1
|
Frisby D, Murakonda AB, Ashraf B, Dhawan K, Almeida-Souza L, Naslavsky N, Caplan S. Endosomal actin branching, fission, and receptor recycling require FCHSD2 recruitment by MICAL-L1. Mol Biol Cell 2024; 35:ar144. [PMID: 39382837 PMCID: PMC11617095 DOI: 10.1091/mbc.e24-07-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024] Open
Abstract
Endosome fission is required for the release of carrier vesicles and the recycling of receptors to the plasma membrane. Early events in endosome budding and fission rely on actin branching to constrict the endosomal membrane, ultimately leading to nucleotide hydrolysis and enzymatic fission. However, our current understanding of this process is limited, particularly regarding the coordination between the early and late steps of endosomal fission. Here we have identified a novel interaction between the endosomal scaffolding protein, MICAL-L1, and the human homologue of the Drosophila Nervous Wreck (Nwk) protein, FCH and double SH3 domains protein 2 (FCHSD2). We demonstrate that MICAL-L1 recruits FCHSD2 to the endosomal membrane, where it is required for ARP2/3-mediated generation of branched actin, endosome fission and receptor recycling to the plasma membrane. Because MICAL-L1 first recruits FCHSD2 to the endosomal membrane, and is subsequently responsible for recruitment of the ATPase and fission protein EHD1 to endosomes, our findings support a model in which MICAL-L1 orchestrates endosomal fission by connecting between the early actin-driven and subsequent nucleotide hydrolysis steps of the process.
Collapse
Affiliation(s)
- Devin Frisby
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Ajay B. Murakonda
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Bazella Ashraf
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Kanika Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla 92093, CA
| | - Leonardo Almeida-Souza
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00790, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
2
|
Frisby D, Murakonda AB, Ashraf B, Dhawan K, Almeida-Souza L, Naslavsky N, Caplan S. Endosomal actin branching, fission and receptor recycling require FCHSD2 recruitment by MICAL-L1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601011. [PMID: 38979241 PMCID: PMC11230409 DOI: 10.1101/2024.06.27.601011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Endosome fission is required for the release of carrier vesicles and the recycling of receptors to the plasma membrane. Early events in endosome budding and fission rely on actin branching to constrict the endosomal membrane, ultimately leading to nucleotide hydrolysis and enzymatic fission. However, our current understanding of this process is limited, particularly regarding the coordination between the early and late steps of endosomal fission. Here we have identified a novel interaction between the endosomal scaffolding protein, MICAL-L1, and the human homolog of the Drosophila Nervous Wreck (Nwk) protein, FCH and double SH3 domains protein 2 (FCHSD2). We demonstrate that MICAL-L1 recruits FCHSD2 to the endosomal membrane, where it is required for ARP2/3-mediated generation of branched actin, endosome fission and receptor recycling to the plasma membrane. Since MICAL-L1 first recruits FCHSD2 to the endosomal membrane, and is subsequently responsible for recruitment of the ATPase and fission protein EHD1 to endosomes, our findings support a model in which MICAL-L1 orchestrates endosomal fission by connecting between the early actin-driven and subsequent nucleotide hydrolysis steps of the process.
Collapse
|
3
|
Kushwaha S, Mallik B, Bisht A, Mushtaq Z, Pippadpally S, Chandra N, Das S, Ratnaparkhi G, Kumar V. dAsap regulates cellular protrusions via an Arf6-dependent actin regulatory pathway in S2R+ cells. FEBS Lett 2024; 598:1491-1505. [PMID: 38862211 DOI: 10.1002/1873-3468.14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
Membrane protrusions are fundamental to cellular functions like migration, adhesion, and communication and depend upon dynamic reorganization of the cytoskeleton. GAP-dependent GTP hydrolysis of Arf proteins regulates actin-dependent membrane remodeling. Here, we show that dAsap regulates membrane protrusions in S2R+ cells by a mechanism that critically relies on its ArfGAP domain and relocalization of actin regulators, SCAR, and Ena. While our data reinforce the preference of dAsap for Arf1 GTP hydrolysis in vitro, we demonstrate that induction of membrane protrusions in S2R+ cells depends on Arf6 inactivation. This study furthers our understanding of how dAsap-dependent GTP hydrolysis maintains a balance between active and inactive states of Arf6 to regulate cell shape.
