1
|
Nabi SU, Rehman MU, Arafah A, Taifa S, Khan IS, Khan A, Rashid S, Jan F, Wani HA, Ahmad SF. Treatment of Autism Spectrum Disorders by Mitochondrial-targeted Drug: Future of Neurological Diseases Therapeutics. Curr Neuropharmacol 2023; 21:1042-1064. [PMID: 36411568 PMCID: PMC10286588 DOI: 10.2174/1570159x21666221121095618] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Autism is a neurodevelopmental disorder with a complex etiology that might involve environmental and genetic variables. Recently, some epidemiological studies conducted in various parts of the world have estimated a significant increase in the prevalence of autism, with 1 in every 59 children having some degree of autism. Since autism has been associated with other clinical abnormalities, there is every possibility that a sub-cellular component may be involved in the progression of autism. The organelle remains a focus based on mitochondria's functionality and metabolic role in cells. Furthermore, the mitochondrial genome is inherited maternally and has its DNA and organelle that remain actively involved during embryonic development; these characteristics have linked mitochondrial dysfunction to autism. Although rapid stride has been made in autism research, there are limited studies that have made particular emphasis on mitochondrial dysfunction and autism. Accumulating evidence from studies conducted at cellular and sub-cellular levels has indicated that mitochondrial dysfunction's role in autism is more than expected. The present review has attempted to describe the risk factors of autism, the role of mitochondria in the progression of the disease, oxidative damage as a trigger point to initiate mitochondrial damage, genetic determinants of the disease, possible pathogenic pathways and therapeutic regimen in vogue and the developmental stage. Furthermore, in the present review, an attempt has been made to include the novel therapeutic regimens under investigation at different clinical trial stages and their potential possibility to emerge as promising drugs against ASD.
Collapse
Affiliation(s)
- Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar J&K, 190006, India
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Taifa
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar J&K, 190006, India
| | - Iqra Shafi Khan
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar J&K, 190006, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Fatimah Jan
- Department of Pharmaceutical Sciences, CT University, Ludhiana, Ferozepur Road, Punjab, 142024, India
| | - Hilal Ahmad Wani
- Department of Biochemistry, Government Degree College Sumbal, Bandipora, J&K, India
| | - Sheikh Fayaz Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Genetic determinants of autism spectrum disorders - a review. CURRENT PROBLEMS OF PSYCHIATRY 2021. [DOI: 10.2478/cpp-2021-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Introduction: It is estimated that various types of abnormalities from the autistic spectrum disorder occur in up to 2% of the population. These include difficulties in maintaining relationships, communication, and repetitive behaviours. Literature describes them quite well, in contrast to the causes of these disorders, which include both environmental factors and a very long list of genetic aberrations.
Materials and methods: The papers available on the PubMed platform and other sources were reviewed to describe the most important genetic factors responsible for the development of autism spectrum disorders.
Results: There are many genes and their mutations associated with the prevalence of autism spectrum disorders in patients. One of the main factors is the SHANK gene family, with the type and degree of abnormality in patients depending on the damage to particular genes: SHANK1-SHANK3. Research also shows the potential of targeted symptom-relieving therapies in patients with SHANK3 mutations. A correlation with the occurrence of autism has also been demonstrated for genes responsible for calcium signaling - especially the group of IP3R calcium channels. Their calcium transmission is abnormal in the majority of patients with autism spectrum disorders. A number of mutations in the 7q region were discovered - including the AUTS2, GNAI1, RELN, KMT2E, BRAF genes - the occurrence of which is associated with the presence of symptoms of autism. Autism spectrum disorders occur in about 10% of patients suffering from monogenic syndromes such as fragile X chromosome syndrome, Timothy syndrome, tuberous sclerosis, Rett syndrome or hamartomatic tumor syndrome.
Conclusions: Research shows that many mutations can contribute to the development of autism spectrum disorders. Further studies are necessary to discover their therapeutic and diagnostic potential for autism.
Collapse
|
3
|
Proulx É, Power SK, Oliver DK, Sargin D, McLaurin J, Lambe EK. Apamin Improves Prefrontal Nicotinic Impairment in Mouse Model of Alzheimer's Disease. Cereb Cortex 2021; 30:563-574. [PMID: 31188425 DOI: 10.1093/cercor/bhz107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022] Open
Abstract
Disruption of attention is an early and disabling symptom of Alzheimer's disease (AD). The underlying cellular mechanisms are poorly understood and treatment options for patients are limited. These early attention deficits are evident in the TgCRND8 mouse, a well-established murine model of AD that recapitulates several features of the disease. Here, we report severe impairment of the nicotinic receptor-mediated excitation of prefrontal attentional circuitry in TgCRND8 mice relative to wild-type littermate controls. We demonstrate that this impairment can be remedied by apamin, a bee venom neurotoxin peptide that acts as a selective antagonist to the SK family of calcium-sensitive potassium channels. We probe this seeming upregulation of calcium-sensitive inhibition and find that the attenuated nicotinic firing rates in TgCRND8 attention circuits are mediated neither by greater cellular calcium signals nor by elevated SK channel expression. Instead, we find that TgCRND8 mice show enhanced functional coupling of nicotinic calcium signals to inhibition. This SK-mediated inhibition exerts a powerful negative feedback on nicotinic excitation, dampening attention-relevant signaling in the TgCRND8 brain. These mechanistic findings identify a new cellular target involved in the modulation of attention and a novel therapeutic target for early attention deficits in AD.
Collapse
Affiliation(s)
- É Proulx
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - S K Power
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - D K Oliver
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - D Sargin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - J McLaurin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Biological Sciences and Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada M4N 3M5
| | - E K Lambe
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada M5G 1E2.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada M5T 1R8
| |
Collapse
|
4
|
Complicity of α-synuclein oligomer and calcium dyshomeostasis in selective neuronal vulnerability in Lewy body disease. Arch Pharm Res 2021; 44:564-573. [PMID: 34114191 PMCID: PMC8254713 DOI: 10.1007/s12272-021-01334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/27/2021] [Indexed: 11/18/2022]
Abstract
α-Synuclein oligomers and Ca2+ dyshomeostasis have been thoroughly investigated with respect to the pathogenesis of Lewy body disease (LBD). In LBD, α-synuclein oligomers exhibit a neuron-specific cytoplasmic distribution. Highly active neurons and neurons with a high Ca2+ burden are prone to damage in LBD. The neuronal vulnerability may be determined by transneuronal axonal transmission of the pathological processes; however, this hypothesis seems inconsistent with pathological findings that neurons anatomically connected to LBD-vulnerable neurons, such as neurons in the ventral tegmentum, are spared in LBD. This review focuses on and discusses the crucial roles played by α-synuclein oligomers and Ca2+ dyshomeostasis in early intraneural pathophysiology in LBD-vulnerable neurons. A challenging view is proposed on the synergy between retrograde transport of α-synuclein and vesicular Ca release, whereby neuronal vulnerability is propagated backward along repeatedly activated signaling pathway.
Collapse
|
5
|
McDaid J, Briggs CA, Barrington NM, Peterson DA, Kozlowski DA, Stutzmann GE. Sustained Hippocampal Synaptic Pathophysiology Following Single and Repeated Closed-Head Concussive Impacts. Front Cell Neurosci 2021; 15:652721. [PMID: 33867941 PMCID: PMC8044326 DOI: 10.3389/fncel.2021.652721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022] Open
Abstract
Traumatic brain injury (TBI), and related diseases such as chronic traumatic encephalopathy (CTE) and Alzheimer's (AD), are of increasing concern in part due to enhanced awareness of their long-term neurological effects on memory and behavior. Repeated concussions, vs. single concussions, have been shown to result in worsened and sustained symptoms including impaired cognition and histopathology. To assess and compare the persistent effects of single or repeated concussive impacts on mediators of memory encoding such as synaptic transmission, plasticity, and cellular Ca2+ signaling, a closed-head controlled cortical impact (CCI) approach was used which closely replicates the mode of injury in clinical cases. Adult male rats received a sham procedure, a single impact, or three successive impacts at 48-hour intervals. After 30 days, hippocampal slices were prepared for electrophysiological recordings and 2-photon Ca2+ imaging, or fixed and immunostained for pathogenic phospho-tau species. In both concussion groups, hippocampal circuits showed hyper-excitable synaptic responsivity upon Schaffer collateral stimulation compared to sham animals, indicating sustained defects in hippocampal circuitry. This was not accompanied by sustained LTP deficits, but resting Ca2+ levels and voltage-gated Ca2+ signals were elevated in both concussion groups, while ryanodine receptor-evoked Ca2+ responses decreased with repeat concussions. Furthermore, pathogenic phospho-tau staining was progressively elevated in both concussion groups, with spreading beyond the hemisphere of injury, consistent with CTE. Thus, single and repeated concussions lead to a persistent upregulation of excitatory hippocampal synapses, possibly through changes in postsynaptic Ca2+ signaling/regulation, which may contribute to histopathology and detrimental long-term cognitive symptoms.
