1
|
Mu Y, Wei Z, Sun M, Li J, Jiang Y, Jiang H, Ma A, Zhu C, Chen X. SRSF10 regulates oligodendrocyte differentiation during mouse central nervous system development by modulating pre-mRNA splicing. Nucleic Acids Res 2025; 53:gkaf455. [PMID: 40439883 PMCID: PMC12121360 DOI: 10.1093/nar/gkaf455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 04/23/2025] [Accepted: 05/19/2025] [Indexed: 06/02/2025] Open
Abstract
We characterized the role and regulation mechanism of a pre-mRNA splicing factor, SRSF10, in the development of oligodendrocyte lineage cells (OLCs) and the myelination process during mouse central nervous system (CNS) development. We found that depletion of SRSF10 specifically in OLCs induces hypomyelination and a decrease in OLCs in the developing mouse CNS, whereas depletion of SRSF10 only in differentiated OLCs does not significantly affect these processes. More detailed in vivo and in vitro analyses revealed that SRSF10 primarily regulates the earlier differentiation stages of OLCs, while the proliferation and apoptosis of OLCs were not affected. Mechanistically, RNA-seq and RIP-Seq transcript analyses identified a series of genes whose alternative splicing (AS) was directly regulated by SRSF10. Among these genes, compensating for the AS phenotype of Myo5a using antisense oligonucleotides (ASOs) reversed the inhibition of OLCs differentiation induced by SRSF10 depletion. In summary, we revealed for the first time that SRSF10 is a key regulator in the early differentiation of OLCs, likely via modulating the AS patterns of target genes such as Myo5a. This research provides significant implications for understanding OLC development and exploring potential therapeutic strategies for dysmyelination-related diseases.
Collapse
Affiliation(s)
- Yawei Mu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zixuan Wei
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Menghan Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Junjie Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yi Jiang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Hanyang Jiang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ankangzhi Ma
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Cuiqing Zhu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xianhua Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Liran M, Fischer I, Elboim M, Rahamim N, Gordon T, Urshansky N, Assaf Y, Barak B, Barak S. Long-Term Excessive Alcohol Consumption Enhances Myelination in the Mouse Nucleus Accumbens. J Neurosci 2025; 45:e0280242025. [PMID: 39909566 PMCID: PMC11968546 DOI: 10.1523/jneurosci.0280-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
Chronic excessive alcohol (ethanol) consumption induces neuroadaptations in the brain's reward system, including biochemical and structural abnormalities in white matter that are implicated in addiction phenotypes. Here, we demonstrate that long-term (12 week) voluntary ethanol consumption enhances myelination in the nucleus accumbens (NAc) of female and male adult mice, as evidenced by molecular, ultrastructural, and cellular alterations. Specifically, transmission electron microscopy analysis showed increased myelin thickness in the NAc following long-term ethanol consumption, while axon diameter remained unaffected. These changes were paralleled by increased mRNA transcript levels of key transcription factors essential for oligodendrocyte (OL) differentiation, along with elevated expression of critical myelination-related genes. In addition, diffusion tensor imaging revealed increased connectivity between the NAc and the prefrontal cortex, reflected by a higher number of tracts connecting these regions. We also observed ethanol-induced effects on OL lineage cells, with a reduction in the number of mature OLs after 3 weeks of ethanol consumption, followed by an increase after 6 weeks. These findings suggest that ethanol alters OL development prior to increasing myelination in the NAc. Finally, chronic administration of the promyelination drug clemastine to mice with a history of heavy ethanol consumption further elevated ethanol intake and preference, suggesting that increased myelination may contribute to escalated drinking behavior. Together, these findings suggest that heavy ethanol consumption disrupts OL development, induces enhanced myelination in the NAc, and may drive further ethanol intake, reinforcing addictive behaviors.
Collapse
Affiliation(s)
- Mirit Liran
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Inbar Fischer
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - May Elboim
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nofar Rahamim
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Gordon
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nataly Urshansky
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yaniv Assaf
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Boaz Barak
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Segev Barak
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Gobbo D, Kirchhoff F. Animal-based approaches to understanding neuroglia physiology in vitro and in vivo. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:229-263. [PMID: 40122627 DOI: 10.1016/b978-0-443-19104-6.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
This chapter describes the pivotal role of animal models for unraveling the physiology of neuroglial cells in the central nervous system (CNS). The two rodent species Mus musculus (mice) and Rattus norvegicus (rats) have been indispensable in scientific research due to their remarkable resemblance to humans anatomically, physiologically, and genetically. Their ease of maintenance, short gestation times, and rapid development make them ideal candidates for studying the physiology of astrocytes, oligodendrocyte-lineage cells, and microglia. Moreover, their genetic similarity to humans facilitates the investigation of molecular mechanisms governing neural physiology. Mice are largely the predominant model of neuroglial research, owing to advanced genetic manipulation techniques, whereas rats remain invaluable for applications requiring larger CNS structures for surgical manipulations. Next to rodents, other animal models, namely, Danio rerio (zebrafish) and Drosophila melanogaster (fruit fly), will be discussed to emphasize their critical role in advancing our understanding of glial physiology. Each animal model provides distinct advantages and disadvantages. By combining the strengths of each of them, researchers can gain comprehensive insights into glial function across species, ultimately promoting the understanding of glial physiology in the human CNS and driving the development of novel therapeutic interventions for CNS disorders.
Collapse
Affiliation(s)
- Davide Gobbo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany.
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany; Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, Homburg, Germany.
| |
Collapse
|
4
|
Yu L, Chen Z, Zhou X, Teng F, Bai QR, Li L, Li Y, Liu Y, Zeng Q, Wang Y, Wang M, Xu Y, Tang X, Wang X. KARS Mutations Impair Brain Myelination by Inducing Oligodendrocyte Deficiency: One Potential Mechanism and Improvement by Melatonin. J Pineal Res 2024; 76:e12998. [PMID: 39087379 DOI: 10.1111/jpi.12998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
It is very crucial to investigate key molecules that are involved in myelination to gain an understanding of brain development and injury. We have reported for the first time that pathogenic variants p.R477H and p.P505S in KARS, which encodes lysyl-tRNA synthetase (LysRS), cause leukoencephalopathy with progressive cognitive impairment in humans. The role and action mechanisms of KARS in brain myelination during development are unknown. Here, we first generated Kars knock-in mouse models through the CRISPR-Cas9 system. Kars knock-in mice displayed significant cognitive deficits. These mice also showed significantly reduced myelin density and content, as well as significantly decreased myelin thickness during development. In addition, Kars mutations significantly induced oligodendrocyte differentiation arrest and reduction in the brain white matter of mice. Mechanically, oligodendrocytes' significantly imbalanced expression of differentiation regulators and increased capase-3-mediated apoptosis were observed in the brain white matter of Kars knock-in mice. Furthermore, Kars mutations significantly reduced the aminoacylation and steady-state level of mitochondrial tRNALys and decreased the protein expression of subunits of oxidative phosphorylation complexes in the brain white matter. Kars knock-in mice showed decreased activity of complex IV and significantly reduced ATP production and increased reactive oxygen species in the brain white matter. Significantly increased percentages of abnormal mitochondria and mitochondrion area were observed in the oligodendrocytes of Kars knock-in mouse brain. Finally, melatonin (a mitochondrion protectant) significantly attenuated mitochondrion and oligodendrocyte deficiency in the brain white matter of KarsR504H/P532S mice. The mice treated with melatonin also showed significantly restored myelination and cognitive function. Our study first establishes Kars knock-in mammal models of leukoencephalopathy and cognitive impairment and indicates important roles of KARS in the regulation of mitochondria, oligodendrocyte differentiation and survival, and myelination during brain development and application prospects of melatonin in KARS (or even aaRS)-related diseases.
Collapse
Affiliation(s)
- Lijia Yu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhilin Chen
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolong Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei Teng
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qing-Ran Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lixi Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunhong Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ying Liu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Qiyu Zeng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yong Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Meihua Wang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yaling Xu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohui Tang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xijin Wang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Davoody S, Asgari Taei A, Khodabakhsh P, Dargahi L. mTOR signaling and Alzheimer's disease: What we know and where we are? CNS Neurosci Ther 2024; 30:e14463. [PMID: 37721413 PMCID: PMC11017461 DOI: 10.1111/cns.14463] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
Despite the great body of research done on Alzheimer's disease, the underlying mechanisms have not been vividly investigated. To date, the accumulation of amyloid-beta plaques and tau tangles constitutes the hallmark of the disease; however, dysregulation of the mammalian target of rapamycin (mTOR) seems to be significantly involved in the pathogenesis of the disease as well. mTOR, as a serine-threonine protein kinase, was previously known for controlling many cellular functions such as cell size, autophagy, and metabolism. In this regard, mammalian target of rapamycin complex 1 (mTORC1) may leave anti-aging impacts by robustly inhibiting autophagy, a mechanism that inhibits the accumulation of damaged protein aggregate and dysfunctional organelles. Formation and aggregation of neurofibrillary tangles and amyloid-beta plaques seem to be significantly regulated by mTOR signaling. Understanding the underlying mechanisms and connection between mTOR signaling and AD may suggest conducting clinical trials assessing the efficacy of rapamycin, as an mTOR inhibitor drug, in managing AD or may help develop other medications. In this literature review, we aim to elaborate mTOR signaling network mainly in the brain, point to gaps of knowledge, and define how and in which ways mTOR signaling can be connected with AD pathogenesis and symptoms.
Collapse
Affiliation(s)
- Samin Davoody
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Afsaneh Asgari Taei
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Pariya Khodabakhsh
- Department of NeurophysiologyInstitute of Physiology, Eberhard Karls University of TübingenTübingenGermany
| | - Leila Dargahi
- Neurobiology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
6
|
Wu L, Wang F, Moncman CL, Pandey M, Clarke HA, Frazier HN, Young LE, Gentry MS, Cai W, Thibault O, Sun RC, Andres DA. RIT1 regulation of CNS lipids RIT1 deficiency Alters cerebral lipid metabolism and reduces white matter tract oligodendrocytes and conduction velocities. Heliyon 2023; 9:e20384. [PMID: 37780758 PMCID: PMC10539968 DOI: 10.1016/j.heliyon.2023.e20384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/21/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
Oligodendrocytes (OLs) generate lipid-rich myelin membranes that wrap axons to enable efficient transmission of electrical impulses. Using a RIT1 knockout mouse model and in situ high-resolution matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) coupled with MS-based lipidomic analysis to determine the contribution of RIT1 to lipid homeostasis. Here, we report that RIT1 loss is associated with altered lipid levels in the central nervous system (CNS), including myelin-associated lipids within the corpus callosum (CC). Perturbed lipid metabolism was correlated with reduced numbers of OLs, but increased numbers of GFAP+ glia, in the CC, but not in grey matter. This was accompanied by reduced myelin protein expression and axonal conduction deficits. Behavioral analyses revealed significant changes in voluntary locomotor activity and anxiety-like behavior in RIT1KO mice. Together, these data reveal an unexpected role for RIT1 in the regulation of cerebral lipid metabolism, which coincide with altered white matter tract oligodendrocyte levels, reduced axonal conduction velocity, and behavioral abnormalities in the CNS.
