1
|
Abrams CK, Lancaster E, Li JJ, Dungan G, Gong D, Scherer SS, Freidin MM. Knock-in mouse models for CMTX1 show a loss of function phenotype in the peripheral nervous system. Exp Neurol 2023; 360:114277. [PMID: 36403785 DOI: 10.1016/j.expneurol.2022.114277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022]
Abstract
The X-linked form of Charcot-Marie-Tooth disease (CMTX1) is the second most common form of CMT. In this study we used CRISPR/Cas9 to develop new "knock-in" models of CMTX1 that are more representative of the spectrum of mutations seen with CMTX1 than the Cx32 knockout (KO) mouse model used previously. We compared mice of four genotypes - wild-type, Cx32KO, p.T55I, and p.R75W. Sciatic motor conduction velocity slowing was the most robust electrophysiologic indicator of neuropathy, showing reductions in the Cx32KO by 3 months and in the p.T55I and p.R75W mice by 6 months. At both 6 and 12 months, all three mutant genotypes showed reduced four limb and hind limb grip strength compared to WT mice. Performance on 6 and 12 mm width balance beams revealed deficits that were most pronounced at on the 6 mm balance beam at 6 months of age. There were pathological changes of myelinated axons in the femoral motor nerve in all three mutant lines by 3 months of age, and these became more pronounced at 6 and 12 months of age; sensory nerves (femoral sensory and the caudal nerve of the tail) appeared normal at all ages examined. Our results demonstrate that mice can be used to show the pathogenicity of human GJB1 mutations, and these new models for CMTX1 should facilitate the preclinical work for developing treatments for CMTX1.
Collapse
Affiliation(s)
- Charles K Abrams
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 South Wood Street, Chicago, IL 60657, USA; Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, USA.
| | - Eunjoo Lancaster
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA..
| | - Jian J Li
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA..
| | - Gabriel Dungan
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 South Wood Street, Chicago, IL 60657, USA
| | - David Gong
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, USA.
| | - Steven S Scherer
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA..
| | - Mona M Freidin
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 South Wood Street, Chicago, IL 60657, USA.
| |
Collapse
|
2
|
Talukdar S, Emdad L, Das SK, Fisher PB. GAP junctions: multifaceted regulators of neuronal differentiation. Tissue Barriers 2021; 10:1982349. [PMID: 34651545 DOI: 10.1080/21688370.2021.1982349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Gap junctions are intercellular membrane channels consisting of connexin proteins, which contribute to direct cytoplasmic exchange of small molecules, substrates and metabolites between adjacent cells. These channels play important roles in neuronal differentiation, maintenance, survival and function. Gap junctions regulate differentiation of neurons from embryonic, neural and induced pluripotent stem cells. In addition, they control transdifferentiation of neurons from mesenchymal stem cells. The expression and levels of several connexins correlate with cell cycle changes and different stages of neurogenesis. Connexins such as Cx36, Cx45, and Cx26, play a crucial role in neuronal function. Several connexin knockout mice display lethal or severely impaired phenotypes. Aberrations in connexin expression is frequently associated with various neurodegenerative disorders. Gap junctions also act as promising therapeutic targets for neuronal regenerative medicine, because of their role in neural stem cell integration, injury and remyelination.
Collapse
Affiliation(s)
- Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.,Vcu Institute of Molecular Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.,Vcu Institute of Molecular Medicine, Richmond, VA, United States.,Vcu Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.,Vcu Institute of Molecular Medicine, Richmond, VA, United States.,Vcu Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.,Vcu Institute of Molecular Medicine, Richmond, VA, United States.,Vcu Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| |
Collapse
|
3
|
Papaneophytou C, Georgiou E, Kleopa KA. The role of oligodendrocyte gap junctions in neuroinflammation. Channels (Austin) 2020; 13:247-263. [PMID: 31232168 PMCID: PMC6602578 DOI: 10.1080/19336950.2019.1631107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Gap junctions (GJs) provide channels for direct cell-to-cell connectivity serving the homeostasis in several organs of vertebrates including the central (CNS) and peripheral (PNS) nervous systems. GJs are composed of connexins (Cx), which show a highly distinct cellular and subcellular expression pattern. Oligodendrocytes, the myelinating cells of the CNS, are characterized by extensive GJ connectivity with each other as well as with astrocytes. The main oligodendrocyte connexins forming these GJ channels are Cx47 and Cx32. The importance of these channels has been highlighted by the discovery of human diseases caused by mutations in oligodendrocyte connexins, manifesting with leukodystrophy or transient encephalopathy. Experimental models have provided further evidence that oligodendrocyte GJs are essential for CNS myelination and homeostasis, while a strong inflammatory component has been recognized in the absence of oligodendrocyte connexins. Further studies revealed that connexins are also disrupted in multiple sclerosis (MS) brain, and in experimental models of induced inflammatory demyelination. Moreover, induced demyelination was more severe and associated with higher degree of CNS inflammation in models with oligodendrocyte GJ deficiency, suggesting that disrupted connexin expression in oligodendrocytes is not only a consequence but can also drive a pro-inflammatory environment in acquired demyelinating disorders such as MS. In this review, we summarize the current insights from human disorders as well as from genetic and acquired models of demyelination related to oligodendrocyte connexins, with the remaining challenges and perspectives.