Collapse
Affiliation(s)
- John McDaid
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Clark A. Briggs
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Nikki M. Barrington
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Daniel A. Peterson
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Stem Cell and Regenerative Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Dorothy A. Kozlowski
- Department of Biological Sciences and Neuroscience Program, DePaul University, Chicago, IL, United States
| | - Grace E. Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Stem Cell and Regenerative Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
6
|
Liao X, Li Y. Genetic associations between voltage-gated calcium channels and autism spectrum disorder: a systematic review. Mol Brain 2020; 13:96. [PMID: 32571372 PMCID: PMC7310353 DOI: 10.1186/s13041-020-00634-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES The present review systematically summarized existing publications regarding the genetic associations between voltage-gated calcium channels (VGCCs) and autism spectrum disorder (ASD). METHODS A comprehensive literature search was conducted to gather pertinent studies in three online databases. Two authors independently screened the included records based on the selection criteria. Discrepancies in each step were settled through discussions. RESULTS From 1163 resulting searched articles, 28 were identified for inclusion. The most prominent among the VGCCs variants found in ASD were those falling within loci encoding the α subunits, CACNA1A, CACNA1B, CACNA1C, CACNA1D, CACNA1E, CACNA1F, CACNA1G, CACNA1H, and CACNA1I as well as those of their accessory subunits CACNB2, CACNA2D3, and CACNA2D4. Two signaling pathways, the IP3-Ca2+ pathway and the MAPK pathway, were identified as scaffolds that united genetic lesions into a consensus etiology of ASD. CONCLUSIONS Evidence generated from this review supports the role of VGCC genetic variants in the pathogenesis of ASD, making it a promising therapeutic target. Future research should focus on the specific mechanism that connects VGCC genetic variants to the complex ASD phenotype.
Collapse
Affiliation(s)
- Xiaoli Liao
- Xiangya Nursing School, Central South University, Changsha, Hunan, China.,Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yamin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
A GLP-1/GIP/Gcg receptor triagonist improves memory behavior, as well as synaptic transmission, neuronal excitability and Ca2+ homeostasis in 3xTg-AD mice. Neuropharmacology 2020; 170:108042. [PMID: 32147454 DOI: 10.1016/j.neuropharm.2020.108042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/13/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022]
|
8
|
Tapias V. Editorial: Mitochondrial Dysfunction and Neurodegeneration. Front Neurosci 2019; 13:1372. [PMID: 31920522 PMCID: PMC6930234 DOI: 10.3389/fnins.2019.01372] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/04/2019] [Indexed: 01/17/2023] Open
Affiliation(s)
- Victor Tapias
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
9
|
Yamamoto K, Izumi Y, Arifuku M, Kume T, Sawada H. α-Synuclein oligomers mediate the aberrant form of spike-induced calcium release from IP 3 receptor. Sci Rep 2019; 9:15977. [PMID: 31685859 PMCID: PMC6828767 DOI: 10.1038/s41598-019-52135-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/12/2019] [Indexed: 01/10/2023] Open
Abstract
Emerging evidence implicates α-synuclein oligomers as potential culprits in the pathogenesis of Lewy body disease (LBD). Soluble oligomeric α-synuclein accumulation in cytoplasm is believed to modify neuronal activities and intraneural Ca2+ dynamics, which augment the metabolic burden in central neurons vulnerable to LBD, although this hypothesis remains to be fully tested. We evaluated how intracellular α-synuclein oligomers affect the neuronal excitabilities and Ca2+ dynamics of pyramidal neurons in neocortical slices from mice. Intracellular application of α-synuclein containing stable higher-order oligomers (αSNo) significantly reduced spike frequency during current injection, elongated the duration of spike afterhyperpolarization (AHP), and enlarged AHP current charge in comparison with that of α-synuclein without higher-order oligomers. This αSNo-mediated alteration was triggered by spike-induced Ca2+ release from inositol trisphosphate receptors (IP3R) functionally coupled with L-type Ca2+ channels and SK-type K+ channels. Further electrophysiological and immunochemical observations revealed that α-synuclein oligomers greater than 100 kDa were directly associated with calcium-binding protein 1, which is responsible for regulating IP3R gating. They also block Ca2+-dependent inactivation of IP3R, and trigger Ca2+-induced Ca2+ release from IP3R during multiple spikes. This aberrant machinery may result in intraneural Ca2+ dyshomeostasis and may be the molecular basis for the vulnerability of neurons in LBD brains.
Collapse
Affiliation(s)
- Kenji Yamamoto
- Department of Neurology and Clinical Research Center, National Hospital Organization Utano National Hospital, Kyoto, Japan.
| | - Yasuhiko Izumi
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan.,Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Monami Arifuku
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Toshiaki Kume
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.,Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hideyuki Sawada
- Department of Neurology and Clinical Research Center, National Hospital Organization Utano National Hospital, Kyoto, Japan
| |
Collapse
|
10
|
Roles for the Endoplasmic Reticulum in Regulation of Neuronal Calcium Homeostasis. Cells 2019; 8:cells8101232. [PMID: 31658749 PMCID: PMC6829861 DOI: 10.3390/cells8101232] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
By influencing Ca2+ homeostasis in spatially and architecturally distinct neuronal compartments, the endoplasmic reticulum (ER) illustrates the notion that form and function are intimately related. The contribution of ER to neuronal Ca2+ homeostasis is attributed to the organelle being the largest reservoir of intracellular Ca2+ and having a high density of Ca2+ channels and transporters. As such, ER Ca2+ has incontrovertible roles in the regulation of axodendritic growth and morphology, synaptic vesicle release, and neural activity dependent gene expression, synaptic plasticity, and mitochondrial bioenergetics. Not surprisingly, many neurological diseases arise from ER Ca2+ dyshomeostasis, either directly due to alterations in ER resident proteins, or indirectly via processes that are coupled to the regulators of ER Ca2+ dynamics. In this review, we describe the mechanisms involved in the establishment of ER Ca2+ homeostasis in neurons. We elaborate upon how changes in the spatiotemporal dynamics of Ca2+ exchange between the ER and other organelles sculpt neuronal function and provide examples that demonstrate the involvement of ER Ca2+ dyshomeostasis in a range of neurological and neurodegenerative diseases.
Collapse
|
11
|
Milanick WJ, Polo-Parada L, Dantzler HA, Kline DD. Activation of alpha-1 adrenergic receptors increases cytosolic calcium in neurones of the paraventricular nucleus of the hypothalamus. J Neuroendocrinol 2019; 31:e12791. [PMID: 31494990 PMCID: PMC7003713 DOI: 10.1111/jne.12791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
Abstract
Norepinephrine (NE) activates adrenergic receptors (ARs) in the hypothalamic paraventricular nucleus (PVN) to increase excitatory currents, depolarise neurones and, ultimately, augment neuro-sympathetic and endocrine output. Such cellular events are known to potentiate intracellular calcium ([Ca2+ ]i ); however, the role of NE with respect to modulating [Ca2+ ]i in PVN neurones and the mechanisms by which this may occur remain unclear. We evaluated the effects of NE on [Ca2+ ]i of acutely isolated PVN neurones using Fura-2 imaging. NE induced a slow increase in [Ca2+ ]i compared to artificial cerebrospinal fluid vehicle. NE-induced Ca2+ elevations were mimicked by the α1 -AR agonist phenylephrine (PE) but not by α2 -AR agonist clonidine (CLON). NE and PE but not CLON also increased the overall number of neurones that increase [Ca2+ ]i (ie, responders). Elimination of extracellular Ca2+ or intracellular endoplasmic reticulum Ca2+ stores abolished the increase in [Ca2+ ]i and reduced responders. Blockade of voltage-dependent Ca2+ channels abolished the α1 -AR induced increase in [Ca2+ ]i and number of responders, as did inhibition of phospholipase C inhibitor, protein kinase C and inositol triphosphate receptors. Spontaneous phasic Ca2+ events, however, were not altered by NE, PE or CLON. Repeated K+ -induced membrane depolarisation produced repetitive [Ca2+ ]i elevations. NE and PE increased baseline Ca2+ , whereas NE decreased the peak amplitude. CLON also decreased peak amplitude but did not affect baseline [Ca2+ ]i . Taken together, these data suggest receptor-specific influence of α1 and α2 receptors on the various modes of calcium entry in PVN neurones. They further suggest Ca2+ increase via α1 -ARs is co-dependent on extracellular Ca2+ influx and intracellular Ca2+ release, possibly via a phospholipase C inhibitor-mediated signalling cascade.
Collapse
Affiliation(s)
- William J. Milanick
- Department of Biomedical Sciences, University of Missouri, Columbia MO 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia MO 65211
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia MO 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia MO 65211
| | - Heather A. Dantzler
- Department of Biomedical Sciences, University of Missouri, Columbia MO 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia MO 65211
| | - David D. Kline
- Department of Biomedical Sciences, University of Missouri, Columbia MO 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia MO 65211
| |
Collapse
|
12
|
Padamsey Z, Foster WJ, Emptage NJ. Intracellular Ca 2+ Release and Synaptic Plasticity: A Tale of Many Stores. Neuroscientist 2019; 25:208-226. [PMID: 30014771 DOI: 10.1177/1073858418785334] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ca2+ is an essential trigger for most forms of synaptic plasticity. Ca2+ signaling occurs not only by Ca2+ entry via plasma membrane channels but also via Ca2+ signals generated by intracellular organelles. These organelles, by dynamically regulating the spatial and temporal extent of Ca2+ elevations within neurons, play a pivotal role in determining the downstream consequences of neural signaling on synaptic function. Here, we review the role of three major intracellular stores: the endoplasmic reticulum, mitochondria, and acidic Ca2+ stores, such as lysosomes, in neuronal Ca2+ signaling and plasticity. We provide a comprehensive account of how Ca2+ release from these stores regulates short- and long-term plasticity at the pre- and postsynaptic terminals of central synapses.