Collapse
Affiliation(s)
- Lei Wu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY 40536, USA
| | - Fang Wang
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY 40536, USA
| | - Carole L. Moncman
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY 40536, USA
| | - Mritunjay Pandey
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY 40536, USA
| | - Harrison A. Clarke
- Department of Neuroscience, College of Medicine, University of Kentucky, KY 40536, USA
| | - Hilaree N. Frazier
- Department of Pharmacological and Nutritional Sciences, College of Medicine, University of Kentucky, KY 40536, USA
| | - Lyndsay E.A. Young
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY 40536, USA
- Markey Cancer Center, Lexington, KY 40536, USA
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY 40536, USA
- Markey Cancer Center, Lexington, KY 40536, USA
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32611, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, NY 11568, USA
| | - Olivier Thibault
- Department of Pharmacological and Nutritional Sciences, College of Medicine, University of Kentucky, KY 40536, USA
| | - Ramon C. Sun
- Department of Neuroscience, College of Medicine, University of Kentucky, KY 40536, USA
- Markey Cancer Center, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32611, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Douglas A. Andres
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, KY 40536, USA
- Markey Cancer Center, Lexington, KY 40536, USA
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, KY 40536, USA
- Gill Heart and Vascular Institute, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
7
|
Qiu X, Zhou R, Su X, Ying J, Qu Y, Mu D. Pleiotrophin ameliorates white matter injury of neonatal rats by activating the mTOR/YY1/Id4 signaling pathway. FASEB J 2023; 37:e23082. [PMID: 37462506 DOI: 10.1096/fj.202201766rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023]
Abstract
Brain white matter injury (WMI) is a serious disease of the central nervous system. Pleiotrophin (PTN) promotes the differentiation and myelination of oligodendrocytes (OLs) in vitro. However, the role of PTN in WMI remains unknown. Therefore, this study aimed to investigate the neuroprotective role and potential mechanisms of PTN function in neonatal rats with WMI. The PTN and mammalian target of rapamycin (mTOR) inhibitor everolimus was used to treat a WMI model in postnatal day 3 Sprague-Dawley rats, in which the right common carotid arteries of these rats were isolated, ligated, and exposed to a hypoxic environment (6% O2 + 94% N2 ) for 2 h. OL differentiation and myelination, as well as the spatial learning and memory abilities of the rats were evaluated to examine the effects of PTN. Two proteins of the mTOR signaling pathway, YingYang1 (YY1) and inhibitor of DNA binding 4 (Id4), were detected and were used to explore the potential mechanisms of PTN in rat WMI experiment and oxygen glucose deprivation (OGD) model. We found that the differentiation and myelination of OLs were impaired after WMI. PTN administration rescued this injury by activating mTOR/YY1 and inhibiting Id4. Everolimus administration inhibited mTOR/YY1 and activated Id4, which blocked the neuroprotective role of PTN in WMI. PTN plays a neuroprotective role in neonatal rats with WMI, which could be involved in the mTOR/YY1/Id4 signaling pathway.
Collapse
Affiliation(s)
- Xia Qiu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Xiaojuan Su
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Huang H, Jing B, Zhu F, Jiang W, Tang P, Shi L, Chen H, Ren G, Xia S, Wang L, Cui Y, Yang Z, Platero AJ, Hutchins AP, Chen M, Worley PF, Xiao B. Disruption of neuronal RHEB signaling impairs oligodendrocyte differentiation and myelination through mTORC1-DLK1 axis. Cell Rep 2023; 42:112801. [PMID: 37463107 PMCID: PMC11849431 DOI: 10.1016/j.celrep.2023.112801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/12/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
How neuronal signaling affects brain myelination remains poorly understood. We show dysregulated neuronal RHEB-mTORC1-DLK1 axis impairs brain myelination. Neuronal Rheb cKO impairs oligodendrocyte differentiation/myelination, with activated neuronal expression of the imprinted gene Dlk1. Neuronal Dlk1 cKO ameliorates myelination deficit in neuronal Rheb cKO mice, indicating that activated neuronal Dlk1 expression contributes to impaired myelination caused by Rheb cKO. The effect of Rheb cKO on Dlk1 expression is mediated by mTORC1; neuronal mTor cKO and Raptor cKO and pharmacological inhibition of mTORC1 recapitulate elevated neuronal Dlk1 expression. We demonstrate that both a secreted form of DLK1 and a membrane-bound DLK1 inhibit the differentiation of cultured oligodendrocyte precursor cells into oligodendrocytes expressing myelin proteins. Finally, neuronal expression of Dlk1 in transgenic mice reduces the formation of mature oligodendrocytes and myelination. This study identifies Dlk1 as an inhibitor of oligodendrocyte myelination and a mechanism linking altered neuronal signaling with oligodendrocyte dysfunction.
Collapse
Affiliation(s)
- Haijiao Huang
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Bo Jing
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China.
| | - Feiyan Zhu
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Wanxiang Jiang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ping Tang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Liyang Shi
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Huiting Chen
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Guoru Ren
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Shiyao Xia
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Luoling Wang
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Yiyuan Cui
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhiwen Yang
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Alexander J Platero
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew P Hutchins
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China
| | - Mina Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Paul F Worley
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Bo Xiao
- Departments of Neuroscience and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen Key Laboratory for Gene Regulation and Systems Biology, Shenzhen 518055, People's Republic of China.
| |
Collapse
|
9
|
Zhang T, Alonzo I, Stubben C, Geng Y, Herdman C, Chandler N, Doane KP, Pluimer BR, Trauger SA, Peterson RT. A zebrafish model of combined saposin deficiency identifies acid sphingomyelinase as a potential therapeutic target. Dis Model Mech 2023; 16:dmm049995. [PMID: 37183607 PMCID: PMC10320721 DOI: 10.1242/dmm.049995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/26/2023] [Indexed: 05/16/2023] Open
Abstract
Sphingolipidoses are a subcategory of lysosomal storage diseases (LSDs) caused by mutations in enzymes of the sphingolipid catabolic pathway. Like many LSDs, neurological involvement in sphingolipidoses leads to early mortality with limited treatment options. Given the role of myelin loss as a major contributor toward LSD-associated neurodegeneration, we investigated the pathways contributing to demyelination in a CRISPR-Cas9-generated zebrafish model of combined saposin (psap) deficiency. psap knockout (KO) zebrafish recapitulated major LSD pathologies, including reduced lifespan, reduced lipid storage, impaired locomotion and severe myelin loss; loss of myelin basic protein a (mbpa) mRNA was progressive, with no changes in additional markers of oligodendrocyte differentiation. Brain transcriptomics revealed dysregulated mTORC1 signaling and elevated neuroinflammation, where increased proinflammatory cytokine expression preceded and mTORC1 signaling changes followed mbpa loss. We examined pharmacological and genetic rescue strategies via water tank administration of the multiple sclerosis drug monomethylfumarate (MMF), and crossing the psap KO line into an acid sphingomyelinase (smpd1) deficiency model. smpd1 mutagenesis, but not MMF treatment, prolonged lifespan in psap KO zebrafish, highlighting the modulation of acid sphingomyelinase activity as a potential path toward sphingolipidosis treatment.
Collapse
Affiliation(s)
- Tejia Zhang
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ivy Alonzo
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Chris Stubben
- Bioinformatic Analysis Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Yijie Geng
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Chelsea Herdman
- Department of Neurobiology and Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Nancy Chandler
- Electron Microscopy Core Laboratory, University of Utah, Salt Lake City, UT 84112, USA
| | - Kim P. Doane
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Brock R. Pluimer
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sunia A. Trauger
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Randall T. Peterson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
10
|
Yang Z, Yu Z, Xiao B. Coordinated Regulation of Myelination by Growth Factor and Amino-acid Signaling Pathways. Neurosci Bull 2023; 39:453-465. [PMID: 36352321 PMCID: PMC10043148 DOI: 10.1007/s12264-022-00967-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/27/2022] [Indexed: 11/11/2022] Open
Abstract
Myelin-forming oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS) are essential for structural and functional homeostasis of nervous tissue. Albeit with certain similarities, the regulation of CNS and PNS myelination is executed differently. Recent advances highlight the coordinated regulation of oligodendrocyte myelination by amino-acid sensing and growth factor signaling pathways. In this review, we discuss novel insights into the understanding of differential regulation of oligodendrocyte and Schwann cell biology in CNS and PNS myelination, with particular focus on the roles of growth factor-stimulated RHEB-mTORC1 and GATOR2-mediated amino-acid sensing/signaling pathways. We also discuss recent progress on the metabolic regulation of oligodendrocytes and Schwann cells and the impact of their dysfunction on neuronal function and disease.
Collapse
Affiliation(s)
- Zhiwen Yang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Zongyan Yu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518000, China.
| | - Bo Xiao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518000, China.
| |
Collapse
|
11
|
Barnes-Vélez JA, Aksoy Yasar FB, Hu J. Myelin lipid metabolism and its role in myelination and myelin maintenance. Innovation (N Y) 2023; 4:100360. [PMID: 36588745 PMCID: PMC9800635 DOI: 10.1016/j.xinn.2022.100360] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Myelin is a specialized cell membrane indispensable for rapid nerve conduction. The high abundance of membrane lipids is one of myelin's salient features that contribute to its unique role as an insulator that electrically isolates nerve fibers across their myelinated surface. The most abundant lipids in myelin include cholesterol, glycosphingolipids, and plasmalogens, each playing critical roles in myelin development as well as function. This review serves to summarize the role of lipid metabolism in myelination and myelin maintenance, as well as the molecular determinants of myelin lipid homeostasis, with an emphasis on findings from genetic models. In addition, the implications of myelin lipid dysmetabolism in human diseases are highlighted in the context of hereditary leukodystrophies and neuropathies as well as acquired disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Joseph A. Barnes-Vélez
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054-1901, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Science, Houston, TX 77225-0334, USA
- University of Puerto Rico Medical Sciences Campus, School of Medicine, San Juan, PR 00936-5067, USA
| | - Fatma Betul Aksoy Yasar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054-1901, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Science, Houston, TX 77225-0334, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054-1901, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Science, Houston, TX 77225-0334, USA
| |
Collapse
|
12
|
Emamnejad R, Dass M, Mahlis M, Bozkurt S, Ye S, Pagnin M, Theotokis P, Grigoriadis N, Petratos S. Thyroid hormone-dependent oligodendroglial cell lineage genomic and non-genomic signaling through integrin receptors. Front Pharmacol 2022; 13:934971. [PMID: 36133808 PMCID: PMC9483185 DOI: 10.3389/fphar.2022.934971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous autoimmune disease whereby the pathological sequelae evolve from oligodendrocytes (OLs) within the central nervous system and are targeted by the immune system, which causes widespread white matter pathology and results in neuronal dysfunction and neurological impairment. The progression of this disease is facilitated by a failure in remyelination following chronic demyelination. One mediator of remyelination is thyroid hormone (TH), whose reliance on monocarboxylate transporter 8 (MCT8) was recently defined. MCT8 facilitates the entry of THs into oligodendrocyte progenitor cell (OPC) and pre-myelinating oligodendrocytes (pre-OLs). Patients with MS may exhibit downregulated MCT8 near inflammatory lesions, which emphasizes an inhibition of TH signaling and subsequent downstream targeted pathways such as phosphoinositide 3-kinase (PI3K)-Akt. However, the role of the closely related mammalian target of rapamycin (mTOR) in pre-OLs during neuroinflammation may also be central to the remyelination process and is governed by various growth promoting signals. Recent research indicates that this may be reliant on TH-dependent signaling through β1-integrins. This review identifies genomic and non-genomic signaling that is regulated through mTOR in TH-responsive pre-OLs and mature OLs in mouse models of MS. This review critiques data that implicates non-genomic Akt and mTOR signaling in response to TH-dependent integrin receptor activation in pre-OLs. We have also examined whether this can drive remyelination in the context of neuroinflammation and associated sequelae. Importantly, we outline how novel therapeutic small molecules are being designed to target integrin receptors on oligodendroglial lineage cells and whether these are viable therapeutic options for future use in clinical trials for MS.
Collapse
Affiliation(s)
- Rahimeh Emamnejad
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Mary Dass
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Michael Mahlis
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Salome Bozkurt
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Sining Ye
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Paschalis Theotokis
- B’, Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- B’, Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
- *Correspondence: Steven Petratos,
| |
Collapse
|
13
|
Xia Y, Zhang Y, Xu M, Zou X, Gao J, Ji MH, Chen G. Presenilin enhancer 2 is crucial for the transition of apical progenitors into neurons but into not basal progenitors in the developing hippocampus. Development 2022; 149:275418. [PMID: 35575074 DOI: 10.1242/dev.200272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/04/2022] [Indexed: 12/23/2022]
Abstract
Recent evidence has shown that presenilin enhancer 2 (Pen2; Psenen) plays an essential role in corticogenesis by regulating the switch of apical progenitors (APs) to basal progenitors (BPs). The hippocampus is a brain structure required for advanced functions, including spatial navigation, learning and memory. However, it remains unknown whether Pen2 is important for hippocampal morphogenesis. To address this question, we generated Pen2 conditional knockout (cKO) mice, in which Pen2 is inactivated in neural progenitor cells (NPCs) in the hippocampal primordium. We showed that Pen2 cKO mice exhibited hippocampal malformation and decreased population of NPCs in the neuroepithelium of the hippocampus. We found that deletion of Pen2 neither affected the proliferative capability of APs nor the switch of APs to BPs in the hippocampus, and that it caused enhanced transition of APs to neurons. We demonstrated that expression of the Notch1 intracellular domain (N1ICD) significantly increased the population of NPCs in the Pen2 cKO hippocampus. Collectively, this study uncovers a crucial role for Pen2 in the maintenance of NPCs during hippocampal development.
