1
|
Zhou N, Zhang S, Wang C, Zheng B, Zhang A, Zhou W. Generation of human induced pluripotent stem cell lines derived from a patient carrying an intragenic deletion in the NFIA gene. Hum Cell 2025; 38:95. [PMID: 40266456 DOI: 10.1007/s13577-025-01222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
Brain malformations with or without urinary tract defects (BRMUTD) are caused by heterozygous variants in the NFIA gene. BRMUTD is a neurodevelopmental disorder characterized by hypoplasia or absence of the corpus callosum, hydrocephalus or ventriculomegaly, and developmental delay, which may or may not be accompanied by urinary tract defects. Here, we report the successful generation of induced pluripotent stem cells (hiPSCs) from a 3-year-old male BRMUTD patient using Sendai virus-based non-integrating reprogramming technology. This patient-derived cell line harbors an intragenic deletion within the NFIA gene (NC_000001.10: g.61650967_61842967del [GRCh37]), which is associated with a significant reduction in NFIA expression. This cell line maintains a normal karyotype, expresses pluripotency markers, and can differentiate into three germ layers. The established hiPSCs line will provide an in vitro model for studying pathological mechanisms and potential therapies of NFIA-related neurodevelopmental disorder.
Collapse
Affiliation(s)
- Ning Zhou
- School of Medicine, Southeast University, Nanjing, 210009, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Shengnan Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Aihua Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
2
|
Hao G, Fan Y, Yu Z, Su Y, Zhu H, Wang F, Chen X, Yang Y, Wang G, Wong KC, Li X. Topological identification and interpretation for single-cell epigenetic regulation elucidation in multi-tasks using scAGDE. Nat Commun 2025; 16:1691. [PMID: 39956806 PMCID: PMC11830825 DOI: 10.1038/s41467-025-57027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/03/2025] [Indexed: 02/18/2025] Open
Abstract
Single-cell ATAC-seq technology advances our understanding of single-cell heterogeneity in gene regulation by enabling exploration of epigenetic landscapes and regulatory elements. However, low sequencing depth per cell leads to data sparsity and high dimensionality, limiting the characterization of gene regulatory elements. Here, we develop scAGDE, a single-cell chromatin accessibility model-based deep graph representation learning method that simultaneously learns representation and clustering through explicit modeling of data generation. Our evaluations demonstrated that scAGDE outperforms existing methods in cell segregation, key marker identification, and visualization across diverse datasets while mitigating dropout events and unveiling hidden chromatin-accessible regions. We find that scAGDE preferentially identifies enhancer-like regions and elucidates complex regulatory landscapes, pinpointing putative enhancers regulating the constitutive expression of CTLA4 and the transcriptional dynamics of CD8A in immune cells. When applied to human brain tissue, scAGDE successfully annotated cis-regulatory element-specified cell types and revealed functional diversity and regulatory mechanisms of glutamatergic neurons.
Collapse
Affiliation(s)
- Gaoyang Hao
- School of Artificial Intelligence, Jilin University, Jilin, China
| | - Yi Fan
- School of Artificial Intelligence, Jilin University, Jilin, China
| | - Zhuohan Yu
- School of Artificial Intelligence, Jilin University, Jilin, China
| | - Yanchi Su
- School of Artificial Intelligence, Jilin University, Jilin, China
| | - Haoran Zhu
- School of Artificial Intelligence, Jilin University, Jilin, China
| | - Fuzhou Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China
| | - Xingjian Chen
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuning Yang
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, China
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China
| | - Xiangtao Li
- School of Artificial Intelligence, Jilin University, Jilin, China.
| |
Collapse
|
3
|
Ma S, Wang L, Zhang J, Geng L, Yang J. The role of transcriptional and epigenetic modifications in astrogliogenesis. PeerJ 2024; 12:e18151. [PMID: 39314847 PMCID: PMC11418818 DOI: 10.7717/peerj.18151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Astrocytes are widely distributed and play a critical role in the central nervous system (CNS) of the human brain. During the development of CNS, astrocytes provide essential nutritional and supportive functions for neural cells and are involved in their metabolism and pathological processes. Despite the numerous studies that have reported on the regulation of astrogliogenesis at the transcriptional and epigenetic levels, there is a paucity of literature that provides a comprehensive summary of the key factors influencing this process. In this review, we analyzed the impact of transcription factors (e.g., NFI, JAK/STAT, BMP, and Ngn2), DNA methylation, histone acetylation, and noncoding RNA on astrocyte behavior and the regulation of astrogliogenesis, hope it enhances our comprehension of the mechanisms underlying astrogliogenesis and offers a theoretical foundation for the treatment of patients with neurological diseases.
Collapse
Affiliation(s)
- Shuangping Ma
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Lei Wang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Junhe Zhang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
| | - Lujing Geng
- College of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Junzheng Yang
- Institutes of Health Central Plains, Tissue Engineering and Regenerative Clinical Medicine Center, Xinxiang Medical University, Xinxiang, China
- Guangdong Nephrotic Drug Engineering Technology Research Center, The R&D Center of Drug for Renal Diseases, Consun Pharmaceutical Group, Guangzhou, China
| |
Collapse
|
4
|
MacArthur IC, Ma L, Huang CY, Bhavsar H, Suzuki M, Dawlaty MM. Developmental DNA demethylation is a determinant of neural stem cell identity and gliogenic competence. SCIENCE ADVANCES 2024; 10:eado5424. [PMID: 39196941 PMCID: PMC11352921 DOI: 10.1126/sciadv.ado5424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
DNA methylation is extensively reconfigured during development, but the functional significance and cell type-specific dependencies of DNA demethylation in lineage specification remain poorly understood. Here, we demonstrate that developmental DNA demethylation, driven by ten-eleven translocation 1/2/3 (TET1/2/3) enzymes, is essential for establishment of neural stem cell (NSC) identity and gliogenic potential. We find that loss of all three TETs during NSC specification is dispensable for neural induction and neuronal differentiation but critical for astrocyte and oligodendrocyte formation, demonstrating a selective loss of glial competence. Mechanistically, TET-mediated demethylation was essential for commissioning neural-specific enhancers in proximity to master neurodevelopmental and glial transcription factor genes and for induction of these genes. Consistently, loss of all three TETs in embryonic NSCs in mice compromised glial gene expression and corticogenesis. Thus, TET-dependent developmental demethylation is an essential regulatory mechanism for neural enhancer commissioning during NSC specification and is a cell-intrinsic determinant of NSC identity and gliogenic potential.
Collapse
Affiliation(s)
- Ian C. MacArthur
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 1046142, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Liyang Ma
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 1046142, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Cheng-Yen Huang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 1046142, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Hrutvik Bhavsar
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 1046142, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Masako Suzuki
- Department of Nutrition, Texas A&M University, 2253 TAMU, Carter Mattil 214A, College Station, TX 77840, USA
| | - Meelad M. Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 1046142, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY 10461, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
5
|
Gauberg J, Moreno KB, Jayaraman K, Abumeri S, Jenkins S, Salazar AM, Meharena HS, Glasgow SM. Spinal motor neuron development and metabolism are transcriptionally regulated by Nuclear Factor IA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600888. [PMID: 38979382 PMCID: PMC11230388 DOI: 10.1101/2024.06.26.600888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Neural circuits governing all motor behaviors in vertebrates rely on the proper development of motor neurons and their precise targeting of limb muscles. Transcription factors are essential for motor neuron development, regulating their specification, migration, and axonal targeting. While transcriptional regulation of the early stages of motor neuron specification is well-established, much less is known about the role of transcription factors in the later stages of maturation and terminal arborization. Defining the molecular mechanisms of these later stages is critical for elucidating how motor circuits are constructed. Here, we demonstrate that the transcription factor Nuclear Factor-IA (NFIA) is required for motor neuron positioning, axonal branching, and neuromuscular junction formation. Moreover, we find that NFIA is required for proper mitochondrial function and ATP production, providing a new and important link between transcription factors and metabolism during motor neuron development. Together, these findings underscore the critical role of NFIA in instructing the assembly of spinal circuits for movement.
Collapse
|
6
|
Wang J, Guo J, Yu S, Yu H, Kuraz AB, Jilo DD, Cheng G, Li A, Jia C, Zan L. Knockdown of NFIC Promotes Bovine Myoblast Proliferation through the CENPF/CDK1 Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12641-12654. [PMID: 38780097 DOI: 10.1021/acs.jafc.4c01811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
As cellular transcription factors and DNA replicators, nuclear factor I (NFI) family members play an important role in mammalian development. However, there is still a lack of research on the muscle regeneration of NFI family members in cattle. In this study, the analysis of NFI family factors was conducted on their characterization, phylogenetics, and functional domains. We found that NFI family members were relatively conserved among different species, but there was heterogeneity in amino acid sequences, DNA coding sequences, and functional domain among members. Furthermore, among NFI family factors, we observed that NFIC exhibited highly expression in bovine muscle tissues, particularly influencing the expression of proliferation marker genes in myoblasts. To investigate the influence of NFIC on myoblast proliferation, we knocked down NFIC (si-NFIC) and found that the proliferation of myoblasts was significantly promoted. In terms of regulation mechanism, we identified that si-NFIC could counteract the inhibitory effect of the cell cycle inhibitor RO-3306. Interestingly, CENPF, as the downstream target gene of NFIC, could affect the expression of CDK1, CCNB1, and actively regulate the cell cycle pathway and cell proliferation. In addition, when CENPF was knocked down, the phosphorylation of p53 and the expression of Bax were increased, but the expression of Bcl2 was inhibited. Our findings mainly highlight the mechanism by which NFIC acts on the CENPF/CDK1 axis to regulate the proliferation of bovine myoblasts.
Collapse
Affiliation(s)
- Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Shengchen Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hengwei Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Abebe Belete Kuraz
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Diba Dedacha Jilo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Cunling Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- National Beef Cattle Improvement Center, Yangling 712100, China
| |
Collapse
|
7
|
Nazim M, Lin CH, Feng AC, Xiao W, Yeom KH, Li M, Daly AE, Tan X, Vu H, Ernst J, Carey MF, Smale ST, Black DL. Alternative splicing of a chromatin modifier alters the transcriptional regulatory programs of stem cell maintenance and neuronal differentiation. Cell Stem Cell 2024; 31:754-771.e6. [PMID: 38701759 PMCID: PMC11126784 DOI: 10.1016/j.stem.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
Development of embryonic stem cells (ESCs) into neurons requires intricate regulation of transcription, splicing, and translation, but how these processes interconnect is not understood. We found that polypyrimidine tract binding protein 1 (PTBP1) controls splicing of DPF2, a subunit of BRG1/BRM-associated factor (BAF) chromatin remodeling complexes. Dpf2 exon 7 splicing is inhibited by PTBP1 to produce the DPF2-S isoform early in development. During neuronal differentiation, loss of PTBP1 allows exon 7 inclusion and DPF2-L expression. Different cellular phenotypes and gene expression programs were induced by these alternative DPF2 isoforms. We identified chromatin binding sites enriched for each DPF2 isoform, as well as sites bound by both. In ESC, DPF2-S preferential sites were bound by pluripotency factors. In neuronal progenitors, DPF2-S sites were bound by nuclear factor I (NFI), while DPF2-L sites were bound by CCCTC-binding factor (CTCF). DPF2-S sites exhibited enhancer modifications, while DPF2-L sites showed promoter modifications. Thus, alternative splicing redirects BAF complex targeting to impact chromatin organization during neuronal development.
