1
|
De-la-Torre P, Martínez-García C, Gratias P, Mun M, Santana P, Akyuz N, González W, Indzhykulian AA, Ramírez D. Identification of druggable binding sites and small molecules as modulators of TMC1. Commun Biol 2025; 8:742. [PMID: 40360848 PMCID: PMC12075566 DOI: 10.1038/s42003-025-07943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 03/17/2025] [Indexed: 05/15/2025] Open
Abstract
Our ability to hear and maintain balance relies on the proper functioning of inner ear sensory hair cells, which translate mechanical stimuli into electrical signals via mechano-electrical transducer (MET) channels, composed of TMC1/2 proteins. However, the therapeutic use of ototoxic drugs, such as aminoglycosides and cisplatin, which can enter hair cells through MET channels, often leads to profound auditory and vestibular dysfunction. To date, our understanding of how small-molecule modulators interact with TMCs remains limited, hampering the discovery of novel drugs. Here, we propose a structure-based drug screening approach, integrating 3D-pharmacophore modeling, molecular dynamics simulations of the TMC1 + CIB2 + TMIE complex, and experimental validation. Our pipeline successfully identified three potential drug-binding sites within the TMC1 pore, phospholipids, and key amino acids involved in the binding of several compounds, as well as FDA-approved drugs that reduced dye uptake in cultured cochlear explants. Our pipeline offers a broad application for discovering modulators for mechanosensitive ion channels.
Collapse
Affiliation(s)
- Pedro De-la-Torre
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Mass Eye and Ear, Boston, MA, USA.
- Facultad de Ciencias Básicas, Universidad del Atlántico, Barranquilla, Colombia.
- Life Sciences Research Center, Universidad Simón Bolívar, Barranquilla, Colombia.
| | - Claudia Martínez-García
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Paul Gratias
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Mass Eye and Ear, Boston, MA, USA
| | - Matthew Mun
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Mass Eye and Ear, Boston, MA, USA
- Speech and Hearing Bioscience & Technology Program, Division of Medical Sciences, Harvard University, Boston, MA, USA
| | - Paula Santana
- Facultad de Ingeniería, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Santiago, Chile
| | - Nurunisa Akyuz
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Wendy González
- Center for Bioinformatics, Simulations and Modelling (CBSM), University of Talca, Talca, Chile
| | - Artur A Indzhykulian
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Mass Eye and Ear, Boston, MA, USA.
- Speech and Hearing Bioscience & Technology Program, Division of Medical Sciences, Harvard University, Boston, MA, USA.
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
2
|
Vitry S, Mendia C, Maudoux A, El-Amraoui A. Advancing precision ear medicine: leveraging animal models for disease insights and therapeutic innovations. Mamm Genome 2025:10.1007/s00335-025-10126-y. [PMID: 40263131 DOI: 10.1007/s00335-025-10126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Gene therapy offers significant promise for treating inner ear disorders, but its clinical translation requires robust preclinical validation, often reliant on animal models. This review examines the role of these models in advancing gene therapeutics for inherited inner ear disorders, focusing on successes, challenges, and treatment solutions. By providing a precise understanding of disease mechanisms, these models offer a versatile preclinical platform that is essential for assessing and validating therapies. Successful gene supplementation and editing have shown potential in restoring hearing and balance functions and preventing their decline. However, challenges such as limitations in gene delivery methods, surgical access, immune responses, and discrepancies in disease manifestation between animal models and humans hinder clinical translation. Current efforts are dedicated to developing innovative strategies aimed at enhancing the efficiency of gene delivery, overcoming physical barriers such as the blood-labyrinth barrier, improving target specificity, and maximizing therapeutic efficacy while minimizing adverse immune responses. Diverse gene supplementation and editing strategies, along with evolving technologies, hold promise for maximizing therapeutic outcomes using disease relevant models. The future of inner ear gene therapeutics will hinge on personalized therapies and team science fueling interdisciplinary collaborations among researchers, clinicians, companies, and regulatory agencies to expedite the translation from bench to bedside and unlock the immense potential of precision medicine in the inner ear.
Collapse
Affiliation(s)
- Sandrine Vitry
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France.
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Paris, France.
| | - Clara Mendia
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France
- Collège Doctoral, Sorbonne Université, 75005, Paris, France
| | - Audrey Maudoux
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France
- Otolaryngology Department, Assistance Publique des Hôpitaux de Paris, Robert Debré University Hospital-APHP, Paris, France
| | - Aziz El-Amraoui
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France.
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Paris, France.
| |
Collapse
|
3
|
Su D, Lu S, Zheng L, Liu D. Tekt3 Safeguards Proper Functions and Morphology of Neuromast Hair Bundles. Int J Mol Sci 2025; 26:3115. [PMID: 40243732 PMCID: PMC11989051 DOI: 10.3390/ijms26073115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
The inner ear and/or lateral line are responsible for hearing and balance of vertebrate. The otic sensory hair cells (HCs) employ cilium organelles, namely stereocilia and/or kinocilia, to mediate mechanical stimuli to electrical signal transition. Tektins (Tekts) are known as the cilium microtubule stabilizer and inner-space filler, and four Tekt(1-4)-encoding genes are identified in zebrafish HCs, but the subcellular location of Tekts in HCs remains unknown. In the present study, we first found that tekt3 is expressed in the inner ear and lateral line neuromast. Antibody staining revealed that Tekt3 is present in neuromast and utricular HCs. It is absent in the saccule, the authentic hearing end-organ of zebrafish and the crista of semi-circular canals. Furthermore, Tekt3 were enriched at the apical side of neuromast and utricular HCs, mainly in the cytosol. Similar subcellular distribution of Tekt3 was also evident in the outer HCs of mature mouse cochlea, which are not directly linked to the hearing sense. However, only neuromast HCs exerted morphological defect of kinocilia in tekt3 mutant. The disrupted or distorted HC kinocilia of mutant neuromast ultimately resulted in slower vital dye intake, delayed HC regeneration after neomycin treatment, and reduced startle response to vibration stimulation. All functional defects of tekt3 mutant were largely rescued by wild-type tekt3 mRNA. Our study thus suggests that zebrafish Tekt3 maintains the integrity and function of neuromast kinocilia to against surrounding and persistent low-frequency noises, perhaps via the intracellular distribution of Tekt3. Nevertheless, TEKT3/Tekt3 could be used to clarify HC sub-types in both zebrafish and mice, to highlight the non-hearing HCs.
Collapse
Affiliation(s)
- Dongmei Su
- Department of Neuroscience, School of Life Sciences, Shenzhen 518055, China; (D.S.); (S.L.)
| | - Sirun Lu
- Department of Neuroscience, School of Life Sciences, Shenzhen 518055, China; (D.S.); (S.L.)
| | - Ling Zheng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Dong Liu
- Department of Neuroscience, School of Life Sciences, Shenzhen 518055, China; (D.S.); (S.L.)
| |
Collapse
|
4
|
Adamczyk NS, Ishihara S, Obeidat AM, Ren D, Miller RJ, Malfait AM, Miller RE. FM-dye inhibition of Piezo2 relieves acute inflammatory and osteoarthritis knee pain in mice of both sexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643683. [PMID: 40166233 PMCID: PMC11956942 DOI: 10.1101/2025.03.17.643683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Musculoskeletal pain is a significant burden affecting billions of people with little progress in the development of pharmaceutical pain relief options. The mechanically-activated ion channel Piezo2 has been shown to play a role in mechanical sensitization; however there has been little progress in examining therapeutics that target this molecule. The goal of this study was to assess the effect of two FM-dyes, FM1-43 or FM4-64, in reducing acute inflammatory and osteoarthritis knee joint pain in mice of both sexes. In our acute model of Complete Freund's adjuvant (CFA)-induced joint pain, mice intra-articularly injected with FM1-43 exhibited an attenuation of knee hyperalgesia 90 minutes following injection. In vivo calcium imaging of the dorsal root ganglion (DRG) also demonstrated a reduction in nociceptor responses to mechanical forces applied to the knee joint of CFA mice following FM-dye injection. Male and female WT mice subjected to partial medial meniscectomy (PMX) surgery as a model of osteoarthritis developed more severe knee hyperalgesia than nociceptor-specific Piezo2 conditional knock-out mice. Intra-articular injection of FM1-43 reduced both knee hyperalgesia and weight-bearing asymmetry in this model and had no effect in Piezo2 conditional knock-out mice. Finally, in mice with spontaneous osteoarthritis associated with aging, intra-articular injection of FM-dyes also reduced knee hyperalgesia. In conclusion, inhibiting Piezo2 genetically or pharmacologically was effective in reducing pain-related behaviors in mice of both sexes in the setting of inflammatory and osteoarthritis knee pain. These studies provide evidence of the therapeutic potential of targeting Piezo2 in musculoskeletal pain conditions.
Collapse
Affiliation(s)
- Natalie S. Adamczyk
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL USA
| | - Shingo Ishihara
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL USA
| | - Alia M. Obeidat
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL USA
| | - Dongjun Ren
- Chicago Center on Musculoskeletal Pain, Chicago, IL USA
- Northwestern University, Department of Pharmacology, Chicago, IL USA
| | - Richard J. Miller
- Chicago Center on Musculoskeletal Pain, Chicago, IL USA
- Northwestern University, Department of Pharmacology, Chicago, IL USA
| | - Anne-Marie Malfait
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL USA
| | - Rachel E. Miller
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL USA
| |
Collapse
|
5
|
Giese APJ, Weng WH, Kindt KS, Chang HHV, Montgomery JS, Ratzan EM, Beirl AJ, Aponte Rivera R, Lotthammer JM, Walujkar S, Foster MP, Zobeiri OA, Holt JR, Riazuddin S, Cullen KE, Sotomayor M, Ahmed ZM. Complexes of vertebrate TMC1/2 and CIB2/3 proteins form hair-cell mechanotransduction cation channels. eLife 2025; 12:RP89719. [PMID: 39773557 PMCID: PMC11709434 DOI: 10.7554/elife.89719] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Calcium and integrin-binding protein 2 (CIB2) and CIB3 bind to transmembrane channel-like 1 (TMC1) and TMC2, the pore-forming subunits of the inner-ear mechano-electrical transduction (MET) apparatus. These interactions have been proposed to be functionally relevant across mechanosensory organs and vertebrate species. Here, we show that both CIB2 and CIB3 can form heteromeric complexes with TMC1 and TMC2 and are integral for MET function in mouse cochlea and vestibular end organs as well as in zebrafish inner ear and lateral line. Our AlphaFold 2 models suggest that vertebrate CIB proteins can simultaneously interact with at least two cytoplasmic domains of TMC1 and TMC2 as validated using nuclear magnetic resonance spectroscopy of TMC1 fragments interacting with CIB2 and CIB3. Molecular dynamics simulations of TMC1/2 complexes with CIB2/3 predict that TMCs are structurally stabilized by CIB proteins to form cation channels. Overall, our work demonstrates that intact CIB2/3 and TMC1/2 complexes are integral to hair-cell MET function in vertebrate mechanosensory epithelia.
Collapse
Affiliation(s)
- Arnaud PJ Giese
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of MedicineBaltimoreUnited States
| | - Wei-Hsiang Weng
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
- Biophysics Graduate Program, The Ohio State UniversityColumbusUnited States
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | | | - Jonathan S Montgomery
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
- Ohio State Biochemistry Program, The Ohio State UniversityColumbusUnited States
| | - Evan M Ratzan
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Alisha J Beirl
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Roberto Aponte Rivera
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Jeffrey M Lotthammer
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
| | - Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
- Biophysics Graduate Program, The Ohio State UniversityColumbusUnited States
- Ohio State Biochemistry Program, The Ohio State UniversityColumbusUnited States
| | - Omid A Zobeiri
- Department of Biomedical Engineering, McGill UniversityMontrealCanada
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of MedicineBaltimoreUnited States
| | - Kathleen E Cullen
- Departments of Biomedical Engineering, Neuroscience, and Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
- Biophysics Graduate Program, The Ohio State UniversityColumbusUnited States
- Ohio State Biochemistry Program, The Ohio State UniversityColumbusUnited States
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of MedicineBaltimoreUnited States
- Department of Biochemistry and Molecular Biology, University of Maryland School of MedicineBaltimoreUnited States
- Department of Ophthalmology and Visual Sciences, University of Maryland School of MedicineBaltimoreUnited States
| |
Collapse
|
6
|
Gu Y, Ohgami N, He T, Kagawa T, Kurniasari F, Tong K, Li X, Tazaki A, Takeda K, Mouri M, Kato M. Just 1-min exposure to a pure tone at 100 Hz with daily exposable sound pressure levels may improve motion sickness. Environ Health Prev Med 2025; 30:22. [PMID: 40128952 PMCID: PMC11955832 DOI: 10.1265/ehpm.24-00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Motion sickness is a common transportation issue worldwide. Vestibular dysfunction has been reported to be a key etiology of motion sickness. However, there are limited technologies for alleviating motion sickness. METHODS The most appropriate frequency (Hz) and level (dBZ) of pure tone for modulation of vestibular function were determined by an ex vivo study using murine utricle explants. The preventive effects of the selected pure tone on motion sickness were then confirmed by using a beam balance test in mice. The alleviating effects of pure tone on motion sickness induced by a swing, driving simulator or real car were objectively assessed by using posturography and electrocardiography (ECG) and were subjectively assessed by using the Motion Sickness Assessment Questionnaire (MSAQ) in humans. RESULTS The effect of short-term (≤5 min) exposure to a pure tone of 80-85 dBZ (= 60.9-65.9 dBA) at 100 Hz on motion sickness was investigated in mice and humans. A mouse study showed a long-lasting (≥120 min) alleviative effect on shaking-mediated exacerbated beam test scores by 5-min exposure to a pure tone of 85 dBZ at 100 Hz, which was ex vivo determined as a sound activating vestibular function, before shaking. Human studies further showed that 1-min exposure to a pure tone of 80-85 dBZ (= 60.9-65.9 dBA) at 100 Hz before shaking improved the increased envelope areas in posturography caused by the shakings of a swing, a driving simulator and a vehicle. Driving simulator-mediated activation of sympathetic nerves assessed by the heart rate variable (HRV) and vehicle-mediated increased scores of the MSAQ were improved by pure tone exposure before the shaking. CONCLUSION Since the exacerbated results of posturography and HRV reflect shaking-mediated imbalance and autonomic dysfunction, respectively, the results suggest that the imbalance and autonomic dysregulation in motion sickness could be improved by just 1-min exposure to a pure tone with daily exposable sound pressure levels. TRIAL REGISTRATION Registration number: UMIN000022413 (2016/05/23-2023/04/19) and UMIN000053735 (2024/02/29-present).