Collapse
Affiliation(s)
- Yingqian Xia
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 12 Xuefu Avenue, Nanjing, Jiangsu, China, 210061
| | - Yizhi Zhang
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 12 Xuefu Avenue, Nanjing, Jiangsu, China, 210061
| | - Min Xu
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu, China, 211166
| | - Xiaochuan Zou
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 12 Xuefu Avenue, Nanjing, Jiangsu, China, 210061
| | - Jun Gao
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu, China, 211166
| | - Mu-Huo Ji
- Department of Anesthesiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China, 210003
| | - Guiquan Chen
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 12 Xuefu Avenue, Nanjing, Jiangsu, China, 210061.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China, 226001
| |
Collapse
|
14
|
Du C, Yang W, Yu Z, Yuan Q, Pang D, Tang P, Jiang W, Chen M, Xiao B. Rheb Promotes Triglyceride Secretion and Ameliorates Diet-Induced Steatosis in the Liver. Front Cell Dev Biol 2022; 10:808140. [PMID: 35372326 PMCID: PMC8965806 DOI: 10.3389/fcell.2022.808140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatosteatosis, characterized by excessive accumulation of lipids in the liver, is a major health issue in modern society. Understanding how altered hepatic lipid metabolism/homeostasis causes hepatosteatosis helps to develop therapeutic interventions. Previous studies identify mitochondrial dysfunction as a contributor to hepatosteatosis. But, the molecular mechanisms of mitochondrial dysfunction leading to altered lipid metabolism remain incompletely understood. Our previous work shows that Rheb, a Ras-like small GTPase, not only activates mTORC1 but also promotes mitochondrial ATP production through pyruvate dehydrogenase (PDH). In this study, we further demonstrate that Rheb controls hepatic triglyceride secretion and reduces diet-induced lipid accumulation in a mouse liver. Genetic deletion of Rheb causes rapid and spontaneous steatosis in the liver, which is unexpected from the role of mTORC1 that enhances lipid synthesis, whereas Rheb transgene remarkably reduces diet-induced hepatosteatosis. Results suggest that the hepatosteatosis in Rheb KO is an outcome of impaired lipid secretion, which is linked to mitochondrial ATP production of hepatocytes. Our findings highlight an under-appreciated role of Rheb in the regulation of hepatic lipid secretion through mitochondrial energy production, with therapeutic implication.
Collapse
Affiliation(s)
- Chongyangzi Du
- Neuroscience and Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wanchun Yang
- Neuroscience and Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zongyan Yu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen, China
| | - Qiuyun Yuan
- Neuroscience and Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dejiang Pang
- Neuroscience and Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Tang
- Neuroscience and Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wanxiang Jiang
- Neuroscience and Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mina Chen
- Neuroscience and Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Correspondence: Bo Xiao, ; Mina Chen, .
| | - Bo Xiao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen, China
- Correspondence: Bo Xiao, ; Mina Chen, .
| |
Collapse
|
15
|
Sato A, Tominaga K, Iwatani Y, Kato Y, Wataya-Kaneda M, Makita K, Nemoto K, Taniike M, Kagitani-Shimono K. Abnormal White Matter Microstructure in the Limbic System Is Associated With Tuberous Sclerosis Complex-Associated Neuropsychiatric Disorders. Front Neurol 2022; 13:782479. [PMID: 35359647 PMCID: PMC8963953 DOI: 10.3389/fneur.2022.782479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTuberous sclerosis complex (TSC) is a genetic disease that arises from TSC1 or TSC2 abnormalities and induces the overactivation of the mammalian/mechanistic target of rapamycin pathways. The neurological symptoms of TSC include epilepsy and tuberous sclerosis complex-associated neuropsychiatric disorders (TAND). Although TAND affects TSC patients' quality of life, the specific region in the brain associated with TAND remains unknown. We examined the association between white matter microstructural abnormalities and TAND, using diffusion tensor imaging (DTI).MethodsA total of 19 subjects with TSC and 24 age-matched control subjects were enrolled. Tract-based spatial statistics (TBSS) were performed to assess group differences in fractional anisotropy (FA) between the TSC and control groups. Atlas-based association analysis was performed to reveal TAND-related white matter in subjects with TSC. Multiple linear regression was performed to evaluate the association between TAND and the DTI parameters; FA and mean diffusivity in seven target regions and projection fibers.ResultsThe TBSS showed significantly reduced FA in the right hemisphere and particularly in the inferior frontal occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), uncinate fasciculus (UF), and genu of corpus callosum (CC) in the TSC group relative to the control group. In the association analysis, intellectual disability was widely associated with all target regions. In contrast, behavioral problems and autistic features were associated with the limbic system white matter and anterior limb of the internal capsule (ALIC) and CC.ConclusionThe disruption of white matter integrity may induce underconnectivity between cortical and subcortical regions. These findings suggest that TANDs are not the result of an abnormality in a specific brain region, but rather caused by connectivity dysfunction as a network disorder. This study indicates that abnormal white matter connectivity including the limbic system is relevant to TAND. The analysis of brain and behavior relationship is a feasible approach to reveal TAND related white matter and neural networks. TAND should be carefully assessed and treated at an early stage.
Collapse
Affiliation(s)
- Akemi Sato
- United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Koji Tominaga
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiko Iwatani
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoko Kato
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mari Wataya-Kaneda
- Division of Health Science, Department of Neurocutaneous Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kai Makita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Kiyotaka Nemoto
- Division of Clinical Medicine, Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masako Taniike
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kuriko Kagitani-Shimono
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
- *Correspondence: Kuriko Kagitani-Shimono
| |
Collapse
|
16
|
Liu X, Dong C, Liu K, Chen H, Liu B, Dong X, Qian Y, Wu B, Lin Y, Wang H, Yang L, Zhou W. mTOR pathway repressing expression of FoxO3 is a potential mechanism involved in neonatal white matter dysplasia. Hum Mol Genet 2022; 31:2508-2520. [PMID: 35220433 DOI: 10.1093/hmg/ddac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/10/2022] [Accepted: 02/20/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Neonatal white matter dysplasia (NWMD) is characterized by developmental abnormity of CNS white matter, including abnormal myelination. Besides environmental factors such as suffocation at birth, genetic factors are also main causes. Signaling pathway is an important part of gene function and several signaling pathways play important roles in myelination. Here, we performed genetic analysis on a corhort of 138 patients with NWMD and found that 20% (5/25) cause genes which refered to 28.57% (8/28) patients enriched in mTOR signaling pathway. Depletion of mTOR reduced genesis and proliferation of oligodendrocyte progenitor cells (OPC) during embryonic stage and reduced myelination in corpus callosum besides cerebellum and spinal cord during early postnatal stages which is related to not only differentiation but also proliferation of oligodendrocyte (OL). Transcriptomic analyses indicated that depletion of mTOR in OLs upregulated expression of FoxO3, which is a repressor of expression of myelin basic protein (MBP), and downregulating expresion of FoxO3 by siRNA promoted OPCs develop into MBP+ OLs. Thus, our findings suggested that mTOR signaling pathway is NWMD-related pathway and mTOR is important for myelination of the entire CNS during early developmental stages through regulating expression of FoxO3 at least partially.
Collapse
Affiliation(s)
- Xiuyun Liu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Chen Dong
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Kaiyi Liu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Huiyao Chen
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bo Liu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Yanyan Qian
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Yifeng Lin
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Huijun Wang
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Lin Yang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Wenhao Zhou
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Division of Neonatology, Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Beeraka NM, Avila-Rodriguez MF, Aliev G. Recent Reports on Redox Stress-Induced Mitochondrial DNA Variations, Neuroglial Interactions, and NMDA Receptor System in Pathophysiology of Schizophrenia. Mol Neurobiol 2022; 59:2472-2496. [PMID: 35083660 DOI: 10.1007/s12035-021-02703-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
Schizophrenia (SZ) is a chronic psychiatric disorder affecting several people worldwide. Mitochondrial DNA (mtDNA) variations could invoke changes in the OXPHOS system, calcium buffering, and ROS production, which have significant implications for glial cell survival during SZ. Oxidative stress has been implicated in glial cells-mediated pathogenesis of SZ; the brain comparatively more prone to oxidative damage through NMDAR. A confluence of scientific evidence points to mtDNA alterations, Nrf2 signaling, dynamic alterations in dorsolateral prefrontal cortex (DLPFC), and provocation of oxidative stress that enhance pathophysiology of SZ. Furthermore, the alterations in excitatory signaling related to NMDAR signaling were particularly reported for SZ pathophysiology. Current review reported the recent evidence for the role of mtDNA variations and oxidative stress in relation to pathophysiology of SZ, NMDAR hypofunction, and glutathione deficiency. NMDAR system is influenced by redox dysregulation in oxidative stress, inflammation, and antioxidant mediators. Several studies have demonstrated the relationship of these variables on severity of pathophysiology in SZ. An extensive literature search was conducted using Medline, PubMed, PsycINFO, CINAHL PLUS, BIOSIS Preview, Google scholar, and Cochrane databases. We summarize consistent evidence pointing out a plausible model that may elucidate the crosstalk between mtDNA alterations in glial cells and redox dysregulation during oxidative stress and the perturbation of NMDA neurotransmitter system during current therapeutic modalities for the SZ treatment. This review can be beneficial for the development of promising novel diagnostics, and therapeutic modalities by ascertaining the mtDNA variations, redox state, and efficacy of pharmacological agents to mitigate redox dysregulation and augment NMDAR function to treat cognitive and behavioral symptoms in SZ.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Department of Human Anatomy, I M Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia.
| | - Marco F Avila-Rodriguez
- Faculty of Health Sciences, Department of Clinical Sciences, Barrio Santa Helena, University of Tolima, 730006, Ibagué, Colombia
| | - Gjumrakch Aliev
- Department of Human Anatomy, I M Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia.,Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia.,Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russia.,GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA
| |
Collapse
|
18
|
Yu Z, Yang Z, Ren G, Wang Y, Luo X, Zhu F, Yu S, Jia L, Chen M, Worley PF, Xiao B. GATOR2 complex-mediated amino acid signaling regulates brain myelination. Proc Natl Acad Sci U S A 2022; 119:e2110917119. [PMID: 35022234 PMCID: PMC8784133 DOI: 10.1073/pnas.2110917119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023] Open
Abstract
Amino acids are essential for cell growth and metabolism. Amino acid and growth factor signaling pathways coordinately regulate the mechanistic target of rapamycin complex 1 (mTORC1) kinase in cell growth and organ development. While major components of amino acid signaling mechanisms have been identified, their biological functions in organ development are unclear. We aimed to understand the functions of the critically positioned amino acid signaling complex GAP activity towards Rags 2 (GATOR2) in brain development. GATOR2 mediates amino acid signaling to mTORC1 by directly linking the amino acid sensors for arginine and leucine to downstream signaling complexes. Now, we report a role of GATOR2 in oligodendrocyte myelination in postnatal brain development. We show that the disruption of GATOR2 complex by genetic deletion of meiosis regulator for oocyte development (Mios, encoding a component of GATOR2) selectively impairs the formation of myelinating oligodendrocytes, thus brain myelination, without apparent effects on the formation of neurons and astrocytes. The loss of Mios impairs cell cycle progression of oligodendrocyte precursor cells, leading to their reduced proliferation and differentiation. Mios deletion manifests a cell type-dependent effect on mTORC1 in the brain, with oligodendroglial mTORC1 selectively affected. However, the role of Mios/GATOR2 in oligodendrocyte formation and myelination involves mTORC1-independent function. This study suggests that GATOR2 coordinates amino acid and growth factor signaling to regulate oligodendrocyte myelination.