Collapse
Affiliation(s)
- Mohammad Nazim
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - An-Chieh Feng
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Wen Xiao
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Kyu-Hyeon Yeom
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Mulin Li
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Allison E Daly
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Xianglong Tan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Ha Vu
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jason Ernst
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Michael F Carey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Hong W, Gong P, Pan X, Ren Z, Liu Y, Qi G, Li JL, Sun W, Ge WP, Zhang CL, Duan S, Qin S. Temporal-spatial Generation of Astrocytes in the Developing Diencephalon. Neurosci Bull 2024; 40:1-16. [PMID: 37843774 PMCID: PMC10774245 DOI: 10.1007/s12264-023-01131-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/24/2023] [Indexed: 10/17/2023] Open
Abstract
Astrocytes are the largest glial population in the mammalian brain. However, we have a minimal understanding of astrocyte development, especially fate specification in different regions of the brain. Through lineage tracing of the progenitors of the third ventricle (3V) wall via in-utero electroporation in the embryonic mouse brain, we show the fate specification and migration pattern of astrocytes derived from radial glia along the 3V wall. Unexpectedly, radial glia located in different regions along the 3V wall of the diencephalon produce distinct cell types: radial glia in the upper region produce astrocytes and those in the lower region produce neurons in the diencephalon. With genetic fate mapping analysis, we reveal that the first population of astrocytes appears along the zona incerta in the diencephalon. Astrogenesis occurs at an early time point in the dorsal region relative to that in the ventral region of the developing diencephalon. With transcriptomic analysis of the region-specific 3V wall and lateral ventricle (LV) wall, we identified cohorts of differentially-expressed genes in the dorsal 3V wall compared to the ventral 3V wall and LV wall that may regulate astrogenesis in the dorsal diencephalon. Together, these results demonstrate that the generation of astrocytes shows a spatiotemporal pattern in the developing mouse diencephalon.
Collapse
Affiliation(s)
- Wentong Hong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Pifang Gong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinjie Pan
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhonggan Ren
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yitong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Guibo Qi
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jun-Liszt Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Wenzhi Sun
- Chinese Institute for Brain Research, Beijing, 102206, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9148, USA
| | - Shumin Duan
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Frith TJR, Briscoe J, Boezio GLM. From signalling to form: the coordination of neural tube patterning. Curr Top Dev Biol 2023; 159:168-231. [PMID: 38729676 DOI: 10.1016/bs.ctdb.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.
Collapse
Affiliation(s)
| | - James Briscoe
- The Francis Crick Institute, London, United Kingdom.
| | | |
Collapse
|
10
|
Christoff RR, Quintanilha JH, Ferreira RO, Ferreira JCCG, Guimarães DM, Valério-Gomes B, Higa LM, Rossi ÁD, Bellio M, Tanuri A, Lent R, Garcez PP. Congenital Zika Virus Infection Impairs Corpus Callosum Development. Viruses 2023; 15:2336. [PMID: 38140578 PMCID: PMC10748342 DOI: 10.3390/v15122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Congenital Zika syndrome (CZS) is a set of birth defects caused by Zika virus (ZIKV) infection during pregnancy. Microcephaly is its main feature, but other brain abnormalities are found in CZS patients, such as ventriculomegaly, brain calcifications, and dysgenesis of the corpus callosum. Many studies have focused on microcephaly, but it remains unknown how ZIKV infection leads to callosal malformation. To tackle this issue, we infected mouse embryos in utero with a Brazilian ZIKV isolate and found that they were born with a reduction in callosal area and density of callosal neurons. ZIKV infection also causes a density reduction in PH3+ cells, intermediate progenitor cells, and SATB2+ neurons. Moreover, axonal tracing revealed that callosal axons are reduced and misrouted. Also, ZIKV-infected cultures show a reduction in callosal axon length. GFAP labeling showed that an in utero infection compromises glial cells responsible for midline axon guidance. In sum, we showed that ZIKV infection impairs critical steps of corpus callosum formation by disrupting not only neurogenesis, but also axon guidance and growth across the midline.
Collapse
Affiliation(s)
- Raissa Rilo Christoff
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (R.R.C.); (J.C.C.G.F.); (D.M.G.)
| | - Jefferson H. Quintanilha
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (R.R.C.); (J.C.C.G.F.); (D.M.G.)
| | - Raiane Oliveira Ferreira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (R.R.C.); (J.C.C.G.F.); (D.M.G.)
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, SP, Brazil
| | - Jessica C. C. G. Ferreira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (R.R.C.); (J.C.C.G.F.); (D.M.G.)
| | - Daniel Menezes Guimarães
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (R.R.C.); (J.C.C.G.F.); (D.M.G.)
| | - Bruna Valério-Gomes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (R.R.C.); (J.C.C.G.F.); (D.M.G.)
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luiza M. Higa
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Átila D. Rossi
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Maria Bellio
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Amilcar Tanuri
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Roberto Lent
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (R.R.C.); (J.C.C.G.F.); (D.M.G.)
- Institute D’Or for Research and Education, Rio de Janeiro 2281-100, RJ, Brazil
| | - Patricia Pestana Garcez
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil; (R.R.C.); (J.C.C.G.F.); (D.M.G.)
| |
Collapse
|
11
|
Lynton Z, Suárez R, Fenlon LR. Brain plasticity following corpus callosum agenesis or loss: a review of the Probst bundles. Front Neuroanat 2023; 17:1296779. [PMID: 38020213 PMCID: PMC10657877 DOI: 10.3389/fnana.2023.1296779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
The corpus callosum is the largest axonal tract in the human brain, connecting the left and right cortical hemipheres. This structure is affected in myriad human neurodevelopmental disorders, and can be entirely absent as a result of congenital or surgical causes. The age when callosal loss occurs, for example via surgical section in cases of refractory epilepsy, correlates with resulting brain morphology and neuropsychological outcomes, whereby an earlier loss generally produces relatively improved interhemispheric connectivity compared to a loss in adulthood (known as the "Sperry's paradox"). However, the mechanisms behind these age-dependent differences remain unclear. Perhaps the best documented and most striking of the plastic changes that occur due to developmental, but not adult, callosal loss is the formation of large, bilateral, longitudinal ectopic tracts termed Probst bundles. Despite over 100 years of research into these ectopic tracts, which are the largest and best described stereotypical ectopic brain tracts in humans, much remains unclear about them. Here, we review the anatomy of the Probst bundles, along with evidence for their faciliatory or detrimental function, the required conditions for their formation, patterns of etiology, and mechanisms of development. We provide hypotheses for many of the remaining mysteries of the Probst bundles, including their possible relationship to preserved interhemispheric communication following corpus callosum absence. Future research into naturally occurring plastic tracts such as Probst bundles will help to inform the general rules governing axon plasticity and disorders of brain miswiring.
Collapse
Affiliation(s)
- Zorana Lynton
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Rodrigo Suárez
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Laura R. Fenlon
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
12
|
Gao G, Hausmann S, Flores NM, Benitez AM, Shen J, Yang X, Person MD, Gayatri S, Cheng D, Lu Y, Liu B, Mazur PK, Bedford MT. The NFIB/CARM1 partnership is a driver in preclinical models of small cell lung cancer. Nat Commun 2023; 14:363. [PMID: 36690626 PMCID: PMC9870865 DOI: 10.1038/s41467-023-35864-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
The coactivator associated arginine methyltransferase (CARM1) promotes transcription, as its name implies. It does so by modifying histones and chromatin bound proteins. We identified nuclear factor I B (NFIB) as a CARM1 substrate and show that this transcription factor utilizes CARM1 as a coactivator. Biochemical studies reveal that tripartite motif 29 (TRIM29) is an effector molecule for methylated NFIB. Importantly, NFIB harbors both oncogenic and metastatic activities, and is often overexpressed in small cell lung cancer (SCLC). Here, we explore the possibility that CARM1 methylation of NFIB is important for its transforming activity. Using a SCLC mouse model, we show that both CARM1 and the CARM1 methylation site on NFIB are critical for the rapid onset of SCLC. Furthermore, CARM1 and methylated NFIB are responsible for maintaining similar open chromatin states in tumors. Together, these findings suggest that CARM1 might be a therapeutic target for SCLC.
Collapse
Affiliation(s)
- Guozhen Gao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Natasha M Flores
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ana Morales Benitez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaojie Yang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Maria D Person
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sitaram Gayatri
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Evozyne Inc., Chicago, IL, 60614, USA
| | - Donghang Cheng
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pawel K Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Yang KY, Zhao S, Feng H, Shen J, Chen Y, Wang ST, Wang SJ, Zhang YX, Wang Y, Guo C, Liu H, Tang TS. Ca 2+ homeostasis maintained by TMCO1 underlies corpus callosum development via ERK signaling. Cell Death Dis 2022; 13:674. [PMID: 35927240 PMCID: PMC9352667 DOI: 10.1038/s41419-022-05131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023]
Abstract
Transmembrane of coiled-coil domains 1 (TMCO1) plays an important role in maintaining homeostasis of calcium (Ca2+) stores in the endoplasmic reticulum (ER). TMCO1-defect syndrome shares multiple features with human cerebro-facio-thoracic (CFT) dysplasia, including abnormal corpus callosum (CC). Here, we report that TMCO1 is required for the normal development of CC through sustaining Ca2+ homeostasis. Tmco1-/- mice exhibit severe agenesis of CC with stalled white matter fiber bundles failing to pass across the midline. Mechanistically, the excessive Ca2+ signals caused by TMCO1 deficiency result in upregulation of FGFs and over-activation of ERK, leading to an excess of glial cell migration and overpopulated midline glia cells in the indusium griseum which secretes Slit2 to repulse extension of the neural fiber bundles before crossing the midline. Supportingly, using the clinical MEK inhibitors to attenuate the over-activated FGF/ERK signaling can significantly improve the CC formation in Tmco1-/- brains. Our findings not only unravel the underlying mechanism of abnormal CC in TMCO1 defect syndrome, but also offer an attractive prevention strategy to relieve the related agenesis of CC in patients.
Collapse
Affiliation(s)
- Ke-Yan Yang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Song Zhao
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Haiping Feng
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jiaqi Shen
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yuwei Chen
- grid.410726.60000 0004 1797 8419Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101 China
| | - Si-Tong Wang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Si-Jia Wang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yu-Xin Zhang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yun Wang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Caixia Guo
- grid.410726.60000 0004 1797 8419Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101 China
| | - Hongmei Liu
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China ,grid.9227.e0000000119573309Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Tie-Shan Tang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China ,grid.9227.e0000000119573309Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| |
Collapse
|
14
|
Colijn MA, Hrynchak M, Hrazdil CT, Willaeys V, White RF, Stowe RM. A 1p31.3 deletion encompassing the nuclear factor 1A gene presenting as possible temporal lobe epilepsy in association with schizoaffective disorder. Neurocase 2022; 28:382-387. [PMID: 36209511 DOI: 10.1080/13554794.2022.2132869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Chromosome 1p32-p31 deletion syndrome, which is characterized by a variety of neurodevelopmental abnormalities, is thought to occur as a result of nuclear factor 1A (NFIA) haploinsufficiency. We present a case of a right-handed 40-year-old female with a 1p31.3 deletion, who exhibited numerous common features of this syndrome, in addition to treatment resistant schizoaffective disorder and possible temporal lobe epilepsy, making her presentation unique. While neither psychosis nor temporal lobe epilepsy has been described in this syndrome previously, these conditions likely occurred in our patient as a result of NFIA haploinsufficiency.
