt LM, Assad SA, Sandhu MS, DeStefano L, Ethridge L, Razak KA, Sweeney JA, Binder DK, Erickson CA. Baclofen-associated neurophysiologic target engagement across species in fragile X syndrome. J Neurodev Disord 2022; 14:52. [PMID: 36167501 PMCID: PMC9513876 DOI: 10.1186/s11689-022-09455-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 08/03/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common inherited form of neurodevelopmental disability. It is often characterized, especially in males, by intellectual disability, anxiety, repetitive behavior, social communication deficits, delayed language development, and abnormal sensory processing. Recently, we identified electroencephalographic (EEG) biomarkers that are conserved between the mouse model of FXS (Fmr1 KO mice) and humans with FXS. METHODS In this report, we evaluate small molecule target engagement utilizing multielectrode array electrophysiology in the Fmr1 KO mouse and in humans with FXS. Neurophysiologic target engagement was evaluated using single doses of the GABAB selective agonist racemic baclofen (RBAC). RESULTS In Fmr1 KO mice and in humans with FXS, baclofen use was associated with suppression of elevated gamma power and increase in low-frequency power at rest. In the Fmr1 KO mice, a baclofen-associated improvement in auditory chirp synchronization was also noted. CONCLUSIONS Overall, we noted synchronized target engagement of RBAC on resting state electrophysiology, in particular the reduction of aberrant high frequency gamma activity, across species in FXS. This finding holds promise for translational medicine approaches to drug development for FXS, synchronizing treatment study across species using well-established EEG biological markers in this field. TRIAL REGISTRATION The human experiments are registered under NCT02998151.
Collapse
Affiliation(s)
- Carrie R. Jonak
- grid.266097.c0000 0001 2222 1582Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Ernest V. Pedapati
- grid.239573.90000 0000 9025 8099Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Lauren M. Schmitt
- grid.239573.90000 0000 9025 8099Division of Developmental and Behavioral Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Samantha A. Assad
- grid.266097.c0000 0001 2222 1582Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Manbir S. Sandhu
- grid.266097.c0000 0001 2222 1582Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Lisa DeStefano
- grid.239573.90000 0000 9025 8099Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.266900.b0000 0004 0447 0018Department of Psychology, University of Oklahoma, Norman, OK USA
| | - Lauren Ethridge
- grid.266900.b0000 0004 0447 0018Department of Psychology, University of Oklahoma, Norman, OK USA ,grid.266902.90000 0001 2179 3618Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Khaleel A. Razak
- grid.266097.c0000 0001 2222 1582Neuroscience Graduate Program, University of California, Riverside, USA ,grid.266097.c0000 0001 2222 1582Psychology Graduate Program, University of California, Riverside, USA
| | - John A. Sweeney
- grid.24827.3b0000 0001 2179 9593Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Devin K. Binder
- grid.266097.c0000 0001 2222 1582Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA ,grid.266097.c0000 0001 2222 1582Neuroscience Graduate Program, University of California, Riverside, USA
| | - Craig A. Erickson
- grid.239573.90000 0000 9025 8099Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
36
|
Cui K, Yu Z, Xu L, Jiang W, Wang L, Wang X, Zou D, Gu J, Gao F, Zhang X, Wang Z. Behavioral features and disorganization of oscillatory activity in C57BL/6J mice after acute low dose MK-801 administration. Front Neurosci 2022; 16:1001869. [PMID: 36188453 PMCID: PMC9515662 DOI: 10.3389/fnins.2022.1001869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Low dose acute administration of N-methyl-D-aspartate receptor (NMDAR) antagonist MK-801 is widely used to model cognition impairments associated with schizophrenia (CIAS) in rodents. However, due to no unified standards for animal strain, dose, route of drug delivery, and the duration of administration, how different doses of MK-801 influence behavior and fundamental frequency bands of the local field potential (LFP) in cortical and subcortical brain regions without consistent conclusions. The optimal dose of MK-801 as a valid cognition impairers to model CIAS in C57BL/6J mice remains unclear. The current study characterizes the behavior and neural oscillation alterations induced by different low doses of MK-801 in medial prefrontal cortex (mPFC) and hippocampus CA1 of C57BL/6J mice. The results reveal that mice treated with 0.1 and 0.3 mg/kg MK-801 demonstrate increased locomotion and diminished prepulse inhibition (PPI), while not when treated with 0.05 mg/kg MK-801. We also find that MK-801 dose as low as 0.05 mg/kg can significantly diminishes spontaneous alteration during the Y-maze test. Additionally, the oscillation power in delta, theta, alpha, gamma and HFO bands of the LFP in mPFC and CA1 was potentiated by different dose levels of MK-801 administration. The current findings revealed that the observed sensitivity against spontaneous alteration impairment and neural oscillation at 0.05 mg/kg MK-801 suggest that 0.05 mg/kg will produce changes in CIAS-relevant behavior without overt changes in locomotion and sensorimotor processing in C57BL/6J mice.