Collapse
Affiliation(s)
- Zongyan Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, People's Republic of China
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, People's Republic of China
- Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Zhiwen Yang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, People's Republic of China
- Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Guoru Ren
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, People's Republic of China
- Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Yingjie Wang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, People's Republic of China
- Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Xiang Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, People's Republic of China
- Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Feiyan Zhu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, People's Republic of China
- Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Shouyang Yu
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, People's Republic of China
| | - Lanlan Jia
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, People's Republic of China
| | - Mina Chen
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, People's Republic of China
| | - Paul F Worley
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Bo Xiao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, People's Republic of China;
- Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| |
Collapse
|
19
|
Grad M, Nir A, Levy G, Trangle SS, Shapira G, Shomron N, Assaf Y, Barak B. Altered White Matter and microRNA Expression in a Murine Model Related to Williams Syndrome Suggests That miR-34b/c Affects Brain Development via Ptpru and Dcx Modulation. Cells 2022; 11:cells11010158. [PMID: 35011720 PMCID: PMC8750756 DOI: 10.3390/cells11010158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Williams syndrome (WS) is a multisystem neurodevelopmental disorder caused by a de novo hemizygous deletion of ~26 genes from chromosome 7q11.23, among them the general transcription factor II-I (GTF2I). By studying a novel murine model for the hypersociability phenotype associated with WS, we previously revealed surprising aberrations in myelination and cell differentiation properties in the cortices of mutant mice compared to controls. These mutant mice had selective deletion of Gtf2i in the excitatory neurons of the forebrain. Here, we applied diffusion magnetic resonance imaging and fiber tracking, which showed a reduction in the number of streamlines in limbic outputs such as the fimbria/fornix fibers and the stria terminalis, as well as the corpus callosum of these mutant mice compared to controls. Furthermore, we utilized next-generation sequencing (NGS) analysis of cortical small RNAs' expression (RNA-Seq) levels to identify altered expression of microRNAs (miRNAs), including two from the miR-34 cluster, known to be involved in prominent processes in the developing nervous system. Luciferase reporter assay confirmed the direct binding of miR-34c-5p to the 3'UTR of PTPRU-a gene involved in neural development that was elevated in the cortices of mutant mice relative to controls. Moreover, we found an age-dependent variation in the expression levels of doublecortin (Dcx)-a verified miR-34 target. Thus, we demonstrate the substantial effect a single gene deletion can exert on miRNA regulation and brain structure, and advance our understanding and, hopefully, treatment of WS.
Collapse
Affiliation(s)
- Meitar Grad
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
| | - Ariel Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
| | - Gilad Levy
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
| | - Sari Schokoroy Trangle
- Faculty of Social Sciences, School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Guy Shapira
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Noam Shomron
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yaniv Assaf
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
- Faculty of Life Sciences, School of Neurobiology, Biochemistry & Biophysics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Boaz Barak
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
- Faculty of Social Sciences, School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
- Correspondence:
| |
Collapse
|
20
|
Jia L, Liao M, Mou A, Zheng Q, Yang W, Yu Z, Cui Y, Xia X, Qin Y, Chen M, Xiao B. Rheb-regulated mitochondrial pyruvate metabolism of Schwann cells linked to axon stability. Dev Cell 2021; 56:2980-2994.e6. [PMID: 34619097 DOI: 10.1016/j.devcel.2021.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/12/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023]
Abstract
The metabolic coupling of Schwann cells (SCs) and peripheral axons is poorly understood. Few molecules in SCs are known to regulate axon stability. Using SC-specific Rheb knockout mice, we demonstrate that Rheb-regulated mitochondrial pyruvate metabolism is critical for SC-mediated non-cell-autonomous regulation of peripheral axon stability. Rheb knockout suppresses pyruvate dehydrogenase (PDH) activity (independently of mTORC1) and shifts pyruvate metabolism toward lactate production in SCs. The increased lactate causes age-dependent peripheral axon degeneration, affecting peripheral nerve function. Lactate, as an energy substrate and a potential signaling molecule, enhanced neuronal mitochondrial metabolism and energy production of peripheral nerves. Albeit beneficial to injured peripheral axons in the short term, we show that persistently increased lactate metabolism of neurons enhances ROS production, eventually damaging mitochondria, neuroenergetics, and axon stability. This study highlights the complex roles of lactate metabolism to peripheral axons and the importance of lactate homeostasis in preserving peripheral nerves.
Collapse
Affiliation(s)
- Lanlan Jia
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Maoxing Liao
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Aidi Mou
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Quanzhen Zheng
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, People's Republic of China; Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Wanchun Yang
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zongyan Yu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, People's Republic of China; Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Yiyuan Cui
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaoqiang Xia
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China; Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Yue Qin
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Mina Chen
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Bo Xiao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, People's Republic of China; Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China.
| |
Collapse
|
21
|
The Akt-mTOR Pathway Drives Myelin Sheath Growth by Regulating Cap-Dependent Translation. J Neurosci 2021; 41:8532-8544. [PMID: 34475201 DOI: 10.1523/jneurosci.0783-21.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022] Open
Abstract
In the vertebrate CNS, oligodendrocytes produce myelin, a specialized membrane, to insulate and support axons. Individual oligodendrocytes wrap multiple axons with myelin sheaths of variable lengths and thicknesses. Myelin grows at the distal ends of oligodendrocyte processes, and multiple lines of work have provided evidence that mRNAs and RNA binding proteins localize to myelin, together supporting a model where local translation controls myelin sheath growth. What signal transduction mechanisms could control this? One strong candidate is the Akt-mTOR pathway, a major cellular signaling hub that coordinates transcription, translation, metabolism, and cytoskeletal organization. Here, using zebrafish as a model system, we found that Akt-mTOR signaling promotes myelin sheath growth and stability during development. Through cell-specific manipulations to oligodendrocytes, we show that the Akt-mTOR pathway drives cap-dependent translation to promote myelination and that restoration of cap-dependent translation is sufficient to rescue myelin deficits in mTOR loss-of-function animals. Moreover, an mTOR-dependent translational regulator was phosphorylated and colocalized with mRNA encoding a canonically myelin-translated protein in vivo, and bioinformatic investigation revealed numerous putative translational targets in the myelin transcriptome. Together, these data raise the possibility that Akt-mTOR signaling in nascent myelin sheaths promotes sheath growth via translation of myelin-resident mRNAs during development.SIGNIFICANCE STATEMENT In the brain and spinal cord, oligodendrocytes extend processes that tightly wrap axons with myelin, a protein- and lipid-rich membrane that increases electrical impulses and provides trophic support. Myelin membrane grows dramatically following initial axon wrapping in a process that demands protein and lipid synthesis. How protein and lipid synthesis is coordinated with the need for myelin to be generated in certain locations remains unknown. Our study reveals that the Akt-mTOR signaling pathway promotes myelin sheath growth by regulating protein translation. Because we found translational regulators of the Akt-mTOR pathway in myelin, our data raise the possibility that Akt-mTOR activity regulates translation in myelin sheaths to deliver myelin on demand to the places it is needed.
Collapse
|
22
|
Miyamoto Y, Torii T, Terao M, Takada S, Tanoue A, Katoh H, Yamauchi J. Rnd2 differentially regulates oligodendrocyte myelination at different developmental periods. Mol Biol Cell 2021; 32:769-787. [PMID: 33596091 PMCID: PMC8108512 DOI: 10.1091/mbc.e20-05-0332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the CNS, oligodendrocyte precursor cells differentiate into oligodendrocytes to wrap their plasma membranes around neuronal axons, generating mature neural networks with myelin sheaths according to spatial and temporal patterns. While myelination is known to be one of the most dynamic cell morphological changes, the overall intrinsic and extrinsic molecular cues controlling myelination remain to be fully clarified. Here, we describe the biphasic roles of Rnd2, an atypical branch of the Rho family GTPase, in oligodendrocyte myelination during development and after maturation in mice. Compared with littermate controls, oligodendrocyte-specific Rnd2 knockout mice exhibit decreased myelin thickness at the onset of myelination but increased myelin thickness in the later period. Larger proportions of Rho kinase and its substrate Mbs, the signaling unit that negatively regulates oligodendrocyte myelination, are phosphorylated at the onset of myelination, while their smaller proportions are phosphorylated in the later period. In addition, we confirm the biphasic role of Rnd2 through experiments with oligodendrocyte-specific Rnd2 transgenic mice. We conclude that Rnd2 positively regulates myelination in the early myelinating period and negatively regulates myelination in the later period. This unique modulator thus plays different roles depending on the myelination period.
Collapse
Affiliation(s)
- Yuki Miyamoto
- Department of Pharmacology, Setagaya, Tokyo 157-8535, Japan.,Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0355, Japan
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Akito Tanoue
- Department of Pharmacology, Setagaya, Tokyo 157-8535, Japan
| | - Hironori Katoh
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Junji Yamauchi
- Department of Pharmacology, Setagaya, Tokyo 157-8535, Japan.,Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0355, Japan
| |
Collapse
|
23
|
Wang H, Liu M, Zou G, Wang L, Duan W, He X, Ji M, Zou X, Hu Y, Yang J, Chen G. Deletion of PDK1 in oligodendrocyte lineage cells causes white matter abnormality and myelination defect in the central nervous system. Neurobiol Dis 2021; 148:105212. [PMID: 33276084 DOI: 10.1016/j.nbd.2020.105212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/17/2020] [Accepted: 11/29/2020] [Indexed: 12/01/2022] Open
Abstract
PDK1 (3-Phosphoinositide dependent protein kinase-1) is a member in the PI3K (phosphatidylinositol 3 kinase) pathway and is implicated in neurodevelopmental disease with microcephaly. Although the role of PDK1 in neurogenesis has been broadly studied, it remains unknown how PDK1 may regulate oligogenesis in the central nervous system (CNS). To address this question, we generated oligodendrocyte (OL) lineage cells specific PDK1 conditional knockout (cKO) mice. We find that PDK1 cKOs display abnormal white matter (WM), massive loss of mature OLs and severe defect in myelination in the CNS. In contrast, these mutants exhibit normal neuronal development and unchanged apoptosis in the CNS. We demonstrate that deletion of PDK1 severely impairs OL differentiation. We show that genetic or pharmacological inhibition of PDK1 causes deficit in the mammalian target of rapamycin (mTor) signaling and down-regulation of Sox10. Together, these results highlight a critical role of PDK1 in OL differentiation during postnatal CNS development.
Collapse
Affiliation(s)
- He Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou 450052, China
| | - Mengjia Liu
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Avenue, Nanjing, Jiangsu Province 210061, China
| | - Gang Zou
- Department of Anesthesiology, The Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Avenue, Nanjing, Jiangsu Province 210003, China
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Avenue, Nanjing, Jiangsu Province 210061, China
| | - Wenbin Duan
- Department of General Surgery, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen 518000, China
| | - Xue He
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou 450052, China
| | - Muhuo Ji
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou 450052, China
| | - Xiaochuan Zou
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Avenue, Nanjing, Jiangsu Province 210061, China
| | - Yimin Hu
- Department of General Surgery, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen 518000, China.
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou 450052, China.
| | - Guiquan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Avenue, Nanjing, Jiangsu Province 210061, China.
| |
Collapse
|
24
|
Yuan Q, Chen M, Yang W, Xiao B. Circadian Rheb oscillation alters the dynamics of hepatic mTORC1 activity and mitochondrial morphology. FEBS Lett 2020; 595:360-369. [PMID: 33247956 DOI: 10.1002/1873-3468.14009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 02/05/2023]
Abstract
The morphological structure and metabolic activity of mitochondria are coordinately regulated by circadian mechanisms. However, the mechanistic interplay between circadian mechanisms and mitochondrial architecture remains poorly understood. Here, we demonstrate circadian rhythmicity of Rheb protein in liver, in line with that of Per2. Using genetic mouse models, we show that Rheb, a small GTPase that binds mTOR, is critical for circadian oscillation of mTORC1 activity in liver. Disruption of Rheb oscillation in hepatocytes by persistent expression of Rheb transgene interrupted mTORC1 oscillation. We further show that Rheb-regulated mTORC1 altered mitochondrial fission factor DRP1 in liver, leading to altered mitochondrial dynamics. Our results suggest that Rheb/mTORC1 regulated DRP1 oscillation involves ubiquitin-mediated proteolysis. This study identifies Rheb as a nodal point that couples circadian clock and mitochondrial architecture for optimal mitochondrial metabolism.