Collapse
Affiliation(s)
- Christos Papaneophytou
- a Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine , Nicosia , Cyprus.,b Department of Life and Health Sciences, School of Sciences and Engineering , University of Nicosia , Nicosia , Cyprus
| | - Elena Georgiou
- a Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine , Nicosia , Cyprus
| | - Kleopas A Kleopa
- a Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine , Nicosia , Cyprus.,c Neurology Clinics , the Cyprus Institute of Neurology and Genetics, and the Cyprus School of Molecular Medicine , Nicosia , Cyprus
| |
Collapse
|
4
|
Giaume C, Naus CC, Sáez JC, Leybaert L. Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiol Rev 2020; 101:93-145. [PMID: 32326824 DOI: 10.1152/physrev.00043.2018] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the past several decades a large amount of data have established that glial cells, the main cell population in the brain, dynamically interact with neurons and thus impact their activity and survival. One typical feature of glia is their marked expression of several connexins, the membrane proteins forming intercellular gap junction channels and hemichannels. Pannexins, which have a tetraspan membrane topology as connexins, are also detected in glial cells. Here, we review the evidence that connexin and pannexin channels are actively involved in dynamic and metabolic neuroglial interactions in physiological as well as in pathological situations. These features of neuroglial interactions open the way to identify novel non-neuronal aspects that allow for a better understanding of behavior and information processing performed by neurons. This will also complement the "neurocentric" view by facilitating the development of glia-targeted therapeutic strategies in brain disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Juan C Sáez
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Xia CY, Xu JK, Pan CH, Lian WW, Yan Y, Ma BZ, He J, Zhang WK. Connexins in oligodendrocytes and astrocytes: Possible factors for demyelination in multiple sclerosis. Neurochem Int 2020; 136:104731. [PMID: 32201280 DOI: 10.1016/j.neuint.2020.104731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022]
Abstract
Increasing evidences support that glial connexins are involved in the demyelination pathology of multiple sclerosis (MS), a chronic inflammatory demyelinating disorder. Here, we review the data from patients with MS and animal models of MS that implicate connexins in demyelination. Connexins expressed in oligodendrocytes and astrocytes show diverse changes at the different phases of MS. Loss of oligodendrocyte or astrocyte connexins contributes to demyelination and exaggerates the pathology of MS. Channel-dependent and -independent connexins are involved in the pathology of demyelination, which is related with myelin integrity, metabolic homeostasis, the brain-blood barrier, the immune cell infiltration, and the inflammatory response. A comprehensive understanding of connexin function in demyelination may provide new therapeutic targets for MS.
Collapse
Affiliation(s)
- Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jie-Kun Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Chen-Hao Pan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Bing-Zhi Ma
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| |
Collapse
|
6
|
Papaneophytou CP, Georgiou E, Karaiskos C, Sargiannidou I, Markoullis K, Freidin MM, Abrams CK, Kleopa KA. Regulatory role of oligodendrocyte gap junctions in inflammatory demyelination. Glia 2018; 66:2589-2603. [PMID: 30325069 PMCID: PMC6519212 DOI: 10.1002/glia.23513] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/27/2022]
Abstract
Gap junctions (GJs) coupling oligodendrocytes to astrocytes and to other oligodendrocytes are formed mainly by connexin47 (Cx47) and a smaller portion by connexin32 (Cx32). Mutations in both connexins cause inherited demyelinating disorders, but their expression is also disrupted in multiple sclerosis (MS). To clarify whether the loss of either Cx47 or Cx32 could modify the outcome of inflammation and myelin loss, we induced experimental autoimmune encephalomyelitis (EAE) in fully backcrossed Cx32 knockout (KO) and Cx47KO mice and compared their outcome with wild type (WT, C57BI/6 N) mice. Cx47KO EAE mice developed the most severe phenotype assessed by clinical scores and behavioral testing, followed by Cx32KO and WT mice. Cx47KO more than Cx32KO EAE mice developed more microglial activation, myelin, and axonal loss than did WT mice. Oligodendrocyte apoptosis and precursor proliferation was also higher in Cx47KO than in Cx32KO or WT EAE mice. Similarly, blood-spinal cord barrier (BSCB) disruption and inflammatory infiltrates of macrophages, T- and B-cells were more severe in Cx47KO than either Cx32KO or WT EAE groups. Finally, expression profiling revealed that several proinflammatory cytokines were higher at the peak of inflammation in the Cx47KO mice and persisted at later stages of EAE in contrast to reduction of their levels in WT EAE mice. Thus, loss of oligodendrocyte GJs aggravates BSCB disruption and inflammatory myelin loss, likely due to dysregulation of proinflammatory cytokines. This mechanism may play an important role in MS brain with reduced connexin expression, as well as in patients with inherited mutations in oligodendrocyte connexins and secondary inflammation.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Astrocytes/metabolism
- Astrocytes/pathology
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/physiopathology
- Calcium-Binding Proteins/metabolism
- Cell Proliferation/genetics
- Connexins/genetics
- Connexins/metabolism
- Cytokines/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Freund's Adjuvant/toxicity
- Gap Junctions/metabolism
- Gap Junctions/pathology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Gene Expression Regulation/physiology
- Hand Strength/physiology
- Macrophages/pathology
- Mice
- Mice, Inbred C57BL
- Microfilament Proteins/metabolism
- Motor Activity/drug effects
- Motor Activity/genetics
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Oligodendroglia/metabolism