Collapse
Affiliation(s)
- Mark A Colijn
- Department of Psychiatry, The University of Calgary, Calgary, AB, Canada
| | - Monica Hrynchak
- Molecular Cytogenetic Laboratory, Royal Columbian Hospital, The University of British Columbia, New Westminster, BC, Canada
| | - Chantelle T Hrazdil
- Division of Neurology, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Veerle Willaeys
- BC Psychosis Program, British Columbia Mental Health & Substance Use Services, Vancouver, BC, Canada
| | - Randall F White
- BC Psychosis Program, British Columbia Mental Health & Substance Use Services, Vancouver, BC, Canada.,Department of Psychiatry, The University of British Columbia, Vancouver, BC, Canada
| | - Robert M Stowe
- BC Neuropsychiatry Program, Departments of Psychiatry and Neurology (Medicine), and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Bioinformatics and Experimental Analyses Reveal NFIC as an Upstream Transcriptional Regulator for Ischemic Cardiomyopathy. Genes (Basel) 2022; 13:genes13061051. [PMID: 35741813 PMCID: PMC9222441 DOI: 10.3390/genes13061051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic cardiomyopathy (ICM) caused by coronary artery disease always leads to myocardial infarction and heart failure. Identification of novel transcriptional regulators in ICM is an effective method to establish new diagnostic and therapeutic strategies. In this study, we used two RNA-seq datasets and one microarray dataset from different studies, including 25 ICM and 21 non-failing control (NF) samples of human left ventricle tissues for further analysis. In total, 208 differentially expressed genes (DEGs) were found by combining two RNA-seq datasets with batch effects removed. GO and KEGG analyses of DEGs indicated that the response to wounding, positive regulation of smooth muscle contraction, chromatin, PI3K-Akt signaling pathway, and transporters pathways are involved in ICM. Simple Enrichment Analysis found that NFIC-binding motifs are enriched in promoter regions of downregulated genes. The Gene Importance Calculator further proved that NFIC is vital. NFIC and its downstream genes were verified in the validating microarray dataset. Meanwhile, in rat cardiomyocyte cell line H9C2 cells, two genes (Tspan1 and Hopx) were confirmed, which decreased significantly along with knocking down Nfic expression. In conclusion, NFIC participates in the ICM process by regulating TSPAN1 and HOPX. NFIC and its downstream genes may be marker genes and potential diagnostic and therapeutic targets for ICM.
Collapse
|
16
|
Wang H, Sun Y, Ma G, Ke D, Zeng Z, Zhang X, Zhang W. The Relationship between Expression of Nuclear Factor I and the Progressive Occurrence of Diabetic Retinopathy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1272729. [PMID: 35669369 PMCID: PMC9166938 DOI: 10.1155/2022/1272729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 12/03/2022]
Abstract
The loss of nuclear factor I (NFI) function can lead to defects in Muller's glial differentiation, abnormalities of retinal morphology, and changes in retinal neurons numbers, which are highly involved in diabetic retinopathy (DR). In this study, we addressed the roles of NFIA and NFIB gene expression in the development of DR by using diabetes mellitus (DM) rat models. Retinal histologies were examined, and the expression of NFIA and NFIB at mRNA and protein levels was detected. The results showed that retinal edema and disordered cell arrangement frequently occurred in DR rats. The expressions of NFIA and NFIB in retinal tissue were significantly decreased in DM rats with DR complications. After further inhibiting the expression of NFIA gene in DM rats by using RNA-silencing, majority of DM rats occurred retinopathy and lens fibrosis, which indicated the relationship between decreased expression of NFI and occurrence of retinopathy in DM.
Collapse
Affiliation(s)
- Han Wang
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Yufei Sun
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Guixin Ma
- Department of Medical Microbiology, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Dingxin Ke
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Zhou Zeng
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Xianjuan Zhang
- Department of Medical Microbiology, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Wanming Zhang
- Department of Special Medicine, Medical College, Qingdao University, Qingdao, Shandong Province, China
- Qingdao Wanming Biocell Pharmaceutics Co., Ltd, Qingdao, Shandong Province, China
| |
Collapse
|
17
|
Abstract
Transcription factors (TFs) interact with several other proteins in the process of transcriptional regulation. Here, we identify 6703 and 1536 protein–protein interactions for 109 different human TFs through proximity-dependent biotinylation (BioID) and affinity purification mass spectrometry (AP-MS), respectively. The BioID analysis identifies more high-confidence interactions, highlighting the transient and dynamic nature of many of the TF interactions. By performing clustering and correlation analyses, we identify subgroups of TFs associated with specific biological functions, such as RNA splicing or chromatin remodeling. We also observe 202 TF-TF interactions, of which 118 are interactions with nuclear factor 1 (NFI) family members, indicating uncharacterized cross-talk between NFI signaling and other TF signaling pathways. Moreover, TF interactions with basal transcription machinery are mainly observed through TFIID and SAGA complexes. This study provides a rich resource of human TF interactions and also act as a starting point for future studies aimed at understanding TF-mediated transcription. Transcription factors (TFs) interact with several other proteins in the process of transcriptional regulation. Here the authors identify 6703 and 1536 protein–protein interactions for 109 different human TFs through BioID and AP-MS analyses, respectively.
Collapse
|
18
|
Ogura Y, Uehara T, Ujibe K, Yoshihashi H, Yamada M, Suzuki H, Takenouchi T, Kosaki K, Hirata H. The p.Thr395Met missense variant of NFIA found in a patient with intellectual disability is a defective variant. Am J Med Genet A 2022; 188:1184-1192. [PMID: 35018717 DOI: 10.1002/ajmg.a.62638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022]
Abstract
Nuclear factor one A (NFIA) is a transcription factor that regulates the development of the central nervous system. Haploinsufficiency of the NFIA gene causes NFIA-related disorder, which includes brain abnormalities and intellectual disability, with or without urinary tract defects. Intragenic deletions, nonsense variants, frameshift variants, and missense variants in one allele of the NFIA gene have been reported to cause various neurological and urogenital symptoms. Here we report a 10-year-old male patient with developmental delay, coarctation of the aorta, and distinctive facial features. Exome analysis identified a rare de novo heterozygous missense variant p.Thr395Met in NFIA. We employed zebrafish as a model organism in our NFIA analysis and found that nfia-/- zebrafish initially showed a loss of commissural axons in the brain, and eventually underwent growth retardation resulting in premature death. Impairment of the commissural neurons in nfia-/- zebrafish embryos could be restored by the expression of wild-type human NFIA protein, but not of mutant human protein harboring the p.Thr395Met substitution, indicating that this variant affects the function of NFIA protein. Taken together, we suggest that the p.Thr395Met allele in the NFIA gene is relevant to the pathogenesis of NFIA-related disorder.
Collapse
Affiliation(s)
- Yurie Ogura
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan.,Department of Clinical Genetics, Aichi Developmental Disability Center Central Hospital, Aichi, Japan
| | - Kota Ujibe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Hiroshi Yoshihashi
- Department of Clinical Genetics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| |
Collapse
|
19
|
Li J, Zhang X, Guo J, Yu C, Yang J. Molecular Mechanisms and Risk Factors for the Pathogenesis of Hydrocephalus. Front Genet 2022; 12:777926. [PMID: 35047005 PMCID: PMC8762052 DOI: 10.3389/fgene.2021.777926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022] Open
Abstract
Hydrocephalus is a neurological condition due to the aberrant circulation and/or obstruction of cerebrospinal fluid (CSF) flow with consequent enlargement of cerebral ventricular cavities. However, it is noticed that a lot of patients may still go through symptomatic progression despite standard shunting procedures, suggesting that hydrocephalus is far more complicated than a simple CSF circulative/obstructive disorder. Growing evidence indicates that genetic factors play a fundamental role in the pathogenesis of some hydrocephalus. Although the genetic research of hydrocephalus in humans is limited, many genetic loci of hydrocephalus have been defined in animal models. In general, the molecular abnormalities involved in the pathogenesis of hydrocephalus include brain development and ependymal cell dysfunction, apoptosis, inflammation, free radical generation, blood flow, and cerebral metabolism. Moreover, recent studies have indicated that the molecular abnormalities relevant to aberrant cerebral glymphatic drainage turn into an attractive subject in the CSF circulation disorder. Furthermore, the prevalent risk factors could facilitate the development of hydrocephalus. In this review, we elicited some possible fundamental molecular mechanisms and facilitating risk factors involved in the pathogenesis of hydrocephalus, and aimed to widen the diagnosis and therapeutic strategies for hydrocephalus management. Such knowledge could be used to improve patient care in different ways, such as early precise diagnosis and effective therapeutic regimens.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Neurosurgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xinjie Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jian Guo
- Department of Neurosurgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chen Yu
- Department of Neurosurgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jun Yang
- Department of Neurosurgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
20
|
Nuclear factor I-C disrupts cellular homeostasis between autophagy and apoptosis via miR-200b-Ambra1 in neural tube defects. Cell Death Dis 2021; 13:17. [PMID: 34930914 PMCID: PMC8688449 DOI: 10.1038/s41419-021-04473-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/25/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023]
Abstract
Impaired autophagy and excessive apoptosis disrupt cellular homeostasis and contribute to neural tube defects (NTDs), which are a group of fatal and disabling birth defects caused by the failure of neural tube closure during early embryonic development. However, the regulatory mechanisms underlying NTDs and outcomes remain elusive. Here, we report the role of the transcription factor nuclear factor I-C (NFIC) in maintaining cellular homeostasis in NTDs. We demonstrated that abnormally elevated levels of NFIC in a mouse model of NTDs can interact with the miR-200b promoter, leading to the activation of the transcription of miR-200b, which plays a critical role in NTD formation, as reported in our previous study. Furthermore, miR-200b represses autophagy and triggers apoptosis by directly targeting the autophagy-related gene Ambra1 (Autophagy/Beclin1 regulator 1). Notably, miR-200b inhibitors mitigate the unexpected effects of NFIC on autophagy and apoptosis. Collectively, these results indicate that the NFIC-miR-200b-Ambra1 axis, which integrates transcription- and epigenome-regulated miRNAs and an autophagy regulator, disrupts cellular homeostasis during the closure of the neural tube, and may provide new insight into NTD pathogenesis.