Collapse
Affiliation(s)
- Yishuo Gu
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Nobutaka Ohgami
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tingchao He
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takumi Kagawa
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Fitri Kurniasari
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Keming Tong
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Xiang Li
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Akira Tazaki
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Activities of the Institute of Innovation for Future Society of Nagoya University
| | | | - Masahiro Mouri
- Activities of the Institute of Innovation for Future Society of Nagoya University
- DENSO CORPORATION, Kariya, Aichi, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Activities of the Institute of Innovation for Future Society of Nagoya University
| |
Collapse
|
7
|
De-la-Torre P, Martínez-García C, Gratias P, Mun M, Santana P, Akyuz N, González W, Indzhykulian AA, Ramírez D. Identification of Druggable Binding Sites and Small Molecules as Modulators of TMC1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583611. [PMID: 38826329 PMCID: PMC11142246 DOI: 10.1101/2024.03.05.583611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Our ability to hear and maintain balance relies on the proper functioning of inner ear sensory hair cells, which translate mechanical stimuli into electrical signals via mechano-electrical transducer (MET) channels, composed of TMC1/2 proteins. However, the therapeutic use of ototoxic drugs, such as aminoglycosides and cisplatin, which can enter hair cells through MET channels, often leads to profound auditory and vestibular dysfunction. Despite extensive research on otoprotective compounds targeting MET channels, our understanding of how small-molecule modulators interact with these channels remains limited, hampering the discovery of novel drugs. Here, we propose a structure-based screening approach, integrating 3D-pharmacophore modeling, molecular dynamics simulations of the TMC1+CIB2+TMIE complex, and experimental validation. Our pipeline successfully identified several novel compounds and FDA-approved drugs that reduced dye uptake in cultured cochlear explants, indicating MET-modulation activity. Simulations, molecular docking and free-energy estimations allowed us to identify three potential drug-binding sites within the channel pore, phospholipids, key amino acids involved in modulator interactions, and TMIE as a flexible component of the MET complex. We also identified shared ligand-binding features between TMC and structurally related TMEM16 proteins, providing novel insights into their distinct inhibition. Our pipeline offers a broad application for discovering modulators for mechanosensitive ion channels.
Collapse
Affiliation(s)
- Pedro De-la-Torre
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Mass Eye and Ear, Boston, MA, USA
| | - Claudia Martínez-García
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Paul Gratias
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Mass Eye and Ear, Boston, MA, USA
| | - Matthew Mun
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Mass Eye and Ear, Boston, MA, USA
| | - Paula Santana
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago, Chile
| | - Nurunisa Akyuz
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Wendy González
- Center for Bioinformatics and Molecular Simulations (CBSM), University of Talca, Talca 3460000, Chile
| | - Artur A. Indzhykulian
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Mass Eye and Ear, Boston, MA, USA
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| |
Collapse
|
8
|
Ni Z, Neifert C, Rosete A, Albeely AM, Yang Y, Pratelli M, Brecht M, Clemens AM. Tactile mechanisms and afferents underlying the rat pup transport response. Curr Biol 2024; 34:5595-5601.e2. [PMID: 39500320 PMCID: PMC11614678 DOI: 10.1016/j.cub.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/13/2024]
Abstract
Juvenile rodents and other altricial mammals react with calming, immobility, and postural modifications to parental pickup, a set of behaviors referred to as the transport response.1,2,3,4,5 Here, we investigate sensory mechanisms underlying the rat transport response. Grasping rat pups in anterior neck positions evokes strong immobility and folding up of feet, whereas more posterior grasping has lesser effects on immobility and foot position. Transport responses are enhanced by slow (1 Hz), and even more so by fast (4 Hz), gentle shaking and translation, features consistent with parental transport. With lateral grasping, the forepaw below the grasping position points downward and the forepaw lateral to the grasping position points upward and medially. Such forepaw adjustments put the pup's center of gravity below the grasping point, optimizing pup transportability. Tactile stimuli on the back, belly, tail, whisker, dorsal forepaws, and dorsal hind-paws do not significantly affect behavior of anterior-neck-held pups. Instead, ground contact, or paw stimulation consistent with ground contact, disrupts transport responses. We identify afferents mediating transport response by examining membrane labeling with FM 1-436 following anterior neck grasping. We observe a dense innervation of the anterior-neck-skin region (∼30 terminals/mm2). We find an age-related decrease of cytochrome oxidase reactivity in the rat somatosensory cortical neck representation, a possible correlate to developmental decrease in pup transport response. We conclude that anterior neck grasping and loss of ground contact trigger calming and postural adjustments for parental transport in rat pups, responses putatively driven from the densely innervated anterior neck skin.
Collapse
Affiliation(s)
- Zheyi Ni
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA; Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Connor Neifert
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA; Department of Bioengineering, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Arturo Rosete
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA; Division of Biological Sciences, University of Missouri, Columbia, MO 65201, USA
| | - Abdalla M Albeely
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA; Department of Anatomy and Cell Biology, Schulich School of Medicine, Western University, London, ON N6A 5C1, Canada
| | - Yu Yang
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA; Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Marta Pratelli
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA; Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093-0955, USA; Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92093-0955, USA
| | - Michael Brecht
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA; Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Philippstr. 13 Haus 6, 10115 Berlin, Germany
| | - Ann M Clemens
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA; University of Edinburgh, Simons Initiative for the Developing Brain, 1 George Square, EH8 9JZ Edinburgh, Scotland, United Kingdom.
| |
Collapse
|
9
|
Buonfiglio P, Bruque C, Salatino L, Lotersztein V, Pace M, Grinberg S, Elgoyhen A, Plazas P, Dalamón V. In silico and in vivo analyses of a novel variant in MYO6 identified in a family with postlingual non-syndromic hearing loss from Argentina. NAR Genom Bioinform 2024; 6:lqae162. [PMID: 39664812 PMCID: PMC11632615 DOI: 10.1093/nargab/lqae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024] Open
Abstract
Hereditary hearing loss stands as the most prevalent sensory disorder, with over 124 non-syndromic genes and approximately 400 syndromic forms of deafness identified in humans. The clinical presentation of these conditions spans a spectrum, ranging from mild to profound hearing loss. The aim of this study was to identify the genetic cause of hearing loss in a family and functionally validate a novel variant identified in the MYO6 gene. After Whole Exome Sequencing analysis, the variant c.2775G>C p.Arg925Ser in MYO6 was detected in a family with postlingual non-syndromic hearing loss. By protein modeling a change in the electrostatic charge of the single alpha helix domain surface was revealed. Through a knockdown phenotype rescue assay in zebrafish, the detrimental effects of the identified variant on the auditory system was determined. These findings underscore the significance of a comprehensive approach, integrating both in silico and in vivo strategies, to ascertain the pathogenicity of this candidate variant. Such an approach has demonstrated its effectiveness in achieving an accurate genetic diagnosis and in promoting a more profound comprehension of the mechanisms that underlie the pathophysiology of hearing.
Collapse
Affiliation(s)
- Paula I Buonfiglio
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, C1428ADN, Argentina
| | - Carlos D Bruque
- Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad SAMIC, El Calafate, Provincia de Santa Cruz, 9405, Argentina
| | - Lucía Salatino
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Vanesa Lotersztein
- Servicio de Genética, Hospital Militar Central “Dr. Cosme Argerich”, Ciudad Autónoma de Buenos Aires, C1426, Argentina
| | - Mariela Pace
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, C1428ADN, Argentina
| | - Sofia Grinberg
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, C1428ADN, Argentina
| | - Ana B Elgoyhen
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, C1428ADN, Argentina
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Paola V Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Viviana Dalamón
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, C1428ADN, Argentina
| |
Collapse
|
10
|
Zheng H, Zhu R, Zhang Y, Liu K, Xia Q, Li P, Sun X, Sun C, Zhang S. Protective Effect of Marine Peptide from Netunea arthritica cumingii Against Gentamicin-Induced Hair Cell Damage in Zebrafish. Mar Drugs 2024; 22:519. [PMID: 39590799 PMCID: PMC11595687 DOI: 10.3390/md22110519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Auditory hair cell damage induced by aminoglycoside antibiotics (AmAn) leads to hearing loss, which has a serious effect on people's mental and physical health. This ototoxicity is thought to be related with the excessive accumulation of reactive oxygen species (ROS) in hair cells. However, therapeutic agents that protect hair cells are limited. Marine peptides have been shown to have excellent potential applications in disease prevention and treatment. Therefore, this study investigated the protective effects of an active peptide from Neptunea arthritica cumingii against AmAn-induced hair cell damage using the model of hair cell damage zebrafish. We identified the number, ultrastructure, and function of hair cells using fluorescence probes and scanning electron microscopy. The uptake of AmAn, ROS level, mitochondrial permeability transition pore, and apoptosis in hair cells were also tested by fluorescence labeling and TUNEL assay. The molecular mechanism for hair cell protection exerted by the peptide was detected by a real-time quantitative PCR assay. The results indicated that the peptide suppressed the uptake of AmAn but did not damage the function of hair cells mediating hearing. It also prevented ROS accumulation, decreased the occurrence of apoptosis, and rescued the abnormal opening and expressions of mitochondrial permeability transition pore and genes related to antioxidants. The peptide may be an effective therapeutic agent for AmAn-induced ototoxicity. In the future, we plan to use mammalian models to further investigate the otoprotective effect of the peptide.
Collapse
Affiliation(s)
- Hongbao Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Ranran Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Peihai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Xiaoyue Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| |
Collapse
|
11
|
Boldizar H, Friedman A, Stanley T, Padilla M, Galdieri J, Sclar A, Stawicki TM. The role of cilia in the development, survival, and regeneration of hair cells. Biol Open 2024; 13:bio061690. [PMID: 39263863 PMCID: PMC11413933 DOI: 10.1242/bio.061690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
Mutations impacting cilia genes lead to a class of human diseases known as ciliopathies. This is due to the role of cilia in the development, survival, and regeneration of many cell types. We investigated the extent to which disrupting cilia impacted these processes in lateral line hair cells of zebrafish. We found that mutations in two intraflagellar transport (IFT) genes, ift88 and dync2h1, which lead to the loss of kinocilia, caused increased hair cell apoptosis. IFT gene mutants also have a decreased mitochondrial membrane potential, and blocking the mitochondrial uniporter causes a loss of hair cells in wild-type zebrafish but not mutants, suggesting mitochondria dysfunction may contribute to the apoptosis seen in these mutants. These mutants also showed decreased proliferation during hair cell regeneration but did not show consistent changes in support cell number or proliferation during hair cell development. These results show that the loss of hair cells seen following disruption of cilia through either mutations in anterograde or retrograde IFT genes appears to be due to impacts on hair cell survival but not necessarily development in the zebrafish lateral line.