Collapse
Affiliation(s)
- Keke Cui
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo, China
| | - Zhipeng Yu
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Le Xu
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Wangcong Jiang
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Luwan Wang
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Xiangqun Wang
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Dandan Zou
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Jiajie Gu
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Feng Gao
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Xiaoqing Zhang
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo, China
| | - Zhengchun Wang
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo, China
- *Correspondence: Zhengchun Wang,
| |
Collapse
|
37
|
Alemany-González M, Vilademunt M, Gener T, Puig MV. Postnatal environmental enrichment enhances memory through distinct neural mechanisms in healthy and trisomic female mice. Neurobiol Dis 2022; 173:105841. [PMID: 35988873 DOI: 10.1016/j.nbd.2022.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022] Open
Abstract
Stimulating lifestyles have powerful effects on cognitive abilities, especially when they are experienced early in life. Cognitive therapies are widely used to improve cognitive impairment due to intellectual disability, aging, and neurodegeneration, however the underlying neural mechanisms are poorly understood. We investigated the neural correlates of memory amelioration produced by postnatal environmental enrichment (EE) in diploid mice and the Ts65Dn mouse model of Down syndrome (trisomy 21). We recorded neural activities in brain structures key for memory processing, the hippocampus and the prefrontal cortex, during rest, sleep and memory performance in mice reared in non-enriched or enriched environments. Enriched wild-type animals exhibited enhanced neural synchrony in the hippocampus across different brain states (increased gamma oscillations, theta-gamma coupling, sleep ripples). Trisomic females showed increased theta and gamma rhythms in the hippocampus and prefrontal cortex across different brain states along with enlarged ripples and disrupted circuit gamma signals that were associated with memory deficits. These pathological activities were attenuated in their trisomic EE-reared peers. Our results suggest distinct neural mechanisms for the generation and rescue of healthy and pathological brain synchrony, respectively, by EE and put forward hippocampal-prefrontal hypersynchrony and miscommunication as major targets underlying the beneficial effects of EE in intellectual disability.
Collapse
Affiliation(s)
- Maria Alemany-González
- Integrative Pharmacology and Systems Neuroscience, Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Marta Vilademunt
- Integrative Pharmacology and Systems Neuroscience, Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Thomas Gener
- Integrative Pharmacology and Systems Neuroscience, Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Catalan Institute of Nanoscience and Nanotechnology (ICN2), the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - M Victoria Puig
- Integrative Pharmacology and Systems Neuroscience, Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Catalan Institute of Nanoscience and Nanotechnology (ICN2), the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
38
|
Pedapati EV, Schmitt LM, Ethridge LE, Miyakoshi M, Sweeney JA, Liu R, Smith E, Shaffer RC, Dominick KC, Gilbert DL, Wu SW, Horn PS, Binder DK, Lamy M, Axford M, Erickson CA. Neocortical localization and thalamocortical modulation of neuronal hyperexcitability contribute to Fragile X Syndrome. Commun Biol 2022; 5:442. [PMID: 35546357 PMCID: PMC9095835 DOI: 10.1038/s42003-022-03395-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/22/2022] [Indexed: 12/13/2022] Open
Abstract
Fragile X Syndrome (FXS) is a monogenetic form of intellectual disability and autism in which well-established knockout (KO) animal models point to neuronal hyperexcitability and abnormal gamma-frequency physiology as a basis for key disorder features. Translating these findings into patients may identify tractable treatment targets. Using source modeling of resting-state electroencephalography data, we report findings in FXS, including 1) increases in localized gamma activity, 2) pervasive changes of theta/alpha activity, indicative of disrupted thalamocortical modulation coupled with elevated gamma power, 3) stepwise moderation of low and high-frequency abnormalities based on female sex, and 4) relationship of this physiology to intellectual disability and neuropsychiatric symptoms. Our observations extend findings in Fmr1-/- KO mice to patients with FXS and raise a key role for disrupted thalamocortical modulation in local hyperexcitability. This systems-level mechanism has received limited preclinical attention but has implications for understanding fundamental disease mechanisms.