Collapse
|
21
|
Rayêe D, Iack PM, Christoff RR, Lourenço MR, Bonifácio C, Boltz J, Lent R, Garcez PP. The Dynamics of Axon Bifurcation Development in the Cerebral Cortex of Typical and Acallosal Mice. Neuroscience 2021; 477:14-24. [PMID: 34601063 DOI: 10.1016/j.neuroscience.2021.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 11/30/2022]
Abstract
The corpus callosum (CC) is a major interhemispheric commissure of placental mammals. Early steps of CC formation rely on guidance strategies, such as axonal branching and collateralization. Here we analyze the time-course dynamics of axonal bifurcation during typical cortical development or in a CC dysgenesis mouse model. We use Swiss mice as a typical CC mouse model and find that axonal bifurcation rates rise in the cerebral cortex from embryonic day (E)17 and are reduced by postnatal day (P)9. Since callosal neurons populate deep and superficial cortical layers, we compare the axon bifurcation ratio between those neurons by electroporating ex vivo brains at E13 and E15, using eGFP reporter to label the newborn neurons on organotypic slices. Our results suggest that deep layer neurons bifurcate 32% more than superficial ones. To investigate axonal bifurcation in CC dysgenesis, we use BALB/c mice as a spontaneous CC dysgenesis model. BALB/c mice present a typical layer distribution of SATB2 callosal cells, despite the occurrence of callosal anomalies. However, using anterograde DiI tracing, we find that BALB/c mice display increased rates of axonal bifurcations during early and late cortical development in the medial frontal cortex. Midline guidepost cells adjacent to the medial frontal cortex are significant reduced in the CC dysgenesis mouse model. Altogether these data suggest that callosal collateral axonal exuberance is maintained in the absence of midline guidepost signaling and might facilitate aberrant connections in the CC dysgenesis mouse model.
Collapse
Affiliation(s)
- Danielle Rayêe
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Institute of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Pamela Meneses Iack
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Raissa R Christoff
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Michele R Lourenço
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro - IFRJ, Brazil
| | | | - Jürgen Boltz
- Institute of General Zoology and Animal Physiology, University of Jena, 07743 Jena, Germany
| | - Roberto Lent
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Institute D'Or for Research and Education, Rio de Janeiro, Brazil
| | - Patricia P Garcez
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
22
|
Katada S, Takouda J, Nakagawa T, Honda M, Igarashi K, Imamura T, Ohkawa Y, Sato S, Kurumizaka H, Nakashima K. Neural stem/precursor cells dynamically change their epigenetic landscape to differentially respond to BMP signaling for fate switching during brain development. Genes Dev 2021; 35:1431-1444. [PMID: 34675062 PMCID: PMC8559679 DOI: 10.1101/gad.348797.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022]
Abstract
In this study, Katada et al. investigated NPC fate regulation and, using multiple genome-wide analyses, they demonstrate that Smads, transcription factors that act downstream from BMP signaling, target dramatically different genomic regions in neurogenic and gliogenic NPCs. Their results show the regulation of NPC property change mediated by the interplay between cell-extrinsic cues and -intrinsic epigenetic programs during cortical development. During neocortical development, tight regulation of neurogenesis-to-astrogenesis switching of neural precursor cells (NPCs) is critical to generate a balanced number of each neural cell type for proper brain functions. Accumulating evidence indicates that a complex array of epigenetic modifications and the availability of extracellular factors control the timing of neuronal and astrocytic differentiation. However, our understanding of NPC fate regulation is still far from complete. Bone morphogenetic proteins (BMPs) are renowned as cytokines that induce astrogenesis of gliogenic late-gestational NPCs. They also promote neurogenesis of mid-gestational NPCs, although the underlying mechanisms remain elusive. By performing multiple genome-wide analyses, we demonstrate that Smads, transcription factors that act downstream from BMP signaling, target dramatically different genomic regions in neurogenic and gliogenic NPCs. We found that histone H3K27 trimethylation and DNA methylation around Smad-binding sites change rapidly as gestation proceeds, strongly associated with the alteration of accessibility of Smads to their target binding sites. Furthermore, we identified two lineage-specific Smad-interacting partners—Sox11 for neurogenic and Sox8 for astrocytic differentiation—that further ensure Smad-regulated fate-specific gene induction. Our findings illuminate an exquisite regulation of NPC property change mediated by the interplay between cell-extrinsic cues and -intrinsic epigenetic programs during cortical development.
Collapse
Affiliation(s)
- Sayako Katada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jun Takouda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takumi Nakagawa
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mizuki Honda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Katsuhide Igarashi
- Institute for Advanced Life Sciences, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Takuya Imamura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shoko Sato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
23
|
Takouda J, Katada S, Imamura T, Sanosaka T, Nakashima K. SoxE group transcription factor Sox8 promotes astrocytic differentiation of neural stem/precursor cells downstream of Nfia. Pharmacol Res Perspect 2021; 9:e00749. [PMID: 34677001 PMCID: PMC8532136 DOI: 10.1002/prp2.749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
The brain consists of three major cell types: neurons and two glial cell types (astrocytes and oligodendrocytes). Although they are generated from common multipotent neural stem/precursor cells (NS/PCs), embryonic NS/PCs cannot generate all of the cell types at the beginning of brain development. NS/PCs first undergo extensive self-renewal to expand their pools, and then acquire the potential to produce neurons, followed by glial cells. Astrocytes are the most frequently found cell type in the central nervous system (CNS), and play important roles in brain development and functions. Although it has been shown that nuclear factor IA (Nfia) is a pivotal transcription factor for conferring gliogenic potential on neurogenic NS/PCs by sequestering DNA methyltransferase 1 (Dnmt1) from astrocyte-specific genes, direct targets of Nfia that participate in astrocytic differentiation have yet to be completely identified. Here we show that SRY-box transcription factor 8 (Sox8) is a direct target gene of Nfia at the initiation of the gliogenic phase. We found that expression of Sox8 augmented leukemia inhibitory factor (LIF)-induced astrocytic differentiation, while Sox8 knockdown inhibited Nfia-enhanced astrocytic differentiation of NS/PCs. In contrast to Nfia, Sox8 did not induce DNA demethylation of an astrocyte-specific marker gene, glial fibrillary acidic protein (Gfap), but instead associated with LIF downstream transcription factor STAT3 through transcriptional coactivator p300, explaining how Sox8 expression further facilitated LIF-induced Gfap expression. Taken together, these results suggest that Sox8 is a crucial Nfia downstream transcription factor for the astrocytic differentiation of NS/PCs in the developing brain.
Collapse
Affiliation(s)
- Jun Takouda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayako Katada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Imamura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
24
|
Iacobucci S, Padilla N, Gabrielli M, Navarro C, Lombardi M, Vicioso-Mantis M, Verderio C, de la Cruz X, Martínez-Balbás MA. The histone demethylase PHF8 regulates astrocyte differentiation and function. Development 2021; 148:268981. [PMID: 34081130 DOI: 10.1242/dev.194951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 04/15/2021] [Indexed: 12/24/2022]
Abstract
Epigenetic factors have been shown to play a crucial role in X-linked intellectual disability (XLID). Here, we investigate the contribution of the XLID-associated histone demethylase PHF8 to astrocyte differentiation and function. Using genome-wide analyses and biochemical assays in mouse astrocytic cultures, we reveal a regulatory crosstalk between PHF8 and the Notch signaling pathway that balances the expression of the master astrocytic gene Nfia. Moreover, PHF8 regulates key synaptic genes in astrocytes by maintaining low levels of H4K20me3. Accordingly, astrocytic-PHF8 depletion has a striking effect on neuronal synapse formation and maturation in vitro. These data reveal that PHF8 is crucial in astrocyte development to maintain chromatin homeostasis and limit heterochromatin formation at synaptogenic genes. Our studies provide insights into the involvement of epigenetics in intellectual disability.
Collapse
Affiliation(s)
- Simona Iacobucci
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Natalia Padilla
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Passeig de la Vall d'Hebron, 119; E-08035 Barcelona, Spain. Institut Català per la Recerca i Estudis Avançats (ICREA), Barcelona 08018, Spain
| | - Martina Gabrielli
- CNR Institute of Neuroscience, via Vanvitelli 32, 20129 Milan, Italy
| | - Claudia Navarro
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Marta Lombardi
- CNR Institute of Neuroscience, via Vanvitelli 32, 20129 Milan, Italy
| | - Marta Vicioso-Mantis
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Claudia Verderio
- CNR Institute of Neuroscience, via Vanvitelli 32, 20129 Milan, Italy
| | - Xavier de la Cruz
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Passeig de la Vall d'Hebron, 119; E-08035 Barcelona, Spain. Institut Català per la Recerca i Estudis Avançats (ICREA), Barcelona 08018, Spain
| | - Marian A Martínez-Balbás
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| |
Collapse
|
25
|
Chen KS, Lynton Z, Lim JWC, Robertson T, Gronostajski RM, Bunt J, Richards LJ. NFIA and NFIB function as tumour suppressors in high-grade glioma in mice. Carcinogenesis 2021; 42:357-368. [PMID: 33346791 DOI: 10.1093/carcin/bgaa139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/05/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
Nuclear factor one (NFI) transcription factors are implicated in both brain development and cancer in mice and humans and play an essential role in glial differentiation. NFI expression is reduced in human astrocytoma samples, particularly those of higher grade, whereas over-expression of NFI protein can induce the differentiation of glioblastoma cells within human tumour xenografts and in glioblastoma cell lines in vitro. These data indicate that NFI proteins may act as tumour suppressors in glioma. To test this hypothesis, we generated complex mouse genetic crosses involving six alleles to target gene deletion of known tumour suppressor genes that induce endogenous high-grade glioma in mice, and overlaid this with loss of function Nfi mutant alleles, Nfia and Nfib, a reporter transgene and an inducible Cre allele. Deletion of Nfi resulted in reduced survival time of the mice, increased tumour load and a more aggressive tumour phenotype than observed in glioma mice with normal expression of NFI. Together, these data indicate that NFI genes represent a credible target for both diagnostic analyses and therapeutic strategies to combat high-grade glioma.
Collapse
Affiliation(s)
- Kok-Siong Chen
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zorana Lynton
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jonathan W C Lim
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas Robertson
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia.,Anatomical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jens Bunt
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Linda J Richards
- The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
26
|
Yeon GB, Shin WH, Yoo SH, Kim D, Jeon BM, Park WU, Bae Y, Park JY, You S, Na D, Kim DS. NFIB induces functional astrocytes from human pluripotent stem cell-derived neural precursor cells mimicking in vivo astrogliogenesis. J Cell Physiol 2021; 236:7625-7641. [PMID: 33949692 DOI: 10.1002/jcp.30405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022]
Abstract
The ability to generate astrocytes from human pluripotent stem cells (hPSCs) offers a promising cellular model to study the development and physiology of human astrocytes. The extant methods for generating functional astrocytes required long culture periods and there remained much ambiguity on whether such paradigms follow the innate developmental program. In this report, we provided an efficient and rapid method for generating physiologically functional astrocytes from hPSCs. Overexpressing the nuclear factor IB in hPSC-derived neural precursor cells induced a highly enriched astrocyte population in 2 weeks. RNA sequencing and functional analyses demonstrated progressive transcriptomic and physiological changes in the cells, resembling in vivo astrocyte development. Further analyses substantiated previous results and established the MAPK pathway necessary for astrocyte differentiation. Hence, this differentiation paradigm provides a prospective in vitro model for human astrogliogenesis studies and the pathophysiology of neurological diseases concerning astrocytes.