Collapse
Affiliation(s)
- Hope Boldizar
- Neuroscience Program, Lafayette College, Easton, PA 18042, USA
| | - Amanda Friedman
- Neuroscience Program, Lafayette College, Easton, PA 18042, USA
| | - Tess Stanley
- Neuroscience Program, Lafayette College, Easton, PA 18042, USA
| | - María Padilla
- Biology Department, Lafayette College, Easton, PA 18042, USA
| | | | - Arielle Sclar
- Neuroscience Program, Lafayette College, Easton, PA 18042, USA
| | | |
Collapse
|
12
|
Xie N, Landin Malt A, Adylkhan A, Rodeman N, Moraes Borges R, Hwang D, Liu A, Smith C, Hogan A, Lu X. Wnt7b acts in concert with Wnt5a to regulate tissue elongation and planar cell polarity via noncanonical Wnt signaling. Proc Natl Acad Sci U S A 2024; 121:e2405217121. [PMID: 39172791 PMCID: PMC11363310 DOI: 10.1073/pnas.2405217121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Intercellular signaling mediated by evolutionarily conserved planar cell polarity (PCP) proteins aligns cell polarity along the tissue plane and drives polarized cell behaviors during tissue morphogenesis. Accumulating evidence indicates that the vertebrate PCP pathway is regulated by noncanonical, β-catenin-independent Wnt signaling; however, the signaling components and mechanisms are incompletely understood. In the mouse hearing organ, both PCP and noncanonical Wnt (ncWnt) signaling are required in the developing auditory sensory epithelium to control cochlear duct elongation and planar polarity of resident sensory hair cells (HCs), including the shape and orientation of the stereociliary hair bundle essential for sound detection. We have recently discovered a Wnt/G-protein/PI3K pathway that coordinates HC planar polarity and intercellular PCP signaling. Here, we identify Wnt7b as a ncWnt ligand acting in concert with Wnt5a to promote tissue elongation in diverse developmental processes. In the cochlea, Wnt5a and Wnt7b are redundantly required for cochlear duct coiling and elongation, HC planar polarity, and asymmetric localization of core PCP proteins Fzd6 and Dvl2. Mechanistically, Wnt5a/Wnt7b-mediated ncWnt signaling promotes membrane recruitment of Daple, a nonreceptor guanine nucleotide exchange factor for Gαi, and activates PI3K/AKT and ERK signaling, which promote asymmetric Fzd6 localization. Thus, ncWnt and PCP signaling pathways have distinct mutant phenotypes and signaling components, suggesting that they act as separate, parallel pathways with nonoverlapping functions in cochlear morphogenesis. NcWnt signaling drives tissue elongation and reinforces intercellular PCP signaling by regulating the trafficking of PCP-specific Frizzled receptors.
Collapse
Affiliation(s)
- Nicholas Xie
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA22908
| | - Andre Landin Malt
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA22908
| | - Aray Adylkhan
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA22908
| | - Natalie Rodeman
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA22908
| | - Ricardo Moraes Borges
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA22908
| | - Diane Hwang
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA22908
| | - Alice Liu
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA22908
| | - Connor Smith
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA22908
| | - Arielle Hogan
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA22908
| | - Xiaowei Lu
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA22908
| |
Collapse
|
13
|
Ni Z, Neifert C, Rosete A, Albeely AM, Yang Y, Pratelli M, Brecht M, Clemens AM. Tactile Mechanisms and Afferents Underlying the Rat Pup Transport Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609194. [PMID: 39229029 PMCID: PMC11370612 DOI: 10.1101/2024.08.23.609194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Juvenile rodents and other altricial mammals react with calming, immobility and folding up of feet to parental pickup, a set of behaviors referred to as transport response. Here we investigate sensory mechanisms underlying the rat transport response. Grasping rat pups in anterior neck positions evokes strong immobility and folding up of feet, whereas more posterior grasping positions have lesser effects on immobility and foot position. Transport responses are enhanced by slow (1Hz) and even more so by fast (4Hz) gentle shaking and translation of the pup, features consistent with parental transport. In response to lateral grasping, the forepaw below the grasping position points downwards and the forepaw lateral to the grasping position points upwards and medially. Such forepaw adjustments put the pup's center of gravity below the grasping point, optimizing pup transportability along with folding up of feet and tail lifting. Tactile stimuli on the back, belly, tail, whisker, dorsal forepaws and dorsal hind-paws do not significantly affect the behaviour of anterior-neck-held pups. Instead, ground contact or paw stimulation consistent with ground contact disrupts transport responses. We identify afferents mediating the transport response by examining membrane labelling with FM1-43 following anterior neck grasping. We observe a dense innervation of the anterior neck skin region (~30 terminals/ mm2). We also observed an age-related decrease of cytochrome oxidase reactivity in the rat somatosensory cortical neck representation, a possible correlate to the developmental decrease in the pup transport response. We conclude anterior neck grasping and loss of ground contact trigger calming and postural adjustments for parental transport in rat pups, responses putatively driven from the densely innervated anterior neck skin.
Collapse
Affiliation(s)
- Zheyi Ni
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543 USA
- Zhejiang University, China
| | - Connor Neifert
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543 USA
- University of Texas at Dallas, USA
| | - Arturo Rosete
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543 USA
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Abdalla M Albeely
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543 USA
- Department of Anatomy and Cell Biology, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Yu Yang
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543 USA
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, 21218, Baltimore, Maryland, USA
| | - Marta Pratelli
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543 USA
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego; La Jolla, California, 92093-0955; USA
- Kavli Institute for Brain and Mind; University of California San Diego; La Jolla, California, 92093-0955; USA
| | - Michael Brecht
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543 USA
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Philippstr. 13 Haus 6, 10115 Berlin, Germany
| | - Ann M Clemens
- Neural Systems & Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543 USA
- University of Edinburgh, Simons Initiative for the Developing Brain, 1 George Square, EH8 9JZ, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
14
|
Brooks PM, Lewis P, Million-Perez S, Yandulskaya AS, Khalil M, Janes M, Porco J, Walker E, Meyers JR. Pharmacological reprogramming of zebrafish lateral line supporting cells to a migratory progenitor state. Dev Biol 2024; 512:70-88. [PMID: 38729405 DOI: 10.1016/j.ydbio.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
In the zebrafish lateral line, non-sensory supporting cells readily re-enter the cell cycle to generate new hair cells and supporting cells during homeostatic maintenance and following damage to hair cells. This contrasts with supporting cells from mammalian vestibular and auditory sensory epithelia which rarely re-enter the cell cycle, and hence loss of hair cells results in permanent sensory deficit. Lateral line supporting cells are derived from multipotent progenitor cells that migrate down the trunk midline as a primordium and are deposited to differentiate into a neuromast. We have found that we can revert zebrafish support cells back to a migratory progenitor state by pharmacologically altering the signaling environment to mimic that of the migratory primordium, with active Wnt signaling and repressed FGF signaling. The reverted supporting cells migrate anteriorly and posteriorly along the horizontal myoseptum and will re-epithelialize to form an increased number of neuromasts along the midline when the pharmacological agents are removed. These data demonstrate that supporting cells can be readily reprogrammed to a migratory multipotent progenitor state that can form new sensory neuromasts, which has important implications for our understanding of how the lateral line system matures and expands in fish and also suggest avenues for returning mammalian supporting cells back to a proliferative state.
Collapse
Affiliation(s)
- Paige M Brooks
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Parker Lewis
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Sara Million-Perez
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Anastasia S Yandulskaya
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Mahmoud Khalil
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Meredith Janes
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Joseph Porco
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Eleanor Walker
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Jason R Meyers
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA.
| |
Collapse
|
15
|
Zhu W, Du W, Rameshbabu AP, Armstrong AM, Silver S, Kim Y, Wei W, Shu Y, Liu X, Lewis MA, Steel KP, Chen ZY. Targeted genome editing restores auditory function in adult mice with progressive hearing loss caused by a human microRNA mutation. Sci Transl Med 2024; 16:eadn0689. [PMID: 38985856 PMCID: PMC7616320 DOI: 10.1126/scitranslmed.adn0689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Mutations in microRNA-96 (MIR96) cause autosomal dominant deafness-50 (DFNA50), a form of delayed-onset hearing loss. Genome editing has shown efficacy in hearing recovery through intervention in neonatal mice, yet editing in the adult inner ear is necessary for clinical applications, which has not been done. Here, we developed a genome editing therapy for the MIR96 mutation 14C>A by screening different CRISPR systems and optimizing Cas9 expression and the sgRNA scaffold for efficient and specific mutation editing. AAV delivery of the KKH variant of Staphylococcus aureus Cas9 (SaCas9-KKH) and sgRNA to the cochleae of presymptomatic (3-week-old) and symptomatic (6-week-old) adult Mir9614C>A/+ mutant mice improved hearing long term, with efficacy increased by injection at a younger age. Adult inner ear delivery resulted in transient Cas9 expression without evidence of AAV genomic integration, indicating the good safety profile of our in vivo genome editing strategy. We developed a dual-AAV system, including an AAV-sgmiR96-master carrying sgRNAs against all known human MIR96 mutations. Because mouse and human MIR96 sequences share 100% homology, our approach and sgRNA selection for efficient and specific hair cell editing for long-term hearing recovery lay the foundation for the development of treatment for patients with DFNA50 caused by MIR96 mutations.
Collapse
Affiliation(s)
- Wenliang Zhu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Wan Du
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Arun Prabhu Rameshbabu
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Ariel Miura Armstrong
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Stewart Silver
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Yehree Kim
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Wei Wei
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai200031, China
- Institutes of Biomedical Science, Fudan University, Shanghai200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai200031, China
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Morag A. Lewis
- Wolfson Sensory, Pain and Regeneration Centre, King’s College London, LondonWC2R 2LS, UK
| | - Karen P. Steel
- Wolfson Sensory, Pain and Regeneration Centre, King’s College London, LondonWC2R 2LS, UK
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Graduate Program in Speech and Hearing Bioscience and Technology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Eaton-Peabody laboratory, Massachusetts Eye and Ear, Boston, MA02114, USA
| |
Collapse
|
16
|
Giese APJ, Weng WH, Kindt KS, Chang HHV, Montgomery JS, Ratzan EM, Beirl AJ, Rivera RA, Lotthammer JM, Walujkar S, Foster MP, Zobeiri OA, Holt JR, Riazuddin S, Cullen KE, Sotomayor M, Ahmed ZM. Complexes of vertebrate TMC1/2 and CIB2/3 proteins form hair-cell mechanotransduction cation channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.26.542533. [PMID: 37398045 PMCID: PMC10312449 DOI: 10.1101/2023.05.26.542533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Calcium and integrin-binding protein 2 (CIB2) and CIB3 bind to transmembrane channel-like 1 (TMC1) and TMC2, the pore-forming subunits of the inner-ear mechano-electrical transduction (MET) apparatus. These interactions have been proposed to be functionally relevant across mechanosensory organs and vertebrate species. Here we show that both CIB2 and CIB3 can form heteromeric complexes with TMC1 and TMC2 and are integral for MET function in mouse cochlea and vestibular end organs as well as in zebrafish inner ear and lateral line. Our AlphaFold 2 models suggest that vertebrate CIB proteins can simultaneously interact with at least two cytoplasmic domains of TMC1 and TMC2 as validated using nuclear magnetic resonance spectroscopy of TMC1 fragments interacting with CIB2 and CIB3. Molecular dynamics simulations of TMC1/2 complexes with CIB2/3 predict that TMCs are structurally stabilized by CIB proteins to form cation channels. Overall, our work demonstrates that intact CIB2/3 and TMC1/2 complexes are integral to hair-cell MET function in vertebrate mechanosensory epithelia.
Collapse
Affiliation(s)
- Arnaud P J Giese
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wei-Hsiang Weng
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | | | - Jonathan S Montgomery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Evan M Ratzan
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alisha J Beirl
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Roberto Aponte Rivera
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey M Lotthammer
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Omid A Zobeiri
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathleen E Cullen
- Departments of Biomedical Engineering, Neuroscience, and Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Pedro De-la-Torre, Wen H, Brower J, Martínez-Pérez K, Narui Y, Yeh F, Hale E, Ivanchenko MV, Corey DP, Sotomayor M, Indzhykulian AA. Elasticity and Thermal Stability are Key Determinants of Hearing Rescue by Mini-Protocadherin-15 Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599132. [PMID: 38948700 PMCID: PMC11212938 DOI: 10.1101/2024.06.16.599132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Protocadherin-15 is a core protein component of inner-ear hair-cell tip links pulling on transduction channels essential for hearing and balance. Protocadherin-15 defects can result in non-syndromic deafness or Usher syndrome type 1F (USH1F) with hearing loss, balance deficits, and progressive blindness. Three rationally engineered shortened versions of protocadherin-15 (mini-PCDH15s) amenable for gene therapy have been used to rescue function in USH1F mouse models. Two can successfully or partially rescue hearing, while another one fails. Here we show that despite varying levels of hearing rescue, all three mini-PCDH15 versions can rescue hair-cell mechanotransduction. Negative-stain electron microscopy shows that all three versions form dimers like the wild-type protein, while crystal structures of some engineered fragments show that these can properly fold and bind calcium ions essential for function. In contrast, simulations predict distinct elasticities and nano differential scanning fluorimetry shows differences in melting temperature measurements. Our data suggest that elasticity and thermal stability are key determinants of sustained hearing rescue by mini-PCDH15s.