- Oligodendroglia/pathology
- Peptide Fragments/toxicity
- Gap Junction beta-1 Protein
Collapse
Affiliation(s)
- Christos P. Papaneophytou
- Neuroscience LaboratoryThe Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular MedicineNicosiaCyprus
- Department of Life and Health Sciences, School of Sciences and EngineeringUniversity of NicosiaNicosiaCyprus
| | - Elena Georgiou
- Neuroscience LaboratoryThe Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular MedicineNicosiaCyprus
| | - Christos Karaiskos
- Neuroscience LaboratoryThe Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular MedicineNicosiaCyprus
| | - Irene Sargiannidou
- Neuroscience LaboratoryThe Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular MedicineNicosiaCyprus
| | - Kyriaki Markoullis
- Neuroscience LaboratoryThe Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular MedicineNicosiaCyprus
| | - Mona M. Freidin
- Department of Neurology and RehabilitationUniversity of Illinois ChicagoChicagoIllinois
| | - Charles K. Abrams
- Department of Neurology and RehabilitationUniversity of Illinois ChicagoChicagoIllinois
| | - Kleopas A. Kleopa
- Neuroscience LaboratoryThe Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular MedicineNicosiaCyprus
- Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular MedicineNicosiaCyprus
| |
Collapse
|
7
|
Abstract
Neuron-glia antigen 2-expressing glial cells (NG2 glia) serve as oligodendrocyte progenitors during development and adulthood. However, recent studies have shown that these cells represent not only a transitional stage along the oligodendroglial lineage, but also constitute a specific cell type endowed with typical properties and functions. Namely, NG2 glia (or subsets of NG2 glia) establish physical and functional interactions with neurons and other central nervous system (CNS) cell types, that allow them to constantly monitor the surrounding neuropil. In addition to operating as sensors, NG2 glia have features that are expected for active modulators of neuronal activity, including the expression and release of a battery of neuromodulatory and neuroprotective factors. Consistently, cell ablation strategies targeting NG2 glia demonstrate that, beyond their role in myelination, these cells contribute to CNS homeostasis and development. In this review, we summarize and discuss the advancements achieved over recent years toward the understanding of such functions, and propose novel approaches for further investigations aimed at elucidating the multifaceted roles of NG2 glia.
Collapse
|
8
|
Xu D, Liu Z, Wang S, Peng Y, Sun X. Astrocytes regulate the expression of Sp1R3 on oligodendrocyte progenitor cells through Cx47 and promote their proliferation. Biochem Biophys Res Commun 2017. [PMID: 28634078 DOI: 10.1016/j.bbrc.2017.06.099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Many degenerative diseases of the central nervous system are associated with demyelination. Oligodendrocyte progenitor cells (OPCs) are potential stem cells that can differentiate into various cell types, including oligodendrocytes (OLs). Promoting the proliferation and differentiation of OPCs into mature OLs that can myelinate axons is the key to stimulate remyelination. Here, we report that astrocytes (ASTs) increase the number of sphingosine-1-phosphate receptors 3 (S1pR3) on OPCs and promote OPCs proliferation through a direct contact via connexin 47 (Cx47). Our results demonstrate that ASTs can regulate the proliferation of OPCs through Cx47-mediated induction of S1pR3 expression on OPCs. Cx47/S1pR3 remarkably increases the number of OPCs and promotes cell transition from the G1 to the S phase. Furthermore, inhibiting either Cx47 or S1pR3 decreases OPC proliferation. In summary, ASTs regulate the expression of S1pR3 in OPCs via Cx47, which could be a valuable approach for promoting OPC proliferation. This strategy may therefore represent a potential treatment for neurological diseases caused by OLs death and demyelination.
Collapse
Affiliation(s)
- Dan Xu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Zhaoyu Liu
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shang Wang
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yan Peng
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
9
|
Coulibaly AP, Isaacson LG. Increased Cx32 expression in spinal cord TrkB oligodendrocytes following peripheral axon injury. Neurosci Lett 2016; 627:115-20. [PMID: 27246301 PMCID: PMC4971883 DOI: 10.1016/j.neulet.2016.05.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
Abstract
Following injury to motor axons in the periphery, retrograde influences from the injury site lead to glial cell plasticity in the vicinity of the injured neurons. Following the transection of peripherally located preganglionic axons of the cervical sympathetic trunk (CST), a population of oligodendrocyte (OL) lineage cells expressing full length TrkB, the cognate receptor for brain derived neurotrophic factor (BDNF), is significantly increased in number in the spinal cord. Such robust plasticity in OL lineage cells in the spinal cord following peripheral axon transection led to the hypothesis that the gap junction communication protein connexin 32 (Cx32), which is specific to OL lineage cells, was influenced by the injury. Following CST transection, Cx32 expression in the spinal cord intermediolateral cell column (IML), the location of the parent cell bodies, was significantly increased. The increased Cx32 expression was localized specifically to TrkB OLs in the IML, rather than other cell types in the OL cell lineage, with the population of Cx32/TrkB cells increased by 59%. Cx32 expression in association with OPCs was significantly decreased at one week following the injury. The results of this study provide evidence that peripheral axon injury can differentially affect the gap junction protein expression in OL lineage cells in the adult rat spinal cord. We conclude that the retrograde influences originating from the peripheral injury site elicit dramatic changes in the CNS expression of Cx32, which in turn may mediate the plasticity of OL lineage cells observed in the spinal cord following peripheral axon injury.