Collapse
Affiliation(s)
- Gyu-Bum Yeon
- Department of Biotechnology, Korea University, Seoul, Korea
| | - Won-Ho Shin
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Korea
| | - Seo Hyun Yoo
- Department of Biotechnology, Korea University, Seoul, Korea
| | - Dongyun Kim
- Department of Biotechnology, Korea University, Seoul, Korea
| | | | - Won-Ung Park
- Department of Biotechnology, Korea University, Seoul, Korea
| | - Yeonju Bae
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Korea
| | - Seungkwon You
- Department of Biotechnology, Korea University, Seoul, Korea
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, Seoul, Korea
| | - Dae-Sung Kim
- Department of Biotechnology, Korea University, Seoul, Korea.,Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Mossink B, Negwer M, Schubert D, Nadif Kasri N. The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cell Mol Life Sci 2021; 78:2517-2563. [PMID: 33263776 PMCID: PMC8004494 DOI: 10.1007/s00018-020-03714-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.
Collapse
Affiliation(s)
- Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
28
|
Liu H, Carlen PL, Zhang L. Examinations of Bilateral Epileptiform Activities in Hippocampal Slices Obtained From Young Mice. Front Cell Neurosci 2021; 14:593840. [PMID: 33551747 PMCID: PMC7854570 DOI: 10.3389/fncel.2020.593840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/21/2020] [Indexed: 12/02/2022] Open
Abstract
Bilateral interconnections through the hippocampal commissure play important roles in synchronizing or spreading hippocampal seizure activities. Intact hippocampi or bilateral hippocampal slices have been isolated from neonatal or immature rats (6–7 or 12–21 days old, respectively) and the mechanisms underlying the bilateral synchrony of hippocampal epileptiform activities have been investigated. However, the feasibility of examining bilateral epileptiform activities of more developed hippocampal circuitry in vitro remains to be explored. For this, we prepared bilateral hippocampal slices from C57 black mice, a strain commonly used in neuroscience and for genetic/molecular modifications. Young mice (21–24-day-old) were used in most experiments. A 600-μm-thick slice was obtained from each mouse by horizontal vibratome sectioning. Bilateral dorsal hippocampal and connecting dorsal hippocampal commissure (DHC) tissues were preserved in the slice and extrahippocampal tissues were removed. Slices were recorded in a submerged chamber mainly at a room temperature (21–22°C). Bilateral CA3 areas were monitored by extracellular recordings, and unilateral electrical stimulation was used to elicit CA3 synaptic field potentials. The unilateral stimulation could elicit population spikes in the contralateral CA3 area. These contralateral spikes were attenuated by inhibiting synaptic transmission with cobalt-containing medium and were abolished when a cut was made at the DHC. Self-sustained and bilaterally correlated epileptiform potentials were observed following application of 4-aminopyradine and became independent after the DHC cut. Bilateral hippocampal activities were detectable in some slices of adult mice and/or at 35–36°C, but with smaller amplitudes and variable waveforms compared to those observed from slices of young mice and at the room temperature. Together, these observations suggested that examining bilateral epileptiform activities in hippocampal slices of young mice is feasible. The weaknesses and limitations of this preparation and our experimentation are discussed.
Collapse
Affiliation(s)
- Haiyu Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Peter L Carlen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Mathews E, Dewees K, Diaz D, Favero C. White matter abnormalities in fetal alcohol spectrum disorders: Focus on axon growth and guidance. Exp Biol Med (Maywood) 2021; 246:812-821. [PMID: 33423552 DOI: 10.1177/1535370220980398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fetal Alcohol Spectrum Disorders (FASDs) describe a range of deficits, affecting physical, mental, cognitive, and behavioral function, arising from prenatal alcohol exposure. FASD causes widespread white matter abnormalities, with significant alterations of tracts in the cerebral cortex, cerebellum, and hippocampus. These brain regions present with white-matter volume reductions, particularly at the midline. Neural pathways herein are guided primarily by three guidance cue families: Semaphorin/Neuropilin, Netrin/DCC, and Slit/Robo. These guidance cue/receptor pairs attract and repulse axons and ensure that they reach the proper target to make functional connections. In several cases, these signals cooperate with each other and/or additional molecular partners. Effects of alcohol on guidance cue mechanisms and their associated effectors include inhibition of growth cone response to repellant cues as well as changes in gene expression. Relevant to the corpus callosum, specifically, developmental alcohol exposure alters GABAergic and glutamatergic cell populations and glial cells that serve as guidepost cells for callosal axons. In many cases, deficits seen in FASD mirror aberrancies in guidance cue/receptor signaling. We present evidence for the need for further study on how prenatal alcohol exposure affects the formation of neural connections which may underlie disrupted functional connectivity in FASD.
Collapse
Affiliation(s)
- Erin Mathews
- Biology Department, Ursinus College, Collegeville, PA 19426-1000, USA
| | - Kevyn Dewees
- Biology Department, Ursinus College, Collegeville, PA 19426-1000, USA
| | - Deborah Diaz
- Biology Department, Ursinus College, Collegeville, PA 19426-1000, USA
| | - Carlita Favero
- Biology Department, Ursinus College, Collegeville, PA 19426-1000, USA
| |
Collapse
|
30
|
VandenBosch LS, Wohl SG, Wilken MS, Hooper M, Finkbeiner C, Cox K, Chipman L, Reh TA. Developmental changes in the accessible chromatin, transcriptome and Ascl1-binding correlate with the loss in Müller Glial regenerative potential. Sci Rep 2020; 10:13615. [PMID: 32788677 PMCID: PMC7423883 DOI: 10.1038/s41598-020-70334-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Diseases and damage to the retina lead to losses in retinal neurons and eventual visual impairment. Although the mammalian retina has no inherent regenerative capabilities, fish have robust regeneration from Müller glia (MG). Recently, we have shown that driving expression of Ascl1 in adult mouse MG stimulates neural regeneration. The regeneration observed in the mouse is limited in the variety of neurons that can be derived from MG; Ascl1-expressing MG primarily generate bipolar cells. To better understand the limits of MG-based regeneration in mouse retinas, we used ATAC- and RNA-seq to compare newborn progenitors, immature MG (P8-P12), and mature MG. Our analysis demonstrated developmental differences in gene expression and accessible chromatin between progenitors and MG, primarily in neurogenic genes. Overexpression of Ascl1 is more effective in reprogramming immature MG, than mature MG, consistent with a more progenitor-like epigenetic landscape in the former. We also used ASCL1 ChIPseq to compare the differences in ASCL1 binding in progenitors and reprogrammed MG. We find that bipolar-specific accessible regions are more frequently linked to bHLH motifs and ASCL1 binding. Overall, our analysis indicates a loss of neurogenic gene expression and motif accessibility during glial maturation that may prevent efficient reprogramming.
Collapse
Affiliation(s)
- Leah S VandenBosch
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA, 98195, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Stefanie G Wohl
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA, 98195, USA.,Department of Biological and Vision Sciences, College of Optometry, The State University of New York, New York, NY, USA
| | - Matthew S Wilken
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA, 98195, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Marcus Hooper
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA, 98195, USA
| | - Connor Finkbeiner
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA, 98195, USA
| | - Kristen Cox
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA, 98195, USA
| | - Laura Chipman
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA, 98195, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA, 98195, USA. .,Institute for Stem Cells and Regenerative Medicine, University of Washington, Box 358056, Seattle, WA, 98109, USA.
| |
Collapse
|
31
|
Arthur-Farraj P, Moyon S. DNA methylation in Schwann cells and in oligodendrocytes. Glia 2020; 68:1568-1583. [PMID: 31958184 DOI: 10.1002/glia.23784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
DNA methylation is one of many epigenetic marks, which directly modifies base residues, usually cytosines, in a multiple-step cycle. It has been linked to the regulation of gene expression and alternative splicing in several cell types, including during cell lineage specification and differentiation processes. DNA methylation changes have also been observed during aging, and aberrant methylation patterns have been reported in several neurological diseases. We here review the role of DNA methylation in Schwann cells and oligodendrocytes, the myelin-forming glia of the peripheral and central nervous systems, respectively. We first address how methylation and demethylation are regulating myelinating cells' differentiation during development and repair. We then mention how DNA methylation dysregulation in diseases and cancers could explain their pathogenesis by directly influencing myelinating cells' proliferation and differentiation capacities.
Collapse
Affiliation(s)
- Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sarah Moyon
- Neuroscience Initiative Advanced Science Research Center, CUNY, New York, New York
| |
Collapse
|
32
|
Romanov RA, Tretiakov EO, Kastriti ME, Zupancic M, Häring M, Korchynska S, Popadin K, Benevento M, Rebernik P, Lallemend F, Nishimori K, Clotman F, Andrews WD, Parnavelas JG, Farlik M, Bock C, Adameyko I, Hökfelt T, Keimpema E, Harkany T. Molecular design of hypothalamus development. Nature 2020; 582:246-252. [PMID: 32499648 PMCID: PMC7292733 DOI: 10.1038/s41586-020-2266-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 03/05/2020] [Indexed: 12/21/2022]
Abstract
A wealth of specialized neuroendocrine command systems intercalated within the hypothalamus control the most fundamental physiological needs in vertebrates1,2. Nevertheless, we lack a developmental blueprint that integrates the molecular determinants of neuronal and glial diversity along temporal and spatial scales of hypothalamus development3. Here we combine single-cell RNA sequencing of 51,199 mouse cells of ectodermal origin, gene regulatory network (GRN) screens in conjunction with genome-wide association study-based disease phenotyping, and genetic lineage reconstruction to show that nine glial and thirty-three neuronal subtypes are generated by mid-gestation under the control of distinct GRNs. Combinatorial molecular codes that arise from neurotransmitters, neuropeptides and transcription factors are minimally required to decode the taxonomical hierarchy of hypothalamic neurons. The differentiation of γ-aminobutyric acid (GABA) and dopamine neurons, but not glutamate neurons, relies on quasi-stable intermediate states, with a pool of GABA progenitors giving rise to dopamine cells4. We found an unexpected abundance of chemotropic proliferation and guidance cues that are commonly implicated in dorsal (cortical) patterning5 in the hypothalamus. In particular, loss of SLIT-ROBO signalling impaired both the production and positioning of periventricular dopamine neurons. Overall, we identify molecular principles that shape the developmental architecture of the hypothalamus and show how neuronal heterogeneity is transformed into a multimodal neural unit to provide virtually infinite adaptive potential throughout life.