Collapse
Affiliation(s)
- Qiuyun Yuan
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mina Chen
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wanchun Yang
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Xiao
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
25
|
Developmental Maturation of the Cerebellar White Matter-an Instructive Environment for Cerebellar Inhibitory Interneurons. THE CEREBELLUM 2020; 19:286-308. [PMID: 32002802 PMCID: PMC7082410 DOI: 10.1007/s12311-020-01111-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the developing cerebellum, the nascent white matter (WM) serves as an instructive niche for cerebellar cortical inhibitory interneurons. As their Pax2 expressing precursors transit the emerging WM, their laminar fate is programmed. The source(s) and nature of the signals involved remain unknown. Here, we used immunocytochemistry to follow the cellular maturation of the murine cerebellar WM during this critical period. During the first few days of postnatal development, when most Pax2 expressing cells are formed and many of them reach the cerebellar gray matter, only microglial cells can be identified in the territories through which Pax2 cells migrate. From p4 onward, cells expressing the oligodendrocytic or astrocyte markers, CNP-1, MBP or GFAP, started to appear in the nascent WM. Expression of macroglial markers increased with cerebellar differentiation, yet deep nuclei remained GFAP-negative at all ages. The progressive spread of maturing glia did not correlate with the exit of Pax2 cells from the WM, as indicated by the extensive mingling of these cells up to p15. Whereas sonic hedgehog-associated p75NTR expression could be verified in granule cell precursors, postmitotic Pax2 cells are p75NTR negative at all ages analyzed. Thus, if Pax2 cells, like their precursors, are sensitive to sonic hedgehog, this does not affect their expression of p75NTR. Our findings document that subsequently generated sets of Pax2 expressing precursors of inhibitory cerebellar interneurons are confronted with a dynamically changing complement of cerebellar glia. The eventual identification of fate-defining pathways should profit from the covariation with glial maturation predicted by the present findings.
Collapse
|
26
|
Auderset L, Pitman KA, Cullen CL, Pepper RE, Taylor BV, Foa L, Young KM. Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Is a Negative Regulator of Oligodendrocyte Progenitor Cell Differentiation in the Adult Mouse Brain. Front Cell Dev Biol 2020; 8:564351. [PMID: 33282858 PMCID: PMC7691426 DOI: 10.3389/fcell.2020.564351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is a large, endocytic cell surface receptor that is highly expressed by oligodendrocyte progenitor cells (OPCs) and LRP1 expression is rapidly downregulated as OPCs differentiate into oligodendrocytes (OLs). We report that the conditional deletion of Lrp1 from adult mouse OPCs (Pdgfrα-CreER :: Lrp1fl/fl) increases the number of newborn, mature myelinating OLs added to the corpus callosum and motor cortex. As these additional OLs extend a normal number of internodes that are of a normal length, Lrp1-deletion increases adult myelination. OPC proliferation is also elevated following Lrp1 deletion in vivo, however, this may be a secondary, homeostatic response to increased OPC differentiation, as our in vitro experiments show that LRP1 is a direct negative regulator of OPC differentiation, not proliferation. Deleting Lrp1 from adult OPCs also increases the number of newborn mature OLs added to the corpus callosum in response to cuprizone-induced demyelination. These data suggest that the selective blockade of LRP1 function on adult OPCs may enhance myelin repair in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Loic Auderset
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kimberley A Pitman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Renee E Pepper
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Lisa Foa
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
27
|
Adams KL, Dahl KD, Gallo V, Macklin WB. Intrinsic and extrinsic regulators of oligodendrocyte progenitor proliferation and differentiation. Semin Cell Dev Biol 2020; 116:16-24. [PMID: 34110985 DOI: 10.1016/j.semcdb.2020.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
Abstract
Oligodendrocytes are highly specialized glial cells, responsible for producing myelin in the central nervous system (CNS). The multi-stage process of oligodendrocyte development is tightly regulated to ensure proper lineage progression of oligodendrocyte progenitor cells (OPCs) to mature myelin producing oligodendrocytes. This developmental process involves complex interactions between several intrinsic signaling pathways that are modulated by an array of extrinsic factors. Understanding these regulatory processes is of crucial importance, as it may help to identify specific molecular targets both to enhance plasticity in the normal CNS and to promote endogenous recovery following injury or disease. This review describes two major regulators that play important functional roles in distinct phases of oligodendrocyte development: OPC proliferation and differentiation. Specifically, we highlight the roles of the extracellular astrocyte/radial glia-derived protein Endothelin-1 in OPC proliferation and the intracellular Akt/mTOR pathway in OPC differentiation. Lastly, we reflect on how recent advances in neuroscience and scientific technology will enable greater understanding into how intrinsic and extrinsic regulators interact to generate oligodendrocyte diversity.
Collapse
Affiliation(s)
- Katrina L Adams
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Kristin D Dahl
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
28
|
R-Ras GTPases Signaling Role in Myelin Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21165911. [PMID: 32824627 PMCID: PMC7460555 DOI: 10.3390/ijms21165911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022] Open
Abstract
Myelination is required for fast and efficient synaptic transmission in vertebrates. In the central nervous system, oligodendrocytes are responsible for creating myelin sheaths that isolate and protect axons, even throughout adulthood. However, when myelin is lost, the failure of remyelination mechanisms can cause neurodegenerative myelin-associated pathologies. From oligodendrocyte progenitor cells to mature myelinating oligodendrocytes, myelination is a highly complex process that involves many elements of cellular signaling, yet many of the mechanisms that coordinate it, remain unknown. In this review, we will focus on the three major pathways involved in myelination (PI3K/Akt/mTOR, ERK1/2-MAPK, and Wnt/β-catenin) and recent advances describing the crosstalk elements which help to regulate them. In addition, we will review the tight relation between Ras GTPases and myelination processes and discuss its potential as novel elements of crosstalk between the pathways. A better understanding of the crosstalk elements orchestrating myelination mechanisms is essential to identify new potential targets to mitigate neurodegeneration.
Collapse
|
29
|
Mechanistic Target of Rapamycin Regulates the Oligodendrocyte Cytoskeleton during Myelination. J Neurosci 2020; 40:2993-3007. [PMID: 32139584 DOI: 10.1523/jneurosci.1434-18.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
During differentiation, oligodendrocyte precursor cells (OPCs) extend a network of processes that make contact with axons and initiate myelination. Recent studies revealed that actin polymerization is required for initiation of myelination whereas actin depolymerization promotes myelin wrapping. Here, we used primary OPCs in culture isolated from neonatal rat cortices of both sexes and young male and female mice with oligodendrocyte-specific deletion of mechanistic target of rapamycin (mTOR) to demonstrate that mTOR regulates expression of specific cytoskeletal targets and actin reorganization in oligodendrocytes during developmental myelination. Loss or inhibition of mTOR reduced expression of profilin2 and ARPC3, actin polymerizing factors, and elevated levels of active cofilin, which mediates actin depolymerization. The deficits in actin polymerization were revealed in reduced phalloidin and deficits in oligodendrocyte cellular branching complexity at the peak of morphologic differentiation and a delay in initiation of myelination. We further show a critical role for mTOR in expression and localization of myelin basic protein (Mbp) mRNA and MBP protein to the cellular processes where it is necessary at the myelin membrane for axon wrapping. Mbp mRNA transport deficits were confirmed by single molecule RNA FISH. Moreover, expression of the kinesin family member 1B, an Mbp mRNA transport protein, was reduced in CC1+ cells in the mTOR cKO and in mTOR inhibited oligodendrocytes undergoing differentiation in vitro These data support the conclusion that mTOR regulates both initiation of myelination and axon wrapping by targeting cytoskeletal reorganization and MBP localization to oligodendrocyte processes.SIGNIFICANCE STATEMENT Myelination is essential for normal CNS development and adult axon preservation and function. The mechanistic target of rapamycin (mTOR) signaling pathway has been implicated in promoting CNS myelination; however, there is a gap in our understanding of the mechanisms by which mTOR promotes developmental myelination through regulating specific downstream targets. Here, we present evidence that mTOR promotes the initiation of myelination through regulating specific cytoskeletal targets and cellular process expansion by oligodendrocyte precursor cells as well as expression and cellular localization of myelin basic protein.
Collapse
|
30
|
Tanti GK, Srivastava R, Kalluri SR, Nowak C, Hemmer B. Isolation, Culture and Functional Characterization of Glia and Endothelial Cells From Adult Pig Brain. Front Cell Neurosci 2019; 13:333. [PMID: 31474831 PMCID: PMC6705213 DOI: 10.3389/fncel.2019.00333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/05/2019] [Indexed: 02/02/2023] Open
Abstract
Primary cultures of glial and endothelial cells are important tools for basic and translational neuroscience research. Primary cell cultures are usually generated from rodent brain although considerable differences exist between human and rodent glia and endothelial cells. Because many translational research projects aim to identify mechanisms that eventually lead to diagnostic and therapeutic approaches to target human diseases, glia, and endothelial cultures are needed that better reflect the human central nervous system (CNS). Pig brain is easily accessible and, in many aspects, close to the human brain. We established an easy and cost-effective method to isolate and culture different primary glial and endothelial cells from adult pig brain. Oligodendrocyte, microglia, astrocyte, and endothelial primary cell cultures were generated from the same brain tissue and grown for up to 8 weeks. Primary cells showed lineage-specific morphology and expressed specific markers with a purity ranging from 60 to 95%. Cultured oligodendrocytes myelinated neurons and microglia secreted tumor necrosis factor alpha when induced with lipopolysaccharide. Endothelial cells showed typical tube formation when grown on Matrigel. Astrocytes enhanced survival of co-cultured neurons and were killed by Aquaporin-4 antibody positive sera from patients with Neuromyelitis optica. In summary, we established a new method for primary oligodendrocyte, microglia, endothelial and astrocyte cell cultures from pig brain that provide a tool for translational research on human CNS diseases.
Collapse
Affiliation(s)
- Goutam Kumar Tanti
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rajneesh Srivastava
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sudhakar Reddy Kalluri
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Carina Nowak
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Hemmer
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
31
|
Yuan Z, Chen P, Zhang T, Shen B, Chen L. Agenesis and Hypomyelination of Corpus Callosum in Mice Lacking Nsun5, an RNA Methyltransferase. Cells 2019; 8:cells8060552. [PMID: 31174389 PMCID: PMC6627898 DOI: 10.3390/cells8060552] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/16/2022] Open
Abstract
Williams-Beuren syndrome (WBS) is caused by microdeletions of 28 genes and is characterized by cognitive disorder and hypotrophic corpus callosum (CC). Nsun5 gene, which encodes cytosine-5 RNA methyltransferase, is located in the deletion loci of WBS. We have reported that single-gene knockout of Nsun5 (Nsun5-KO) in mice impairs spatial cognition. Herein, we report that postnatal day (PND) 60 Nsun5-KO mice showed the volumetric reduction of CC with a decline in the number of myelinated axons and loose myelin sheath. Nsun5 was highly expressed in callosal oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs) from PND7 to PND28. The numbers of OPCs and OLs in CC of PND7-28 Nsun5-KO mice were significantly reduced compared to wild-type littermates. Immunohistochemistry and Western blot analyses of myelin basic protein (MBP) showed the hypomyelination in the CC of PND28 Nsun5-KO mice. The Nsun5 deletion suppressed the proliferation of OPCs but did not affect transition of radial glial cells into OPCs or cell cycle exit of OPCs. The protein levels, rather than transcriptional levels, of CDK1, CDK2 and Cdc42 in the CC of PND7 and PND14 Nsun5-KO mice were reduced. These findings point to the involvement of Nsun5 deletion in agenesis of CC observed in WBS.
Collapse
Affiliation(s)
- Zihao Yuan
- State Key Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| | - Peipei Chen
- State Key Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| | - Tingting Zhang
- State Key Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| | - Ling Chen
- State Key Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
32
|
Abstract
Cell-type-specific gene targeting with the Cre/loxP system has become an indispensable technique in experimental neuroscience, particularly for the study of late-born glial cells that make myelin. A plethora of conditional mutants and Cre-expressing mouse lines is now available to the research community that allows laboratories to readily engage in in vivo analyses of oligodendrocytes and their precursor cells. This chapter summarizes concepts and strategies in targeting myelinating glial cells in mice for mutagenesis or imaging, and provides an overview of the most important Cre driver lines successfully used in this rapidly growing field.