Collapse
Affiliation(s)
- Aminata P Coulibaly
- Center for Neuroscience and Behavior, Graduate Program in Cell, Molecular, and Structural Biology, Miami University, Oxford, OH 45056, United States.
| | - Lori G Isaacson
- Center for Neuroscience and Behavior, Graduate Program in Cell, Molecular, and Structural Biology, Miami University, Oxford, OH 45056, United States.
| |
Collapse
|
10
|
Abstract
Connexins and pannexins share very similar structures and functions; they also exhibit overlapping expression in many stages of neuronal development. Here, we review evidence implicating connexin- and pannexin-mediated communication in the regulation of the birth and development of neurons, specifically Cx26, Cx30, Cx32, Cx36, Cx43, Cx45, Panx1, and Panx2. We begin by dissecting the involvement of these proteins in the generation and development of new neurons in the embryonic, postnatal, and adult brain. Next we briefly outline common mechanisms employed by both pannexins and connexins in these roles, including modulation of purinergic receptor signalling and signalling nexus functions. Throughout this review we highlight developing themes as well as important gaps in knowledge to be bridged.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- />Division of Medical Sciences, University of Victoria, Medical Sciences Building Rm 224, 3800 Finnerty Rd, Victoria, BC V8P5C2 Canada
| | - Steffany A. L. Bennett
- />Department of Biochemistry, Microbiology and Immunology, Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
11
|
Boda E, Buffo A. Beyond cell replacement: unresolved roles of NG2-expressing progenitors. Front Neurosci 2014; 8:122. [PMID: 24904264 PMCID: PMC4033196 DOI: 10.3389/fnins.2014.00122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/06/2014] [Indexed: 12/19/2022] Open
Abstract
NG2-expressing parenchymal precursors (NG2+p) serve as primary source of myelinating oligodendrocytes in both the developing and adult Central Nervous System (CNS). However, their abundance, limited differentiation potential at adult stages along with stereotypic reaction to injury independent of the extent of myelin loss suggest that NG2+p exert functions additional to myelin production. In support of this view, NG2+p express a complex battery of molecules known to exert neuromodulatory and neuroprotective functions. Further, they establish intimate physical associations with the other CNS cell types, receive functional synaptic contacts and possess ion channels apt to constantly sense the electrical activity of surrounding neurons. These latter features could endow NG2+p with the capability to affect neuronal functions with potential homeostatic outcomes. Here we summarize and discuss current evidence favoring the view that NG2+p can participate in circuit formation, modulate neuronal activity and survival in the healthy and injured CNS, and propose perspectives for studies that may complete our understanding of NG2+p roles in physiology and pathology.
Collapse
Affiliation(s)
- Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin Turin, Italy
| |
Collapse
|
12
|
Kleopa KA, Sargiannidou I, Markoullis K. Connexin pathology in chronic multiple sclerosis and experimental autoimmune encephalomyelitis. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/cen3.12055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kleopas A. Kleopa
- Neurology Clinics and Neuroscience Laboratory; The Cyprus Institute of Neurology and Genetics; Nicosia Cyprus
| | - Irene Sargiannidou
- Neurology Clinics and Neuroscience Laboratory; The Cyprus Institute of Neurology and Genetics; Nicosia Cyprus
| | - Kyriaki Markoullis
- Neurology Clinics and Neuroscience Laboratory; The Cyprus Institute of Neurology and Genetics; Nicosia Cyprus
| |
Collapse
|
13
|
Wicki-Stordeur LE, Dzugalo AD, Swansburg RM, Suits JM, Swayne LA. Pannexin 1 regulates postnatal neural stem and progenitor cell proliferation. Neural Dev 2012; 7:11. [PMID: 22458943 PMCID: PMC3390283 DOI: 10.1186/1749-8104-7-11] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/29/2012] [Indexed: 11/27/2022] Open
Abstract
Background Pannexin 1 forms ion and metabolite permeable hexameric channels and is abundantly expressed in the brain. After discovering pannexin 1 expression in postnatal neural stem and progenitor cells we sought to elucidate its functional role in neuronal development. Results We detected pannexin 1 in neural stem and progenitor cells in vitro and in vivo. We manipulated pannexin 1 expression and activity in Neuro2a neuroblastoma cells and primary postnatal neurosphere cultures to demonstrate that pannexin 1 regulates neural stem and progenitor cell proliferation likely through the release of adenosine triphosphate (ATP). Conclusions Permeable to ATP, a potent autocrine/paracine signaling metabolite, pannexin 1 channels are ideally suited to influence the behavior of neural stem and progenitor cells. Here we demonstrate they play a robust role in the regulation of neural stem and progenitor cell proliferation. Endogenous postnatal neural stem and progenitor cells are crucial for normal brain health, and their numbers decline with age. Furthermore, these special cells are highly responsive to neurological injury and disease, and are gaining attention as putative targets for brain repair. Therefore, understanding the fundamental role of pannexin 1 channels in neural stem and progenitor cells is of critical importance for brain health and disease.
Collapse
Affiliation(s)
- Leigh E Wicki-Stordeur
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | | | |
Collapse
|
14
|
Markoullis K, Sargiannidou I, Schiza N, Hadjisavvas A, Roncaroli F, Reynolds R, Kleopa KA. Gap junction pathology in multiple sclerosis lesions and normal-appearing white matter. Acta Neuropathol 2012; 123:873-86. [PMID: 22484441 DOI: 10.1007/s00401-012-0978-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 03/14/2012] [Accepted: 03/28/2012] [Indexed: 11/26/2022]
Abstract
Oligodendrocyte gap junctions (GJs) are vital for central nervous system myelination, but their involvement in multiple sclerosis (MS) pathology remains unknown. The aim of this study was to examine alterations of oligodendrocyte and related astrocyte GJs in MS lesions and normal-appearing white matter (NAWM). Post-mortem brain samples from 9 MS and 11 age-matched non-MS control patients were studied. Tissue sections that included both chronic active and inactive lesions were characterized neuropathologically with Luxol Fast Blue staining and immunostaining for myelin oligodendrocyte glycoprotein (MOG) and the microglial marker Iba1. We analyzed the expression of Cx32 and Cx47 in oligodendrocytes and of Cx43, the major astrocytic partner in oligodendrocyte-astrocyte (O/A) GJs by quantitative immunoblot and real-time PCR. Formation of GJ plaques was quantified by immunohistochemistry. Compared to control brains, both Cx32 and Cx47 GJ plaques and protein levels were reduced in and around MS lesions, while Cx43 was increased as part of astrogliosis. In the NAWM, Cx32 was significantly reduced along myelinated fibers whereas Cx47 showed increased expression mainly in oligodendrocyte precursor cells (OPCs). However, OPCs showed only limited connectivity to astrocytes. Cx43 showed modestly increased levels in MS NAWM compared to controls, while GJ plaque counts were unchanged. Our findings indicate that oligodendrocyte GJs are affected not only in chronic MS lesions but also in NAWM, where disruption of Cx32 GJs in myelinated fibers may impair myelin structure and function. Moreover, limited O/A GJ connectivity of recruited OPCs in the setting of persistent inflammation and astrogliosis may prevent differentiation and remyelination.