Collapse
Affiliation(s)
- Roman A. Romanov
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Biomedicum D7, Karolinska Institutet,
Solna, Sweden
| | - Evgenii O. Tretiakov
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Maria Eleni Kastriti
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Biomedicum D6, Karolinska
Institutet, Solna, Sweden
| | - Maja Zupancic
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Martin Häring
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Solomiia Korchynska
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Konstantin Popadin
- Human Genomics of Infection and Immunity, School of Life Sciences,
Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Marco Benevento
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Patrick Rebernik
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Francois Lallemend
- Department of Neuroscience, Biomedicum D7, Karolinska Institutet,
Solna, Sweden
| | - Katsuhiko Nishimori
- Deptartment of Obesity and Internal Inflammation, Fukushima Medical
University, Fukushima City, Japan
| | - Frédéric Clotman
- Laboratory of Neural Differentiation, Institute of Neuroscience,
Université Catholique de Louvain, Brussels, Belgium
| | - William D. Andrews
- Department of Cell and Developmental Biology, University College
London, London, United Kingdom
| | - John G. Parnavelas
- Department of Cell and Developmental Biology, University College
London, London, United Kingdom
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy
of Sciences, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna,
Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy
of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna,
Vienna, Austria
| | - Igor Adameyko
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Biomedicum D6, Karolinska
Institutet, Solna, Sweden
| | - Tomas Hökfelt
- Department of Neuroscience, Biomedicum D7, Karolinska Institutet,
Solna, Sweden
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research,
Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Biomedicum D7, Karolinska Institutet,
Solna, Sweden
| |
Collapse
|
33
|
Mesman S, Bakker R, Smidt MP. Tcf4 is required for correct brain development during embryogenesis. Mol Cell Neurosci 2020; 106:103502. [PMID: 32474139 DOI: 10.1016/j.mcn.2020.103502] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 01/02/2023] Open
Abstract
Tcf4 has been linked to autism, schizophrenia, and Pitt-Hopkins Syndrome (PTHS) in humans, suggesting a role for Tcf4 in brain development and importantly cortical development. However, the mechanisms behind its role in disease and brain development are still elusive. We provide evidence that Tcf4 has a critical function in the differentiation of cortical regions, corpus callosum and anterior commissure formation, and development of the hippocampus during murine embryonic development. In the present study, we show that Tcf4 is expressed throughout the developing brain at the peak of neurogenesis. Deletion of Tcf4 results in mis-specification of the cortical neurons, malformation of the corpus callosum and anterior commissure, and hypoplasia of the hippocampus. Furthermore, the Tcf4 mutant shows an absence of midline remodeling, underlined by the loss of GFAP-expressing midline glia in the indusium griseum and callosal wedge and midline zipper glia in the telencephalic midline. RNA-sequencing on E14.5 cortex material shows that Tcf4 functions as a transcriptional activator and loss of Tcf4 results in downregulation of genes linked to neurogenesis and neuronal maturation. Furthermore, many genes that are differentially expressed after Tcf4 ablation are linked to other neurodevelopmental disorders. Taken together, we show that correct brain development and neuronal differentiation are severely affected in Tcf4 mutants, phenocopying morphological brain defects detected in PTHS patients. The presented data identifies new leads to understand the mechanisms behind brain and specifically cortical development and can provide novel insights in developmental mechanisms underlying human brain defects.
Collapse
Affiliation(s)
- Simone Mesman
- Swammerdam Institute for Life Sciences, FNWI University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands
| | - Reinier Bakker
- Swammerdam Institute for Life Sciences, FNWI University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands
| | - Marten P Smidt
- Swammerdam Institute for Life Sciences, FNWI University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands.
| |
Collapse
|
34
|
Nakagawa T, Wada Y, Katada S, Kishi Y. Epigenetic regulation for acquiring glial identity by neural stem cells during cortical development. Glia 2020; 68:1554-1567. [PMID: 32163194 DOI: 10.1002/glia.23818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/09/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
The nervous system consists of several hundred neuronal subtypes and glial cells that show specific gene expression and are generated from common ancestors, neural stem cells (NSCs). As the experimental techniques and molecular tools to analyze epigenetics and chromatin structures are rapidly advancing, the comprehensive events and genome-wide states of DNA methylation, histone modifications, and chromatin accessibility in developing NSCs are gradually being unveiled. Here, we review recent advances in elucidating the role of epigenetic and chromatin regulation in NSCs, especially focusing on the acquisition of glial identity and how epigenetic regulation enables the temporal regulation of NSCs during murine cortical development.
Collapse
Affiliation(s)
- Takumi Nakagawa
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshikuni Wada
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Sayako Katada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Kishi
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
35
|
Putoux A, Baas D, Paschaki M, Morlé L, Maire C, Attié-Bitach T, Thomas S, Durand B. Altered GLI3 and FGF8 signaling underlies acrocallosal syndrome phenotypes in Kif7 depleted mice. Hum Mol Genet 2020; 28:877-887. [PMID: 30445565 DOI: 10.1093/hmg/ddy392] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 11/14/2022] Open
Abstract
Acrocallosal syndrome (ACLS) is a rare genetic disorder characterized by agenesis or hypoplasia of corpus callosum (CC), polydactyly, craniofacial dysmorphism and severe intellectual deficiency. We previously identified KIF7, a key ciliary component of the Sonic hedgehog (SHH) pathway, as being a causative gene for this syndrome, thus including ACLS in the group of ciliopathies. In both humans and mice, KIF7 depletion leads to abnormal GLI3 processing and over-activation of SHH target genes. To understand the pathological mechanisms involved in CC defects in this syndrome, we took advantage of a previously described Kif7-/- mouse model to demonstrate that in addition to polydactyly and neural tube closure defects, these mice present CC agenesis with characteristic Probst bundles, thus recapitulating major ACLS features. We show that CC agenesis in these mice is associated with specific patterning defects of the cortical septum boundary leading to altered distribution of guidepost cells required to guide the callosal axons through the midline. Furthermore, by crossing Kif7-/- mice with Gli3Δ699 mice exclusively producing the repressive isoform of GLI3 (GLI3R), we demonstrate that decreased GLI3R signaling is fully responsible for the ACLS features in these mice, as all phenotypes are rescued by increasing GLI3R activity. Moreover, we show that increased FGF8 signaling is responsible in part for CC defects associated to KIF7 depletion, as modulating FGF8 signaling rescued CC formation anteriorly in Kif7-/- mice. Taken together our data demonstrate that ACLS features rely on defective GLI3R and FGF8 signaling.
Collapse
Affiliation(s)
- Audrey Putoux
- Centre de Recherche en Neurosciences de Lyon, Équipe GENDEV, INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France.,Service de Génétique et Centre de Référence des Anomalies du Développement de la Région Auvergne-Rhône-Alpes, CHU de Lyon, France
| | - Dominique Baas
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U-1217, Lyon, France
| | - Marie Paschaki
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U-1217, Lyon, France
| | - Laurette Morlé
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U-1217, Lyon, France
| | - Charline Maire
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U-1217, Lyon, France
| | - Tania Attié-Bitach
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163, Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Department of Histology-Embryology and Cytogenetics, Necker Hospital, AP-HP, Paris, France
| | - Sophie Thomas
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Bénédicte Durand
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U-1217, Lyon, France
| |
Collapse
|
36
|
Fraser J, Essebier A, Brown AS, Davila RA, Harkins D, Zalucki O, Shapiro LP, Penzes P, Wainwright BJ, Scott MP, Gronostajski RM, Bodén M, Piper M, Harvey TJ. Common Regulatory Targets of NFIA, NFIX and NFIB during Postnatal Cerebellar Development. CEREBELLUM (LONDON, ENGLAND) 2020; 19:89-101. [PMID: 31838646 PMCID: PMC7815246 DOI: 10.1007/s12311-019-01089-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transcriptional regulation plays a central role in controlling neural stem and progenitor cell proliferation and differentiation during neurogenesis. For instance, transcription factors from the nuclear factor I (NFI) family have been shown to co-ordinate neural stem and progenitor cell differentiation within multiple regions of the embryonic nervous system, including the neocortex, hippocampus, spinal cord and cerebellum. Knockout of individual Nfi genes culminates in similar phenotypes, suggestive of common target genes for these transcription factors. However, whether or not the NFI family regulates common suites of genes remains poorly defined. Here, we use granule neuron precursors (GNPs) of the postnatal murine cerebellum as a model system to analyse regulatory targets of three members of the NFI family: NFIA, NFIB and NFIX. By integrating transcriptomic profiling (RNA-seq) of Nfia- and Nfix-deficient GNPs with epigenomic profiling (ChIP-seq against NFIA, NFIB and NFIX, and DNase I hypersensitivity assays), we reveal that these transcription factors share a large set of potential transcriptional targets, suggestive of complementary roles for these NFI family members in promoting neural development.
Collapse
Affiliation(s)
- James Fraser
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Alexandra Essebier
- The School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Alexander S Brown
- Department of Developmental Biology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Raul Ayala Davila
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Danyon Harkins
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Oressia Zalucki
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Lauren P Shapiro
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Peter Penzes
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brandon J Wainwright
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Matthew P Scott
- Department of Developmental Biology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Mikael Bodén
- The School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia.
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia.
| | - Tracey J Harvey
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
37
|
Chen KS, Bridges CR, Lynton Z, Lim JWC, Stringer BW, Rajagopal R, Wong KT, Ganesan D, Ariffin H, Day BW, Richards LJ, Bunt J. Transcription factors NFIA and NFIB induce cellular differentiation in high-grade astrocytoma. J Neurooncol 2019; 146:41-53. [PMID: 31760595 DOI: 10.1007/s11060-019-03352-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/12/2019] [Accepted: 11/16/2019] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Malignant astrocytomas are composed of heterogeneous cell populations. Compared to grade IV glioblastoma, low-grade astrocytomas have more differentiated cells and are associated with a better prognosis. Therefore, inducing cellular differentiation to alter the behaviour of high-grade astrocytomas may serve as a therapeutic strategy. The nuclear factor one (NFI) transcription factors are essential for normal astrocytic differentiation. Here, we investigate whether family members NFIA and NFIB act as effectors of cellular differentiation in glioblastoma. METHODS We analysed expression of NFIA and NFIB in mRNA expression data of high-grade astrocytoma and with immunofluorescence co-staining. Furthermore, we induced NFI expression in patient-derived subcutaneous glioblastoma xenografts via in vivo electroporation. RESULTS The expression of NFIA and NFIB is reduced in glioblastoma as compared to lower grade astrocytomas. At a cellular level, their expression is associated with differentiated and mature astrocyte-like tumour cells. In vivo analyses consistently demonstrate that expression of either NFIA or NFIB is sufficient to promote tumour cell differentiation in glioblastoma xenografts. CONCLUSION Our findings indicate that both NFIA and NFIB may have an endogenous pro-differentiative function in astrocytomas, similar to their role in normal astrocyte differentiation. Overall, our study establishes a basis for further investigation of targeting NFI-mediated differentiation as a potential differentiation therapy.