Collapse
Affiliation(s)
- Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Lauren M Schmitt
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lauren E Ethridge
- Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Psychology, University of Oklahoma, Norman, OK, USA
| | - Makoto Miyakoshi
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rui Liu
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Elizabeth Smith
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rebecca C Shaffer
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kelli C Dominick
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Donald L Gilbert
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steve W Wu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul S Horn
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Martine Lamy
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Megan Axford
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
39
|
Rais M, Lovelace JW, Shuai XS, Woodard W, Bishay S, Estrada L, Sharma AR, Nguy A, Kulinich A, Pirbhoy PS, Palacios AR, Nelson DL, Razak KA, Ethell IM. Functional consequences of postnatal interventions in a mouse model of Fragile X syndrome. Neurobiol Dis 2022; 162:105577. [PMID: 34871737 DOI: 10.1016/j.nbd.2021.105577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is a leading genetic cause of autism and intellectual disability with cortical hyperexcitability and sensory hypersensitivity attributed to loss and hypofunction of inhibitory parvalbumin-expressing (PV) cells. Our studies provide novel insights into the role of excitatory neurons in abnormal development of PV cells during a postnatal period of inhibitory circuit refinement. METHODS To achieve Fragile X mental retardation gene (Fmr1) deletion and re-expression in excitatory neurons during the postnatal day (P)14-P21 period, we generated CreCaMKIIa/Fmr1Flox/y (cOFF) and CreCaMKIIa/Fmr1FloxNeo/y (cON) mice, respectively. Cortical phenotypes were evaluated in adult mice using biochemical, cellular, clinically relevant electroencephalogram (EEG) and behavioral tests. RESULTS We found that similar to global Fmr1 KO mice, the density of PV-expressing cells, their activation, and sound-evoked gamma synchronization were impaired in cOFF mice, but the phenotypes were improved in cON mice. cOFF mice also showed enhanced cortical gelatinase activity and baseline EEG gamma power, which were reduced in cON mice. In addition, TrkB phosphorylation and PV levels were lower in cOFF mice, which also showed increased locomotor activity and anxiety-like behaviors. Remarkably, when FMRP levels were restored in only excitatory neurons during the P14-P21 period, TrkB phosphorylation and mouse behaviors were also improved. CONCLUSIONS These results indicate that postnatal deletion or re-expression of FMRP in excitatory neurons is sufficient to elicit or ameliorate structural and functional cortical deficits, and abnormal behaviors in mice, informing future studies about appropriate treatment windows and providing fundamental insights into the cellular mechanisms of cortical circuit dysfunction in FXS.
Collapse
Affiliation(s)
- Maham Rais
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Jonathan W Lovelace
- Department of Psychology, University of California Riverside, Riverside, CA 92521, USA
| | - Xinghao S Shuai
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Walker Woodard
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Steven Bishay
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Leo Estrada
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Ashwin R Sharma
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Austin Nguy
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Anna Kulinich
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Patricia S Pirbhoy
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Arnold R Palacios
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | | | - Khaleel A Razak
- Department of Psychology, University of California Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Iryna M Ethell
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
40
|
Onitsuka T, Hirano Y, Nemoto K, Hashimoto N, Kushima I, Koshiyama D, Koeda M, Takahashi T, Noda Y, Matsumoto J, Miura K, Nakazawa T, Hikida T, Kasai K, Ozaki N, Hashimoto R. Trends in big data analyses by multicenter collaborative translational research in psychiatry. Psychiatry Clin Neurosci 2022; 76:1-14. [PMID: 34716732 PMCID: PMC9306748 DOI: 10.1111/pcn.13311] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 12/01/2022]
Abstract
The underlying pathologies of psychiatric disorders, which cause substantial personal and social losses, remain unknown, and their elucidation is an urgent issue. To clarify the core pathological mechanisms underlying psychiatric disorders, in addition to laboratory-based research that incorporates the latest findings, it is necessary to conduct large-sample-size research and verify reproducibility. For this purpose, it is critical to conduct multicenter collaborative research across various fields, such as psychiatry, neuroscience, molecular biology, genomics, neuroimaging, cognitive science, neurophysiology, psychology, and pharmacology. Moreover, collaborative research plays an important role in the development of young researchers. In this respect, the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium and Cognitive Genetics Collaborative Research Organization (COCORO) have played important roles. In this review, we first overview the importance of multicenter collaborative research and our target psychiatric disorders. Then, we introduce research findings on the pathophysiology of psychiatric disorders from neurocognitive, neurophysiological, neuroimaging, genetic, and basic neuroscience perspectives, focusing mainly on the findings obtained by COCORO. It is our hope that multicenter collaborative research will contribute to the elucidation of the pathological basis of psychiatric disorders.