Collapse
Affiliation(s)
- Kyriaki Markoullis
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
| | | | | | | | | | | | | |
Collapse
|
15
|
Swayne LA, Wicki-Stordeur L. Ion channels in postnatal neurogenesis: potential targets for brain repair. Channels (Austin) 2012; 6:69-74. [PMID: 22614818 DOI: 10.4161/chan.19721] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neural stem and progenitor cells (NSC/NPCs) are unspecialized cells found in the adult peri-ventricular and sub-granular zones that are capable of self-renewal, migration, and differentiation into new neurons through the remarkable process of postnatal neurogenesis. We are now beginning to understand that the concerted action of ion channels, multi-pass transmembrane proteins that allow passage of ions across otherwise impermeable cellular membranes tightly regulate this process. Specific ion channels control proliferation, differentiation and survival. Furthermore, they have the potential to be highly selective drug targets due to their complex structures. As such, these proteins represent intriguing prospects for control and optimization of postnatal neurogenesis for neural regeneration following brain injury or disease. Here, we concentrate on ion channels identified in adult ventricular zone NSC/NPCs that have been found to influence the stages of neurogenesis. Finally, we outline the potential of these channels to elicit repair, and highlight the outstanding challenges.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- Division of Medical Sciences; Island Medical Program, University of Victoria, Victoria, BC, Canada.
| | | |
Collapse
|
16
|
Nualart-Marti A, Solsona C, Fields RD. Gap junction communication in myelinating glia. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:69-78. [PMID: 22326946 DOI: 10.1016/j.bbamem.2012.01.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/17/2012] [Accepted: 01/26/2012] [Indexed: 10/14/2022]
Abstract
Gap junction communication is crucial for myelination and axonal survival in both the peripheral nervous system (PNS) and central nervous system (CNS). This review examines the different types of gap junctions in myelinating glia of the PNS and CNS (Schwann cells and oligodendrocytes respectively), including their functions and involvement in neurological disorders. Gap junctions mediate intercellular communication among Schwann cells in the PNS, and among oligodendrocytes and between oligodendrocytes and astrocytes in the CNS. Reflexive gap junctions mediating transfer between different regions of the same cell promote communication between cellular compartments of myelinating glia that are separated by layers of compact myelin. Gap junctions in myelinating glia regulate physiological processes such as cell growth, proliferation, calcium signaling, and participate in extracellular signaling via release of neurotransmitters from hemijunctions. In the CNS, gap junctions form a glial network between oligodendrocytes and astrocytes. This transcellular communication is hypothesized to maintain homeostasis by facilitating restoration of membrane potential after axonal activity via electrical coupling and the re-distribution of potassium ions released from axons. The generation of transgenic mice for different subsets of connexins has revealed the contribution of different connexins in gap junction formation and illuminated new subcellular mechanisms underlying demyelination and cognitive defects. Alterations in metabolic coupling have been reported in animal models of X-linked Charcot-Marie-Tooth disease (CMTX) and Pelizaeus-Merzbarcher-like disease (PMLD), which are caused by mutations in the genes encoding for connexin 32 and connexin 47 respectively. Future research identifying the expression and regulation of gap junctions in myelinating glia is likely to provide a better understanding of myelinating glia in nervous system function, plasticity, and disease. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions.
Collapse
Affiliation(s)
- Anna Nualart-Marti
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.
| | | | | |
Collapse
|
17
|
Pettit AS, Desroches R, Bennett SAL. The opiate analgesic buprenorphine decreases proliferation of adult hippocampal neuroblasts and increases survival of their progeny. Neuroscience 2011; 200:211-22. [PMID: 22079577 DOI: 10.1016/j.neuroscience.2011.10.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 10/15/2011] [Accepted: 10/24/2011] [Indexed: 01/10/2023]
Abstract
Although opiate drugs of abuse have been shown to decrease adult hippocampal neurogenesis, the impact of opiate analgesics has not been tested. North American regulatory boards governing the ethical treatment of experimental animals require the administration of analgesics, such as buprenorphine, following minor surgical interventions. Here, we show that two commonly used post-operative buprenorphine dosing regimes significantly inhibit the proliferation of doublecortin-positive neuroblasts but not other hippocampal stem and progenitor cell populations in adult mice. Buprenorphine, administered in schedules of three 0.05 mg/kg subcutaneous injections over a single day or seven 0.05 mg/kg injections over a 3-day period decreased the number of actively proliferating 5-iodo-2'-deoxyuridine-labeled doublecortin-positive cells for up to 6 days after opiate withdrawal. The minimal (three injection), but not standard (seven injection), analgesic paradigm also reduced basal indices of hippocampal progenitor cell apoptosis and enhanced survival of newly born cells for up to 28 days. Taken together, these data provide the first evidence that the routine administration of opiate analgesics has transient but long-lasting effects on neurogenesis and further emphasize that analgesic dosage and schedule should be reported and considered when interpreting the magnitude of neural stem and progenitor cell activation in response to in vivo intervention.