Collapse
Affiliation(s)
- Kok-Siong Chen
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Caitlin R Bridges
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zorana Lynton
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
- The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jonathan W C Lim
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Brett W Stringer
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Revathi Rajagopal
- Department of Paediatrics, University of Malaya, 59100, Kuala Lumpur, Malaysia
| | - Kum-Thong Wong
- Department of Pathology, University of Malaya, 59100, Kuala Lumpur, Malaysia
| | - Dharmendra Ganesan
- Division of Neurosurgery, University of Malaya Medical Centre, 59100, Kuala Lumpur, Malaysia
| | - Hany Ariffin
- Department of Paediatrics, University of Malaya, 59100, Kuala Lumpur, Malaysia
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Linda J Richards
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Biomedical Sciences, The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Rd Brisbane, Brisbane, QLD, 4072, Australia.
| | - Jens Bunt
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Rd Brisbane, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
38
|
Zenker M, Bunt J, Schanze I, Schanze D, Piper M, Priolo M, Gerkes EH, Gronostajski RM, Richards LJ, Vogt J, Wessels MW, Hennekam RC. Variants in nuclear factor I genes influence growth and development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:611-626. [DOI: 10.1002/ajmg.c.31747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/26/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Martin Zenker
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Jens Bunt
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
| | - Ina Schanze
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Denny Schanze
- Institute of Human GeneticsUniversity Hospital, Otto‐von‐Guericke‐University Magdeburg Germany
| | - Michael Piper
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
- School of Biomedical SciencesThe University of Queensland Brisbane Queensland Australia
| | - Manuela Priolo
- Operative Unit of Medical GeneticsGreat Metropolitan Hospital Bianchi‐Melacrino‐Morelli Reggio Calabria Italy
| | - Erica H. Gerkes
- Department of Genetics, University of GroningenUniversity Medical Center Groningen Groningen the Netherlands
| | - Richard M. Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life SciencesState University of New York Buffalo NY
| | - Linda J. Richards
- Queensland Brain InstituteThe University of Queensland Brisbane Queensland Australia
- School of Biomedical SciencesThe University of Queensland Brisbane Queensland Australia
| | - Julie Vogt
- West Midlands Regional Clinical Genetics Service and Birmingham Health PartnersWomen's and Children's Hospitals NHS Foundation Trust Birmingham UK
| | - Marja W. Wessels
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center Rotterdam Rotterdam The Netherlands
| | - Raoul C. Hennekam
- Department of PediatricsUniversity of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
39
|
Filatova A, Rey LK, Lechler MB, Schaper J, Hempel M, Posmyk R, Szczaluba K, Santen GWE, Wieczorek D, Nuber UA. Mutations in SMARCB1 and in other Coffin-Siris syndrome genes lead to various brain midline defects. Nat Commun 2019; 10:2966. [PMID: 31273213 PMCID: PMC6609698 DOI: 10.1038/s41467-019-10849-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/05/2019] [Indexed: 01/09/2023] Open
Abstract
Mutations in genes encoding components of BAF (BRG1/BRM-associated factor) chromatin remodeling complexes cause neurodevelopmental disorders and tumors. The mechanisms leading to the development of these two disease entities alone or in combination remain unclear. We generated mice with a heterozygous nervous system-specific partial loss-of-function mutation in a BAF core component gene, Smarcb1. These Smarcb1 mutant mice show various brain midline abnormalities that are also found in individuals with Coffin–Siris syndrome (CSS) caused by SMARCB1, SMARCE1, and ARID1B mutations and in SMARCB1-related intellectual disability (ID) with choroid plexus hyperplasia (CPH). Analyses of the Smarcb1 mutant animals indicate that one prominent midline abnormality, corpus callosum agenesis, is due to midline glia aberrations. Our results establish a novel role of Smarcb1 in the development of the brain midline and have important clinical implications for BAF complex-related ID/neurodevelopmental disorders. Why and how mutations in genes encoding BAF complex components lead to distinct disease entitites remains unresolved. In this study, authors establish the first Smarcb1 mutant mouse model with multiple brain abnormalities recapitulating human Coffin–Siris syndrome and show that one prominent midline abnormality, corpus callosum agenesis, is due to midline glia aberrations.
Collapse
Affiliation(s)
- Alina Filatova
- Stem Cell and Developmental Biology, Technical University Darmstadt, Darmstadt, 64287, Germany
| | - Linda K Rey
- Institute of Human Genetics, Medical Faculty, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Marion B Lechler
- Stem Cell and Developmental Biology, Technical University Darmstadt, Darmstadt, 64287, Germany
| | - Jörg Schaper
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Renata Posmyk
- Podlaskie Medical Centre "GENETICS" Bialystok and Department of Perinatology and Obstetrics, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Krzysztof Szczaluba
- Department of Medical Genetics, Medical University Warsaw, Warsaw, 02-106, Poland
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Ulrike A Nuber
- Stem Cell and Developmental Biology, Technical University Darmstadt, Darmstadt, 64287, Germany.
| |
Collapse
|
40
|
Open chromatin dynamics in prosensory cells of the embryonic mouse cochlea. Sci Rep 2019; 9:9060. [PMID: 31227770 PMCID: PMC6588700 DOI: 10.1038/s41598-019-45515-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
Hearing loss is often due to the absence or the degeneration of hair cells in the cochlea. Understanding the mechanisms regulating the generation of hair cells may therefore lead to better treatments for hearing disorders. To elucidate the transcriptional control mechanisms specifying the progenitor cells (i.e. prosensory cells) that generate the hair cells and support cells critical for hearing function, we compared chromatin accessibility using ATAC-seq in sorted prosensory cells (Sox2-EGFP+) and surrounding cells (Sox2-EGFP−) from E12, E14.5 and E16 cochlear ducts. In Sox2-EGFP+, we find greater accessibility in and near genes restricted in expression to the prosensory region of the cochlear duct including Sox2, Isl1, Eya1 and Pou4f3. Furthermore, we find significant enrichment for the consensus binding sites of Sox2, Six1 and Gata3—transcription factors required for prosensory development—in the open chromatin regions. Over 2,200 regions displayed differential accessibility with developmental time in Sox2-EGFP+ cells, with most changes in the E12-14.5 window. Open chromatin regions detected in Sox2-EGFP+ cells map to over 48,000 orthologous regions in the human genome that include regions in genes linked to deafness. Our results reveal a dynamic landscape of open chromatin in prosensory cells with potential implications for cochlear development and disease.
Collapse
|
41
|
Clark BS, Stein-O'Brien GL, Shiau F, Cannon GH, Davis-Marcisak E, Sherman T, Santiago CP, Hoang TV, Rajaii F, James-Esposito RE, Gronostajski RM, Fertig EJ, Goff LA, Blackshaw S. Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification. Neuron 2019; 102:1111-1126.e5. [PMID: 31128945 PMCID: PMC6768831 DOI: 10.1016/j.neuron.2019.04.010] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/07/2019] [Accepted: 04/03/2019] [Indexed: 12/26/2022]
Abstract
Precise temporal control of gene expression in neuronal progenitors is necessary for correct regulation of neurogenesis and cell fate specification. However, the cellular heterogeneity of the developing CNS has posed a major obstacle to identifying the gene regulatory networks that control these processes. To address this, we used single-cell RNA sequencing to profile ten developmental stages encompassing the full course of retinal neurogenesis. This allowed us to comprehensively characterize changes in gene expression that occur during initiation of neurogenesis, changes in developmental competence, and specification and differentiation of each major retinal cell type. We identify the NFI transcription factors (Nfia, Nfib, and Nfix) as selectively expressed in late retinal progenitor cells and show that they control bipolar interneuron and Müller glia cell fate specification and promote proliferative quiescence.
Collapse
Affiliation(s)
- Brian S Clark
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Genevieve L Stein-O'Brien
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Data Intensive Engineering and Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fion Shiau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gabrielle H Cannon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily Davis-Marcisak
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas Sherman
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Clayton P Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fatemeh Rajaii
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rebecca E James-Esposito
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard M Gronostajski
- Department of Biochemistry, Genetics, Genomics and Bioinformatics Graduate Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Elana J Fertig
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Data Intensive Engineering and Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Computational Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Mathematical Institute for Data Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Loyal A Goff
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
42
|
Abstract
The corpus callosum is the largest of the 3 telencephalic commissures in eutherian (placental) mammals. Although the anterior commissure, and the hippocampal commissure before being pushed dorsally by the expanding frontal lobes, cross through the lamina reuniens (upper part of the lamina terminalis), the callosal fibers need a transient interhemispheric cellular bridge to cross. This review describes the molecular pathways that initiate the specification of the cells comprising this bridge, the specification of the callosal neurons, and the repulsive and attractive guidance molecules that convey the callosal axons toward, across, and away from the midline to connect with their targets.
Collapse
|
43
|
Fraser J, Essebier A, Brown AS, Davila RA, Sengar AS, Tu Y, Ensbey KS, Day BW, Scott MP, Gronostajski RM, Wainwright BJ, Boden M, Harvey TJ, Piper M. Granule neuron precursor cell proliferation is regulated by NFIX and intersectin 1 during postnatal cerebellar development. Brain Struct Funct 2018; 224:811-827. [PMID: 30511336 DOI: 10.1007/s00429-018-1801-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/24/2018] [Indexed: 01/06/2023]
Abstract
Cerebellar granule neurons are the most numerous neuronal subtype in the central nervous system. Within the developing cerebellum, these neurons are derived from a population of progenitor cells found within the external granule layer of the cerebellar anlage, namely the cerebellar granule neuron precursors (GNPs). The timely proliferation and differentiation of these precursor cells, which, in rodents occurs predominantly in the postnatal period, is tightly controlled to ensure the normal morphogenesis of the cerebellum. Despite this, our understanding of the factors mediating how GNP differentiation is controlled remains limited. Here, we reveal that the transcription factor nuclear factor I X (NFIX) plays an important role in this process. Mice lacking Nfix exhibit reduced numbers of GNPs during early postnatal development, but elevated numbers of these cells at postnatal day 15. Moreover, Nfix-/- GNPs exhibit increased proliferation when cultured in vitro, suggestive of a role for NFIX in promoting GNP differentiation. At a mechanistic level, profiling analyses using both ChIP-seq and RNA-seq identified the actin-associated factor intersectin 1 as a downstream target of NFIX during cerebellar development. In support of this, mice lacking intersectin 1 also displayed delayed GNP differentiation. Collectively, these findings highlight a key role for NFIX and intersectin 1 in the regulation of cerebellar development.
Collapse
Affiliation(s)
- James Fraser
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Alexandra Essebier
- The School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Alexander S Brown
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Raul Ayala Davila
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Ameet S Sengar
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, M5G 0A8, Canada
| | - YuShan Tu
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, M5G 0A8, Canada
| | - Kathleen S Ensbey
- Cell and Molecular Biology Department, Translational Brain Cancer Research Laboratory, QIMR Berghofer MRI, Brisbane, QLD, 4006, Australia
| | - Bryan W Day
- Cell and Molecular Biology Department, Translational Brain Cancer Research Laboratory, QIMR Berghofer MRI, Brisbane, QLD, 4006, Australia
| | - Matthew P Scott
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Brandon J Wainwright
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Mikael Boden
- The School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Tracey J Harvey
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia.
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia. .,Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
44
|
Schanze I, Bunt J, Lim JWC, Schanze D, Dean RJ, Alders M, Blanchet P, Attié-Bitach T, Berland S, Boogert S, Boppudi S, Bridges CJ, Cho MT, Dobyns WB, Donnai D, Douglas J, Earl DL, Edwards TJ, Faivre L, Fregeau B, Genevieve D, Gérard M, Gatinois V, Holder-Espinasse M, Huth SF, Izumi K, Kerr B, Lacaze E, Lakeman P, Mahida S, Mirzaa GM, Morgan SM, Nowak C, Peeters H, Petit F, Pilz DT, Puechberty J, Reinstein E, Rivière JB, Santani AB, Schneider A, Sherr EH, Smith-Hicks C, Wieland I, Zackai E, Zhao X, Gronostajski RM, Zenker M, Richards LJ. NFIB Haploinsufficiency Is Associated with Intellectual Disability and Macrocephaly. Am J Hum Genet 2018; 103:752-768. [PMID: 30388402 PMCID: PMC6218805 DOI: 10.1016/j.ajhg.2018.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.