Collapse
Affiliation(s)
- Pedro De-la-Torre
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
| | - Haosheng Wen
- Department of Chemistry and Biochemistry, The Ohio State University, 484 W. 12th Avenue, Columbus, OH, USA
- Biophysics Program, The Ohio State University, 484 W. 12th Avenue, Columbus, OH, USA
| | - Joseph Brower
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
| | - Karina Martínez-Pérez
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
- Biology Program, Department of Basic Sciences, Universidad del Atlántico, Cra 30 # 8-49, Puerto Colombia, 081007, Colombia
| | - Yoshie Narui
- Center for Electron Microscopy and Analysis, The Ohio State University, 1275-1305 Kinnear Road, Columbus, OH, USA
| | - Frank Yeh
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
| | - Evan Hale
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
- Speech and Hearing Biosciences and Technology graduate program, Harvard University, Cambridge, MA, USA
| | - Maryna V. Ivanchenko
- Department of Neurobiology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA
| | - David P. Corey
- Department of Neurobiology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, 484 W. 12th Avenue, Columbus, OH, USA
- Biophysics Program, The Ohio State University, 484 W. 12th Avenue, Columbus, OH, USA
| | - Artur A. Indzhykulian
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
- Speech and Hearing Biosciences and Technology graduate program, Harvard University, Cambridge, MA, USA
| |
Collapse
|
18
|
David S, Pinter K, Nguyen KK, Lee DS, Lei Z, Sokolova Y, Sheets L, Kindt KS. Kif1a and intact microtubules maintain synaptic-vesicle populations at ribbon synapses in zebrafish hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595037. [PMID: 38903095 PMCID: PMC11188139 DOI: 10.1101/2024.05.20.595037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Sensory hair cells of the inner ear utilize specialized ribbon synapses to transmit sensory stimuli to the central nervous system. This sensory transmission necessitates rapid and sustained neurotransmitter release, which relies on a large pool of synaptic vesicles at the hair-cell presynapse. Work in neurons has shown that kinesin motor proteins traffic synaptic material along microtubules to the presynapse, but how new synaptic material reaches the presynapse in hair cells is not known. We show that the kinesin motor protein Kif1a and an intact microtubule network are necessary to enrich synaptic vesicles at the presynapse in hair cells. We use genetics and pharmacology to disrupt Kif1a function and impair microtubule networks in hair cells of the zebrafish lateral-line system. We find that these manipulations decrease synaptic-vesicle populations at the presynapse in hair cells. Using electron microscopy, along with in vivo calcium imaging and electrophysiology, we show that a diminished supply of synaptic vesicles adversely affects ribbon-synapse function. Kif1a mutants exhibit dramatic reductions in spontaneous vesicle release and evoked postsynaptic calcium responses. Additionally, we find that kif1a mutants exhibit impaired rheotaxis, a behavior reliant on the ability of hair cells in the lateral line to respond to sustained flow stimuli. Overall, our results demonstrate that Kif1a-based microtubule transport is critical to enrich synaptic vesicles at the active zone in hair cells, a process that is vital for proper ribbon-synapse function.
Collapse
Affiliation(s)
- Sandeep David
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, MD, USA
- National Institutes of Health-Brown University Graduate Partnership Program, Bethesda, MD, USA
| | - Katherine Pinter
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, MD, USA
| | - Keziah-Khue Nguyen
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - David S Lee
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhengchang Lei
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, MD, USA
| | - Yuliya Sokolova
- Advanced Imaging Core, National Institute on Deafness and other Communication Disorders, Bethesda, MD, USA
| | - Lavinia Sheets
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, MD, USA
| |
Collapse
|
19
|
Huffer K, Tan XF, Fernández-Mariño AI, Dhingra S, Swartz KJ. Dilation of ion selectivity filters in cation channels. Trends Biochem Sci 2024; 49:417-430. [PMID: 38514273 PMCID: PMC11069442 DOI: 10.1016/j.tibs.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
Ion channels establish the voltage gradient across cellular membranes by providing aqueous pathways for ions to selectively diffuse down their concentration gradients. The selectivity of any given channel for its favored ions has conventionally been viewed as a stable property, and in many cation channels, it is determined by an ion-selectivity filter within the external end of the ion-permeation pathway. In several instances, including voltage-activated K+ (Kv) channels, ATP-activated P2X receptor channels, and transient receptor potential (TRP) channels, the ion-permeation pathways have been proposed to dilate in response to persistent activation, dynamically altering ion permeation. Here, we discuss evidence for dynamic ion selectivity, examples where ion selectivity filters exhibit structural plasticity, and opportunities to fill gaps in our current understanding.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiao-Feng Tan
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana I Fernández-Mariño
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Surbhi Dhingra
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Ismail Mohamad N, Santra P, Park Y, Matthews IR, Taketa E, Chan DK. Synaptic ribbon dynamics after noise exposure in the hearing cochlea. Commun Biol 2024; 7:421. [PMID: 38582813 PMCID: PMC10998851 DOI: 10.1038/s42003-024-06067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/18/2024] [Indexed: 04/08/2024] Open
Abstract
Moderate noise exposure induces cochlear synaptopathy, the loss of afferent ribbon synapses between cochlear hair cells and spiral ganglion neurons, which is associated with functional hearing decline. Prior studies have demonstrated noise-induced changes in the distribution and number of synaptic components, but the dynamic changes that occur after noise exposure have not been directly visualized. Here, we describe a live imaging model using RIBEYE-tagRFP to enable direct observation of pre-synaptic ribbons in mature hearing mouse cochleae after synaptopathic noise exposure. Ribbon number does not change, but noise induces an increase in ribbon volume as well as movement suggesting unanchoring from synaptic tethers. A subgroup of basal ribbons displays concerted motion towards the cochlear nucleus with subsequent migration back to the cell membrane after noise cessation. Understanding the immediate dynamics of synaptic damage after noise exposure may facilitate identification of specific target pathways to treat cochlear synaptopathy.
Collapse
Affiliation(s)
- Noura Ismail Mohamad
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Peu Santra
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Yesai Park
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ian R Matthews
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Emily Taketa
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Dylan K Chan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
Ratzan EM, Lee J, Madison MA, Zhu H, Zhou W, Géléoc GSG, Holt JR. TMC function, dysfunction, and restoration in mouse vestibular organs. Front Neurol 2024; 15:1356614. [PMID: 38638308 PMCID: PMC11024474 DOI: 10.3389/fneur.2024.1356614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
Tmc1 and Tmc2 are essential pore-forming subunits of mechanosensory transduction channels localized to the tips of stereovilli in auditory and vestibular hair cells of the inner ear. To investigate expression and function of Tmc1 and Tmc2 in vestibular organs, we used quantitative polymerase chain reaction (qPCR), fluorescence in situ hybridization - hairpin chain reaction (FISH-HCR), immunostaining, FM1-43 uptake and we measured vestibular evoked potentials (VsEPs) and vestibular ocular reflexes (VORs). We found that Tmc1 and Tmc2 showed dynamic developmental changes, differences in regional expression patterns, and overall expression levels which differed between the utricle and saccule. These underlying changes contributed to unanticipated phenotypic loss of VsEPs and VORs in Tmc1 KO mice. In contrast, Tmc2 KO mice retained VsEPs despite the loss of the calcium buffering protein calretinin, a characteristic biomarker of mature striolar calyx-only afferents. Lastly, we found that neonatal Tmc1 gene replacement therapy is sufficient to restore VsEP in Tmc1 KO mice for up to six months post-injection.
Collapse
Affiliation(s)
- Evan M. Ratzan
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - John Lee
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Margot A. Madison
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Hong Zhu
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Wu Zhou
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Gwenaëlle S. G. Géléoc
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Jeffrey R. Holt
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Wang LG, Montaño AR, Masillati AM, Jones JA, Barth CW, Combs JR, Kumarapeli SU, Shams NA, van den Berg NS, Antaris AL, Galvis SN, McDowall I, Rizvi SZH, Alani AWG, Sorger JM, Gibbs SL. Nerve Visualization using Phenoxazine-Based Near-Infrared Fluorophores to Guide Prostatectomy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304724. [PMID: 37653576 DOI: 10.1002/adma.202304724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/27/2023] [Indexed: 09/02/2023]
Abstract
Fluorescence-guided surgery (FGS) is poised to revolutionize surgical medicine through near-infrared (NIR) fluorophores for tissue- and disease-specific contrast. Clinical open and laparoscopic FGS vision systems operate nearly exclusively at NIR wavelengths. However, tissue-specific NIR contrast agents compatible with clinically available imaging systems are lacking, leaving nerve tissue identification during prostatectomy a persistent challenge. Here, it is shown that combining drug-like molecular design concepts and fluorophore chemistry enabled the production of a library of NIR phenoxazine-based fluorophores for intraoperative nerve-specific imaging. The lead candidate readily delineated prostatic nerves in the canine and iliac plexus in the swine using the clinical da Vinci Surgical System that has been popularized for minimally invasive prostatectomy procedures. These results demonstrate the feasibility of molecular engineering of NIR nerve-binding fluorophores for ready integration into the existing surgical workflow, paving the path for clinical translation to reduce morbidity from nerve injury for prostate cancer patients.
Collapse
Affiliation(s)
- Lei G Wang
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Antonio R Montaño
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Anas M Masillati
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Jocelyn A Jones
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Connor W Barth
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Jason R Combs
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
| | | | - Nourhan A Shams
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
| | | | | | - S N Galvis
- Intuitive Surgical, Sunnyvale, CA, 94086, USA
| | | | - Syed Zaki Husain Rizvi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Adam W G Alani
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | | | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR, 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|
23
|
Liu XM, Xia QY, Ju XH. Theoretical investigation on regulating photophysical properties and proton transfer behavior by electronegativity for near-infrared emitting styryl dyes. Photochem Photobiol Sci 2024; 23:575-585. [PMID: 38386257 DOI: 10.1007/s43630-024-00540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
Our main focus is to explore the atomic electronegativity-dependent photoinduced behavior of styryl derivatives (HBO, HBS, and HBSe). The results of structural parameter calculation by the DFT method show that the intramolecular hydrogen bonds of normal and tautomer form are strengthened and weakened, respectively, in an excited state (S1), which is conducive to the excited intramolecular proton transfer (ESIPT) process. The enhancement of excited hydrogen bond is beneficial to the ESIPT process from the aspects of infrared vibration frequency (IR), Mulliken's charge analysis, and density gradient reduction (RDG). Additionally, by determining the bond energy with the band critical point (BCP) parameter, we found that the lower the electronegativity of the atom, the larger the hydrogen bond strength at the excited state and the more likely ESIPT reaction occurs. Meanwhile, the intramolecular H-bonds O-H…N in HBO, HBS, and HBSe are enhanced with the weakened electron-withdrawing capacity of the atom (from O to S and Se). Subsequently, frontier molecular orbital (FMOs) and charge density difference (CDD) analyses essentially revealed that electron redistribution induces the ESIPT process. Low atomic electronegativity exhibits the high chemical activity of the excited state. Furthermore, to demonstrate the electronegativity-dependent ESIPT behavior of the system, we built potential energy curves (PECs) and located the transition states (TS) of proton transfer processes.
Collapse
Affiliation(s)
- Xiu-Min Liu
- Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Qi-Ying Xia
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, People's Republic of China.
| | - Xue-Hai Ju
- Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
| |
Collapse
|
24
|
Pumroy RA, De Jesús-Pérez JJ, Protopopova AD, Rocereta JA, Fluck EC, Fricke T, Lee BH, Rohacs T, Leffler A, Moiseenkova-Bell V. Molecular details of ruthenium red pore block in TRPV channels. EMBO Rep 2024; 25:506-523. [PMID: 38225355 PMCID: PMC10897480 DOI: 10.1038/s44319-023-00050-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024] Open
Abstract
Transient receptor potential vanilloid (TRPV) channels play a critical role in calcium homeostasis, pain sensation, immunological response, and cancer progression. TRPV channels are blocked by ruthenium red (RR), a universal pore blocker for a wide array of cation channels. Here we use cryo-electron microscopy to reveal the molecular details of RR block in TRPV2 and TRPV5, members of the two TRPV subfamilies. In TRPV2 activated by 2-aminoethoxydiphenyl borate, RR is tightly coordinated in the open selectivity filter, blocking ion flow and preventing channel inactivation. In TRPV5 activated by phosphatidylinositol 4,5-bisphosphate, RR blocks the selectivity filter and closes the lower gate through an interaction with polar residues in the pore vestibule. Together, our results provide a detailed understanding of TRPV subfamily pore block, the dynamic nature of the selectivity filter and allosteric communication between the selectivity filter and lower gate.