Collapse
Affiliation(s)
- Toshiaki Onitsuka
- Department of Neuroimaging Psychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michihiko Koeda
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Department of Neuropsychiatry, Nippon Medical School, Tama Nagayama Hospital, Tokyo, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Junya Matsumoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
41
|
Bowman C, Richter U, Jones CR, Agerskov C, Herrik KF. Activity-State Dependent Reversal of Ketamine-Induced Resting State EEG Effects by Clozapine and Naltrexone in the Freely Moving Rat. Front Psychiatry 2022; 13:737295. [PMID: 35153870 PMCID: PMC8830299 DOI: 10.3389/fpsyt.2022.737295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Ketamine is a non-competitive N-Methyl-D-aspartate receptor (NMDAR) antagonist used in the clinic to initiate and maintain anaesthesia; it induces dissociative states and has emerged as a breakthrough therapy for major depressive disorder. Using local field potential recordings in freely moving rats, we studied resting state EEG profiles induced by co-administering ketamine with either: clozapine, a highly efficacious antipsychotic; or naltrexone, an opioid receptor antagonist reported to block the acute antidepressant effects of ketamine. As human electroencephalography (EEG) is predominantly recorded in a passive state, head-mounted accelerometers were used with rats to determine active and passive states at a high temporal resolution to offer the highest translatability. In general, pharmacological effects for the three drugs were more pronounced in (or restricted to) the passive state. Specifically, during inactive periods clozapine induced increases in delta (0.1-4 Hz), gamma (30-60 Hz) and higher frequencies (>100 Hz). Importantly, it reversed the ketamine-induced reduction in low beta power (10-20 Hz) and potentiated ketamine-induced increases in gamma and high frequency oscillations (130-160 Hz). Naltrexone inhibited frequencies above 50 Hz and significantly reduced the ketamine-induced increase in high frequency oscillations. However, some frequency band changes, such as clozapine-induced decreases in delta power, were only seen in locomoting rats. These results emphasise the potential in differentiating between activity states to capture drug effects and translate to human resting state EEG. Furthermore, the differential reversal of ketamine-induced EEG effects by clozapine and naltrexone may have implications for the understanding of psychotomimetic as well as rapid antidepressant effects of ketamine.