Collapse
Affiliation(s)
- Zahid Padamsey
- 1 Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, 15 George Square, Edinburgh, UK
| | - William J Foster
- 2 Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, UK
| | - Nigel J Emptage
- 2 Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, UK
| |
Collapse
|
13
|
Okubo Y, Mikami Y, Kanemaru K, Iino M. Role of Endoplasmic Reticulum-Mediated Ca 2+ Signaling in Neuronal Cell Death. Antioxid Redox Signal 2018; 29:1147-1157. [PMID: 29361832 DOI: 10.1089/ars.2018.7498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Properly controlled intracellular Ca2+ dynamics is crucial for regulation of neuronal function and survival in the central nervous system. The endoplasmic reticulum (ER), a major intracellular Ca2+ store, plays a critical role as a source and sink for neuronal Ca2+. Recent Advances: Accumulating evidence indicates that disrupted ER Ca2+ signaling is involved in neuronal cell death under various pathological conditions, providing novel insight into neurodegenerative disease mechanisms. CRITICAL ISSUES We summarize current knowledge concerning the relationship between abnormal ER Ca2+ dynamics and neuronal cell death. We also introduce recent technical advances for probing ER intraluminal Ca2+ dynamics with unprecedented spatiotemporal resolution. FUTURE DIRECTIONS Further studies on ER Ca2+ signaling are expected to provide progress for unmet medical needs in neurodegenerative disease. Antioxid. Redox Signal. 29, 1147-1157.
Collapse
Affiliation(s)
- Yohei Okubo
- 1 Department of Pharmacology, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| | - Yoshinori Mikami
- 2 Department of Physiology, School of Medicine, Faculty of Medicine, Toho University , Tokyo, Japan
| | - Kazunori Kanemaru
- 1 Department of Pharmacology, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan .,3 Department of Cellular and Molecular Pharmacology, Nihon University School of Medicine , Tokyo, Japan
| | - Masamitsu Iino
- 3 Department of Cellular and Molecular Pharmacology, Nihon University School of Medicine , Tokyo, Japan
| |
Collapse
|
14
|
Nguyen RL, Medvedeva YV, Ayyagari TE, Schmunk G, Gargus JJ. Intracellular calcium dysregulation in autism spectrum disorder: An analysis of converging organelle signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1718-1732. [PMID: 30992134 DOI: 10.1016/j.bbamcr.2018.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/18/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is a group of complex, neurological disorders that affect early cognitive, social, and verbal development. Our understanding of ASD has vastly improved with advances in genomic sequencing technology and genetic models that have identified >800 loci with variants that increase susceptibility to ASD. Although these findings have confirmed its high heritability, the underlying mechanisms by which these genes produce the ASD phenotypes have not been defined. Current efforts have begun to "functionalize" many of these variants and envisage how these susceptibility factors converge at key biochemical and biophysical pathways. In this review, we discuss recent work on intracellular calcium signaling in ASD, including our own work, which begins to suggest it as a compelling candidate mechanism in the pathophysiology of autism and a potential therapeutic target. We consider how known variants in the calcium signaling genomic architecture of ASD may exert their deleterious effects along pathways particularly involving organelle dysfunction including the endoplasmic reticulum (ER), a major calcium store, and the mitochondria, a major calcium ion buffer, and theorize how many of these pathways intersect.
Collapse
Affiliation(s)
- Rachel L Nguyen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA; UCI Center for Autism Research and Translation, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Yuliya V Medvedeva
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA; UCI Center for Autism Research and Translation, School of Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Tejasvi E Ayyagari
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA; UCI Center for Autism Research and Translation, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Galina Schmunk
- UCI Center for Autism Research and Translation, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - John Jay Gargus
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA; UCI Center for Autism Research and Translation, School of Medicine, University of California, Irvine, Irvine, CA, USA; Department of Pediatrics, Section of Human Genetics and Genomics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
15
|
Transcriptomic correlates of neuron electrophysiological diversity. PLoS Comput Biol 2017; 13:e1005814. [PMID: 29069078 PMCID: PMC5673240 DOI: 10.1371/journal.pcbi.1005814] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/06/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022] Open
Abstract
How neuronal diversity emerges from complex patterns of gene expression remains poorly understood. Here we present an approach to understand electrophysiological diversity through gene expression by integrating pooled- and single-cell transcriptomics with intracellular electrophysiology. Using neuroinformatics methods, we compiled a brain-wide dataset of 34 neuron types with paired gene expression and intrinsic electrophysiological features from publically accessible sources, the largest such collection to date. We identified 420 genes whose expression levels significantly correlated with variability in one or more of 11 physiological parameters. We next trained statistical models to infer cellular features from multivariate gene expression patterns. Such models were predictive of gene-electrophysiological relationships in an independent collection of 12 visual cortex cell types from the Allen Institute, suggesting that these correlations might reflect general principles relating expression patterns to phenotypic diversity across very different cell types. Many associations reported here have the potential to provide new insights into how neurons generate functional diversity, and correlations of ion channel genes like Gabrd and Scn1a (Nav1.1) with resting potential and spiking frequency are consistent with known causal mechanisms. Our work highlights the promise and inherent challenges in using cell type-specific transcriptomics to understand the mechanistic origins of neuronal diversity.
Collapse
|
16
|
Tinning PW, Franssen AJPM, Hridi SU, Bushell TJ, McConnell G. A 340/380 nm light-emitting diode illuminator for Fura-2 AM ratiometric Ca 2+ imaging of live cells with better than 5 nM precision. J Microsc 2017; 269:212-220. [PMID: 28837217 PMCID: PMC5836901 DOI: 10.1111/jmi.12616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 01/17/2023]
Abstract
We report the first demonstration of a fast wavelength‐switchable 340/380 nm light‐emitting diode (LED) illuminator for Fura‐2 ratiometric Ca2+ imaging of live cells. The LEDs closely match the excitation peaks of bound and free Fura‐2 and enables the precise detection of cytosolic Ca2+ concentrations, which is only limited by the Ca2+ response of Fura‐2. Using this illuminator, we have shown that Fura‐2 acetoxymethyl ester (AM) concentrations as low as 250 nM can be used to detect induced Ca2+ events in tsA‐201 cells and while utilising the 150 μs switching speeds available, it was possible to image spontaneous Ca2+ transients in hippocampal neurons at a rate of 24.39 Hz that were blunted or absent at typical 0.5 Hz acquisition rates. Overall, the sensitivity and acquisition speeds available using this LED illuminator significantly improves the temporal resolution that can be obtained in comparison to current systems and supports optical imaging of fast Ca2+ events using Fura‐2.
Collapse
Affiliation(s)
- P W Tinning
- Department of Physics, SUPA University of Strathclyde, Glasgow, U.K
| | - A J P M Franssen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - S U Hridi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - T J Bushell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - G McConnell
- Centre for Biophotonics, University of Strathclyde, Glasgow, U.K
| |
Collapse
|
17
|
Schmunk G, Nguyen RL, Ferguson DL, Kumar K, Parker I, Gargus JJ. High-throughput screen detects calcium signaling dysfunction in typical sporadic autism spectrum disorder. Sci Rep 2017; 7:40740. [PMID: 28145469 PMCID: PMC5286408 DOI: 10.1038/srep40740] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/09/2016] [Indexed: 11/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders without any defined uniting pathophysiology. Ca2+ signaling is emerging as a potential node in the genetic architecture of the disorder. We previously reported decreased inositol trisphosphate (IP3)-mediated Ca2+ release from the endoplasmic reticulum in several rare monogenic syndromes highly comorbid with autism – fragile X and tuberous sclerosis types 1 and 2 syndromes. We now extend those findings to a cohort of subjects with sporadic ASD without any known mutations. We developed and applied a high throughput Fluorometric Imaging Plate Reader (FLIPR) assay to monitor agonist-evoked Ca2+ signals in human primary skin fibroblasts. Our results indicate that IP3 -mediated Ca2+ release from the endoplasmic reticulum in response to activation of purinergic receptors is significantly depressed in subjects with sporadic as well as rare syndromic forms of ASD. We propose that deficits in IP3-mediated Ca2+ signaling represent a convergent hub function shared across the spectrum of autistic disorders – whether caused by rare highly penetrant mutations or sporadic forms – and holds promise as a biomarker for diagnosis and novel drug discovery.
Collapse
Affiliation(s)
- Galina Schmunk
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA.,Center for Autism Research and Translation, University of California, Irvine, California, USA
| | - Rachel L Nguyen
- Center for Autism Research and Translation, University of California, Irvine, California, USA
| | - David L Ferguson
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA.,Center for Autism Research and Translation, University of California, Irvine, California, USA
| | - Kenny Kumar
- Center for Autism Research and Translation, University of California, Irvine, California, USA
| | - Ian Parker
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA.,Center for Autism Research and Translation, University of California, Irvine, California, USA.,Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, California, USA
| | - J Jay Gargus
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA.,Center for Autism Research and Translation, University of California, Irvine, California, USA.,Division of Human Genetics &Genomics, Department of Pediatrics, School of Medicine, University of California, Irvine, California, USA
| |
Collapse
|
18
|
Berridge MJ. The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease. Physiol Rev 2016; 96:1261-96. [DOI: 10.1152/physrev.00006.2016] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many cellular functions are regulated by calcium (Ca2+) signals that are generated by different signaling pathways. One of these is the inositol 1,4,5-trisphosphate/calcium (InsP3/Ca2+) signaling pathway that operates through either primary or modulatory mechanisms. In its primary role, it generates the Ca2+ that acts directly to control processes such as metabolism, secretion, fertilization, proliferation, and smooth muscle contraction. Its modulatory role occurs in excitable cells where it modulates the primary Ca2+ signal generated by the entry of Ca2+ through voltage-operated channels that releases Ca2+ from ryanodine receptors (RYRs) on the internal stores. In carrying out this modulatory role, the InsP3/Ca2+ signaling pathway induces subtle changes in the generation and function of the voltage-dependent primary Ca2+ signal. Changes in the nature of both the primary and modulatory roles of InsP3/Ca2+ signaling are a contributory factor responsible for the onset of a large number human diseases.