Collapse
Affiliation(s)
- Ruth A Pumroy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - José J De Jesús-Pérez
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anna D Protopopova
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia A Rocereta
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edwin C Fluck
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tabea Fricke
- Institute for Neurophysiology, Hannover Medical School, 30625, Hannover, Germany
| | - Bo-Hyun Lee
- Department of Physiology and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University Medical School, Jinju, Korea
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Andreas Leffler
- Institute for Neurophysiology, Hannover Medical School, 30625, Hannover, Germany
| | - Vera Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
25
|
Jia Y, Jia G, Guo L, Song N, Wang YM, Jiang L, Shu Y, Chen Y, Zhu S, Li H, Li W. Novel heterozygous USH1C mutation impacts hair cell mechanotransduction and causes progressive hearing loss. Sci Bull (Beijing) 2024; 69:167-172. [PMID: 37973466 DOI: 10.1016/j.scib.2023.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Yanyan Jia
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Gaogan Jia
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Nan Song
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Meng Wang
- Department of Cardiology, and Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Luoying Jiang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yan Chen
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Wenyan Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
26
|
Lee JH, Perez-Flores MC, Park S, Kim HJ, Chen Y, Kang M, Kersigo J, Choi J, Thai PN, Woltz RL, Perez-Flores DC, Perkins G, Sihn CR, Trinh P, Zhang XD, Sirish P, Dong Y, Feng WW, Pessah IN, Dixon RE, Sokolowski B, Fritzsch B, Chiamvimonvat N, Yamoah EN. The Piezo channel is a mechano-sensitive complex component in the mammalian inner ear hair cell. Nat Commun 2024; 15:526. [PMID: 38228630 PMCID: PMC10791687 DOI: 10.1038/s41467-023-44230-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024] Open
Abstract
The inner ear is the hub where hair cells (HCs) transduce sound, gravity, and head acceleration stimuli to the brain. Hearing and balance rely on mechanosensation, the fastest sensory signals transmitted to the brain. The mechanoelectrical transducer (MET) channel is the entryway for the sound-balance-brain interface, but the channel-complex composition is not entirely known. Here, we report that the mouse utilizes Piezo1 (Pz1) and Piezo2 (Pz2) isoforms as MET-complex components. The Pz channels, expressed in HC stereocilia, and cell lines are co-localized and co-assembled with MET complex partners. Mice expressing non-functional Pz1 and Pz2 at the ROSA26 locus have impaired auditory and vestibular traits that can only be explained if the Pzs are integral to the MET complex. We suggest that Pz subunits constitute part of the MET complex and that interactions with other MET complex components yield functional MET units to generate HC MET currents.
Collapse
Affiliation(s)
- Jeong Han Lee
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Maria C Perez-Flores
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Seojin Park
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
- Prestige Biopharma, 11-12F, 44, Myongjigukje7-ro, Gangseo-gu, Busan, 67264, South Korea
| | - Hyo Jeong Kim
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Yingying Chen
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Mincheol Kang
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
- Prestige Biopharma, 11-12F, 44, Myongjigukje7-ro, Gangseo-gu, Busan, 67264, South Korea
| | | | - Jinsil Choi
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Phung N Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Ryan L Woltz
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | | | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Choong-Ryoul Sihn
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Pauline Trinh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Padmini Sirish
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA
| | - Wayne Wei Feng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA
| | - Rose E Dixon
- Department of Physiology & Membrane Biology, Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA
| | - Bernd Sokolowski
- Department of Otolaryngology-Head and Neck Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
- VA Northern California Healthcare System, Sacramento, USA
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
27
|
Ye W, Lui ST, Zhao Q, Wong YM, Cheng A, Sung HHY, Williams ID, Qian PY, Huang P. Novel marine natural products as effective TRPV1 channel blockers. Int J Biol Macromol 2023; 253:127136. [PMID: 37776932 DOI: 10.1016/j.ijbiomac.2023.127136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Chronic pain management poses a formidable challenge to healthcare, exacerbated by current analgesic options' limitations and adverse effects. Transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel, has emerged as a promising target for novel analgesics. However, safety and tolerability concerns have constrained the development of TRPV1 modulators. In this study, we explored marine-derived natural products as a source of potential TRPV1 modulators using high-throughput dye-uptake assays. We identified chrexanthomycins, a family of hexacyclic xanthones, exhibited potent TRPV1 inhibitory effects, with compounds cC and cF demonstrating the most significant activity. High-resolution patch-clamp assays confirmed the direct action of these compounds on the TRPV1 channel. Furthermore, in vivo assays revealed that cC and cF effectively suppressed capsaicin-induced pain sensation in mice, comparable to the known TRPV1 inhibitor, capsazepine. Structural-activity relationship analysis highlighted the importance of specific functional groups in modulating TRPV1 activity. Our findings underscore the therapeutic potential of chrexanthomycins and pave the way for further investigations into marine-derived TRPV1 modulators for pain management.
Collapse
Affiliation(s)
- Wenkang Ye
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China; SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China
| | - Sin Tung Lui
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qirui Zhao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuk Ming Wong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Aifang Cheng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Herman H-Y Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ian D Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Pingbo Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
28
|
Zhu W, Du W, Rameshbabu AP, Armstrong AM, Silver S, Kim Y, Wei W, Shu Y, Liu X, Lewis MA, Steel KP, Chen ZY. Targeted genome editing restores auditory function in adult mice with progressive hearing loss caused by a human microRNA mutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564008. [PMID: 37961137 PMCID: PMC10634841 DOI: 10.1101/2023.10.26.564008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Mutations in microRNA-96 ( MIR96 ) cause dominant delayed onset hearing loss DFNA50 without treatment. Genome editing has shown efficacy in hearing recovery by intervention in neonatal mice, yet editing in the adult inner ear is necessary for clinical applications. Here, we developed an editing therapy for a C>A point mutation in the seed region of the Mir96 gene, Mir96 14C>A associated with hearing loss by screening gRNAs for genome editors and optimizing Cas9 and sgRNA scaffold for efficient and specific mutation editing in vitro. By AAV delivery in pre-symptomatic (3-week-old) and symptomatic (6-week-old) adult Mir96 14C>A mutant mice, hair cell on-target editing significantly improved hearing long-term, with an efficacy inversely correlated with injection age. We achieved transient Cas9 expression without the evidence of AAV genomic integration to significantly reduce the safety concerns associated with editing. We developed an AAV-sgmiR96-master system capable of targeting all known human MIR96 mutations. As mouse and human MIR96 sequences share 100% homology, our approach and sgRNA selection for efficient and specific hair cell editing for long-term hearing recovery lays the foundation for future treatment of DFNA50 caused by MIR96 mutations.
Collapse
|
29
|
Derudas M, O’Reilly M, Kirkwood NK, Kenyon EJ, Grimsey S, Kitcher SR, Workman S, Bull JC, Ward SE, Kros CJ, Richardson GP. Charge and lipophilicity are required for effective block of the hair-cell mechano-electrical transducer channel by FM1-43 and its derivatives. Front Cell Dev Biol 2023; 11:1247324. [PMID: 37900280 PMCID: PMC10601989 DOI: 10.3389/fcell.2023.1247324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
The styryl dye FM1-43 is widely used to study endocytosis but behaves as a permeant blocker of the mechano-electrical transducer (MET) channel in sensory hair cells, loading rapidly and specifically into the cytoplasm of hair cells in a MET channel-dependent manner. Patch clamp recordings of mouse outer hair cells (OHCs) were used to determine how a series of structural modifications of FM1-43 affect MET channel block. Fluorescence microscopy was used to assess how the modifications influence hair-cell loading in mouse cochlear cultures and zebrafish neuromasts. Cochlear cultures were also used to evaluate otoprotective potential of the modified FM1-43 derivatives. Structure-activity relationships reveal that the lipophilic tail and the cationic head group of FM1-43 are both required for MET channel block in mouse cochlear OHCs; neither moiety alone is sufficient. The extent of MET channel block is augmented by increasing the lipophilicity/bulkiness of the tail, by reducing the number of positive charges in the head group from two to one, or by increasing the distance between the two charged head groups. Loading assays with zebrafish neuromasts and mouse cochlear cultures are broadly in accordance with these observations but reveal a loss of hair-cell specific labelling with increasing lipophilicity. Although FM1-43 and many of its derivatives are generally cytotoxic when tested on cochlear cultures in the presence of an equimolar concentration of the ototoxic antibiotic gentamicin (5 µM), at a 10-fold lower concentration (0.5 µM), two of the derivatives protect OHCs from cell death caused by 48 h-exposure to 5 µM gentamicin.
Collapse
Affiliation(s)
- Marco Derudas
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Molly O’Reilly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, Netherlands
| | - Nerissa K. Kirkwood
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Emma J. Kenyon
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- School of Medicine, Institute of Life Sciences, Swansea University, Swansea, United Kingdom
| | - Sybil Grimsey
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Siân R. Kitcher
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders NIH, Bethesda, MD, United States
| | - Shawna Workman
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - James C. Bull
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - Simon E. Ward
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Medicines Discovery Institute, Cardiff University, Cardiff, United Kingdom
| | - Corné J. Kros
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Guy P. Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
30
|
Wang LG, Gibbs SL. Improving precision surgery: A review of current intraoperative nerve tissue fluorescence imaging. Curr Opin Chem Biol 2023; 76:102361. [PMID: 37454623 PMCID: PMC10965355 DOI: 10.1016/j.cbpa.2023.102361] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023]
Abstract
Iatrogenic nerve injury represents one of the most feared surgical complications and remains a major morbidity across many surgical specialties. Currently, no clinically approved technique can directly enhance intraoperative nerve visualization, where intraoperative nerve identification continues to challenge even experienced surgeons. Fluorescence-guided surgery (FGS) has been successfully integrated into clinical medicine to improve safety and efficacy in the surgical arena. A number of tissue- and disease-specific contrast agents are in the clinical translation pipeline for future FGS integration. Within this context, a diverse repertoire of fluorescent tracers have been developed to improve surgeons' intraoperative vision. This review aims to convey the recent developments for nerve-specific FGS and its potential for clinical translation.
Collapse
Affiliation(s)
- Lei G Wang
- Biomedical Engineering Department, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR 97201, USA; Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Ave, Portland, OR 97201, USA
| | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR 97201, USA; Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Ave, Portland, OR 97201, USA.
| |
Collapse
|
31
|
Cortada M, Levano S, Hall MN, Bodmer D. mTORC2 regulates auditory hair cell structure and function. iScience 2023; 26:107687. [PMID: 37694145 PMCID: PMC10484995 DOI: 10.1016/j.isci.2023.107687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/14/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023] Open
Abstract
mTOR broadly controls cell growth, but little is known about the role of mTOR complex 2 (mTORC2) in the inner ear. To investigate the role of mTORC2 in sensory hair cells (HCs), we generated HC-specific Rictor knockout (HC-RicKO) mice. HC-RicKO mice exhibited early-onset, progressive, and profound hearing loss. Increased DPOAE thresholds indicated outer HC dysfunction. HCs are lost, but this occurs after hearing loss. Ultrastructural analysis revealed stunted and absent stereocilia in outer HCs. In inner HCs, the number of synapses was significantly decreased and the remaining synapses displayed a disrupted actin cytoskeleton and disorganized Ca2+ channels. Thus, the mTORC2 signaling pathway plays an important role in regulating auditory HC structure and function via regulation of the actin cytoskeleton. These results provide molecular insights on a central regulator of cochlear HCs and thus hearing.
Collapse
Affiliation(s)
- Maurizio Cortada
- Department of Biomedicine, University of Basel, CH-4031 Basel, Switzerland
| | - Soledad Levano
- Department of Biomedicine, University of Basel, CH-4031 Basel, Switzerland
| | | | - Daniel Bodmer
- Department of Biomedicine, University of Basel, CH-4031 Basel, Switzerland
- Clinic for Otorhinolaryngology, Head and Neck Surgery, University of Basel Hospital, CH-4031 Basel, Switzerland
| |
Collapse
|
32
|
Villarino NW, Hamed YMF, Ghosh B, Dubin AE, Lewis AH, Odem MA, Loud MC, Wang Y, Servin-Vences MR, Patapoutian A, Marshall KL. Labeling PIEZO2 activity in the peripheral nervous system. Neuron 2023; 111:2488-2501.e8. [PMID: 37321223 PMCID: PMC10527906 DOI: 10.1016/j.neuron.2023.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 03/24/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Sensory neurons detect mechanical forces from both the environment and internal organs to regulate physiology. PIEZO2 is a mechanosensory ion channel critical for touch, proprioception, and bladder stretch sensation, yet its broad expression in sensory neurons suggests it has undiscovered physiological roles. To fully understand mechanosensory physiology, we must know where and when PIEZO2-expressing neurons detect force. The fluorescent styryl dye FM 1-43 was previously shown to label sensory neurons. Surprisingly, we find that the vast majority of FM 1-43 somatosensory neuron labeling in mice in vivo is dependent on PIEZO2 activity within the peripheral nerve endings. We illustrate the potential of FM 1-43 by using it to identify novel PIEZO2-expressing urethral neurons that are engaged by urination. These data reveal that FM 1-43 is a functional probe for mechanosensitivity via PIEZO2 activation in vivo and will facilitate the characterization of known and novel mechanosensory processes in multiple organ systems.