Collapse
Affiliation(s)
- Christien Bowman
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Bio Imaging Laboratory, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Ulrike Richter
- Department of Circuit Biology, Lundbeck, Copenhagen, Denmark
| | - Christopher R Jones
- Department of Pharmacokinetic and Pharmacodynamic Modeling and Simulation, Lundbeck, Copenhagen, Denmark
| | - Claus Agerskov
- Department of Circuit Biology, Lundbeck, Copenhagen, Denmark
| | | |
Collapse
|
42
|
Delgado-Sallent C, Nebot P, Gener T, Fath AB, Timplalexi M, Puig MV. Atypical, but Not Typical, Antipsychotic Drugs Reduce Hypersynchronized Prefrontal-Hippocampal Circuits during Psychosis-Like States in Mice: Contribution of 5-HT2A and 5-HT1A Receptors. Cereb Cortex 2021; 32:3472-3487. [PMID: 34875009 DOI: 10.1093/cercor/bhab427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/12/2022] Open
Abstract
Neural synchrony and functional connectivity are disrupted in schizophrenia. We investigated changes in prefrontal-hippocampal neural dynamics during psychosis-like states induced by the NMDAR antagonist phencyclidine and subsequent rescue by two atypical antipsychotic drugs (AAPDs), risperidone and clozapine, and the classical APD haloperidol. The psychotomimetic effects of phencyclidine were associated with prefrontal hypersynchronization, hippocampal desynchronization, and disrupted circuit connectivity. Phencyclidine boosted prefrontal oscillatory power at atypical bands within delta, gamma, and high frequency ranges, while irregular cross-frequency and spike-LFP coupling emerged. In the hippocampus, phencyclidine enhanced delta rhythms but suppressed theta oscillations, theta-gamma coupling, and theta-beta spike-LFP coupling. Baseline interregional theta-gamma coupling, theta phase coherence, and hippocampus-to-cortex theta signals were redirected to delta frequencies. Risperidone and clozapine, but not haloperidol, reduced phencyclidine-induced prefrontal and cortical-hippocampal hypersynchrony. None of the substances restored hippocampal and circuit desynchronization. These results suggest that AAPDs, but not typical APDs, target prefrontal-hippocampal pathways to elicit antipsychotic action. We investigated whether the affinity of AAPDs for serotonin receptors could explain their distinct effects. Serotonin 5-HT2AR antagonism by M100907 and 5-HT1AR agonism by 8-OH-DPAT reduced prefrontal hypersynchronization. Our results point to fundamentally different neural mechanisms underlying the action of atypical versus typical APDs with selective contribution of serotonin receptors.
Collapse
Affiliation(s)
- Cristina Delgado-Sallent
- Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Pau Nebot
- Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Thomas Gener
- Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Amanda B Fath
- Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Melina Timplalexi
- Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - M Victoria Puig
- Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| |
Collapse
|
43
|
Contractor A, Ethell IM, Portera-Cailliau C. Cortical interneurons in autism. Nat Neurosci 2021; 24:1648-1659. [PMID: 34848882 PMCID: PMC9798607 DOI: 10.1038/s41593-021-00967-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/21/2021] [Indexed: 01/01/2023]
Abstract
The mechanistic underpinnings of autism remain a subject of debate and controversy. Why do individuals with autism share an overlapping set of atypical behaviors and symptoms, despite having different genetic and environmental risk factors? A major challenge in developing new therapies for autism has been the inability to identify convergent neural phenotypes that could explain the common set of symptoms that result in the diagnosis. Although no striking macroscopic neuropathological changes have been identified in autism, there is growing evidence that inhibitory interneurons (INs) play an important role in its neural basis. In this Review, we evaluate and interpret this evidence, focusing on recent findings showing reduced density and activity of the parvalbumin class of INs. We discuss the need for additional studies that investigate how genes and the environment interact to change the developmental trajectory of INs, permanently altering their numbers, connectivity and circuit engagement.
Collapse
Affiliation(s)
- Anis Contractor
- Department of Neuroscience Feinberg School of Medicine, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA
| | - Iryna M Ethell
- Division of Biomedical Sciences, UC Riverside School of Medicine, Riverside, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
44
|
Hirano Y, Uhlhaas PJ. Current findings and perspectives on aberrant neural oscillations in schizophrenia. Psychiatry Clin Neurosci 2021; 75:358-368. [PMID: 34558155 DOI: 10.1111/pcn.13300] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
There is now consistent evidence that neural oscillation at low- and high-frequencies constitute an important aspect of the pathophysiology of schizophrenia. Specifically, impaired rhythmic activity may underlie the deficit to generate coherent cognition and behavior, leading to the characteristic symptoms of psychosis and cognitive deficits. Importantly, the generating mechanisms of neural oscillations are relatively well-understood and thus enable the targeted search for the underlying circuit impairments and novel treatment targets. In the following review, we will summarize and assess the evidence for aberrant rhythmic activity in schizophrenia through evaluating studies that have utilized Electro/Magnetoencephalography to examine neural oscillations during sensory and cognitive tasks as well as during resting-state measurements. These data will be linked to current evidence from post-mortem, neuroimaging, genetics, and animal models that have implicated deficits in GABAergic interneurons and glutamatergic neurotransmission in oscillatory deficits in schizophrenia. Finally, we will highlight methodological and analytical challenges as well as provide recommendations for future research.