Collapse
Affiliation(s)
- Michael J. Berridge
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| |
Collapse
|
19
|
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disorder that has no known cure, nor is there a clear mechanistic understanding of the disease process itself. Although amyloid plaques, neurofibrillary tangles, and cognitive decline are late-stage markers of the disease, it is unclear how they are initially generated, and if they represent a cause, effect, or end phase in the pathology process. Recent studies in AD models have identified marked dysregulations in calcium signaling and related downstream pathways, which occur long before the diagnostic histopathological or cognitive changes. Under normal conditions, intracellular calcium signals are coupled to effectors that maintain a healthy physiological state. Consequently, sustained up-regulation of calcium may have pathophysiological consequences. Indeed, upon reviewing the current body of literature, increased calcium levels are functionally linked to the major features and risk factors of AD: ApoE4 expression, presenilin and APP mutations, beta amyloid plaques, hyperphosphorylation of tau, apoptosis, and synaptic dysfunction. In turn, the histopathological features of AD, once formed, are capable of further increasing calcium levels, leading to a rapid feed-forward acceleration once the disease process has taken hold. The views proposed here consider that AD pathogenesis reflects long-term calcium dysregulations that ultimately serve an enabling role in the disease process. Therefore, “Calcinists” do not necessarily reject βAptist or Tauist doctrine, but rather believe that their genesis is associated with earlier calcium signaling dysregulations. NEUROSCIENTIST 13(5):546—559, 2007.
Collapse
Affiliation(s)
- Grace E Stutzmann
- Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, IL 60064, USA.
| |
Collapse
|
20
|
Abstract
Ca2+ ions subserve complex signaling roles in neurons, regulating functions ranging from gene transcription to modulation of membrane excitability. Ca2+ ions enter the cytosol from extracellular sources, such as entry through voltage-gated channels, and by liberation from intracellular endoplasmic reticulum (ER) stores through inositol triphosphate (IP3) receptors and/or ryanodine (RyR) receptors. Disruptions of intracellular Ca2+ signaling are proposed to underlie the pathophysiology of Alzheimer’s disease (AD), and recent studies examining AD-linked mutations in the presenilin genes demonstrate enhanced ER Ca2+ release in a variety of cell types and model systems. The development of transgenic AD mouse models provides a means to study the mechanisms and downstream effects of neuronal ER Ca2+-signaling alterations on AD pathogenesis and offers insight into potential novel therapeutic strategies. The author discusses recent findings in both the physiological functioning of the IP3-signaling pathway in neurons and the involvement of ERCa2+ disruptions in the pathogenesis of AD.
Collapse
Affiliation(s)
- Grace E Stutzmann
- Department of Neurobiology and Behavior, 1146 McGaugh Hall, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
21
|
Schmunk G, Boubion BJ, Smith IF, Parker I, Gargus JJ. Shared functional defect in IP₃R-mediated calcium signaling in diverse monogenic autism syndromes. Transl Psychiatry 2015; 5:e643. [PMID: 26393489 PMCID: PMC5068815 DOI: 10.1038/tp.2015.123] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 07/13/2015] [Accepted: 07/27/2015] [Indexed: 01/03/2023] Open
Abstract
Autism spectrum disorder (ASD) affects 2% of children, and is characterized by impaired social and communication skills together with repetitive, stereotypic behavior. The pathophysiology of ASD is complex due to genetic and environmental heterogeneity, complicating the development of therapies and making diagnosis challenging. Growing genetic evidence supports a role of disrupted Ca(2+) signaling in ASD. Here, we report that patient-derived fibroblasts from three monogenic models of ASD-fragile X and tuberous sclerosis TSC1 and TSC2 syndromes-display depressed Ca(2+) release through inositol trisphosphate receptors (IP3Rs). This was apparent in Ca(2+) signals evoked by G protein-coupled receptors and by photoreleased IP3 at the levels of both global and local elementary Ca(2+) events, suggesting fundamental defects in IP3R channel activity in ASD. Given the ubiquitous involvement of IP3R-mediated Ca(2+) signaling in neuronal excitability, synaptic plasticity, gene expression and neurodevelopment, we propose dysregulated IP3R signaling as a nexus where genes altered in ASD converge to exert their deleterious effect. These findings highlight potential pharmaceutical targets, and identify Ca(2+) screening in skin fibroblasts as a promising technique for early detection of individuals susceptible to ASD.
Collapse
Affiliation(s)
- G Schmunk
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA,Center for Autism Research and Translation, University of California, Irvine, CA, USA
| | - B J Boubion
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA, USA
| | - I F Smith
- Center for Autism Research and Translation, University of California, Irvine, CA, USA,Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA, USA
| | - I Parker
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA,Center for Autism Research and Translation, University of California, Irvine, CA, USA,Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA, USA
| | - J J Gargus
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA,Center for Autism Research and Translation, University of California, Irvine, CA, USA,Division of Human Genetics & Genomics, Department of Pediatrics, School of Medicine, University of California, Irvine, CA, USA,Department of Physiology and Biophysics, School of Medicine, University of California, 2056 Hewitt Hall, 843 Health Sciences Road, Irvine, CA 92697-3940, USA. E-mail:
| |
Collapse
|
22
|
Ross WN, Miyazaki K, Popovic MA, Zecevic D. Imaging with organic indicators and high-speed charge-coupled device cameras in neurons: some applications where these classic techniques have advantages. NEUROPHOTONICS 2015; 2:021005. [PMID: 26157996 PMCID: PMC4478887 DOI: 10.1117/1.nph.2.2.021005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/02/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
Dynamic calcium and voltage imaging is a major tool in modern cellular neuroscience. Since the beginning of their use over 40 years ago, there have been major improvements in indicators, microscopes, imaging systems, and computers. While cutting edge research has trended toward the use of genetically encoded calcium or voltage indicators, two-photon microscopes, and in vivo preparations, it is worth noting that some questions still may be best approached using more classical methodologies and preparations. In this review, we highlight a few examples in neurons where the combination of charge-coupled device (CCD) imaging and classical organic indicators has revealed information that has so far been more informative than results using the more modern systems. These experiments take advantage of the high frame rates, sensitivity, and spatial integration of the best CCD cameras. These cameras can respond to the faster kinetics of organic voltage and calcium indicators, which closely reflect the fast dynamics of the underlying cellular events.
Collapse
Affiliation(s)
- William N. Ross
- New York Medical College, Department of Physiology, Valhalla, New York 10595, United States
| | - Kenichi Miyazaki
- New York Medical College, Department of Physiology, Valhalla, New York 10595, United States
| | - Marko A. Popovic
- Yale University School of Medicine, Department of Cellular and Molecular Physiology, New Haven, Connecticut 06510, United States
| | - Dejan Zecevic
- Yale University School of Medicine, Department of Cellular and Molecular Physiology, New Haven, Connecticut 06510, United States
| |
Collapse
|
23
|
Early stress prevents the potentiation of muscarinic excitation by calcium release in adult prefrontal cortex. Biol Psychiatry 2014; 76:315-23. [PMID: 24315552 PMCID: PMC4640900 DOI: 10.1016/j.biopsych.2013.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/02/2013] [Accepted: 10/21/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND The experience of early stress contributes to the etiology of several psychiatric disorders and can lead to lasting deficits in working memory and attention. These executive functions require activation of the prefrontal cortex (PFC) by muscarinic M1 acetylcholine (ACh) receptors. Such Gαq-protein coupled receptors trigger the release of calcium (Ca(2+)) from internal stores and elicit prolonged neuronal excitation. METHODS In brain slices of rat PFC, we employed multiphoton imaging simultaneously with whole-cell electrophysiological recordings to examine potential interactions between ACh-induced Ca(2+) release and excitatory currents in adulthood, across postnatal development, and following the early stress of repeated maternal separation, a rodent model for depression. We also investigated developmental changes in related genes in these groups. RESULTS Acetylcholine-induced Ca(2+) release potentiates ACh-elicited excitatory currents. In the healthy PFC, this potentiation of muscarinic excitation emerges in young adulthood, when executive function typically reaches maturity. However, the developmental consolidation of muscarinic ACh signaling is abolished in adults with a history of early stress, where ACh responses retain an adolescent phenotype. In prefrontal cortex, these rats show a disruption in the expression of multiple developmentally regulated genes associated with Gαq and Ca(2+) signaling. Pharmacologic and ionic manipulations reveal that the enhancement of muscarinic excitation in the healthy adult PFC arises via the electrogenic process of sodium/Ca(2+) exchange. CONCLUSIONS This work illustrates a long-lasting disruption in ACh-mediated cortical excitation following early stress and raises the possibility that such cellular mechanisms may disrupt the maturation of executive function.
Collapse
|
24
|
Power JM, Sah P. Dendritic spine heterogeneity and calcium dynamics in basolateral amygdala principal neurons. J Neurophysiol 2014; 112:1616-27. [PMID: 24944224 DOI: 10.1152/jn.00770.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamatergic synapses on pyramidal neurons are formed on dendritic spines where glutamate activates ionotropic receptors, and calcium influx via N-methyl-d-aspartate receptors leads to a localized rise in spine calcium that is critical for the induction of synaptic plasticity. In the basolateral amygdala, activation of metabotropic receptors is also required for synaptic plasticity and amygdala-dependent learning. Here, using acute brain slices from rats, we show that, in basolateral amygdala principal neurons, high-frequency synaptic stimulation activates metabotropic glutamate receptors and raises spine calcium by releasing calcium from inositol trisphosphate-sensitive calcium stores. This spine calcium release is unevenly distributed, being present in proximal spines, but largely absent in more distal spines. Activation of metabotropic receptors also generated calcium waves that differentially invaded spines as they propagated toward the soma. Dendritic wave invasion was dependent on diffusional coupling between the spine and parent dendrite which was determined by spine neck length, with waves preferentially invading spines with short necks. Spine calcium is a critical trigger for the induction of synaptic plasticity, and our findings suggest that calcium release from inositol trisphosphate-sensitive calcium stores may modulate homosynaptic plasticity through store-release in the spine head, and heterosynaptic plasticity of unstimulated inputs via dendritic calcium wave invasion of the spine head.