Collapse
Affiliation(s)
- Nicholas W Villarino
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yasmeen M F Hamed
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston, TX 77030
| | - Britya Ghosh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adrienne E Dubin
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amanda H Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Max A Odem
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meaghan C Loud
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Wang
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - M Rocio Servin-Vences
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ardem Patapoutian
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Kara L Marshall
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Guan Y, Du HB, Yang Z, Wang YZ, Ren R, Liu WW, Zhang C, Zhang JH, An WT, Li NN, Zeng XX, Li J, Sun YX, Wang YF, Yang F, Yang J, Xiong W, Yu X, Chai RJ, Tu XM, Sun JP, Xu ZG. Deafness-Associated ADGRV1 Mutation Impairs USH2A Stability through Improper Phosphorylation of WHRN and WDSUB1 Recruitment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205993. [PMID: 37066759 PMCID: PMC10238197 DOI: 10.1002/advs.202205993] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/14/2023] [Indexed: 06/04/2023]
Abstract
The ankle-link complex (ALC) consists of USH2A, WHRN, PDZD7, and ADGRV1 and plays an important role in hair cell development. At present, its architectural organization and signaling role remain unclear. By establishing Adgrv1 Y6236fsX1 mutant mice as a model of the deafness-associated human Y6244fsX1 mutation, the authors show here that the Y6236fsX1 mutation disrupts the interaction between adhesion G protein-coupled receptor V subfamily member 1 (ADGRV1) and other ALC components, resulting in stereocilia disorganization and mechanoelectrical transduction (MET) deficits. Importantly, ADGRV1 inhibits WHRN phosphorylation through regional cAMP-PKA signaling, which in turn regulates the ubiquitination and stability of USH2A via local signaling compartmentalization, whereas ADGRV1 Y6236fsX1 does not. Yeast two-hybrid screening identified the E3 ligase WDSUB1 that binds to WHRN and regulates the ubiquitination of USH2A in a WHRN phosphorylation-dependent manner. Further FlAsH-BRET assay, NMR spectrometry, and mutagenesis analysis provided insights into the architectural organization of ALC and interaction motifs at single-residue resolution. In conclusion, the present data suggest that ALC organization and accompanying local signal transduction play important roles in regulating the stability of the ALC.
Collapse
Affiliation(s)
- Ying Guan
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
| | - Hai-Bo Du
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
- Air Force Medical Center, PLA, Beijing, 100142, China
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
| | - Yu-Zhu Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230022, China
| | - Rui Ren
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
| | - Wen-Wen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
| | - Jia-Hai Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230022, China
| | - Wen-Tao An
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Na-Na Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
| | - Xiao-Xue Zeng
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
| | - Jie Li
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing, 100084, China
| | - Yi-Xiao Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
| | - Yan-Fei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing, 100084, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ren-Jie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiao-Ming Tu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230022, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Zhi-Gang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
34
|
Wang X, Gu X, Wang C, He Y, Liu D, Sun S, Li H. Loss of ndrg2 Function Is Involved in Notch Activation in Neuromast Hair Cell Regeneration in Zebrafish. Mol Neurobiol 2023; 60:3100-3112. [PMID: 36800156 DOI: 10.1007/s12035-023-03262-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023]
Abstract
The regeneration of hair cells in zebrafish is a complex process involving the precise regulation of multiple signaling pathways, but this complicated regulatory network is not fully understood. Current research has primarily focused on finding molecules and pathways that can regulate hair cell regeneration and restore hair cell functions. Here, we show the role of N-Myc downstream regulated gene 2 (ndrg2) in zebrafish hair cell regeneration. We first found that ndrg2 was dynamically expressed in neuromasts of the developing zebrafish, and this expression was increased after neomycin-induced hair cell damage. Then, ndrg2 loss-of-function larvae showed reduced numbers of regenerated hair cells but increased numbers of supporting cells after neomycin exposure. By in situ hybridization, we further observed that ndrg2 loss of function resulted in the activation of Notch signaling and downregulation of atoh1a during hair cell regeneration in vivo. Additionally, blocking Notch signaling rescued the number of regenerated hair cells in ndrg2-deficient larvae. Together, this study provides evidence for the role of ndrg2 in regulating hair cell regeneration in zebrafish neuromasts.
Collapse
Affiliation(s)
- Xin Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200031, People's Republic of China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Xiaodong Gu
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200031, People's Republic of China
| | - Cheng Wang
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Yingzi He
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200031, People's Republic of China
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China.
| | - Shan Sun
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200031, People's Republic of China.
| | - Huawei Li
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200031, People's Republic of China.
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
35
|
Ivanchenko MV, Hathaway DM, Klein AJ, Pan B, Strelkova O, De-la-Torre P, Wu X, Peters CW, Mulhall EM, Booth KT, Goldstein C, Brower J, Sotomayor M, Indzhykulian AA, Corey DP. Mini-PCDH15 gene therapy rescues hearing in a mouse model of Usher syndrome type 1F. Nat Commun 2023; 14:2400. [PMID: 37100771 PMCID: PMC10133396 DOI: 10.1038/s41467-023-38038-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Usher syndrome type 1 F (USH1F), caused by mutations in the protocadherin-15 gene (PCDH15), is characterized by congenital deafness, lack of balance, and progressive blindness. In hair cells, the receptor cells of the inner ear, PCDH15 is a component of tip links, fine filaments which pull open mechanosensory transduction channels. A simple gene addition therapy for USH1F is challenging because the PCDH15 coding sequence is too large for adeno-associated virus (AAV) vectors. We use rational, structure-based design to engineer mini-PCDH15s in which 3-5 of the 11 extracellular cadherin repeats are deleted, but which still bind a partner protein. Some mini-PCDH15s can fit in an AAV. An AAV encoding one of these, injected into the inner ears of mouse models of USH1F, produces a mini-PCDH15 which properly forms tip links, prevents the degeneration of hair cell bundles, and rescues hearing. Mini-PCDH15s may be a useful therapy for the deafness of USH1F.
Collapse
Affiliation(s)
| | - Daniel M Hathaway
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Alex J Klein
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Bifeng Pan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Olga Strelkova
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Pedro De-la-Torre
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Xudong Wu
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Cole W Peters
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Eric M Mulhall
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Kevin T Booth
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Corey Goldstein
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Joseph Brower
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Artur A Indzhykulian
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Wong HTC, Lukasz D, Drerup CM, Kindt KS. In vivo investigation of mitochondria in lateral line afferent neurons and hair cells. Hear Res 2023; 431:108740. [PMID: 36948126 PMCID: PMC10079644 DOI: 10.1016/j.heares.2023.108740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 02/17/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
To process sensory stimuli, intense energy demands are placed on hair cells and primary afferents. Hair cells must both mechanotransduce and maintain pools of synaptic vesicles for neurotransmission. Furthermore, both hair cells and afferent neurons must continually maintain a polarized membrane to propagate sensory information. These processes are energy demanding and therefore both cell types are critically reliant on mitochondrial health and function for their activity and maintenance. Based on these demands, it is not surprising that deficits in mitochondrial health can negatively impact the auditory and vestibular systems. In this review, we reflect on how mitochondrial function and dysfunction are implicated in hair cell-mediated sensory system biology. Specifically, we focus on live imaging approaches that have been applied to study mitochondria using the zebrafish lateral-line system. We highlight the fluorescent dyes and genetically encoded biosensors that have been used to study mitochondria in lateral-line hair cells and afferent neurons. We then describe the impact this in vivo work has had on the field of mitochondrial biology as well as the relationship between mitochondria and sensory system development, function, and survival. Finally, we delineate the areas in need of further exploration. This includes in vivo analyses of mitochondrial dynamics and biogenesis, which will round out our understanding of mitochondrial biology in this sensitive sensory system.
Collapse
Affiliation(s)
- Hiu-Tung C Wong
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daria Lukasz
- Section on Sensory Cell Development and Function, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catherine M Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute of Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Schrauwen I, Ghaffar A, Bharadwaj T, Shah K, Rehman S, Acharya A, Liaqat K, Lin NS, Everard JL, Khan A, Ahmed ZM, Ahmad W, Riazuddin S, Leal SM. Syntaxin 4 is essential for hearing in human and zebrafish. Hum Mol Genet 2023; 32:1184-1192. [PMID: 36355422 PMCID: PMC10026253 DOI: 10.1093/hmg/ddac257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/22/2022] [Accepted: 11/11/2022] [Indexed: 11/12/2022] Open
Abstract
Congenital hearing impairment (HI) is a genetically highly heterogeneous disorder in which prompt recognition and intervention are crucial to optimize outcomes. In this study, we used exome sequencing to investigate a large consanguineous Pakistani family with eight affected individuals showing bilateral severe-to-profound HI. This identified a homozygous splice region variant in STX4 (c.232 + 6T>C), which causes exon skipping and a frameshift, that segregated with HI (two-point logarithm of odds (LOD) score = 5.9). STX4, a member of the syntaxin family, is a component of the SNARE machinery involved in several vesicle transport and recycling pathways. In silico analysis showed that murine orthologue Stx4a is highly and widespread expressed in the developing and adult inner ear. Immunofluorescent imaging revealed localization of STX4A in the cell body, cell membrane and stereocilia of inner and outer hair cells. Furthermore, a morpholino-based knockdown of stx4 in zebrafish showed an abnormal startle response, morphological and developmental defects, and a disrupted mechanotransduction function in neuromast hair cells measured via FM1-43 uptake. Our findings indicate that STX4 dysfunction leads to HI in humans and zebrafish and supports the evolutionary conserved role of STX4 in inner ear development and hair cell functioning.
Collapse
Affiliation(s)
- Isabelle Schrauwen
- Center for Statistical Genetics, Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Amama Ghaffar
- Department of Otorhinolaryngology - Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, MD, USA
| | - Thashi Bharadwaj
- Center for Statistical Genetics, Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Khadim Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Khyber Pakhtunkhwa, Pakistan
| | - Sakina Rehman
- Department of Otorhinolaryngology - Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, MD, USA
| | - Anushree Acharya
- Center for Statistical Genetics, Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Khurram Liaqat
- Center for Statistical Genetics, Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nicole S Lin
- Center for Statistical Genetics, Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Jenna L Everard
- Center for Statistical Genetics, Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Anwar Khan
- Department of Biochemistry, Hazara University Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, MD, USA
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, MD, USA
| | - Suzanne M Leal
- Center for Statistical Genetics, Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Alzheimer’s Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
38
|
Chatterjee P, Morgan CP, Krey JF, Benson C, Goldsmith J, Bateschell M, Ricci AJ, Barr-Gillespie PG. GIPC3 couples to MYO6 and PDZ domain proteins and shapes the hair cell apical region. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530466. [PMID: 36909580 PMCID: PMC10002731 DOI: 10.1101/2023.02.28.530466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
GIPC3 has been implicated in auditory function. Initially localized to the cytoplasm of inner and outer hair cells of the cochlea, GIPC3 increasingly concentrated in cuticular plates and at cell junctions during postnatal development. Early postnatal Gipc3 KO/KO mice had mostly normal mechanotransduction currents, but had no auditory brainstem response at one month of age. Cuticular plates of Gipc3 KO/KO hair cells did not flatten during development as did those of controls; moreover, hair bundles were squeezed along the cochlear axis in mutant hair cells. Junctions between inner hair cells and adjacent inner phalangeal cells were also severely disrupted in Gipc3 KO/KO cochleas. GIPC3 bound directly to MYO6, and the loss of MYO6 led to altered distribution of GIPC3. Immunoaffinity purification of GIPC3 from chicken inner ear extracts identified co-precipitating proteins associated with adherens junctions, intermediate filament networks, and the cuticular plate. Several of immunoprecipitated proteins contained GIPC-family consensus PDZ binding motifs (PBMs), including MYO18A, which binds directly to the PDZ domain of GIPC3. We propose that GIPC3 and MYO6 couple to PBMs of cytoskeletal and cell-junction proteins to shape the cuticular plate. Summary statement The PDZ-domain protein GIPC3 couples the molecular motors MYO6 and MYO18A to actin cytoskeleton structures in hair cells. GIPC3 is necessary for shaping the hair cell’s cuticular plate and hence the arrangement of the stereocilia in the hair bundle.