Collapse
Affiliation(s)
- A S Pettit
- Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada
| | | | | |
Collapse
|
18
|
Maglione M, Tress O, Haas B, Karram K, Trotter J, Willecke K, Kettenmann H. Oligodendrocytes in mouse corpus callosum are coupled via gap junction channels formed by connexin47 and connexin32. Glia 2010; 58:1104-17. [PMID: 20468052 DOI: 10.1002/glia.20991] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
According to previously published ultrastructural studies, oligodendrocytes in white matter exhibit gap junctions with astrocytes, but not among each other, while in vitro oligodendrocytes form functional gap junctions. We have studied functional coupling among oligodendrocytes in acute slices of postnatal mouse corpus callosum. By whole-cell patch clamp we dialyzed oligodendrocytes with biocytin, a gap junction-permeable tracer. On average 61 cells were positive for biocytin detected by labeling with streptavidin-Cy3. About 77% of the coupled cells stained positively for the oligodendrocyte marker protein CNPase, 9% for the astrocyte marker GFAP and 14% were negative for both CNPase and GFAP. In the latter population, the majority expressed Olig2 and some NG2, markers for oligodendrocyte precursors. Oligodendrocytes are known to express Cx47, Cx32 and Cx29, astrocytes Cx43 and Cx30. In Cx47-deficient mice, the number of coupled cells was reduced by 80%. Deletion of Cx32 or Cx29 alone did not significantly reduce the number of coupled cells, but coupling was absent in Cx32/Cx47-double-deficient mice. Cx47-ablation completely abolished coupling of oligodendrocytes to astrocytes. In Cx43-deficient animals, oligodendrocyte-astrocyte coupling was still present, but coupling to oligodendrocyte precursors was not observed. In Cx43/Cx30-double deficient mice, oligodendrocyte-to-astrocyte coupling was almost absent. Uncoupled oligodendrocytes showed a higher input resistance. We conclude that oligodendrocytes in white matter form a functional syncytium predominantly among each other dependent on Cx47 and Cx32 expression, while astrocytic connexins expression can promote the size of this network.
Collapse
Affiliation(s)
- Marta Maglione
- Max-Delbrück-Center for Molecular Medicine, Cellular Neuroscience, 13092 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Parenti R, Cicirata F, Zappalà A, Catania A, La Delia F, Cicirata V, Tress O, Willecke K. Dynamic expression of Cx47 in mouse brain development and in the cuprizone model of myelin plasticity. Glia 2010; 58:1594-609. [DOI: 10.1002/glia.21032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Swayne LA, Sorbara CD, Bennett SAL. Pannexin 2 is expressed by postnatal hippocampal neural progenitors and modulates neuronal commitment. J Biol Chem 2010; 285:24977-86. [PMID: 20529862 DOI: 10.1074/jbc.m110.130054] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pannexins (Panx1, -2, and -3) are a mammalian family of putative single membrane channels discovered through homology to invertebrate gap junction-forming proteins, the innexins. Because connexin gap junction proteins are known regulators of neural stem and progenitor cell proliferation, migration, and specification, we asked whether pannexins, specifically Panx2, play a similar role in the postnatal hippocampus. We show that Panx2 protein is differentially expressed by multipotential progenitor cells and mature neurons. Both in vivo and in vitro, Type I and IIa stem-like neural progenitor cells express an S-palmitoylated Panx2 species localizing to Golgi and endoplasmic reticulum membranes. Protein expression is down-regulated during neurogenesis in neuronally committed Type IIb and III progenitor cells and immature neurons. Panx2 is re-expressed by neurons following maturation. Protein expressed by mature neurons is not palmitoylated and localizes to the plasma membrane. To assess the impact of Panx2 on neuronal differentiation, we used short hairpin RNA to suppress Panx2 expression in Neuro2a cells. Knockdown significantly accelerated the rate of neuronal differentiation. Neuritic extension and the expression of antigenic markers of mature neurons occurred earlier in stable lines expressing Panx2 short hairpin RNA than in controls. Together, these findings describe an endogenous post-translational regulation of Panx2, specific to early neural progenitor cells, and demonstrate that this expression plays a role in modulating the timing of their commitment to a neuronal lineage.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- Department of Biochemistry, Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1M 1E5, Canada.
| | | | | |
Collapse
|
21
|
Fowler SL, McLean AC, Bennett SAL. Tissue-specific cross-reactivity of connexin32 antibodies: problems and solutions unique to the central nervous system. CELL COMMUNICATION & ADHESION 2009; 16:117-30. [PMID: 19845480 DOI: 10.3109/15419060903267539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gap junction proteins are a highly homologous family of 21 connexins. Here, the authors describe a tissue-specific technical artifact complicating analysis of connexin32 protein expression in the central nervous system. The authors show that in brain, but not liver, eight commonly employed antibodies exhibit a higher affinity for a cross-reactive protein that masks the detection of connexin32. Cross-reactivity is evident in Western blot analyses when proteins are subjected to reducing/denaturing conditions but not immunoprecipitation or immunofluorescent applications. Through bioinformatic analyses, tested by sucrose gradient fractionation and immunoblotting of lysates from connexin null-mutant mice, the authors show that the cross-reactive protein is not found in the same cellular compartments as connexin32 and is likely not a member of the connexin family. These findings are presented with the intent of helping to reduce the amount of time laboratories currently expend in validating changes in connexin32 expression in the central nervous system.