Collapse
Affiliation(s)
- John M Power
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia; and Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
25
|
Del Prete D, Checler F, Chami M. Ryanodine receptors: physiological function and deregulation in Alzheimer disease. Mol Neurodegener 2014; 9:21. [PMID: 24902695 PMCID: PMC4063224 DOI: 10.1186/1750-1326-9-21] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/18/2014] [Indexed: 12/21/2022] Open
Abstract
Perturbed Endoplasmic Reticulum (ER) calcium (Ca2+) homeostasis emerges as a central player in Alzheimer disease (AD). Accordingly, different studies have reported alterations of the expression and the function of Ryanodine Receptors (RyR) in human AD-affected brains, in cells expressing familial AD-linked mutations on the β amyloid precursor protein (βAPP) and presenilins (the catalytic core in γ-secretase complexes cleaving the βAPP, thereby generating amyloid β (Aβ) peptides), as well as in the brain of various transgenic AD mice models. Data converge to suggest that RyR expression and function alteration are associated to AD pathogenesis through the control of: i) βAPP processing and Aβ peptide production, ii) neuronal death; iii) synaptic function; and iv) memory and learning abilities. In this review, we document the network of evidences suggesting that RyR could play a complex dual "compensatory/protective versus pathogenic" role contributing to the setting of histopathological lesions and synaptic deficits that are associated with the disease stages. We also discuss the possible mechanisms underlying RyR expression and function alterations in AD. Finally, we review recent publications showing that drug-targeting blockade of RyR and genetic manipulation of RyR reduces Aβ production, stabilizes synaptic transmission, and prevents learning and memory deficits in various AD mouse models. Chemically-designed RyR "modulators" could therefore be envisioned as new therapeutic compounds able to delay or block the progression of AD.
Collapse
Affiliation(s)
| | - Frédéric Checler
- Université de Nice Sophia Antipolis, IPMC, Sophia Antipolis, Nice, F-06560 Valbonne, France.
| | | |
Collapse
|
26
|
Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo. Proc Natl Acad Sci U S A 2013; 110:E4678-87. [PMID: 24218625 DOI: 10.1073/pnas.1310065110] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increased neuron and astrocyte activity triggers increased brain blood flow, but controversy exists over whether stimulation-induced changes in astrocyte activity are rapid and widespread enough to contribute to brain blood flow control. Here, we provide evidence for stimulus-evoked Ca(2+) elevations with rapid onset and short duration in a large proportion of cortical astrocytes in the adult mouse somatosensory cortex. Our improved detection of the fast Ca(2+) signals is due to a signal-enhancing analysis of the Ca(2+) activity. The rapid stimulation-evoked Ca(2+) increases identified in astrocyte somas, processes, and end-feet preceded local vasodilatation. Fast Ca(2+) responses in both neurons and astrocytes correlated with synaptic activity, but only the astrocytic responses correlated with the hemodynamic shifts. These data establish that a large proportion of cortical astrocytes have brief Ca(2+) responses with a rapid onset in vivo, fast enough to initiate hemodynamic responses or influence synaptic activity.
Collapse
|
27
|
Korn MJ, Koppel SJ, Li LH, Mehta D, Mehta SB, Seidl AH, Cramer KS. Astrocyte-secreted factors modulate the developmental distribution of inhibitory synapses in nucleus laminaris of the avian auditory brainstem. J Comp Neurol 2012; 520:1262-77. [PMID: 22020566 DOI: 10.1002/cne.22786] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nucleus laminaris (NL) neurons in the avian auditory brainstem are coincidence detectors necessary for the computation of interaural time differences used in sound localization. In addition to their excitatory inputs from nucleus magnocellularis, NL neurons receive inhibitory inputs from the superior olivary nucleus (SON) that greatly improve coincidence detection in mature animals. The mechanisms that establish mature distributions of inhibitory inputs to NL are not known. We used the vesicular GABA transporter (VGAT) as a marker for inhibitory presynaptic terminals to study the development of inhibitory inputs to NL between embryonic day 9 (E9) and E17. VGAT immunofluorescent puncta were first seen sparsely in NL at E9. The density of VGAT puncta increased with development, first within the ventral NL neuropil region and subsequently throughout both the ventral and dorsal dendritic neuropil, with significantly fewer terminals in the cell body region. A large increase in density occurred between E13–15 and E16–17, at a developmental stage when astrocytes that express glial fibrillary acidic protein (GFAP) become mature. We cultured E13 brainstem slices together with astrocyte-conditioned medium (ACM) obtained from E16 brainstems and found that ACM, but not control medium, increased the density of VGAT puncta. This increase was similar to that observed during normal development. Astrocyte-secreted factors interact with the terminal ends of SON axons to increase the number of GABAergic terminals. These data suggest that factors secreted from GFAP-positive astrocytes promote maturation of inhibitory pathways in the auditory brainstem.
Collapse
Affiliation(s)
- Matthew J Korn
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California 92697-4550, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Ross WN, Manita S. Imaging calcium waves and sparks in central neurons. Cold Spring Harb Protoc 2012; 2012:1087-91. [PMID: 23028073 DOI: 10.1101/pdb.prot071480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Here we describe the use of wide-field charge-coupled device (CCD) camera-based imaging methods to detect the spatial and temporal aspects of calcium release from internal stores in dendrites of neurons in brain slice preparations. This approach is useful for revealing aspects of this signaling system, which is generally invisible to electrical recording. The changes in intracellular calcium ion concentrations, [Ca(2+)](i), sometimes occur as large-amplitude, propagating Ca(2+) waves or as much smaller, localized events (sparks). In this protocol, a cell is loaded with an indicator that responds to Ca(2+), waves or sparks are stimulated in the cell, and the spatial and temporal characteristics of calcium release from internal stores in the cell are detected using wide-field CCD camera-based imaging. Such camera systems have some advantages for detecting and analyzing these [Ca(2+)](i) changes because the waves are spatially extended and the sparks do not always occur at the same locations.
Collapse
|
29
|
Ferreiro E, Baldeiras I, Ferreira IL, Costa RO, Rego AC, Pereira CF, Oliveira CR. Mitochondrial- and endoplasmic reticulum-associated oxidative stress in Alzheimer's disease: from pathogenesis to biomarkers. Int J Cell Biol 2012; 2012:735206. [PMID: 22701485 PMCID: PMC3373122 DOI: 10.1155/2012/735206] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/06/2012] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly, affecting several million of people worldwide. Pathological changes in the AD brain include the presence of amyloid plaques, neurofibrillary tangles, loss of neurons and synapses, and oxidative damage. These changes strongly associate with mitochondrial dysfunction and stress of the endoplasmic reticulum (ER). Mitochondrial dysfunction is intimately linked to the production of reactive oxygen species (ROS) and mitochondrial-driven apoptosis, which appear to be aggravated in the brain of AD patients. Concomitantly, mitochondria are closely associated with ER, and the deleterious crosstalk between both organelles has been shown to be involved in neuronal degeneration in AD. Stimuli that enhance expression of normal and/or folding-defective proteins activate an adaptive unfolded protein response (UPR) that, if unresolved, can cause apoptotic cell death. ER stress also induces the generation of ROS that, together with mitochondrial ROS and decreased activity of several antioxidant defenses, promotes chronic oxidative stress. In this paper we discuss the critical role of mitochondrial and ER dysfunction in oxidative injury in AD cellular and animal models, as well as in biological fluids from AD patients. Progress in developing peripheral and cerebrospinal fluid biomarkers related to oxidative stress will also be summarized.
Collapse
Affiliation(s)
- E. Ferreiro
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
| | - I. Baldeiras
- Faculty of Medicine, University of Coimbra, Rua Larga 3004-504, Coimbra, Portugal
- University Coimbra Hospital, 3000-075, Coimbra, Portugal
| | - I. L. Ferreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
| | - R. O. Costa
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
| | - A. C. Rego
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga 3004-504, Coimbra, Portugal
| | - C. F. Pereira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga 3004-504, Coimbra, Portugal
| | - C. R. Oliveira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal 3004-517, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Rua Larga 3004-504, Coimbra, Portugal
| |
Collapse
|
30
|
Thorn P. Measuring calcium signals and exocytosis in tissues. Biochim Biophys Acta Gen Subj 2012; 1820:1179-84. [PMID: 22402251 DOI: 10.1016/j.bbagen.2012.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Since the 1960s it has been clear that calcium is a key regulator of exocytosis. Early experiments directly showed that the secretory output was calcium dependent. But it has taken improvements in technology and clever experimentation to determine the relationships between the calcium signal and exocytosis. Today controversies still remain because of limitations in our ability to record both the calcium responses within the local domains that control secretion and in the methods used to record exocytosis. SCOPE OF REVIEW Here the techniques used to measure calcium and exocytosis are reviewed with a distinction being drawn between measurements in excitable cells versus measurements in non-excitable cells. The review has a focus on techniques that are relevant to in vitro studies of native tissues and recent in vivo recordings. MAJOR CONCLUSIONS There are a range of methods used to study the stimulus-secretion pathway. Each presents their own advantages and drawbacks. These are discussed with reference to the latest work determining the factors controlling exocytosis in tissues. GENERAL SIGNIFICANCE Stimulus-secretion coupling is the fundamental step in the control of neurotransmitter release, hormone secretion and protein secretion. Understanding secretory control is therefore important in understanding the physiological regulation of processes ranging from learning and memory to pancreatic secretion. Recent technological advances are now enabling us to study stimulus-secretion coupling within native tissues. This is helping us to understand the physiological complexities of secretory control. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signalling.