Collapse
Affiliation(s)
- Paroma Chatterjee
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Clive P. Morgan
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Jocelyn F. Krey
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Connor Benson
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Jennifer Goldsmith
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael Bateschell
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Anthony J. Ricci
- Department of Otolaryngology—Head & Neck Surgery, Stanford University, Stanford, California 94305, USA ss
| | - Peter G. Barr-Gillespie
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
39
|
Brown TL, Horton EC, Craig EW, Goo CEA, Black EC, Hewitt MN, Yee NG, Fan ET, Raible DW, Rasmussen JP. Dermal appendage-dependent patterning of zebrafish atoh1a+ Merkel cells. eLife 2023; 12:85800. [PMID: 36648063 PMCID: PMC9901935 DOI: 10.7554/elife.85800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Touch system function requires precise interactions between specialized skin cells and somatosensory axons, as exemplified by the vertebrate mechanosensory Merkel cell-neurite complex. Development and patterning of Merkel cells and associated neurites during skin organogenesis remain poorly understood, partly due to the in utero development of mammalian embryos. Here, we discover Merkel cells in the zebrafish epidermis and identify Atonal homolog 1a (Atoh1a) as a marker of zebrafish Merkel cells. We show that zebrafish Merkel cells derive from basal keratinocytes, express neurosecretory and mechanosensory machinery, extend actin-rich microvilli, and complex with somatosensory axons, all hallmarks of mammalian Merkel cells. Merkel cells populate all major adult skin compartments, with region-specific densities and distribution patterns. In vivo photoconversion reveals that Merkel cells undergo steady loss and replenishment during skin homeostasis. Merkel cells develop concomitant with dermal appendages along the trunk and loss of Ectodysplasin signaling, which prevents dermal appendage formation, reduces Merkel cell density by affecting cell differentiation. By contrast, altering dermal appendage morphology changes the distribution, but not density, of Merkel cells. Overall, our studies provide insights into touch system maturation during skin organogenesis and establish zebrafish as an experimentally accessible in vivo model for the study of Merkel cell biology.
Collapse
Affiliation(s)
- Tanya L Brown
- Department of Biology, University of WashingtonSeattleUnited States
| | - Emma C Horton
- Department of Biology, University of WashingtonSeattleUnited States
| | - Evan W Craig
- Department of Biology, University of WashingtonSeattleUnited States
| | - Camille EA Goo
- Department of Biology, University of WashingtonSeattleUnited States
| | - Erik C Black
- Department of Biology, University of WashingtonSeattleUnited States
- Molecular and Cellular Biology Program, University of WashingtonSeattleUnited States
| | - Madeleine N Hewitt
- Molecular and Cellular Biology Program, University of WashingtonSeattleUnited States
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Nathaniel G Yee
- Department of Biology, University of WashingtonSeattleUnited States
| | - Everett T Fan
- Department of Biology, University of WashingtonSeattleUnited States
| | - David W Raible
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Department of Otolaryngology - Head and Neck Surgery, University of WashingtonSeattleUnited States
- Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Jeffrey P Rasmussen
- Department of Biology, University of WashingtonSeattleUnited States
- Institute for Stem Cell and Regenerative Medicine, University of WashingtonSeattleUnited States
| |
Collapse
|
40
|
FM1-43 Dye Memorizes Piezo1 Activation in the Trigeminal Nociceptive System Implicated in Migraine Pain. Int J Mol Sci 2023; 24:ijms24021688. [PMID: 36675204 PMCID: PMC9861983 DOI: 10.3390/ijms24021688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
It has been proposed that mechanosensitive Piezo1 channels trigger migraine pain in trigeminal nociceptive neurons, but the mechanosensitivity of satellite glial cells (SGCs) supporting neuronal sensitization has not been tested before. Moreover, tools to monitor previous Piezo1 activation are not available. Therefore, by using live calcium imaging with Fluo-4 AM and labeling with FM1-43 dye, we explored a new strategy to identify Piezo channels' activity in mouse trigeminal neurons, SGCs, and isolated meninges. The specific Piezo1 agonist Yoda1 induced calcium transients in both neurons and SGCs, suggesting the functional expression of Piezo1 channels in both types of cells. In Piezo1-transfected HEK cells, FM1-43 produced only a transient fluorescent response, whereas co-application with Yoda1 provided higher transient signals and a remarkable long-lasting FM1-43 'tail response'. A similar Piezo1-related FM1-43 trapping was observed in neurons and SGCs. The non-specific Piezo channel blocker, Gadolinium, inhibited the transient peak, confirming the involvement of Piezo1 receptors. Finally, FM1-43 labeling demonstrated previous activity in meningeal tissues 3.5 h after Yoda1 washout. Our data indicated that trigeminal neurons and SGCs express functional Piezo channels, and their activation provides sustained labeling with FM1-43. This long-lasting labelling can be used to monitor the ongoing and previous activation of Piezo1 channels in the trigeminal nociceptive system, which is implicated in migraine pain.
Collapse
|
41
|
Katsunuma S, Togashi H, Kuno S, Fujita T, Nibu KI. Hearing loss in mice with disruption of auditory epithelial patterning in the cochlea. Front Cell Dev Biol 2022; 10:1073830. [PMID: 36568980 PMCID: PMC9773838 DOI: 10.3389/fcell.2022.1073830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
In the cochlear auditory epithelia, sensory hair and supporting cells are arranged in a checkerboard-like mosaic pattern, which is conserved across a wide range of species. The cell adhesion molecules nectin-1 and nectin-3 are required for this pattern formation. The checkerboard-like pattern is thought to be necessary for auditory function, but has never been examined. Here, we showed the significance of checkerboard-like cellular pattern in the survival and function of sensory hair cells in the cochlear auditory epithelia of nectin-3 knockout (KO) mice. Nectin-3 KO mice showed progressive hearing loss associated with degeneration of aberrantly attached hair cells via apoptosis. Apoptotic hair cell death was due to the disorganization of tight junctions between the hair cells. Our study revealed that the checkerboard-like cellular pattern in the auditory epithelium provides a structural basis for ensuring the survival of cochlear hair cells and hearing function.
Collapse
Affiliation(s)
- Sayaka Katsunuma
- Department of Otolaryngology, Hyogo Prefectural Kobe Children’s Hospital, Kobe, Japan,Department of Biochemistry and Molecular Biology, Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan,Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideru Togashi
- Department of Biochemistry and Molecular Biology, Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan,PRESTO, Japan Science and Technology Agency, Kobe, Japan,*Correspondence: Hideru Togashi,
| | - Shuhei Kuno
- Department of Biochemistry and Molecular Biology, Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Fujita
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ken-Ichi Nibu
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
42
|
Gao G, Guo S, Zhang Q, Zhang H, Zhang C, Peng G. Kiaa1024L/Minar2 is essential for hearing by regulating cholesterol distribution in hair bundles. eLife 2022; 11:e80865. [PMID: 36317962 PMCID: PMC9714970 DOI: 10.7554/elife.80865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022] Open
Abstract
Unbiased genetic screens implicated a number of uncharacterized genes in hearing loss, suggesting some biological processes required for auditory function remain unexplored. Loss of Kiaa1024L/Minar2, a previously understudied gene, caused deafness in mice, but how it functioned in the hearing was unclear. Here, we show that disruption of kiaa1024L/minar2 causes hearing loss in the zebrafish. Defects in mechanotransduction, longer and thinner hair bundles, and enlarged apical lysosomes in hair cells are observed in the kiaa1024L/minar2 mutant. In cultured cells, Kiaa1024L/Minar2 is mainly localized to lysosomes, and its overexpression recruits cholesterol and increases cholesterol labeling. Strikingly, cholesterol is highly enriched in the hair bundle membrane, and loss of kiaa1024L/minar2 reduces cholesterol localization to the hair bundles. Lowering cholesterol levels aggravates, while increasing cholesterol levels rescues the hair cell defects in the kiaa1024L/minar2 mutant. Therefore, cholesterol plays an essential role in hair bundles, and Kiaa1024L/Minar2 regulates cholesterol distribution and homeostasis to ensure normal hearing.
Collapse
Affiliation(s)
- Ge Gao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Shuyu Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Quan Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Hefei Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Cuizhen Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Gang Peng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| |
Collapse
|
43
|
Liu L, Zou L, Li K, Hou H, Hu Q, Liu S, Li J, Song C, Chen J, Wang S, Wang Y, Li C, Du H, Li JL, Chen F, Xu Z, Sun W, Sun Q, Xiong W. Template-independent genome editing in the Pcdh15 av-3j mouse, a model of human DFNB23 nonsyndromic deafness. Cell Rep 2022; 40:111061. [PMID: 35830793 DOI: 10.1016/j.celrep.2022.111061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 04/15/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022] Open
Abstract
Although frameshift mutations lead to 22% of inherited Mendelian disorders in humans, there is no efficient in vivo gene therapy strategy available to date, particularly in nondividing cells. Here, we show that nonhomologous end-joining (NHEJ)-mediated nonrandom editing profiles compensate the frameshift mutation in the Pcdh15 gene and restore the lost mechanotransduction function in postmitotic hair cells of Pcdh15av-3J mice, an animal model of human nonsyndromic deafness DFNB23. Identified by an ex vivo evaluation system in cultured cochlear explants, the selected guide RNA restores reading frame in approximately 50% of indel products and recovers mechanotransduction in more than 70% of targeted hair cells. In vivo treatment shows that half of the animals gain improvements in auditory responses, and balance function is restored in the majority of injected mutant mice. These results demonstrate that NHEJ-mediated reading-frame restoration is a simple and efficient strategy in postmitotic systems.
Collapse
Affiliation(s)
- Lian Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Linzhi Zou
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Kuan Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hanqing Hou
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Qun Hu
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Shuang Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Jie Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Chenmeng Song
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Jiaofeng Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Shufeng Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Yangzhen Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China
| | - Changri Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Haibo Du
- School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jun-Liszt Li
- Chinese Institute for Brain Research, Beijing 102206, China; Academy for Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhigang Xu
- School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Wenzhi Sun
- Chinese Institute for Brain Research, Beijing 102206, China; School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Qianwen Sun
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xiong
- School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
44
|
Marcovich I, Baer NK, Shubina-Oleinik O, Eclov R, Beard CW, Holt JR. Optimized AAV Vectors for TMC1 Gene Therapy in a Humanized Mouse Model of DFNB7/11. Biomolecules 2022; 12:914. [PMID: 35883470 PMCID: PMC9313133 DOI: 10.3390/biom12070914] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 02/08/2023] Open
Abstract
Gene therapy for genetic hearing loss is an emerging therapeutic modality for hearing restoration. However, the approach has not yet been translated into clinical application. To further develop inner-ear gene therapy, we engineered a novel mouse model bearing a human mutation in the transmembrane channel-1 gene (Tmc1) and characterized the auditory phenotype of the mice. TMC1 forms the mechanosensory transduction channel in mice and humans and is necessary for auditory function. We found that mice harboring the equivalent of the human p.N199I mutation (p.N193I) had profound congenital hearing loss due to loss of hair cell sensory transduction. Next, we optimized and screened viral payloads packaged into AAV9-PHP.B capsids. The vectors were injected into the inner ears of Tmc1Δ/Δ mice and the new humanized Tmc1-p.N193I mouse model. Auditory brainstem responses (ABRs), distortion product otoacoustic emissions (DPOAEs), cell survival, and biodistribution were evaluated in the injected mice. We found broad-spectrum, durable recovery of auditory function in Tmc1-p.N193I mice injected with AAV9-PHP.B-CB6-hTMC1-WPRE. ABR and DPOAE thresholds were equivalent to those of wild-type mice across the entire frequency range. Biodistribution analysis revealed viral DNA/RNA in the contralateral ear, brain, and liver but no overt toxicity. We conclude that the AAV9-PHP.B-CB6-hTMC1-WPRE construct may be suitable for further development as a gene therapy reagent for treatment of humans with genetic hearing loss due to recessive TMC1 mutations.