Collapse
Affiliation(s)
- Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin, Berlin, Germany
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
45
|
Broadband Dynamics Rather than Frequency-Specific Rhythms Underlie Prediction Error in the Primate Auditory Cortex. J Neurosci 2021; 41:9374-9391. [PMID: 34645605 DOI: 10.1523/jneurosci.0367-21.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022] Open
Abstract
Detection of statistical irregularities, measured as a prediction error response, is fundamental to the perceptual monitoring of the environment. We studied whether prediction error response is associated with neural oscillations or asynchronous broadband activity. Electrocorticography was conducted in three male monkeys, who passively listened to the auditory roving oddball stimuli. Local field potentials (LFPs) recorded over the auditory cortex underwent spectral principal component analysis, which decoupled broadband and rhythmic components of the LFP signal. We found that the broadband component captured the prediction error response, whereas none of the rhythmic components were associated with statistical irregularities of sounds. The broadband component displayed more stochastic, asymmetrical multifractal properties than the rhythmic components, which revealed more self-similar dynamics. We thus conclude that the prediction error response is captured by neuronal populations generating asynchronous broadband activity, defined by irregular dynamic states, which, unlike oscillatory rhythms, appear to enable the neural representation of auditory prediction error response.SIGNIFICANCE STATEMENT This study aimed to examine the contribution of oscillatory and asynchronous components of auditory local field potentials in the generation of prediction error responses to sensory irregularities, as this has not been directly addressed in the previous studies. Here, we show that mismatch negativity-an auditory prediction error response-is driven by the asynchronous broadband component of potentials recorded in the auditory cortex. This finding highlights the importance of nonoscillatory neural processes in the predictive monitoring of the environment. At a more general level, the study demonstrates that stochastic neural processes, which are often disregarded as neural noise, do have a functional role in the processing of sensory information.
Collapse
|
46
|
Razak KA, Binder DK, Ethell IM. Neural Correlates of Auditory Hypersensitivity in Fragile X Syndrome. Front Psychiatry 2021; 12:720752. [PMID: 34690832 PMCID: PMC8529206 DOI: 10.3389/fpsyt.2021.720752] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/16/2021] [Indexed: 01/20/2023] Open
Abstract
The mechanisms underlying the common association between autism spectrum disorders (ASD) and sensory processing disorders (SPD) are unclear, and treatment options to reduce atypical sensory processing are limited. Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and ASD behaviors. As in most children with ASD, atypical sensory processing is a common symptom in FXS, frequently manifesting as sensory hypersensitivity. Auditory hypersensitivity is a highly debilitating condition in FXS that may lead to language delays, social anxiety and ritualized repetitive behaviors. Animal models of FXS, including Fmr1 knock out (KO) mouse, also show auditory hypersensitivity, providing a translation relevant platform to study underlying pathophysiological mechanisms. The focus of this review is to summarize recent studies in the Fmr1 KO mouse that identified neural correlates of auditory hypersensitivity. We review results of electroencephalography (EEG) recordings in the Fmr1 KO mice and highlight EEG phenotypes that are remarkably similar to EEG findings in humans with FXS. The EEG phenotypes associated with the loss of FMRP include enhanced resting EEG gamma band power, reduced cross frequency coupling, reduced sound-evoked synchrony of neural responses at gamma band frequencies, increased event-related potential amplitudes, reduced habituation of neural responses and increased non-phase locked power. In addition, we highlight the postnatal period when the EEG phenotypes develop and show a strong association of the phenotypes with enhanced matrix-metalloproteinase-9 (MMP-9) activity, abnormal development of parvalbumin (PV)-expressing inhibitory interneurons and reduced formation of specialized extracellular matrix structures called perineuronal nets (PNNs). Finally, we discuss how dysfunctions of inhibitory PV interneurons may contribute to cortical hyperexcitability and EEG abnormalities observed in FXS. Taken together, the studies reviewed here indicate that EEG recordings can be utilized in both pre-clinical studies and clinical trials, while at the same time, used to identify cellular and circuit mechanisms of dysfunction in FXS. New therapeutic approaches that reduce MMP-9 activity and restore functions of PV interneurons may succeed in reducing FXS sensory symptoms. Future studies should examine long-lasting benefits of developmental vs. adult interventions on sensory phenotypes.