Collapse
Affiliation(s)
- Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| |
Collapse
|
33
|
Ishii A, Furusho M, Macklin W, Bansal R. Independent and cooperative roles of the Mek/ERK1/2-MAPK and PI3K/Akt/mTOR pathways during developmental myelination and in adulthood. Glia 2019; 67:1277-1295. [PMID: 30761608 DOI: 10.1002/glia.23602] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/20/2022]
Abstract
Multiple extracellular and intracellular signals regulate the functions of oligodendrocytes as they progress through the complex process of developmental myelination and then maintain a functionally intact myelin sheath throughout adult life, preserving the integrity of the axons. Recent studies suggest that Mek/ERK1/2-MAPK and PI3K/Akt/mTOR intracellular signaling pathways play important, often overlapping roles in the regulation of myelination. However, it remains poorly understood whether they function independently, sequentially, or converge using a common mechanism to facilitate oligodendrocyte differentiation, myelin growth, and maintenance. To address these questions, we analyzed multiple genetically modified mice and asked whether the deficits due to the conditional loss-of-function of ERK1/2 or mTOR could be abrogated by simultaneous constitutive activation of PI3K/Akt or Mek, respectively. From these studies, we concluded that while PI3K/Akt, not Mek/ERK1/2, plays a key role in promoting oligodendrocyte differentiation and timely initiation of myelination through mTORC1 signaling, Mek/ERK1/2-MAPK functions largely independently of mTORC1 to preserve the integrity of the myelinated axons during adulthood. However, to promote the efficient growth of the myelin sheath, these two pathways cooperate with each other converging at the level of mTORC1, both in the context of normal developmental myelination or following forced reactivation of the myelination program during adulthood. Thus, Mek/ERK1/2-MAPK and the PI3K/Akt/mTOR signaling pathways work both independently and cooperatively to maintain a finely tuned, temporally regulated balance as oligodendrocytes progress through different phases of developmental myelination into adulthood. Therapeutic strategies aimed at targeting remyelination in demyelinating diseases are expected to benefit from these findings.
Collapse
Affiliation(s)
- Akihiro Ishii
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut, USA
| | - Miki Furusho
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut, USA
| | - Wendy Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Rashmi Bansal
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut, USA
| |
Collapse
|
34
|
Del Giovane A, Ragnini-Wilson A. Targeting Smoothened as a New Frontier in the Functional Recovery of Central Nervous System Demyelinating Pathologies. Int J Mol Sci 2018; 19:E3677. [PMID: 30463396 PMCID: PMC6274747 DOI: 10.3390/ijms19113677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022] Open
Abstract
Myelin sheaths on vertebrate axons provide protection, vital support and increase the speed of neuronal signals. Myelin degeneration can be caused by viral, autoimmune or genetic diseases. Remyelination is a natural process that restores the myelin sheath and, consequently, neuronal function after a demyelination event, preventing neurodegeneration and thereby neuron functional loss. Pharmacological approaches to remyelination represent a promising new frontier in the therapy of human demyelination pathologies and might provide novel tools to improve adaptive myelination in aged individuals. Recent phenotypical screens have identified agonists of the atypical G protein-coupled receptor Smoothened and inhibitors of the glioma-associated oncogene 1 as being amongst the most potent stimulators of oligodendrocyte precursor cell (OPC) differentiation in vitro and remyelination in the central nervous system (CNS) of mice. Here, we discuss the current state-of-the-art of studies on the role of Sonic Hedgehog reactivation during remyelination, referring readers to other reviews for the role of Hedgehog signaling in cancer and stem cell maintenance.
Collapse
Affiliation(s)
- Alice Del Giovane
- Department of Biology University of Rome Tor Vergata, Viale Della Ricerca Scientifica, 00133 Rome, Italy.
| | - Antonella Ragnini-Wilson
- Department of Biology University of Rome Tor Vergata, Viale Della Ricerca Scientifica, 00133 Rome, Italy.
| |
Collapse
|
35
|
Nayak T, Trotter J, Sakry D. The Intracellular Cleavage Product of the NG2 Proteoglycan Modulates Translation and Cell-Cycle Kinetics via Effects on mTORC1/FMRP Signaling. Front Cell Neurosci 2018; 12:231. [PMID: 30131676 PMCID: PMC6090502 DOI: 10.3389/fncel.2018.00231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
The NG2 proteoglycan is expressed by oligodendrocyte precursor cells (OPCs) and is abundantly expressed by tumors such as melanoma and glioblastoma. Functions of NG2 include an influence on proliferation, migration and neuromodulation. Similar to other type-1 membrane proteins, NG2 undergoes proteolysis, generating a large ectodomain, a C-terminal fragment (CTF) and an intracellular domain (ICD) via sequential action of α- and γ-secretases which is enhanced by neuronal activity. Functional roles of NG2 have so far been shown for the full-length protein, the released ectodomain and CTF, but not for the ICD. In this study, we characterized the role of the NG2 ICD in OPC and Human Embryonic Kidney (HEK) cells. Overexpressed ICD is predominantly localized in the cell cytosol, including the distal processes of OPCs. Nuclear localisation of a fraction of the ICD is dependent on Nuclear Localisation Signals. Immunoprecipitation and Mass Spectrometry followed by functional analysis indicated that the NG2 ICD modulates mRNA translation and cell-cycle kinetics. In OPCs and HEK cells, ICD overexpression results in an mTORC1-dependent upregulation of translation, as well as a shift of the cell population toward S-phase. NG2 ICD increases the active (phosphorylated) form of mTOR and modulates downstream signaling cascades, including increased phosphorylation of p70S6K1 and increased expression of eEF2. Strikingly, levels of FMRP, an RNA-binding protein that is regulated by mTOR/p70S6K1/eEF2 were decreased. In neurons, FMRP acts as a translational repressor under activity-dependent control and is mutated in Fragile X Syndrome (FXS). Knock-down of endogenous NG2 in primary OPC reduced translation and mTOR/p70S6K1 phosphorylation in Oli-neu. Here, we identify the NG2 ICD as a regulator of translation in OPCs via modulation of the well-established mTORC1 pathway. We show that FXS-related FMRP signaling is not exclusive to neurons but plays a role in OPCs. This provides a signal cascade in OPC which can be influenced by the neuronal network, since the NG2 ICD has been shown to be generated by constitutive as well as activity-dependent cleavage. Our results also elucidate a possible role of NG2 in tumors exhibiting enhanced rates of translation and rapid cell cycle kinetics.
Collapse
Affiliation(s)
- Tanmoyita Nayak
- Department of Biology, Molecular Cell Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jacqueline Trotter
- Department of Biology, Molecular Cell Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dominik Sakry
- Department of Biology, Molecular Cell Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
36
|
Xie YJ, Zhou L, Wang Y, Jiang NW, Cao S, Shao CY, Wang XT, Li XY, Shen Y, Zhou L. Leucine-Rich Glioma Inactivated 1 Promotes Oligodendrocyte Differentiation and Myelination via TSC-mTOR Signaling. Front Mol Neurosci 2018; 11:231. [PMID: 30034322 PMCID: PMC6043672 DOI: 10.3389/fnmol.2018.00231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022] Open
Abstract
Leucine-rich glioma inactivated 1 (Lgi1), a putative tumor suppressor, is tightly associated with autosomal dominant lateral temporal lobe epilepsy (ADLTE). It has been shown that Lgi1 regulates the myelination of Schwann cells in the peripheral nervous system (PNS). However, the function and underlying mechanisms for Lgi1 regulation of oligodendrocyte differentiation and myelination in the central nervous system (CNS) remain elusive. In addition, whether Lgi1 is required for myelin maintenance is unknown. Here, we show that Lgi1 is necessary and sufficient for the differentiation of oligodendrocyte precursor cells and is also required for the maintenance of myelinated fibers. The hypomyelination in Lgi1-/- mice attributes to the inhibition of the biosynthesis of lipids and proteins in oligodendrocytes (OLs). Moreover, we found that Lgi1 deficiency leads to a decrease in expression of tuberous sclerosis complex 1 (TSC1) and activates mammalian target of rapamycin signaling. Together, the present work establishes that Lgi1 is a regulator of oligodendrocyte development and myelination in CNS.
Collapse
Affiliation(s)
- Ya-Jun Xie
- Key Laboratory of Medical Neurobiology of Ministry of Health, Department of Neurobiology, Zhejiang University School of MedicineHangzhou, China
| | - Lin Zhou
- Key Laboratory of Medical Neurobiology of Ministry of Health, Department of Neurobiology, Zhejiang University School of MedicineHangzhou, China
| | - Yin Wang
- Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical UniversityYinchuan, China
| | - Nan-Wei Jiang
- Ningbo Key Laboratory of Behavioral Neuroscience, Department of Physiology and Pharmacology, Ningbo University School of MedicineNingbo, China
| | - Shenglong Cao
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of MedicineHangzhou, China
| | - Chong-Yu Shao
- Key Laboratory of Medical Neurobiology of Ministry of Health, Department of Neurobiology, Zhejiang University School of MedicineHangzhou, China
| | - Xin-Tai Wang
- Key Laboratory of Medical Neurobiology of Ministry of Health, Department of Neurobiology, Zhejiang University School of MedicineHangzhou, China
| | - Xiang-Yao Li
- Key Laboratory of Medical Neurobiology of Ministry of Health, Department of Neurobiology, Zhejiang University School of MedicineHangzhou, China
| | - Ying Shen
- Key Laboratory of Medical Neurobiology of Ministry of Health, Department of Neurobiology, Zhejiang University School of MedicineHangzhou, China
| | - Liang Zhou
- Key Laboratory of Medical Neurobiology of Ministry of Health, Department of Neurobiology, Zhejiang University School of MedicineHangzhou, China
| |
Collapse
|
37
|
Toledo A, Grieger E, Karram K, Morrison H, Baader SL. Neurofibromatosis type 2 tumor suppressor protein is expressed in oligodendrocytes and regulates cell proliferation and process formation. PLoS One 2018; 13:e0196726. [PMID: 29715273 PMCID: PMC5929554 DOI: 10.1371/journal.pone.0196726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 04/18/2018] [Indexed: 12/25/2022] Open
Abstract
The neurofibromatosis type 2 (NF2) tumor suppressor protein Merlin functions as a negative regulator of cell growth and actin dynamics in different cell types amongst which Schwann cells have been extensively studied. In contrast, the presence and the role of Merlin in oligodendrocytes, the myelin forming cells within the CNS, have not been elucidated. In this work, we demonstrate that Merlin immunoreactivity was broadly distributed in the white matter throughout the central nervous system. Following Merlin expression during development in the cerebellum, Merlin could be detected in the cerebellar white matter tract at early postnatal stages as shown by its co-localization with Olig2-positive cells as well as in adult brain sections where it was aligned with myelin basic protein containing fibers. This suggests that Merlin is expressed in immature and mature oligodendrocytes. Expression levels of Merlin were low in oligodendrocytes as compared to astrocytes and neurons throughout development. Expression of Merlin in oligodendroglia was further supported by its identification in either immortalized cell lines of oligodendroglial origin or in primary oligodendrocyte cultures. In these cultures, the two main splice variants of Nf2 could be detected. Merlin was localized in clusters within the nuclei and in the cytoplasm. Overexpressing Merlin in oligodendrocyte cell lines strengthened reduced impedance in XCELLigence measurements and Ki67 stainings in cultures over time. In addition, the initiation and elongation of cellular projections were reduced by Merlin overexpression. Consistently, cell migration was retarded in scratch assays done on Nf2-transfected oligodendrocyte cell lines. These data suggest that Merlin actively modulates process outgrowth and migration in oligodendrocytes.