Collapse
Affiliation(s)
- Peter Thorn
- School of Biomedical Science, University of Queensland, QLD, Australia.
| |
Collapse
|
31
|
Abstract
All cells use changes in intracellular calcium concentration ([Ca(2+)](i)) to regulate cell signalling events. In neurons, with their elaborate dendritic and axonal arborizations, there are clear examples of both localized and widespread Ca(2+) signals. [Ca(2+)](i) changes that are generated by Ca(2+) entry through voltage- and ligand-gated channels are the best characterized. In addition, the release of Ca(2+) from intracellular stores can result in increased [Ca(2+)](i); the signals that trigger this release have been less well-studied, in part because they are not usually associated with specific changes in membrane potential. However, recent experiments have revealed dramatic widespread Ca(2+) waves and localized spark-like events, particularly in dendrites. Here we review emerging data on the nature of these signals and their functions.
Collapse
|
32
|
Stutzmann GE, Mattson MP. Endoplasmic reticulum Ca(2+) handling in excitable cells in health and disease. Pharmacol Rev 2011; 63:700-27. [PMID: 21737534 PMCID: PMC3141879 DOI: 10.1124/pr.110.003814] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum (ER) is a morphologically and functionally diverse organelle capable of integrating multiple extracellular and internal signals and generating adaptive cellular responses. It plays fundamental roles in protein synthesis and folding and in cellular responses to metabolic and proteotoxic stress. In addition, the ER stores and releases Ca(2+) in sophisticated scenarios that regulate a range of processes in excitable cells throughout the body, including muscle contraction and relaxation, endocrine regulation of metabolism, learning and memory, and cell death. One or more Ca(2+) ATPases and two types of ER membrane Ca(2+) channels (inositol trisphosphate and ryanodine receptors) are the major proteins involved in ER Ca(2+) uptake and release, respectively. There are also direct and indirect interactions of ER Ca(2+) stores with plasma membrane and mitochondrial Ca(2+)-regulating systems. Pharmacological agents that selectively modify ER Ca(2+) release or uptake have enabled studies that revealed many different physiological roles for ER Ca(2+) signaling. Several inherited diseases are caused by mutations in ER Ca(2+)-regulating proteins, and perturbed ER Ca(2+) homeostasis is implicated in a range of acquired disorders. Preclinical investigations suggest a therapeutic potential for use of agents that target ER Ca(2+) handling systems of excitable cells in disorders ranging from cardiac arrhythmias and skeletal muscle myopathies to Alzheimer disease.
Collapse
Affiliation(s)
- Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University/The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| | | |
Collapse
|
33
|
Early calcium dysregulation in Alzheimer's disease: setting the stage for synaptic dysfunction. SCIENCE CHINA-LIFE SCIENCES 2011; 54:752-62. [PMID: 21786198 DOI: 10.1007/s11427-011-4205-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 05/30/2011] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder with no known cure or clear understanding of the mechanisms involved in the disease process. Amyloid plaques, neurofibrillary tangles and neuronal loss, though characteristic of AD, are late stage markers whose impact on the most devastating aspect of AD, namely memory loss and cognitive deficits, are still unclear. Recent studies demonstrate that structural and functional breakdown of synapses may be the underlying factor in AD-linked cognitive decline. One common element that presents with several features of AD is disrupted neuronal calcium signaling. Increased intracellular calcium levels are functionally linked to presenilin mutations, ApoE4 expression, amyloid plaques, tau tangles and synaptic dysfunction. In this review, we discuss the role of AD-linked calcium signaling alterations in neurons and how this may be linked to synaptic dysfunctions at both early and late stages of the disease.
Collapse
|
34
|
El-Hassar L, Hagenston AM, D'Angelo LB, Yeckel MF. Metabotropic glutamate receptors regulate hippocampal CA1 pyramidal neuron excitability via Ca²⁺ wave-dependent activation of SK and TRPC channels. J Physiol 2011; 589:3211-29. [PMID: 21576272 DOI: 10.1113/jphysiol.2011.209783] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Group I metabotropic glutamate receptors (mGluRs) play an essential role in cognitive function. Their activation results in a wide array of cellular and molecular responses that are mediated by multiple signalling cascades. In this study, we focused on Group I mGluR activation of IP3R-mediated intracellular Ca2+ waves and their role in activating Ca2+-dependent ion channels in CA1 pyramidal neurons. Using whole-cell patch-clamp recordings and high-speed Ca2+ fluorescence imaging in acute hippocampal brain slices, we show that synaptic and pharmacological stimulation of mGluRs triggers intracellular Ca2+ waves and a biphasic electrical response composed of a transient Ca2+-dependent SK channel-mediated hyperpolarization and a TRPC-mediated sustained depolarization. The generation and magnitude of the SK channel-mediated hyperpolarization depended solely on the rise in intracellular Ca2+ concentration ([Ca2+]i), whereas the TRPC channel-mediated depolarization required both a small rise in [Ca2+]i and mGluR activation. Furthermore, the TRPC-mediated current was suppressed by forskolin-induced rises in cAMP. We also show that SK- and TRPC-mediated currents robustly modulate pyramidal neuron excitability by decreasing and increasing their firing frequency, respectively. These findings provide additional evidence that mGluR-mediated synaptic transmission makes an important contribution to regulating the output of hippocampal neurons through intracellular Ca2+ wave activation of SK and TRPC channels. cAMP provides an additional level of regulation by modulating TRPC-mediated sustained depolarization that we propose to be important for stabilizing periods of sustained firing.
Collapse
Affiliation(s)
- Lynda El-Hassar
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
35
|
Perez MF, Ford KA, Goussakov I, Stutzmann GE, Hu XT. Repeated cocaine exposure decreases dopamine D₂-like receptor modulation of Ca(2+) homeostasis in rat nucleus accumbens neurons. Synapse 2011; 65:168-80. [PMID: 20665696 DOI: 10.1002/syn.20831] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nucleus accumbens (NAc) is a limbic structure in the forebrain that plays a critical role in cognitive function and addiction. Dopamine modulates activity of medium spiny neurons (MSNs) in the NAc. Both dopamine D₁-like and D₂-like receptors (including D1R or D(1,5)R and D2R or D(2,3,4)R, respectively) are thought to play critical roles in cocaine addiction. Our previous studies demonstrated that repeated cocaine exposure (which alters dopamine transmission) decreases excitability of NAc MSNs in cocaine-sensitized, withdrawn rats. This decrease is characterized by a reduction in voltage-sensitive Na(+) currents and high voltage-activated Ca(2+) currents, along with increased voltage-gated K(+) currents. These changes are associated with enhanced activity in the D1R/cAMP/PKA/protein phosphatase 1 pathway and diminished calcineurin function. Although D1R-mediated signaling is enhanced by repeated cocaine exposure, little is known whether and how the D2R is implicated in the cocaine-induced NAc dysfunction. Here, we performed a combined electrophysiological, biochemical, and neuroimaging study that reveals the cocaine-induced dysregulation of Ca(2+) homeostasis with involvement of D2R. Our novel findings reveal that D2R stimulation reduced Ca(2+) influx preferentially via the L-type Ca(2+) channels and evoked intracellular Ca(2+) release, likely via inhibiting the cAMP/PKA cascade, in the NAc MSNs of drug-free rats. However, repeated cocaine exposure abolished the D₂R effects on modulating Ca(2+) homeostasis with enhanced PKA activity and led to a decrease in whole-cell Ca(2+) influx. These adaptations, which persisted for 21 days during cocaine abstinence, may contribute to the mechanism of cocaine withdrawal.
Collapse
Affiliation(s)
- Mariela F Perez
- IFEC, CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | | | | | |
Collapse
|
36
|
Sumalekshmy S, Fahrni CJ. Metal Ion-Responsive Fluorescent Probes for Two-Photon Excitation Microscopy. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2011; 23:483-500. [PMID: 28503029 PMCID: PMC5427716 DOI: 10.1021/cm1021905] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Metal ion-responsive fluorescent probes are powerful tools for visualizing labile metal ion pools in live cells. To take full advantage of the benefits offered by two-photon excitation microscopy, including increased depth penetration, reduced phototoxicity, and intrinsic 3D capabilities, the photophysical properties of the probes must be optimized for nonlinear excitation. This review summarizes the challenges associated with the design of two-photon excitable fluorescent probes and labels and offers an overview on recent efforts in developing selective and sensitive reagents for the detection of metal ions in biological systems.
Collapse
|
37
|
Parker I, Smith IF. Recording single-channel activity of inositol trisphosphate receptors in intact cells with a microscope, not a patch clamp. J Gen Physiol 2010; 136:119-27. [PMID: 20660654 PMCID: PMC2912063 DOI: 10.1085/jgp.200910390] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Optical single-channel recording is a novel tool for the study of individual Ca2+-permeable channels within intact cells under minimally perturbed physiological conditions. As applied to the functioning and spatial organization of IP3Rs, this approach complements our existing knowledge, which derives largely from reduced systems - such as reconstitution into lipid bilayers and patch clamping of IP3Rs on the membrane of excised nuclei - where the spatial arrangement and interactions among IP3Rs via CICR are disrupted. The ability to image the activity of single IP3R channels with millisecond resolution together with localization of their positions with a precision of a few tens of nanometers both raises several intriguing questions and holds promise of answers. In particular, what mechanism underlies the anchoring of puffs and blips to static locations; why do these Ca2+ release events appear to involve only a very small fraction of the IP3Rs within a cell; and how can we reconcile the relative immotility of functional IP3Rs with numerous studies reporting free diffusion of IP3R protein in the ER membrane?