Collapse
Affiliation(s)
- Irina Marcovich
- Department of Otolaryngology & Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (I.M.); (N.K.B.); (O.S.-O.)
| | - Nicholas K. Baer
- Department of Otolaryngology & Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (I.M.); (N.K.B.); (O.S.-O.)
| | - Olga Shubina-Oleinik
- Department of Otolaryngology & Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (I.M.); (N.K.B.); (O.S.-O.)
| | - Rachel Eclov
- Audition Therapeutics (BridgeBio Pharma), Raleigh, NC 27607, USA; (R.E.); (C.W.B.)
| | - Clayton W. Beard
- Audition Therapeutics (BridgeBio Pharma), Raleigh, NC 27607, USA; (R.E.); (C.W.B.)
| | - Jeffrey R. Holt
- Department of Otolaryngology & Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (I.M.); (N.K.B.); (O.S.-O.)
| |
Collapse
|
45
|
Ramkumar V, Sheth S, Dhukhwa A, Al Aameri R, Rybak L, Mukherjea D. Transient Receptor Potential Channels and Auditory Functions. Antioxid Redox Signal 2022; 36:1158-1170. [PMID: 34465184 PMCID: PMC9221156 DOI: 10.1089/ars.2021.0191] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Transient receptor potential (TRP) channels are cation-gated channels that serve as detectors of various sensory modalities, such as pain, heat, cold, and taste. These channels are expressed in the inner ear, suggesting that they could also contribute to the perception of sound. This review provides more details on the different types of TRP channels that have been identified in the cochlea to date, focusing on their cochlear distribution, regulation, and potential contributions to auditory functions. Recent Advances: To date, the effect of TRP channels on normal cochlear physiology in mammals is still unclear. These channels contribute, to a limited extent, to normal cochlear physiology such as the hair cell mechanoelectrical transduction channel and strial functions. More detailed information on a number of these channels in the cochlea awaits future studies. Several laboratories focusing on TRPV1 channels have shown that they are responsive to cochlear stressors, such as ototoxic drugs and noise, and regulate cytoprotective and/or cell death pathways. TRPV1 expression in the cochlea is under control of oxidative stress (produced primarily by NOX3 NADPH oxidase) as well as STAT1 and STAT3 transcription factors, which differentially modulate inflammatory and apoptotic signals in the cochlea. Inhibition of oxidative stress or inflammation reduces the expression of TRPV1 channels and protects against cochlear damage and hearing loss. Critical Issues: TRPV1 channels are activated by both capsaicin and cisplatin, which produce differential effects on the inner ear. How these differential actions are produced is yet to be determined. It is clear that TRPV1 is an essential component of cisplatin ototoxicity as knockdown of these channels protects against hearing loss. In contrast, activation of TRPV1 by capsaicin protected against subsequent hearing loss induced by cisplatin. The cellular targets that are influenced by these two drugs to account for their differential profiles need to be fully elucidated. Furthermore, the potential involvement of different TRP channels present in the cochlea in regulating cisplatin ototoxicity needs to be determined. Future Directions: TRPV1 has been shown to mediate the entry of aminoglycosides into the hair cells. Thus, novel otoprotective strategies could involve designing drugs to inhibit entry of aminoglycosides and possibly other ototoxins into cochlear hair cells. TRP channels, including TRPV1, are expressed on circulating and resident immune cells. These receptors modulate immune cell functions. However, whether they are activated by cochlear stressors to initiate cochlear inflammation and ototoxicity needs to be determined. A better understanding of the function and regulation of these TRP channels in the cochlea could enable development of novel treatments for treating hearing loss. Antioxid. Redox Signal. 36, 1158-1170.
Collapse
Affiliation(s)
- Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, Florida, USA
| | - Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Raheem Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Leonard Rybak
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA.,Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Debashree Mukherjea
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
46
|
Saha S, Mohanta S, Das R, Dalai R, Divyanshi, Tiwari N, Tiwari A, Kumar A, Goswami C. Ratio of Hydrophobic-Hydrophilic and Positive-Negative Residues at Lipid-Water-Interface Influences Surface Expression and Channel Gating of TRPV1. J Membr Biol 2022; 255:319-339. [PMID: 35608627 DOI: 10.1007/s00232-022-00243-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 12/19/2022]
Abstract
During evolution, TRPV1 has lost, retained or selected certain residues at Lipid-Water-Interface (LWI) and formed specific patterns there. The ratio of "hydrophobic-hydrophilic" and "positive-negative-charged" residues at the inner LWI remains conserved throughout vertebrate evolution and plays important role in regulating TRPV1 trafficking and localization. Arg575 is an important residue as Arg575Asp mutant has reduced surface expression, co-localization with lipid raft markers, cell area and increased cell lethality. This lethality is most likely due to the disruption of the ratio between positive-negative charges caused by the mutation. Such lethality can be rescued by either using TRPV1-specfic inhibitor 5'-IRTX or by restoring the positive-negative charge ratio at that position, i.e. by introducing Asp576Arg mutation in Arg575Asp backbone. We propose that Arg575Asp mutation confers TRPV1 in a "constitutive-open-like" condition. These findings have broader implication in understanding the molecular evolution of thermo-sensitive ion channels and the micro-environments involved in processes that goes erratic in different diseases. The segment of TRPV1 that is present at the inner lipid-water-interface (LWI) has a specific pattern of amino acid combinations. The overall ratio of +ve charge /-ve charge and the ratio of hydrophobicity/hydrophilicity remain constant throughout the vertebrate evolution (ca 450 million years). This specific pattern is not observed in the outer LWI region of TRPV1.
Collapse
Affiliation(s)
- Somdatta Saha
- School of Biological Sciences, National Institute of Science Education and Research, Jatni Campus, Bhubaneswar, Orissa, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Sushama Mohanta
- School of Biological Sciences, National Institute of Science Education and Research, Jatni Campus, Bhubaneswar, Orissa, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Rashmita Das
- School of Biological Sciences, National Institute of Science Education and Research, Jatni Campus, Bhubaneswar, Orissa, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Ritesh Dalai
- School of Biological Sciences, National Institute of Science Education and Research, Jatni Campus, Bhubaneswar, Orissa, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Divyanshi
- School of Biological Sciences, National Institute of Science Education and Research, Jatni Campus, Bhubaneswar, Orissa, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Nikhil Tiwari
- School of Biological Sciences, National Institute of Science Education and Research, Jatni Campus, Bhubaneswar, Orissa, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Ankit Tiwari
- School of Biological Sciences, National Institute of Science Education and Research, Jatni Campus, Bhubaneswar, Orissa, 752050, India
| | - Abhishek Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, Jatni Campus, Bhubaneswar, Orissa, 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
47
|
Barth CW, Shah VM, Wang LG, Masillati AM, Al-Fatease A, Husain Rizvi SZ, Antaris AL, Sorger J, Rao DA, Alani AWG, Gibbs SL. A clinically relevant formulation for direct administration of nerve specific fluorophores to mitigate iatrogenic nerve injury. Biomaterials 2022; 284:121490. [PMID: 35395454 PMCID: PMC9064958 DOI: 10.1016/j.biomaterials.2022.121490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Iatrogenic nerve injury significantly affects surgical outcomes. Although intraoperative neuromonitoring is utilized, nerve identification remains challenging and the success of nerve sparing is strongly correlated with surgeon experience levels. Fluorescence guided surgery (FGS) offers a potential solution for improved nerve sparing by providing direct visualization of nerve tissue intraoperatively. However, novel probes for FGS face a long regulatory pathway to achieve clinical translation. Herein, we report on the development of a clinically-viable, gel-based formulation that enables direct administration of nerve-specific probes for nerve sparing FGS applications, facilitating clinical translation via the exploratory investigational new drug (eIND) guidance. The developed formulation possesses unique gelling characteristics, allowing it to be easily spread as a liquid followed by rapid gelling for subsequent tissue hold. Optimization of the direct administration protocol with our gel-based formulation enabled a total staining time of 1-2 min for compatibility with surgical procedures and successful clinical translation.
Collapse
Affiliation(s)
- Connor W Barth
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Vidhi M Shah
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Lei G Wang
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Anas M Masillati
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Adel Al-Fatease
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA; Department of Phamaceutics, College of Pharmacy, 62529, King Khalid University, Abha, Saudi Arabia
| | - Syed Zaki Husain Rizvi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | | | - Jonathan Sorger
- Intuitive Surgical, 1020 Kifer Road, Sunnyvale, CA, 94086, USA
| | - Deepa A Rao
- School of Pharmacy, Pacific University, Hillsboro, OR, 97123, USA
| | - Adam W G Alani
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, 97201, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, 97201, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201, USA.
| |
Collapse
|
48
|
Ghanimi Fard M, Khabir Z, Reineck P, Cordina NM, Abe H, Ohshima T, Dalal S, Gibson BC, Packer NH, Parker LM. Targeting cell surface glycans with lectin-coated fluorescent nanodiamonds. NANOSCALE ADVANCES 2022; 4:1551-1564. [PMID: 36134370 PMCID: PMC9418452 DOI: 10.1039/d2na00036a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/06/2022] [Indexed: 06/02/2023]
Abstract
Glycosylation is arguably the most important functional post-translational modification in brain cells and abnormal cell surface glycan expression has been associated with neurological diseases and brain cancers. In this study we developed a novel method for uptake of fluorescent nanodiamonds (FND), carbon-based nanoparticles with low toxicity and easily modifiable surfaces, into brain cell subtypes by targeting their glycan receptors with carbohydrate-binding lectins. Lectins facilitated uptake of 120 nm FND with nitrogen-vacancy centers in three types of brain cells - U87-MG astrocytes, PC12 neurons and BV-2 microglia cells. The nanodiamond/lectin complexes used in this study target glycans that have been described to be altered in brain diseases including sialic acid glycans via wheat (Triticum aestivum) germ agglutinin (WGA), high mannose glycans via tomato (Lycopersicon esculentum) lectin (TL) and core fucosylated glycans via Aleuria aurantia lectin (AAL). The lectin conjugated nanodiamonds were taken up differently by the various brain cell types with fucose binding AAL/FNDs taken up preferentially by glioblastoma phenotype astrocyte cells (U87-MG), sialic acid binding WGA/FNDs by neuronal phenotype cells (PC12) and high mannose binding TL/FNDs by microglial cells (BV-2). With increasing recognition of glycans having a role in many diseases, the lectin bioconjugated nanodiamonds developed here are well suited for further investigation into theranostic applications.
Collapse
Affiliation(s)
- Mina Ghanimi Fard
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
| | - Zahra Khabir
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
| | - Philipp Reineck
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University Melbourne VIC 3001 Australia
| | - Nicole M Cordina
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
| | - Hiroshi Abe
- Quantum Beam Science Research Directorate, The Institute for Quantum Life Science, National Institutes for Quantum Science and Technology Takasaki Gunma 3701292 Japan
| | - Takeshi Ohshima
- Quantum Beam Science Research Directorate, The Institute for Quantum Life Science, National Institutes for Quantum Science and Technology Takasaki Gunma 3701292 Japan
| | - Sagar Dalal
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
| | - Brant C Gibson
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University Melbourne VIC 3001 Australia
| | - Nicolle H Packer
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
- Institute for Glycomics, Griffith University Southport QLD 4222 Australia
| | - Lindsay M Parker
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
| |
Collapse
|
49
|
Yan K, Qu C, Wang Y, Zong W, Xu Z. BAIAP2L2 Inactivation Does Not Affect Stereocilia Development or Maintenance in Vestibular Hair Cells. Front Mol Neurosci 2022; 15:829204. [PMID: 35242013 PMCID: PMC8886116 DOI: 10.3389/fnmol.2022.829204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
Hair cells are mechanosensitive cells in the inner ear, characterized by dozens to hundreds of actin-based stereocilia and one tubulin-based kinocilium on the apical surface of each cell. Two types of hair cells, namely cochlear hair cells and vestibular hair cells (VHCs), are responsible for the sensation of sound and balancing information, respectively. In each hair cell, the stereocilia are organized into rows of increasing heights with the mechano-electrical transduction (MET) channels localized at the tips of shorter-row stereocilia. A so-called “row 2 protein complex” also localizes at the tips of shorter-row mechanotransducing stereocilia, which plays important roles in the maintenance of mechanotransducing stereocilia. Recently, we and others identified BAIAP2L2 as a new component of row 2 complex. Baiap2l2 inactivation causes degeneration of the mechanotransducing stereocilia in cochlear hair cells, and leads to profound hearing loss in mice. In the present work, we examined the role of BAIAP2L2 in the VHC stereocilia. Confocal microscopy reveals that BAIAP2L2 immunoreactivity is localized at the tips of shorter-row stereocilia in VHCs. However, stereocilia development and maintenance are unaffected in Baiap2l2–/– VHCs. Meanwhile, MET function of VHCs as well as vestibular functions are also unaffected in Baiap2l2–/– mice. Further investigations show that the stereociliary tip localization of CAPZB2, another known row 2 complex component, is not affected in Baiap2l2–/– VHCs, consistent with the unaltered stereocilia morphology. Taken together, our present data show that BAIAP2L2 inactivation does not affect vestibular hair cell stereocilia.
Collapse
Affiliation(s)
- Keji Yan
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Chengli Qu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Wen Zong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| |
Collapse
|
50
|
Multiplexed Genome Editing for Efficient Phenotypic Screening in Zebrafish. Vet Sci 2022; 9:vetsci9020092. [PMID: 35202345 PMCID: PMC8879510 DOI: 10.3390/vetsci9020092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/30/2022] Open
Abstract
Zebrafish are widely used to investigate candidate genes for human diseases. While the emergence of CRISPR-Cas9 technology has revolutionized gene editing, the use of individual guide RNAs limits the efficiency and application of this technology in functional genetics research. Multiplexed genome editing significantly enhances the efficiency and scope of gene editing. Herein, we describe an efficient multiplexed genome editing strategy to generate zebrafish mutants. Following behavioural tests and histological examination, we identified one new candidate gene (tmem183a) for hearing loss. This study provides a robust genetic platform to quickly obtain zebrafish mutants and to identify candidate genes by phenotypic readouts.
Collapse
|