Collapse
Affiliation(s)
- Andrea Toledo
- Institute of Anatomy, Anatomy and Cell Biology, Bonn, Germany
- Laboratorio de Cultivo de Tejidos, Sección Biología Celular, Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - Elena Grieger
- Institute of Anatomy, Anatomy and Cell Biology, Bonn, Germany
| | - Khalad Karram
- Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Helen Morrison
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Stephan L. Baader
- Institute of Anatomy, Anatomy and Cell Biology, Bonn, Germany
- * E-mail:
| |
Collapse
|
38
|
Katsel P, Fam P, Tan W, Khan S, Yang C, Jouroukhin Y, Rudchenko S, Pletnikov MV, Haroutunian V. Overexpression of Truncated Human DISC1 Induces Appearance of Hindbrain Oligodendroglia in the Forebrain During Development. Schizophr Bull 2018; 44:515-524. [PMID: 28981898 PMCID: PMC5890457 DOI: 10.1093/schbul/sbx106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic, neuroimaging, and gene expression studies suggest a role for oligodendrocyte (OLG) dysfunction in schizophrenia (SZ). Disrupted-in-schizophrenia 1 (DISC1) is a risk gene for major psychiatric disorders, including SZ. Overexpression of mutant truncated (hDISC1), but not full-length sequence of human DISC1 in forebrain influenced OLG differentiation and proliferation of glial progenitors in the developing cerebral cortex concurrently with reduction of OLG progenitor markers in the hindbrain. We examined gene and protein expression of the molecular determinants of hindbrain OLG development and their interactions with DISC1 in mutant hDISC1 mice. We found ectopic upregulation of hindbrain glial progenitor markers (early growth response 2 [Egr2] and NK2 homeobox 2 [Nkx2-2]) in the forebrain of hDISC1 (E15) embryos. DISC1 and Nkx2-2 were coexpressed and interacted in progenitor cells. Overexpression of truncated hDISC1 impaired interactions between DISC1 and Nkx2-2, which was associated with increased differentiation of OLG and upregulation of hindbrain mature OLG markers (laminin alpha-1 [LAMA1] and myelin protein zero [MPZ]) suggesting a suppressive function of endogenous DISC1 in OLG specialization of hindbrain glial progenitors during embryogenesis. Consistent with findings in hDISC1 mice, several hindbrain OLG markers (PRX, LAMA1, and MPZ) were significantly upregulated in the superior temporal cortex of persons with SZ. These findings show a significant effect of truncated hDISC1 on glial identity cells along the rostrocaudal axis and their OLG specification. Appearance of hindbrain OLG lineage cells and their premature differentiation may affect cerebrocortical organization and contribute to the pathophysiology of SZ.
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY,To whom correspondence should be addressed; JJ Peters VA Medical Center, 151 Research Build, Room 5F-04C, 130 West Kingsbridge Road, Bronx, NY 10468; tel: 718-584-9000 ext. 6067, fax: 718-741-4746, e-mail:
| | - Peter Fam
- Department of Psychiatry, James J Peters VA Medical Center, Bronx, NY
| | - Weilun Tan
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sonia Khan
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Chunxia Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yan Jouroukhin
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Mikhail V Pletnikov
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vahram Haroutunian
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY,Department of Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY,Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY
| |
Collapse
|
39
|
Perez-Alvarez MJ, Villa Gonzalez M, Benito-Cuesta I, Wandosell FG. Role of mTORC1 Controlling Proteostasis after Brain Ischemia. Front Neurosci 2018; 12:60. [PMID: 29497356 PMCID: PMC5818460 DOI: 10.3389/fnins.2018.00060] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/24/2018] [Indexed: 01/24/2023] Open
Abstract
Intense efforts are being undertaken to understand the pathophysiological mechanisms triggered after brain ischemia and to develop effective pharmacological treatments. However, the underlying molecular mechanisms are complex and not completely understood. One of the main problems is the fact that the ischemic damage is time-dependent and ranges from negligible to massive, involving different cell types such as neurons, astrocytes, microglia, endothelial cells, and some blood-derived cells (neutrophils, lymphocytes, etc.). Thus, approaching such a complicated cellular response generates a more complex combination of molecular mechanisms, in which cell death, cellular damage, stress and repair are intermixed. For this reason, animal and cellular model systems are needed in order to dissect and clarify which molecular mechanisms have to be promoted and/or blocked. Brain ischemia may be analyzed from two different perspectives: that of oxygen deprivation (hypoxic damage per se) and that of deprivation of glucose/serum factors. For investigations of ischemic stroke, middle cerebral artery occlusion (MCAO) is the preferred in vivo model, and uses two different approaches: transient (tMCAO), where reperfusion is permitted; or permanent (pMCAO). As a complement to this model, many laboratories expose different primary cortical neuron or neuronal cell lines to oxygen-glucose deprivation (OGD). This ex vivo model permits the analysis of the impact of hypoxic damage and the specific response of different cell types implicated in vivo, such as neurons, glia or endothelial cells. Using in vivo and neuronal OGD models, it was recently established that mTORC1 (mammalian Target of Rapamycin Complex-1), a protein complex downstream of PI3K-Akt pathway, is one of the players deregulated after ischemia and OGD. In addition, neuroprotective intervention either by estradiol or by specific AT2R agonists shows an important regulatory role for the mTORC1 activity, for instance regulating vascular endothelial growth factor (VEGF) levels. This evidence highlights the importance of understanding the role of mTORC1 in neuronal death/survival processes, as it could be a potential therapeutic target. This review summarizes the state-of-the-art of the complex kinase mTORC1 focusing in upstream and downstream pathways, their role in central nervous system and their relationship with autophagy, apoptosis and neuroprotection/neurodegeneration after ischemia/hypoxia.
Collapse
Affiliation(s)
- Maria J Perez-Alvarez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Mario Villa Gonzalez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Irene Benito-Cuesta
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Francisco G Wandosell
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
40
|
Wong KM, Beirowski B. Multiple lines of inhibitory feedback on AKT kinase in Schwann cells lacking TSC1/2 hint at distinct functions of mTORC1 and AKT in nerve development. Commun Integr Biol 2018; 11:e1433441. [PMID: 29497474 PMCID: PMC5824964 DOI: 10.1080/19420889.2018.1433441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/02/2018] [Accepted: 01/19/2018] [Indexed: 11/29/2022] Open
Abstract
During nerve development, Schwann cells (SCs) build multilayered myelin sheaths around axons to accelerate nerve conduction. The mechanistic target of rapamycin complex 1 (mTORC1) downstream of PI3K/AKT signaling lately emerged as a central anabolic regulator of myelination. Using mutant mice with sustained mTORC1 hyperactivity in developing SCs we recently uncovered that mTORC1 impedes developmental myelination by promoting proliferation of immature SCs while antagonizing SC differentiation. In contrast, mTORC1 stimulates myelin production, rather than SC proliferation, in already differentiated SCs. Importantly, these diametrical mTORC1 functions were unmasked under settings of greatly suppressed AKT signaling. Here we demonstrate, inter alia, additional mechanisms of feedback inhibition of AKT by mTORC1, such as strikingly elevated PTEN levels in SCs with disruption of the mTORC1 inhibitory complex, TSC1/2. These data lead us to propose a model wherein mTORC1 and AKT have distinct roles in developing SCs that have to be precisely coordinated for normal myelinogenesis.
Collapse
Affiliation(s)
- Keit Men Wong
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Bogdan Beirowski
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
41
|
Figlia G, Gerber D, Suter U. Myelination and mTOR. Glia 2017; 66:693-707. [PMID: 29210103 PMCID: PMC5836902 DOI: 10.1002/glia.23273] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/08/2017] [Accepted: 11/17/2017] [Indexed: 02/06/2023]
Abstract
Myelinating cells surround axons to accelerate the propagation of action potentials, to support axonal health, and to refine neural circuits. Myelination is metabolically demanding and, consistent with this notion, mTORC1—a signaling hub coordinating cell metabolism—has been implicated as a key signal for myelination. Here, we will discuss metabolic aspects of myelination, illustrate the main metabolic processes regulated by mTORC1, and review advances on the role of mTORC1 in myelination of the central nervous system and the peripheral nervous system. Recent progress has revealed a complex role of mTORC1 in myelinating cells that includes, besides positive regulation of myelin growth, additional critical functions in the stages preceding active myelination. Based on the available evidence, we will also highlight potential nonoverlapping roles between mTORC1 and its known main upstream pathways PI3K‐Akt, Mek‐Erk1/2, and AMPK in myelinating cells. Finally, we will discuss signals that are already known or hypothesized to be responsible for the regulation of mTORC1 activity in myelinating cells. Myelination is metabolically demanding. The metabolic regulator mTORC1 controls differentiation of myelinating cells and promotes myelin
growth. mTORC1‐independent targets of the PI3K‐Akt and Mek‐Erk1/2 pathways may also be significant in myelination.
Collapse
Affiliation(s)
- Gianluca Figlia
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, CH 8093, Switzerland
| | - Daniel Gerber
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, CH 8093, Switzerland
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, CH 8093, Switzerland
| |
Collapse
|
42
|
Multipotency and therapeutic potential of NG2 cells. Biochem Pharmacol 2017; 141:42-55. [DOI: 10.1016/j.bcp.2017.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022]
|
43
|
Figlia G, Norrmén C, Pereira JA, Gerber D, Suter U. Dual function of the PI3K-Akt-mTORC1 axis in myelination of the peripheral nervous system. eLife 2017; 6:e29241. [PMID: 28880149 PMCID: PMC5589416 DOI: 10.7554/elife.29241] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/31/2017] [Indexed: 01/24/2023] Open
Abstract
Myelination is a biosynthetically demanding process in which mTORC1, the gatekeeper of anabolism, occupies a privileged regulatory position. We have shown previously that loss of mTORC1 function in Schwann cells (SCs) hampers myelination. Here, we genetically disrupted key inhibitory components upstream of mTORC1, TSC1 or PTEN, in mouse SC development, adult homeostasis, and nerve injury. Surprisingly, the resulting mTORC1 hyperactivity led to markedly delayed onset of both developmental myelination and remyelination after injury. However, if mTORC1 was hyperactivated after myelination onset, radial hypermyelination was observed. At early developmental stages, physiologically high PI3K-Akt-mTORC1 signaling suppresses expression of Krox20 (Egr2), the master regulator of PNS myelination. This effect is mediated by S6K and contributes to control mechanisms that keep SCs in a not-fully differentiated state to ensure proper timing of myelination initiation. An ensuing decline in mTORC1 activity is crucial to allow myelination to start, while remaining mTORC1 activity drives myelin growth.
Collapse
Affiliation(s)
- Gianluca Figlia
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of TechnologyZürichSwitzerland
| | - Camilla Norrmén
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of TechnologyZürichSwitzerland
| | - Jorge A Pereira
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of TechnologyZürichSwitzerland
| | - Daniel Gerber
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of TechnologyZürichSwitzerland
| | - Ueli Suter
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of TechnologyZürichSwitzerland
| |
Collapse
|
44
|
Potheraveedu VN, Schöpel M, Stoll R, Heumann R. Rheb in neuronal degeneration, regeneration, and connectivity. Biol Chem 2017; 398:589-606. [PMID: 28212107 DOI: 10.1515/hsz-2016-0312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/02/2017] [Indexed: 01/31/2023]
Abstract
The small GTPase Rheb was originally detected as an immediate early response protein whose expression was induced by NMDA-dependent synaptic activity in the brain. Rheb's activity is highly regulated by its GTPase activating protein (GAP), the tuberous sclerosis complex protein, which stimulates the conversion from the active, GTP-loaded into the inactive, GDP-loaded conformation. Rheb has been established as an evolutionarily conserved molecular switch protein regulating cellular growth, cell volume, cell cycle, autophagy, and amino acid uptake. The subcellular localization of Rheb and its interacting proteins critically regulate its activity and function. In stem cells, constitutive activation of Rheb enhances differentiation at the expense of self-renewal partially explaining the adverse effects of deregulated Rheb in the mammalian brain. In the context of various cellular stress conditions such as oxidative stress, ER-stress, death factor signaling, and cellular aging, Rheb activation surprisingly enhances rather than prevents cellular degeneration. This review addresses cell type- and cell state-specific function(s) of Rheb and mainly focuses on neurons and their surrounding glial cells. Mechanisms will be discussed in the context of therapy that interferes with Rheb's activity using the antibiotic rapamycin or low molecular weight compounds.