Collapse
Affiliation(s)
- Ina Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Jens Bunt
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Jonathan W C Lim
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Ryan J Dean
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Marielle Alders
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Patricia Blanchet
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Tania Attié-Bitach
- INSERM U1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, Paris 75015, France
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen 5021, Norway
| | - Steven Boogert
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Sangamitra Boppudi
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Caitlin J Bridges
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | | | - William B Dobyns
- Department of Pediatrics (Genetics), University of Washington and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Dian Donnai
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust; Division of Evolution and Genomic Sciences School of Biological Sciences, and University of Manchester, Manchester M13 9WL, UK
| | - Jessica Douglas
- Boston Children's Hospital - The Feingold Center, Waltham, MA 02115, USA
| | - Dawn L Earl
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Timothy J Edwards
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; The Faculty of Medicine Brisbane, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Laurence Faivre
- UMR1231, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon 21079, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire Dijon, Dijon 21079, France
| | - Brieana Fregeau
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David Genevieve
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Marion Gérard
- Service de Génétique, CHU de Caen - Hôpital Clémenceau, Caen Cedex 14000, France
| | - Vincent Gatinois
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Muriel Holder-Espinasse
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHU Lille, Lille 59000, France; Department of Clinical Genetics, Guy's Hospital, London SE1 9RT, UK
| | - Samuel F Huth
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kosuke Izumi
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bronwyn Kerr
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust; Division of Evolution and Genomic Sciences School of Biological Sciences, and University of Manchester, Manchester M13 9WL, UK
| | - Elodie Lacaze
- Department of genetics, Le Havre Hospital, 76600 Le Havre, France
| | - Phillis Lakeman
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Sonal Mahida
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Ghayda M Mirzaa
- Department of Pediatrics (Genetics), University of Washington and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Sian M Morgan
- All Wales Genetics Laboratory, Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - Catherine Nowak
- Boston Children's Hospital - The Feingold Center, Waltham, MA 02115, USA
| | - Hilde Peeters
- Center for Human Genetics, University Hospital Leuven, KU Leuven, Leuven 3000, Belgium
| | - Florence Petit
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHU Lille, Lille 59000, France
| | - Daniela T Pilz
- West of Scotland Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Jacques Puechberty
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Eyal Reinstein
- Medical Genetics Institute, Meir Medical Center, Kfar-Saba 4428164, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jean-Baptiste Rivière
- UMR1231, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon 21079, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire Dijon, Dijon 21079, France; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Avni B Santani
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anouck Schneider
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Ilse Wieland
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Elaine Zackai
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaonan Zhao
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany.
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The Faculty of Medicine Brisbane, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
45
|
Brun M, Jain S, Monckton EA, Godbout R. Nuclear Factor I Represses the Notch Effector HEY1 in Glioblastoma. Neoplasia 2018; 20:1023-1037. [PMID: 30195713 PMCID: PMC6138789 DOI: 10.1016/j.neo.2018.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 01/16/2023] Open
Abstract
Glioblastomas (GBMs) are highly aggressive brain tumors with a dismal prognosis. Nuclear factor I (NFI) is a family of transcription factors that controls glial cell differentiation in the developing central nervous system. NFIs have previously been shown to regulate the expression of astrocyte markers such as glial fibrillary acidic protein (GFAP) in both normal brain and GBM cells. We used chromatin immunoprecipitation (ChIP)–on-chip to identify additional NFI targets in GBM cells. Analysis of our ChIP data revealed ~400 putative NFI target genes including an effector of the Notch signaling pathway, HEY1, implicated in the maintenance of neural stem cells. All four NFIs (NFIA, NFIB, NFIC, and NFIX) bind to NFI recognition sites located within 1 kb upstream of the HEY1 transcription site. We further showed that NFI negatively regulates HEY1 expression, with knockdown of all four NFIs in GBM cells resulting in increased HEY1 RNA levels. HEY1 knockdown in GBM cells decreased cell proliferation, increased cell migration, and decreased neurosphere formation. Finally, we found a general correlation between elevated levels of HEY1 and expression of the brain neural stem/progenitor cell marker B-FABP in GBM cell lines. Knockdown of HEY1 resulted in an increase in the RNA levels of the GFAP astrocyte differentiation marker. Overall, our data indicate that HEY1 is negatively regulated by NFI family members and is associated with increased proliferation, decreased migration, and increased stem cell properties in GBM cells.
Collapse
Affiliation(s)
- Miranda Brun
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada, T6G 1Z2
| | - Saket Jain
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada, T6G 1Z2
| | - Elizabeth A Monckton
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada, T6G 1Z2
| | - Roseline Godbout
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada, T6G 1Z2.
| |
Collapse
|
46
|
Sanosaka T, Imamura T, Hamazaki N, Chai M, Igarashi K, Ideta-Otsuka M, Miura F, Ito T, Fujii N, Ikeo K, Nakashima K. DNA Methylome Analysis Identifies Transcription Factor-Based Epigenomic Signatures of Multilineage Competence in Neural Stem/Progenitor Cells. Cell Rep 2018; 20:2992-3003. [PMID: 28930691 DOI: 10.1016/j.celrep.2017.08.086] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/10/2017] [Accepted: 08/25/2017] [Indexed: 12/17/2022] Open
Abstract
Regulation of the epigenome during in vivo specification of brain stem cells is still poorly understood. Here, we report DNA methylome analyses of directly sampled cortical neural stem and progenitor cells (NS/PCs) at different development stages, as well as those of terminally differentiated cortical neurons, astrocytes, and oligodendrocytes. We found that sequential specification of cortical NS/PCs is regulated by two successive waves of demethylation at early and late development stages, which are responsible for the establishment of neuron- and glia-specific low-methylated regions (LMRs), respectively. The regulatory role of demethylation of the gliogenic genes was substantiated by the enrichment of nuclear factor I (NFI)-binding sites. We provide evidence that de novo DNA methylation of neuron-specific LMRs establishes glia-specific epigenotypes, essentially by silencing neuronal genes. Our data highlight the in vivo implications of DNA methylation dynamics in shaping epigenomic features that confer the differentiation potential of NS/PCs sequentially during development.
Collapse
Affiliation(s)
- Tsukasa Sanosaka
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Takuya Imamura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Nobuhiko Hamazaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - MuhChyi Chai
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Katsuhide Igarashi
- Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-5801, Japan
| | - Maky Ideta-Otsuka
- Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-5801, Japan
| | - Fumihito Miura
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Nobuyuki Fujii
- Center for Information Biology, National Institute of Genetics, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Kazuho Ikeo
- Center for Information Biology, National Institute of Genetics, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
47
|
Ding B, Dobner PR, Mullikin-Kilpatrick D, Wang W, Zhu H, Chow CW, Cave JW, Gronostajski RM, Kilpatrick DL. BDNF activates an NFI-dependent neurodevelopmental timing program by sequestering NFATc4. Mol Biol Cell 2018; 29:975-987. [PMID: 29467254 PMCID: PMC5896935 DOI: 10.1091/mbc.e16-08-0595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
We show that BDNF regulates the timing of neurodevelopment via a novel mechanism of extranuclear sequestration of NFATc4 in Golgi. This leads to accelerated derepression of an NFI temporal occupancy gene program in cerebellar granule cells that includes Bdnf itself, revealing an autoregulatory loop within the program driven by BDNF and NFATc4.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605-2324
| | - Paul R. Dobner
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605-2324
| | - Debra Mullikin-Kilpatrick
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605-2324
| | - Wei Wang
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605-2324
| | - Hong Zhu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461
| | - Chi-Wing Chow
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461
| | - John W. Cave
- Burke Medical Research Institute, White Plains, NY 10605
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065
| | - Richard M. Gronostajski
- Department of Biochemistry, Program in Neuroscience and Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203
| | - Daniel L. Kilpatrick
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605-2324
| |
Collapse
|
48
|
Adnani L, Han S, Li S, Mattar P, Schuurmans C. Mechanisms of Cortical Differentiation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:223-320. [DOI: 10.1016/bs.ircmb.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
19p13 microduplications encompassing NFIX are responsible for intellectual disability, short stature and small head circumference. Eur J Hum Genet 2017; 26:85-93. [PMID: 29184170 DOI: 10.1038/s41431-017-0037-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 01/17/2023] Open
Abstract
Syndromes caused by copy number variations are described as reciprocal when they result from deletions or duplications of the same chromosomal region. When comparing the phenotypes of these syndromes, various clinical features could be described as reversed, probably due to the opposite effect of these imbalances on the expression of genes located at this locus. The NFIX gene codes for a transcription factor implicated in neurogenesis and chondrocyte differentiation. Microdeletions and loss of function variants of NFIX are responsible for Sotos syndrome-2 (also described as Malan syndrome), a syndromic form of intellectual disability associated with overgrowth and macrocephaly. Here, we report a cohort of nine patients harboring microduplications encompassing NFIX. These patients exhibit variable intellectual disability, short stature and small head circumference, which can be described as a reversed Sotos syndrome-2 phenotype. Strikingly, such a reversed phenotype has already been described in patients harboring microduplications encompassing NSD1, the gene whose deletions and loss-of-function variants are responsible for classical Sotos syndrome. Even though the type/contre-type concept has been criticized, this model seems to give a plausible explanation for the pathogenicity of 19p13 microduplications, and the common phenotype observed in our cohort.
Collapse
|
50
|
Bunt J, Osinski JM, Lim JW, Vidovic D, Ye Y, Zalucki O, O'Connor TR, Harris L, Gronostajski RM, Richards LJ, Piper M. Combined allelic dosage of Nfia and Nfib regulates cortical development. Brain Neurosci Adv 2017; 1:2398212817739433. [PMID: 32166136 PMCID: PMC7058261 DOI: 10.1177/2398212817739433] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/01/2017] [Indexed: 12/02/2022] Open
Abstract
Background: Nuclear factor I family members nuclear factor I A and nuclear factor I B play important roles during cerebral cortical development. Nuclear factor I A and nuclear factor I B regulate similar biological processes, as their expression patterns, regulation of target genes and individual knockout phenotypes overlap. We hypothesised that the combined allelic loss of Nfia and Nfib would culminate in more severe defects in the cerebral cortex than loss of a single member. Methods: We combined immunofluorescence, co-immunoprecipitation, gene expression analysis and immunohistochemistry on knockout mouse models to investigate whether nuclear factor I A and nuclear factor I B function similarly and whether increasing allelic loss of Nfia and Nfib caused a more severe phenotype. Results: We determined that the biological functions of nuclear factor I A and nuclear factor I B overlap during early cortical development. These proteins are co-expressed and can form heterodimers in vivo. Differentially regulated genes that are shared between Nfia and Nfib knockout mice are highly enriched for nuclear factor I binding sites in their promoters and are associated with neurodevelopment. We found that compound heterozygous deletion of both genes resulted in a cortical phenotype similar to that of single homozygous Nfia or Nfib knockout embryos. This was characterised by retention of the interhemispheric fissure, dysgenesis of the corpus callosum and a malformed dentate gyrus. Double homozygous knockout of Nfia and Nfib resulted in a more severe phenotype, with increased ventricular enlargement and decreased numbers of differentiated glia and neurons. Conclusion: In the developing cerebral cortex, nuclear factor I A and nuclear factor I B share similar biological functions and function additively, as the combined allelic loss of these genes directly correlates with the severity of the developmental brain phenotype.
Collapse
Affiliation(s)
- Jens Bunt
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jason M Osinski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Jonathan Wc Lim
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Diana Vidovic
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Yunan Ye
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Oressia Zalucki
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy R O'Connor
- School of Chemical and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lachlan Harris
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Linda J Richards
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Piper
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|