Collapse
Affiliation(s)
- Stephanie L Fowler
- Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
22
|
Freidin M, Asche S, Bargiello TA, Bennett MVL, Abrams CK. Connexin 32 increases the proliferative response of Schwann cells to neuregulin-1 (Nrg1). Proc Natl Acad Sci U S A 2009; 106:3567-72. [PMID: 19218461 PMCID: PMC2651262 DOI: 10.1073/pnas.0813413106] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Indexed: 11/18/2022] Open
Abstract
Connexin 32 (Cx32), a gap junction protein, is found within the para-nodal region and Schmidt-Lanterman incisures of myelinating Schwann cells (SCs). In developing and regenerating peripheral nerves, pro-myelinating SCs express Cx32 mRNA and protein in conjunction with the expression of myelin specific genes. Neuregulin-1 (Nrg1), a member of the neuregulin family of growth factors, controls SC proliferation and differentiation depending on the cellular environment and the particular stage of SC maturation. Primary cultures of purified SCs from newborn mouse sciatic nerve were used to characterize both the role of Nrg1 in the expression of Cx32 and, conversely, the role of Cx32 in SC responsiveness to Nrg1. Glial growth factor 2, an isoform of Nrg1, up-regulated Cx32 in both proliferating and non-proliferating SCs. However, SCs from Cx32-KO mice exhibited a significantly smaller mitogenic response to glial growth factor 2. Electrical coupling between Cx32-KO SCs did not differ from that between WT SCs, indicating the presence of other connexins. These results suggest a link between Cx32 expression and Nrg1 regulation of SC proliferation that does not involve Cx32-mediated intercellular communication.
Collapse
Affiliation(s)
| | | | | | | | - Charles K. Abrams
- Department of Neurology and
- Department of Physiology and Pharmacology, State University of New York Downstate at Brooklyn, Brooklyn NY 10021; and
| |
Collapse
|
23
|
Imbeault S, Gauvin LG, Toeg HD, Pettit A, Sorbara CD, Migahed L, DesRoches R, Menzies AS, Nishii K, Paul DL, Simon AM, Bennett SA. The extracellular matrix controls gap junction protein expression and function in postnatal hippocampal neural progenitor cells. BMC Neurosci 2009; 10:13. [PMID: 19236721 PMCID: PMC2655299 DOI: 10.1186/1471-2202-10-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 02/24/2009] [Indexed: 11/23/2022] Open
Abstract
Background Gap junction protein and extracellular matrix signalling systems act in concert to influence developmental specification of neural stem and progenitor cells. It is not known how these two signalling systems interact. Here, we examined the role of ECM components in regulating connexin expression and function in postnatal hippocampal progenitor cells. Results We found that Cx26, Cx29, Cx30, Cx37, Cx40, Cx43, Cx45, and Cx47 mRNA and protein but only Cx32 and Cx36 mRNA are detected in distinct neural progenitor cell populations cultured in the absence of exogenous ECM. Multipotential Type 1 cells express Cx26, Cx30, and Cx43 protein. Their Type 2a progeny but not Type 2b and 3 neuronally committed progenitor cells additionally express Cx37, Cx40, and Cx45. Cx29 and Cx47 protein is detected in early oligodendrocyte progenitors and mature oligodendrocytes respectively. Engagement with a laminin substrate markedly increases Cx26 protein expression, decreases Cx40, Cx43, Cx45, and Cx47 protein expression, and alters subcellular localization of Cx30. These changes are associated with decreased neurogenesis. Further, laminin elicits the appearance of Cx32 protein in early oligodendrocyte progenitors and Cx36 protein in immature neurons. These changes impact upon functional connexin-mediated hemichannel activity but not gap junctional intercellular communication. Conclusion Together, these findings demonstrate a new role for extracellular matrix-cell interaction, specifically laminin, in the regulation of intrinsic connexin expression and function in postnatal neural progenitor cells.
Collapse
Affiliation(s)
- Sophie Imbeault
- Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, Dept. of Biochemistry, Microbiology, and Immunology, University of Ottawa, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Evidence is accumulating that some forms of cell death, like apoptosis, are not only governed by the complex interplay between extracellular and intracellular signals but are also strongly influenced by intercellular communicative networks. The latter is provided by arrays of channels consisting of connexin proteins, with gap junctions directly connecting the cytoplasm of neighboring cells and hemichannels positioned as pores that link the cytoplasm to the extracellular environment. The role of gap junctions in cell death communication has received considerable interest and recently hemichannels have joined in as potentially toxic pores adding their part to the cell death process. However, despite a large body of existing evidence, especially for gap junctions, the exact contribution of the connexin channel family still remains controversial, as both gap junctions and hemichannels may furnish cell death as well as cell survival signals. An additional layer of complexity is formed by the fact that connexin proteins as such, beyond their channel function, may influence the cell death process. We here review the current knowledge on connexins and their channels in cell death and specifically address the molecular mechanisms that underlie connexin-related signaling. We also briefly focus on pannexins, a novel set of connexin-like proteins that have been implicated in cellular responses to pathological insults.