Collapse
Affiliation(s)
- Ian Parker
- Department of Neurobiology and Behavior, and Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Ian F. Smith
- Department of Neurobiology and Behavior, and Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
38
|
Schell MJ. Inositol trisphosphate 3-kinases: focus on immune and neuronal signaling. Cell Mol Life Sci 2010; 67:1755-78. [PMID: 20066467 PMCID: PMC11115942 DOI: 10.1007/s00018-009-0238-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/14/2009] [Accepted: 12/18/2009] [Indexed: 11/28/2022]
Abstract
The localized control of second messenger levels sculpts dynamic and persistent changes in cell physiology and structure. Inositol trisphosphate [Ins(1,4,5)P(3)] 3-kinases (ITPKs) phosphorylate the intracellular second messenger Ins(1,4,5)P(3). These enzymes terminate the signal to release Ca(2+) from the endoplasmic reticulum and produce the messenger inositol tetrakisphosphate [Ins(1,3,4,5)P(4)]. Independent of their enzymatic activity, ITPKs regulate the microstructure of the actin cytoskeleton. The immune phenotypes of ITPK knockout mice raise new questions about how ITPKs control inositol phosphate lifetimes within spatial and temporal domains during lymphocyte maturation. The intense concentration of ITPK on actin inside the dendritic spines of pyramidal neurons suggests a role in signal integration and structural plasticity in the dendrite, and mice lacking neuronal ITPK exhibit memory deficits. Thus, the molecular and anatomical features of ITPKs allow them to regulate the spatiotemporal properties of intracellular signals, leading to the formation of persistent molecular memories.
Collapse
Affiliation(s)
- Michael J Schell
- Department of Pharmacology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.
| |
Collapse
|
39
|
Manita S, Ross WN. IP(3) mobilization and diffusion determine the timing window of Ca(2+) release by synaptic stimulation and a spike in rat CA1 pyramidal cells. Hippocampus 2010; 20:524-39. [PMID: 19475649 PMCID: PMC4506638 DOI: 10.1002/hipo.20644] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Synaptically activated calcium release from internal stores in CA1 pyramidal neurons is generated via metabotropic glutamate receptors by mobilizing IP(3). Ca(2+) release spreads as a large amplitude wave in a restricted region of the apical dendrites of these cells. These Ca(2+) waves have been shown to induce certain forms of synaptic potentiation and have been hypothesized to affect other forms of plasticity. Pairing a single backpropagating action potential (bAP) with repetitive synaptic stimulation evokes Ca(2+) release when synaptic stimulation alone is subthreshold for generating release. We examined the timing window for this synergistic effect under conditions favoring Ca(2+) release. The window, measured from the end of the train, lasted 250-500 ms depending on the duration of stimulation tetanus. The window appears to correspond to the time when both IP(3) concentration and [Ca(2+)](i) are elevated at the site of the IP(3) receptor. Detailed analysis of the mechanisms determining the duration of the window, including experiments using different forms of caged IP(3) instead of synaptic stimulation, suggest that the most significant processes are the time for IP(3) to diffuse away from the site of generation and the time course of IP(3) production initiated by activation of mGluRs. IP(3) breakdown, desensitization of the IP(3) receptor, and the kinetics of IP(3) unbinding from the receptor may affect the duration of the window but are less significant. The timing window is short but does not appear to be short enough to suggest that this form of coincidence detection contributes to conventional spike timing-dependent synaptic plasticity in these cells.
Collapse
Affiliation(s)
- Satoshi Manita
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA
| | | |
Collapse
|
40
|
Park KM, Yule DI, Bowers WJ. Impaired TNF-alpha control of IP3R-mediated Ca2+ release in Alzheimer's disease mouse neurons. Cell Signal 2010; 22:519-26. [PMID: 19922794 PMCID: PMC2794907 DOI: 10.1016/j.cellsig.2009.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 11/09/2009] [Indexed: 12/24/2022]
Abstract
The misguided control of inflammatory signaling has been previously implicated in the pathogenesis of several neurological disorders, including Alzheimer's disease (AD). Induction of tumor necrosis factor-alpha (TNF-alpha), a central mediator of neuroinflammation, occurs commensurate with the onset of early disease in 3xTg-AD mice, which develop both amyloid plaque and neurofibrillary tangle pathologies in an age- and region-dependent pattern. Herein, we describe regulation inherent to 3xTg-AD neurons, which results in the loss of TNF-alpha mediated enhancement of inositol 1,4,5 trisphosphate (IP3R)-mediated Ca2+ release. This modulation also leads to significant down-regulation of IP3R signaling following protracted cytokine exposure. Through the experimental isolation of each AD-related transgene, it was determined that expression of the PS1M146V transgene product is responsible for the loss of the TNF-alpha effect on IP3R-mediated Ca2+ release. Furthermore, it was determined that the suppression of TNF-alpha receptor expression occurred in the presence of the presenilin transgene. Our findings attribute this familial AD mutation to suppressing a Ca2+-regulated signal cascade potentially intended to "inform" neurons of proximal neuroinflammatory events and trigger compensatory responses for protection of neural transmission.
Collapse
MESH Headings
- Alzheimer Disease/metabolism
- Animals
- Calcium/metabolism
- Cells, Cultured
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Mice
- Neurons/metabolism
- Presenilins/metabolism
- RNA, Small Interfering/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Keigan M. Park
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642 USA
- Center for Neural Development and Disease, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642 USA
| | - David I. Yule
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642 USA
| | - William J. Bowers
- Department of Neurology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642 USA
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642 USA
- Center for Neural Development and Disease, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642 USA
| |
Collapse
|
41
|
Balakrishnan S, T PK, Paulose CS. Glutamate (mGluR-5) gene expression in brain regions of streptozotocin induced diabetic rats as a function of age: role in regulation of calcium release from the pancreatic islets in vitro. J Biomed Sci 2009; 16:99. [PMID: 19903331 PMCID: PMC2779807 DOI: 10.1186/1423-0127-16-99] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Accepted: 11/10/2009] [Indexed: 11/10/2022] Open
Abstract
Metabotrophic glutamate receptors (mGluRs) modulate cellular activities involved in the processes of differentiation and degeneration. In this study, we have analysed the expression pattern of group-I metabotropic glutamate receptor (mGlu-5) in cerebral cortex, corpus striatum, brainstem and hippocampus of streptozotocin induced and insulin treated diabetic rats (D+I) as a function of age. Also, the functional role of glutamate receptors in intra cellular calcium release from the pancreatic islets was studied in vitro. The gene expression studies showed that mGlu-5 mRNA in the cerebral cortex increased siginficantly in 7 weeks old diabetic rats whereas decreased expression was observed in brainstem, corpus striatum and hippocampus when compared to control. 90 weeks old diabetic rats showed decreased expression in cerebral cortex, corpus striatum and hippocampus whereas in brainstem the expression increased significantly compared to their respective controls. In 7 weeks old D+I group, mGlu-5 mRNA expression was significantly decreased in cerebral cortex and corpus striatum whereas the expression increased significantly in brainstem and hippocampus. 90 weeks old D+I group showed an increased expression in cerebral cortex, while it was decreased significantly in corpus striatum, brainstem and hippocampus compared to their respective controls. In vitro studies showed that glutamate at lower concentration (10(-7) M) stimulated calcium release from the pancreatic islets. Our results suggest that mGlu-5 receptors have differential expression in brain regions of diabetes and D+I groups as a function of age. This will have clinical significance in management of degeneration in brain function and memory enhancement through glutamate receptors. Also, the regulatory role of glutamate receptors in calcium release has immense therapeutic application in insulin secretion and function.
Collapse
Affiliation(s)
- Savitha Balakrishnan
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin-682 022, Kerala, India.
| | | | | |
Collapse
|
42
|
Park KM, Yule DI, Bowers WJ. Tumor necrosis factor-alpha-mediated regulation of the inositol 1,4,5-trisphosphate receptor promoter. J Biol Chem 2009; 284:27557-66. [PMID: 19666470 PMCID: PMC2785684 DOI: 10.1074/jbc.m109.034504] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/24/2009] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha), a proinflammatory cytokine, has been implicated as a central mediator in multiple homeostatic and pathologic processes. Signaling cascades downstream of its cellular cognate receptors, as well as the resultant transcriptional responses have received intense interest in regards to how such signals impact cellular physiology. Notably, TNF-alpha was shown to potentiate neuronal Ca(2+) signaling by enhancing type-1 inositol 1,4,5-trisphosphate receptor (IP(3)R) steady-state mRNA levels. In the present study, we sought to determine the promoter region ultimately responsive to TNF-alpha exposure. We report that a sequence encompassing a specificity protein 1 (SP-1) binding site is necessary for TNF-alpha regulation. Electrophoretic mobility shift analysis demonstrated specific binding to this sequence, while site-directed mutagenesis of this site abrogated both JNK-mediated regulation as well as transcription factor binding. Expression of a dominant-negative SP-1 eliminated both the enhanced promoter activity and the elevated IP(3)R-mediated Ca(2+) signals observed with TNF-alpha exposure. Overall, these data delineate a key pathway by which TNF-alpha in a neuronal environment modulates IP(3)R expression and intracellular Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Keigan M. Park
- Center for Neural Development and Disease, and
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642
| | - David I. Yule
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642
| | - William J. Bowers
- From the Department of Neurology
- Center for Neural Development and Disease, and
| |
Collapse
|
43
|
Acetylcholine and muscarinic receptor function in cerebral cortex of diabetic young and old male Wistar rats and the role of muscarinic receptors in calcium release from pancreatic islets. Biogerontology 2009; 11:151-66. [DOI: 10.1007/s10522-009-9237-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
|
44
|
Fitzpatrick JS, Hagenston AM, Hertle DN, Gipson KE, Bertetto-D'Angelo L, Yeckel MF. Inositol-1,4,5-trisphosphate receptor-mediated Ca2+ waves in pyramidal neuron dendrites propagate through hot spots and cold spots. J Physiol 2009; 587:1439-59. [PMID: 19204047 PMCID: PMC2678218 DOI: 10.1113/jphysiol.2009.168930] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 02/03/2009] [Indexed: 12/14/2022] Open
Abstract
We studied inositol-1,4,5-trisphosphate (IP(3)) receptor-dependent intracellular Ca(2+) waves in CA1 hippocampal and layer V medial prefrontal cortical pyramidal neurons using whole-cell patch-clamp recordings and Ca(2+) fluorescence imaging. We observed that Ca(2+) waves propagate in a saltatory manner through dendritic regions where increases in the intracellular concentration of Ca(2+) ([Ca(2+)](i)) were large and fast ('hot spots') separated by regions where increases in [Ca(2+)](i) were comparatively small and slow ('cold spots'). We also observed that Ca(2+) waves typically initiate in hot spots and terminate in cold spots, and that most hot spots, but few cold spots, are located at dendritic branch points. Using immunohistochemistry, we found that IP(3) receptors (IP(3)Rs) are distributed in clusters along pyramidal neuron dendrites and that the distribution of inter-cluster distances is nearly identical to the distribution of inter-hot spot distances. These findings support the hypothesis that the dendritic locations of Ca(2+) wave hot spots in general, and branch points in particular, are specially equipped for regenerative IP(3)R-dependent internal Ca(2+) release. Functionally, the observation that IP(3)R-dependent [Ca(2+)](i) rises are greater at branch points raises the possibility that this novel Ca(2+) signal may be important for the regulation of Ca(2+)-dependent processes in these locations. Futhermore, the observation that Ca(2+) waves tend to fail between hot spots raises the possibility that influences on Ca(2+) wave propagation may determine the degree of functional association between distinct Ca(2+)-sensitive dendritic domains.