Collapse
Affiliation(s)
- Khaleel A. Razak
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, United States
| | - Devin K. Binder
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, United States
- Division of Biomedical Sciences and Graduate Biomedical Sciences Program, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Iryna M. Ethell
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, United States
- Division of Biomedical Sciences and Graduate Biomedical Sciences Program, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
47
|
Koike S, Uematsu A, Sasabayashi D, Maikusa N, Takahashi T, Ohi K, Nakajima S, Noda Y, Hirano Y. Recent Advances and Future Directions in Brain MR Imaging Studies in Schizophrenia: Toward Elucidating Brain Pathology and Developing Clinical Tools. Magn Reson Med Sci 2021; 21:539-552. [PMID: 34408115 DOI: 10.2463/mrms.rev.2021-0050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Schizophrenia is a common severe psychiatric disorder that affects approximately 1% of general population through the life course. Historically, in Kraepelin's time, schizophrenia was a disease unit conceptualized as dementia praecox; however, since then, the disease concept has changed. Recent MRI studies had shown that the neuropathology of the brain in this disorder was characterized by mild progression before and after the onset of the disease, and that the brain alterations were relatively smaller than assumed. Although genetic factors contribute to the brain alterations in schizophrenia, which are thought to be trait differences, other changes include factors that are common in psychiatric diseases. Furthermore, it has been shown that the brain differences specific to schizophrenia were relatively small compared to other changes, such as those caused by brain development, aging, and gender. In addition, compared to the disease and participant factors, machine and imaging protocol differences could affect MRI signals, which should be addressed in multi-site studies. Recent advances in MRI modalities, such as multi-shell diffusion-weighted imaging, magnetic resonance spectroscopy, and multimodal brain imaging analysis, may be candidates to sharpen the characterization of schizophrenia-specific factors and provide new insights. The Brain/MINDS Beyond Human Brain MRI (BMB-HBM) project has been launched considering the differences and noises irrespective of the disease pathologies and includes the future perspectives of MRI studies for various psychiatric and neurological disorders. The sites use restricted MRI machines and harmonized multi-modal protocols, standardized image preprocessing, and traveling subject harmonization. Data sharing to the public will be planned in FY 2024. In the future, we believe that combining a high-quality human MRI dataset with genetic data, randomized controlled trials, and MRI for non-human primates and animal models will enable us to understand schizophrenia, elucidate its neural bases and therapeutic targets, and provide tools for clinical application at bedside.
Collapse
Affiliation(s)
- Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo.,University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM).,University of Tokyo Center for Integrative Science of Human Behavior (CiSHuB).,The International Research Center for Neurointelligence (WPI-IRCN), Institutes for Advanced Study (UTIAS), The University of Tokyo
| | - Akiko Uematsu
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences.,Research Center for Idling Brain Science (RCIBS), University of Toyama
| | - Norihide Maikusa
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences.,Research Center for Idling Brain Science (RCIBS), University of Toyama
| | - Kazutaka Ohi
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine
| | | | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University.,Institute of Industrial Science, The University of Tokyo
| |
Collapse
|
48
|
Wingert JC, Sorg BA. Impact of Perineuronal Nets on Electrophysiology of Parvalbumin Interneurons, Principal Neurons, and Brain Oscillations: A Review. Front Synaptic Neurosci 2021; 13:673210. [PMID: 34040511 PMCID: PMC8141737 DOI: 10.3389/fnsyn.2021.673210] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
Perineuronal nets (PNNs) are specialized extracellular matrix structures that surround specific neurons in the brain and spinal cord, appear during critical periods of development, and restrict plasticity during adulthood. Removal of PNNs can reinstate juvenile-like plasticity or, in cases of PNN removal during early developmental stages, PNN removal extends the critical plasticity period. PNNs surround mainly parvalbumin (PV)-containing, fast-spiking GABAergic interneurons in several brain regions. These inhibitory interneurons profoundly inhibit the network of surrounding neurons via their elaborate contacts with local pyramidal neurons, and they are key contributors to gamma oscillations generated across several brain regions. Among other functions, these gamma oscillations regulate plasticity associated with learning, decision making, attention, cognitive flexibility, and working memory. The detailed mechanisms by which PNN removal increases plasticity are only beginning to be understood. Here, we review the impact of PNN removal on several electrophysiological features of their underlying PV interneurons and nearby pyramidal neurons, including changes in intrinsic and synaptic membrane properties, brain oscillations, and how these changes may alter the integration of memory-related information. Additionally, we review how PNN removal affects plasticity-associated phenomena such as long-term potentiation (LTP), long-term depression (LTD), and paired-pulse ratio (PPR). The results are discussed in the context of the role of PV interneurons in circuit function and how PNN removal alters this function.