Collapse
|
25
|
Weaver JGR, Tarze A, Moffat TC, Lebras M, Deniaud A, Brenner C, Bren GD, Morin MY, Phenix BN, Dong L, Jiang SX, Sim VL, Zurakowski B, Lallier J, Hardin H, Wettstein P, van Heeswijk RPG, Douen A, Kroemer RT, Hou ST, Bennett SAL, Lynch DH, Kroemer G, Badley AD. Inhibition of adenine nucleotide translocator pore function and protection against apoptosis in vivo by an HIV protease inhibitor. J Clin Invest 2005; 115:1828-38. [PMID: 15937550 PMCID: PMC1142110 DOI: 10.1172/jci22954] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 04/14/2005] [Indexed: 02/04/2023] Open
Abstract
Inhibitors of HIV protease have been shown to have antiapoptotic effects in vitro, yet whether these effects are seen in vivo remains controversial. In this study, we have evaluated the impact of the HIV protease inhibitor (PI) nelfinavir, boosted with ritonavir, in models of nonviral disease associated with excessive apoptosis. In mice with Fas-induced fatal hepatitis, Staphylococcal enterotoxin B-induced shock, and middle cerebral artery occlusion-induced stroke, we demonstrate that PIs significantly reduce apoptosis and improve histology, function, and/or behavioral recovery in each of these models. Further, we demonstrate that both in vitro and in vivo, PIs block apoptosis through the preservation of mitochondrial integrity and that in vitro PIs act to prevent pore function of the adenine nucleotide translocator (ANT) subunit of the mitochondrial permeability transition pore complex.
Collapse
Affiliation(s)
- Joel G R Weaver
- Division of General Surgery, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yang SR, Cho SD, Ahn NS, Jung JW, Park JS, Jo EH, Hwang JW, Jung JY, Kim TY, Yoon BS, Lee BH, Kang KS, Lee YS. Role of gap junctional intercellular communication (GJIC) through p38 and ERK1/2 pathway in the differentiation of rat neuronal stem cells. J Vet Med Sci 2005; 67:291-4. [PMID: 15805733 DOI: 10.1292/jvms.67.291] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gap junctional intercellular communications (GJIC) contributes to neural function in development and differentiation of CNS. In this study, we have investigated the expression of GJIC during the differentiation of neuronal stem cells and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neuronal stem cell-derived cells from rat brain. During neuronal stem cell differentiation, expressions of Cx43 and 32 were increased for the duration of 72 hr, however the effect were decreased on the 7d. In the neuronal stem cell-derived cells, pretreatments with p38 MAP kinase inhibitor, SB203580, and MEK inhibitor, PD98059, could protect GJIC against TPA-induced inhibition of GJIC. Our data suggest that GJIC plays an important role during neuronal stem cell differentiation, and ERK1/2 and p38 MAP kinase signaling pathway may be closely related functionally to regulate gap junction in rat neuronal stem cell-derived cells.
Collapse
Affiliation(s)
- Se-Ran Yang
- Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cheng A, Tang H, Cai J, Zhu M, Zhang X, Rao M, Mattson MP. Gap junctional communication is required to maintain mouse cortical neural progenitor cells in a proliferative state. Dev Biol 2004; 272:203-16. [PMID: 15242801 DOI: 10.1016/j.ydbio.2004.04.031] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2003] [Revised: 04/20/2004] [Accepted: 04/29/2004] [Indexed: 11/21/2022]
Abstract
The mechanisms that determine whether neural stem cells remain in a proliferative state or differentiate into neurons or glia are largely unknown. Here we establish a pivotal role for gap junction-mediated intercellular communication in determining the proliferation and survival of mouse neural progenitor cells (NPCs). When cultured in the presence of basic fibroblast growth factor (bFGF), NPCs express the gap junction protein connexin 43 and are dye-coupled. Upon withdrawal of bFGF, levels of connexin 43 and dye coupling decrease, and the cells cease proliferating and differentiate into neurons; the induction of gap junctions by bFGF is mediated by p42/p44 mitogen-activated protein kinases. Inhibition of gap junctions abolishes the ability of bFGF to maintain NPCs in a proliferative state resulting in cell differentiation or cell death, while overexpression of connexin 43 promotes NPC self-renewal in the absence of bFGF. In addition to promoting their proliferation, gap junctions are required for the survival of NPCs. Gap junctional communication is therefore both necessary and sufficient to maintain NPCs in a self-renewing state.
Collapse
Affiliation(s)
- Aiwu Cheng
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Nakase T, Naus CCG. Gap junctions and neurological disorders of the central nervous system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1662:149-58. [PMID: 15033585 DOI: 10.1016/j.bbamem.2004.01.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 01/14/2004] [Accepted: 01/22/2004] [Indexed: 11/26/2022]
Abstract
Gap junctions are intercellular channels which directly connect the cytoplasm between neighboring cells. In the central nervous system (CNS) various kinds of cells are coupled by gap junctions, which play an important role in maintaining normal function. Neuronal gap junctions are involved in electrical coupling and may also contribute to the recovery of function after cell injury. Astrocytes are involved in the pathology of most neuronal disorders, including brain ischemia, Alzheimer's disease and epilepsy. In the pathology of brain tumors, gap junctions may be related to the degree of malignancy and metastasis. However, the role of connexins, gap junctions and hemichannels in the pathology of the diseases in the CNS is still ambiguous. Of increasing importance is the unraveling of the function of gap junctions in the neural cell network, involving neurons, astrocytes, microglia and oligodendrocytes. A better understanding of the role of gap junctions may contribute to the development of new therapeutic approaches to treating diseases of the CNS.
Collapse
Affiliation(s)
- Taizen Nakase
- Department of Anatomy and Cell Biology, University of British Columbia, 313-2177 Wesbrook Mall, Vancouver BC, Canada V6T 1Z3
| | | |
Collapse
|