Collapse
Affiliation(s)
- John S Fitzpatrick
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
45
|
Hagenston AM, Rudnick ND, Boone CE, Yeckel MF. 2-Aminoethoxydiphenyl-borate (2-APB) increases excitability in pyramidal neurons. Cell Calcium 2009; 45:310-7. [PMID: 19100621 PMCID: PMC2869079 DOI: 10.1016/j.ceca.2008.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/09/2008] [Accepted: 11/04/2008] [Indexed: 12/29/2022]
Abstract
Calcium ions (Ca(2+)) released from inositol trisphosphate (IP(3))-sensitive intracellular stores may participate in both the transient and extended regulation of neuronal excitability in neocortical and hippocampal pyramidal neurons. IP(3) receptor (IP(3)R) antagonists represent an important tool for dissociating these consequences of IP(3) generation and IP(3)R-dependent internal Ca(2+) release from the effects of other, concurrently stimulated second messenger signaling cascades and Ca(2+) sources. In this study, we have described the actions of the IP(3)R and store-operated Ca(2+) channel antagonist, 2-aminoethoxydiphenyl-borate (2-APB), on internal Ca(2+) release and plasma membrane excitability in neocortical and hippocampal pyramidal neurons. Specifically, we found that a dose of 2-APB (100 microM) sufficient for attenuating or blocking IP(3)-mediated internal Ca(2+) release also raised pyramidal neuron excitability. The 2-APB-dependent increase in excitability reversed upon washout and was characterized by an increase in input resistance, a decrease in the delay to action potential onset, an increase in the width of action potentials, a decrease in the magnitude of afterhyperpolarizations (AHPs), and an increase in the magnitude of post-spike afterdepolarizations (ADPs). From these observations, we conclude that 2-APB potently and reversibly increases neuronal excitability, likely via the inhibition of voltage- and Ca(2+)-dependent potassium (K(+)) conductances.
Collapse
Affiliation(s)
- Anna M Hagenston
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | |
Collapse
|
46
|
Smith IF, Wiltgen SM, Parker I. Localization of puff sites adjacent to the plasma membrane: functional and spatial characterization of Ca2+ signaling in SH-SY5Y cells utilizing membrane-permeant caged IP3. Cell Calcium 2009; 45:65-76. [PMID: 18639334 PMCID: PMC2666303 DOI: 10.1016/j.ceca.2008.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 05/30/2008] [Accepted: 06/05/2008] [Indexed: 01/14/2023]
Abstract
The Xenopus oocyte has been a favored model system in which to study spatio-temporal mechanisms of intracellular Ca2+ dynamics, in large part because this giant cell facilitates intracellular injections of Ca2+ indicator dyes, buffers and caged compounds. However, the recent commercial availability of membrane-permeant ester forms of caged IP3 (ci-IP3) and EGTA, now allows for facile loading of these compounds into smaller mammalian cells, permitting control of [IP3]i and cytosolic Ca2+ buffering. Here, we establish the human neuroblastoma SH-SY5Y cell line as an advantageous experimental system for imaging Ca2+ signaling, and characterize IP3-mediated Ca2+ signaling mechanisms in these cells. Flash photo-release of increasing amounts of i-IP3 evokes Ca2+ puffs that transition to waves, but intracellular loading of EGTA decouples release sites, allowing discrete puffs to be studied over a wide range of [IP3]. Puff activity persists for minutes following a single photo-release, pointing to a slow rate of i-IP3 turnover in these cells and suggesting that repetitive Ca2+ spikes with periods of 20-30s are not driven by oscillations in [IP3]. Puff amplitudes are independent of [IP3], whereas their frequencies increase with increasing photo-release. Puff sites in SH-SY5Y cells are not preferentially localized near the nucleus, but instead are concentrated close to the plasma membrane where they can be visualized by total internal reflection microscopy, offering the potential for unprecedented spatio-temporal resolution of Ca2+ puff kinetics.
Collapse
Affiliation(s)
- Ian F Smith
- Department of Neurobiology and Behavior, University of California, 1146 McGaugh Hall, Irvine, CA 92697-4545, United States.
| | | | | |
Collapse
|
47
|
|
48
|
Stutzmann G. Seeing the brain in action: how multiphoton imaging has advanced our understanding of neuronal function. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2008; 14:482-491. [PMID: 18986602 DOI: 10.1017/s143192760808080x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gaining insight into how the nervous system functions is a challenge for scientists, particularly because the static morphology of the brain and the cells within tell little about how they actually work. Fixed specimens can provide critical structural information, but the jump to functional neurobiology in living cells is obviated with these preparations. In order to grasp the complexity of neuronal activity, it is necessary to observe the brain in action, from the level of subcellular signaling to the whole organism. Recent advances in nonlinear microscopy have given rise to a new era for biological research. In particular, the introduction of multiphoton excitation has drastically improved the depth and speed to which we can probe brain function. In order to better appreciate recent contributions of multiphoton microscopy to our current and future understanding of biological systems, an historical awareness of past microscopy applications is useful.
Collapse
Affiliation(s)
- Grace Stutzmann
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| |
Collapse
|
49
|
Abstract
PURPOSE Over the last decade, in vivo calcium imaging became a powerful tool for studying brain function. With the use of two-photon microscopy and modern labelling techniques, it allows functional studies of individual living cells, their processes and their interactions within neuronal networks. In vivo calcium imaging is even more important for studying the aged brain, which is hard to investigate in situ due to the fragility of neuronal tissue. METHODS In this article, we give a brief overview of the techniques applicable to image aged rodent brain at cellular resolution. RESULTS We use multicolor imaging to visualize specific cell types (neurons, astrocytes, microglia) as well as the autofluorescence of the "aging pigment" lipofuscin. CONCLUSIONS Further, we illustrate an approach for simultaneous imaging of cortical cells and senile plaques in mouse models of Alzheimer's disease.
Collapse
|
50
|
Peercy BE. Initiation and propagation of a neuronal intracellular calcium wave. J Comput Neurosci 2008; 25:334-48. [PMID: 18320300 DOI: 10.1007/s10827-008-0082-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 01/16/2008] [Accepted: 01/25/2008] [Indexed: 10/22/2022]
Abstract
The ability to image calcium movement within individual neurons inspires questions of functionality including whether calcium entry into the nucleus is related to genetic regulation for phenomena such as long term potentiation. Calcium waves have been initiated in hippocampal pyramidal cells with glutmatergic signals both in the presence and absence of back propagating action potentials (BPAPs). The dendritic sites of initiation of these calcium waves within about 100 microm of the soma are thought to be localized near oblique junctions. Stimulation of synapses on oblique dendrites leads to production of inositol 1,4,5-trisphosphate (IP(3)) which diffuses to the apical dendrite igniting awaiting IP(3) receptors (IP(3)Rs) and initiating and propagating catalytic calcium release from the endoplasmic reticulum. We construct a reduced mathematical system which accounts for calcium wave initiation and propagation due to elevated IP(3). Inhomogeneity in IP(3) distribution is responsible for calcium wave initiation versus subthreshold or spatially uniform suprathreshold activation. However, the likelihood that a calcium wave is initiated does not necessarily increase with more calcium entering from BPAPs. For low transient synaptic stimuli, timing between IP(3) generation and BPAPs is critical for calcium wave initiation. We also show that inhomogeneity in IP(3)R density can account for calcium wave directionality. Simulating somatic muscarinic receptor production of IP(3), we can account for the critical difference between calcium wave entry into the soma and failure to do so.
Collapse
Affiliation(s)
- Bradford E Peercy
- Laboratory of Biological Modeling/NIDDK/NIH, Bldg. 12A, Rm 4007, MSC 5621, South Dr., Bethesda, MD 20892-5621, USA.
| |
Collapse
|