Collapse
Affiliation(s)
- Jereme C Wingert
- Program in Neuroscience, Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, United States
| | - Barbara A Sorg
- Program in Neuroscience, Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, United States
| |
Collapse
|
49
|
Guyon N, Zacharias LR, van Lunteren JA, Immenschuh J, Fuzik J, Märtin A, Xuan Y, Zilberter M, Kim H, Meletis K, Lopes-Aguiar C, Carlén M. Adult trkB Signaling in Parvalbumin Interneurons is Essential to Prefrontal Network Dynamics. J Neurosci 2021; 41:3120-3141. [PMID: 33593856 PMCID: PMC8026352 DOI: 10.1523/jneurosci.1848-20.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/16/2021] [Accepted: 01/25/2021] [Indexed: 01/29/2023] Open
Abstract
Inhibitory interneurons expressing parvalbumin (PV) are central to cortical network dynamics, generation of γ oscillations, and cognition. Dysfunction of PV interneurons disrupts cortical information processing and cognitive behavior. Brain-derived neurotrophic factor (BDNF)/tyrosine receptor kinase B (trkB) signaling regulates the maturation of cortical PV interneurons but is also implicated in their adult multidimensional functions. Using a novel viral strategy for cell-type-specific and spatially restricted expression of a dominant-negative trkB (trkB.DN), we show that BDNF/trkB signaling is essential to the integrity and maintenance of prefrontal PV interneurons in adult male and female mice. Reduced BDNF/trkB signaling in PV interneurons in the medial prefrontal cortex (mPFC) resulted in deficient PV inhibition and increased baseline local field potential (LFP) activity in a broad frequency band. The altered network activity was particularly pronounced during increased activation of the prefrontal network and was associated with changed dynamics of local excitatory neurons, as well as decreased modulation of the LFP, abnormalities that appeared to generalize across stimuli and brain states. In addition, our findings link reduced BDNF/trkB signaling in prefrontal PV interneurons to increased aggression. Together our investigations demonstrate that BDNF/trkB signaling in PV interneurons in the adult mPFC is essential to local network dynamics and cognitive behavior. Our data provide direct support for the suggested association between decreased trkB signaling, deficient PV inhibition, and altered prefrontal circuitry.SIGNIFICANCE STATEMENT Brain-derived neurotrophic factor (BDNF)/tyrosine receptor kinase B (trkB) signaling promotes the maturation of inhibitory parvalbumin (PV) interneurons, neurons central to local cortical dynamics, γ rhythms, and cognition. Here, we used a novel viral approach for reduced BDNF/trkB signaling in PV interneurons in the medial prefrontal cortex (mPFC) to establish the role of BDNF/trkB signaling in adult prefrontal network activities. Reduced BDNF/trkB signaling caused pronounced morphologic alterations, reduced PV inhibition, and deficient prefrontal network dynamics. The altered network activity appeared to manifest across stimuli and brain states and was associated with aberrant local field potential (LFP) activities and increased aggression. The results demonstrate that adult BDNF/trkB signaling is essential to PV inhibition and prefrontal circuit function and directly links BDNF/trkB signaling to network integrity in the adult brain.
Collapse
Affiliation(s)
- Nicolas Guyon
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Leonardo Rakauskas Zacharias
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | | | - Jana Immenschuh
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Janos Fuzik
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Antje Märtin
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Yang Xuan
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Misha Zilberter
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Hoseok Kim
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | | | - Cleiton Lopes-Aguiar
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Marie Carlén
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14183, Sweden
| |
Collapse
|