Collapse
Affiliation(s)
- Veena Nambiar Potheraveedu
- Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätstr. 150, D-44780 Bochum
| | - Miriam Schöpel
- Biomolecular NMR, Ruhr University of Bochum, D-44780 Bochum
| | - Raphael Stoll
- Biomolecular NMR, Ruhr University of Bochum, D-44780 Bochum
| | - Rolf Heumann
- Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätstr. 150, D-44780 Bochum
| |
Collapse
|
45
|
Zou Y, Li J, Cui Y, Tang P, Du L, Chen T, Meng K, Liu Q, Feng H, Zhao J, Chen M, Zhu LG. Terahertz Spectroscopic Diagnosis of Myelin Deficit Brain in Mice and Rhesus Monkey with Chemometric Techniques. Sci Rep 2017; 7:5176. [PMID: 28701795 PMCID: PMC5507969 DOI: 10.1038/s41598-017-05554-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
While myelin deficit of the central nervous system leads to several severe diseases, the definitive diagnostic means are lacking. We proposed and performed terahertz time-domain spectroscopy (THz-TDS) combined with chemometric techniques to discriminate and evaluate the severity of myelin deficit in mouse and rhesus monkey brains. The THz refractive index and absorption coefficient of paraffin-embedded brain tissues from both normal and mutant dysmyelinating mice are shown. Principal component analysis of time-domain THz signal (PCA-tdTHz) and absorption-refractive index relation of THz spectrum identified myelin deficit without exogenous labeling or any pretreatment. Further, with the established PCA-tdTHz, we evaluated the severity of myelin deficit lesions in rhesus monkey brain induced by experimental autoimmune encephalomyelitis, which is the most-studied animal model of multiple sclerosis. The results well matched the pathological analysis, indicating that PCA-tdTHz is a quick, powerful, evolving tool for identification and evaluation myelin deficit in preclinical animals and potentially in para-clinical human biopsy.
Collapse
Affiliation(s)
- Yi Zou
- Interdisciplinary Laboratory of Physics and Biomedicine, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China
| | - Jiang Li
- Interdisciplinary Laboratory of Physics and Biomedicine, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China.,Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China
| | - Yiyuan Cui
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Peiren Tang
- Interdisciplinary Laboratory of Physics and Biomedicine, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China
| | - Lianghui Du
- Interdisciplinary Laboratory of Physics and Biomedicine, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China.,Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China
| | - Tunan Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Kun Meng
- Interdisciplinary Laboratory of Physics and Biomedicine, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China.,School of Electronic and Electrical Engineering University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom
| | - Qiao Liu
- Interdisciplinary Laboratory of Physics and Biomedicine, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China.,Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Jianheng Zhao
- Interdisciplinary Laboratory of Physics and Biomedicine, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China.
| | - Mina Chen
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Li-Guo Zhu
- Interdisciplinary Laboratory of Physics and Biomedicine, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China. .,Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China.
| |
Collapse
|
46
|
Loss of Tuberous Sclerosis Complex1 in Adult Oligodendrocyte Progenitor Cells Enhances Axon Remyelination and Increases Myelin Thickness after a Focal Demyelination. J Neurosci 2017; 37:7534-7546. [PMID: 28694334 DOI: 10.1523/jneurosci.3454-16.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 06/09/2017] [Accepted: 06/17/2017] [Indexed: 01/09/2023] Open
Abstract
Although the mammalian target of rapamycin (mTOR) is an essential regulator of developmental oligodendrocyte differentiation and myelination, oligodendrocyte-specific deletion of tuberous sclerosis complex (TSC), a major upstream inhibitor of mTOR, surprisingly also leads to hypomyelination during CNS development. However, the function of TSC has not been studied in the context of remyelination. Here, we used the inducible Cre-lox system to study the function of TSC in the remyelination of a focal, lysolecithin-demyelinated lesion in adult male mice. Using two different mouse models in which Tsc1 is deleted by Cre expression in oligodendrocyte progenitor cells (OPCs) or in premyelinating oligodendrocytes, we reveal that deletion of Tsc1 affects oligodendroglia differently depending on the stage of the oligodendrocyte lineage. Tsc1 deletion from NG2+ OPCs accelerated remyelination. Conversely, Tsc1 deletion from proteolipid protein (PLP)-positive oligodendrocytes slowed remyelination. Contrary to developmental myelination, there were no changes in OPC or oligodendrocyte numbers in either model. Our findings reveal a complex role for TSC in oligodendrocytes during remyelination in which the timing of Tsc1 deletion is a critical determinant of its effect on remyelination. Moreover, our findings suggest that TSC has different functions in developmental myelination and remyelination.SIGNIFICANCE STATEMENT Myelin loss in demyelinating disorders such as multiple sclerosis results in disability due to loss of axon conductance and axon damage. Encouragingly, the nervous system is capable of spontaneous remyelination, but this regenerative process often fails. Many chronically demyelinated lesions have oligodendrocyte progenitor cells (OPCs) within their borders. It is thus of great interest to elucidate mechanisms by which we might enhance endogenous remyelination. Here, we provide evidence that deletion of Tsc1 from OPCs, but not differentiating oligodendrocytes, is beneficial to remyelination. This finding contrasts with the loss of oligodendroglia and hypomyelination seen with Tsc1 or Tsc2 deletion in the oligodendrocyte lineage during CNS development and points to important differences in the regulation of developmental myelination and remyelination.
Collapse
|
47
|
Oxidative stress, prefrontal cortex hypomyelination and cognitive symptoms in schizophrenia. Transl Psychiatry 2017; 7:e1171. [PMID: 28934193 PMCID: PMC5538118 DOI: 10.1038/tp.2017.138] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/12/2017] [Accepted: 05/06/2017] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia (SZ) is a neurodevelopmental disorder with a broad symptomatology, including cognitive symptoms that are thought to arise from the prefrontal cortex (PFC). The neurobiological aetiology of these symptoms remains elusive, yet both impaired redox control and PFC dysconnectivity have been recently implicated. PFC dysconnectivity has been linked to white matter, oligodendrocyte (OL) and myelin abnormalities in SZ patients. Myelin is produced by mature OLs, and OL precursor cells (OPCs) are exceptionally susceptible to oxidative stress. Here we propose a hypothesis for the aetiology of cognitive symptomatology in SZ: the redox-induced prefrontal OPC-dysfunctioning hypothesis. We pose that the combination of genetic and environmental factors causes oxidative stress marked by a build-up of reactive oxygen species that, during late adolescence, impair OPC signal transduction processes that are necessary for OPC proliferation and differentiation, and involve AMP-activated protein kinase, Akt-mTOR-P70S6K and peroxisome proliferator receptor alpha signalling. OPC dysfunctioning coincides with the relatively late onset of PFC myelination, causing hypomyelination and disruption of connectivity in this brain area. The resulting cognitive deficits arise in parallel with SZ onset. Hence, our hypothesis provides a novel neurobiological framework for the aetiology of SZ cognitive symptoms. Future research addressing our hypothesis could have important implications for the development of new (combined) antioxidant- and promyelination-based strategies to treat the cognitive symptoms in SZ.
Collapse
|
48
|
Signaling by FGF Receptor 2, Not FGF Receptor 1, Regulates Myelin Thickness through Activation of ERK1/2-MAPK, Which Promotes mTORC1 Activity in an Akt-Independent Manner. J Neurosci 2017; 37:2931-2946. [PMID: 28193689 DOI: 10.1523/jneurosci.3316-16.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/06/2017] [Accepted: 02/01/2017] [Indexed: 12/21/2022] Open
Abstract
FGF signaling has emerged as a significant "late-stage" regulator of myelin thickness in the CNS, independent of oligodendrocyte differentiation. Therefore, it is critically important to identify the specific FGF receptor type and its downstream signaling molecules in oligodendrocytes to obtain better insights into the regulatory mechanisms of myelin growth. Here, we show that FGF receptor type 2 (FGFR2) is highly enriched at the paranodal loops of myelin. Conditional ablation of this receptor-type, but not FGF receptor type 1 (FGFR1), resulted in attenuation of myelin growth, expression of major myelin genes, key transcription factor Myrf and extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) activity. This was rescued by upregulating ERK1/2 activity in these mice, strongly suggesting that ERK1/2 are key transducers of FGFR2 signals for myelin growth. However, given that the PI3K/Akt/mechanistic target of rapamycin (mTOR) pathway is also known to regulate myelin thickness, we examined FGFR2-deficient mice for the expression of key signaling molecules in this pathway. A significant downregulation of p-mTOR, p-Raptor, and p-S6RP was observed, which was restored to normal by elevating ERK1/2 activity in these mice. Similar downregulation of these molecules was observed in ERK1/2 knock-out mice. Interestingly, since p-Akt levels remained largely unchanged in these mice, it suggests a mechanism of mTORC1 activation by ERK1/2 in an Akt-independent manner in oligodendrocytes. Taken together, these data support a model in which FGFs, possibly from axons, activate FGFR2 in the oligodendrocyte/myelin compartment to increase ERK1/2 activation, which ultimately targets Myrf, as well as converges with the PI3K/Akt/mTOR pathway at the level of mTORC1, working together to drive the growth of the myelin sheath, thus increasing myelin thickness.SIGNIFICANCE STATEMENT It is well accepted that myelin is a biologically active membrane in active communication with the axons. However, the axonal signals, the receptors on myelin, and the integration of intracellular signaling pathways emanating downstream from these receptors that drive the growth of the myelin sheath remain poorly understood in the CNS. This study brings up the intriguing possibility that FGF receptor 2, in the oligodendrocyte/myelin compartment, may be one such signal. Importantly, it provides compelling evidence linking FGFR2 with the ERK1/2-MAPK pathway, which converges with the PI3K/Akt/mTOR (mechanistic target of rapamycin) pathway at the level of mTORC1 and also regulates the transcription factor Myrf, together providing a mechanistic framework for regulating both the transcriptional and translational machinery required for the proper growth of the myelin sheath.
Collapse
|
49
|
Ornelas IM, McLane LE, Saliu A, Evangelou AV, Khandker L, Wood TL. Heterogeneity in oligodendroglia: Is it relevant to mouse models and human disease? J Neurosci Res 2016; 94:1421-1433. [PMID: 27557736 PMCID: PMC5513674 DOI: 10.1002/jnr.23900] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/29/2016] [Accepted: 08/04/2016] [Indexed: 01/09/2023]
Abstract
There are many lines of evidence indicating that oligodendrocyte progenitor cells and oligodendrocyte populations in the central nervous system (CNS) are heterogeneous based on their developmental origins as well as from morphological and molecular criteria. Whether these distinctions reflect functional heterogeneity is less clear and has been the subject of considerable debate. Recent findings, particularly from knockout mouse models, have provided new evidence for regional variations in myelination phenotypes, particularly between brain and spinal cord. These data raise the possibility that oligodendrocytes in these regions have different functional capacities and/or ability to compensate for loss of a specific gene. The goal of this review is to briefly revisit the evidence for oligodendrocyte heterogeneity and then to present data from transgenic and demyelinating mouse models suggesting functional heterogeneity in myelination, demyelination, and remyelination in the CNS and, finally, to discuss the implications of these findings for human diseases. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Isis M Ornelas
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Lauren E McLane
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Aminat Saliu
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Angelina V Evangelou
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Luipa Khandker
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Teresa L Wood
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey.
| |
Collapse
|
50
|
Regulation of PERK-eIF2α signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes. Nat Commun 2016; 7:12185. [PMID: 27416896 PMCID: PMC4947172 DOI: 10.1038/ncomms12185] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/08/2016] [Indexed: 12/20/2022] Open
Abstract
Tuberous sclerosis complex-1 or 2 (TSC1/2) mutations cause white matter abnormalities, including myelin deficits in the CNS; however, underlying mechanisms are not fully understood. TSC1/2 negatively regulate the function of mTOR, which is required for oligodendrocyte differentiation. Here we report that, unexpectedly, constitutive activation of mTOR signalling by Tsc1 deletion in the oligodendrocyte lineage results in severe myelination defects and oligodendrocyte cell death in mice, despite an initial increase of oligodendrocyte precursors during early development. Expression profiling analysis reveals that Tsc1 ablation induces prominent endoplasmic reticulum (ER) stress responses by activating a PERK–eIF2α signalling axis and Fas–JNK apoptotic pathways. Enhancement of the phospho-eIF2α adaptation pathway by inhibition of Gadd34-PP1 phosphatase with guanabenz protects oligodendrocytes and partially rescues myelination defects in Tsc1 mutants. Thus, TSC1-mTOR signalling acts as an important checkpoint for maintaining oligodendrocyte homoeostasis, pointing to a previously uncharacterized ER stress mechanism that contributes to hypomyelination in tuberous sclerosis. The molecular mechanisms regulating myelination are only partially understood. Here authors show that Tsc1 ablation in oligodendrocyte lineage activates ER stress and apoptotic programs in mice, and that enhancing PERK-eIF2α signalling partially rescues the myelination defects in Tsc1 mutants.
Collapse
|