Collapse
Affiliation(s)
- Shikha Kushwaha
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Bhagaban Mallik
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Anjali Bisht
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Zeeshan Mushtaq
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Srikanth Pippadpally
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Nitika Chandra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Subhradip Das
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Pune, India
| | - Girish Ratnaparkhi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Pune, India
| | - Vimlesh Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| |
Collapse
|
4
|
Dominicci-Cotto C, Vazquez M, Marie B. The Wingless planar cell polarity pathway is essential for optimal activity-dependent synaptic plasticity. Front Synaptic Neurosci 2024; 16:1322771. [PMID: 38633293 PMCID: PMC11021733 DOI: 10.3389/fnsyn.2024.1322771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
From fly to man, the Wingless (Wg)/Wnt signaling molecule is essential for both the stability and plasticity of the nervous system. The Drosophila neuromuscular junction (NMJ) has proven to be a useful system for deciphering the role of Wg in directing activity-dependent synaptic plasticity (ADSP), which, in the motoneuron, has been shown to be dependent on both the canonical and the noncanonical calcium Wg pathways. Here we show that the noncanonical planar cell polarity (PCP) pathway is an essential component of the Wg signaling system controlling plasticity at the motoneuron synapse. We present evidence that disturbing the PCP pathway leads to a perturbation in ADSP. We first show that a PCP-specific allele of disheveled (dsh) affects the de novo synaptic structures produced during ADSP. We then show that the Rho GTPases downstream of Dsh in the PCP pathway are also involved in regulating the morphological changes that take place after repeated stimulation. Finally, we show that Jun kinase is essential for this phenomenon, whereas we found no indication of the involvement of the transcription factor complex AP1 (Jun/Fos). This work shows the involvement of the neuronal PCP signaling pathway in supporting ADSP. Because we find that AP1 mutants can perform ADSP adequately, we hypothesize that, upon Wg activation, the Rho GTPases and Jun kinase are involved locally at the synapse, in instructing cytoskeletal dynamics responsible for the appearance of the morphological changes occurring during ADSP.
Collapse
Affiliation(s)
- Carihann Dominicci-Cotto
- Department of Anatomy and Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
| | - Mariam Vazquez
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, United States
| | - Bruno Marie
- Department of Anatomy and Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, United States
| |
Collapse
|
5
|
Kang CJ, Guzmán-Clavel LE, Lei K, Koo M, To S, Roche JP. The exocyst subunit Sec15 is critical for proper synaptic development and function at the Drosophila NMJ. Mol Cell Neurosci 2024; 128:103914. [PMID: 38086519 DOI: 10.1016/j.mcn.2023.103914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
The exocyst protein complex is important for targeted vesicle fusion in a variety of cell types, however, its function in neurons is still not entirely known. We found that presynaptic knockdown (KD) of the exocyst component sec15 by transgenic RNAi expression caused a number of unexpected morphological and physiological defects in the synapse. These include the development of active zones (AZ) devoid of essential presynaptic proteins, an increase in the branching of the presynaptic arbor, the appearance of satellite boutons, and a decrease in the amplitude of stimulated postsynaptic currents as well as a decrease in the frequency of spontaneous synaptic vesicle release. We also found the release of extracellular vesicles from the presynaptic neuron was greatly diminished in the Sec15 KDs. These effects were mimicked by presynaptic knockdown of Rab11, a protein known to interact with the exocyst. sec15 RNAi expression caused an increase in phosphorylated Mothers against decapentaplegic (pMad) in the presynaptic terminal, an indication of enhanced bone morphogenic protein (BMP) signaling. Some morphological phenotypes caused by Sec15 knockdown were reduced by attenuation of BMP signaling through knockdown of wishful thinking (Wit), while other phenotypes were unaffected. Individual knockdown of multiple proteins of the exocyst complex also displayed a morphological phenotype similar to Sec15 KD. We conclude that Sec15, functioning as part of the exocyst complex, is critically important for proper formation and function of neuronal synapses. We propose a model in which Sec15 is involved in the trafficking of vesicles from the recycling endosome to the cell membrane as well as possibly trafficking extracellular vesicles for presynaptic release and these processes are necessary for the correct structure and function of the synapse.
Collapse
Affiliation(s)
- Chris J Kang
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - Luis E Guzmán-Clavel
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - Katherine Lei
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - Martin Koo
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - Steven To
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America
| | - John P Roche
- Neuroscience Program, Amherst College, Amherst, MA 01002, United States of America; Department of Biology, Amherst College, Amherst, MA 01002, United States of America.
| |
Collapse
|
6
|
Mintoo M, Rajagopalan V, O'Bryan JP. Intersectin - many facets of a scaffold protein. Biochem Soc Trans 2024; 52:1-13. [PMID: 38174740 DOI: 10.1042/bst20211241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Intersectin (ITSN) is a multi-domain scaffold protein with a diverse array of functions including regulation of endocytosis, vesicle transport, and activation of various signal transduction pathways. There are two ITSN genes located on chromosomes 21 and 2 encoding for proteins ITSN1 and ITSN2, respectively. Each ITSN gene encodes two major isoforms, ITSN-Long (ITSN-L) and ITSN-Short (ITSN-S), due to alternative splicing. ITSN1 and 2, collectively referred to as ITSN, are implicated in many physiological and pathological processes, such as neuronal maintenance, actin cytoskeletal rearrangement, and tumor progression. ITSN is mis-regulated in many tumors, such as breast, lung, neuroblastomas, and gliomas. Altered expression of ITSN is also found in several neurodegenerative diseases, such as Down Syndrome and Alzheimer's disease. This review summarizes recent studies on ITSN and provides an overview of the function of this important family of scaffold proteins in various biological processes.
Collapse
Affiliation(s)
- Mubashir Mintoo
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - Vinodh Rajagopalan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, U.S.A
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, U.S.A
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, U.S.A
| |
Collapse
|
7
|
Bertin F, Jara-Wilde J, Auer B, Köhler-Solís A, González-Silva C, Thomas U, Sierralta J. Drosophila Atlastin regulates synaptic vesicle mobilization independent of bone morphogenetic protein signaling. Biol Res 2023; 56:49. [PMID: 37710314 PMCID: PMC10503011 DOI: 10.1186/s40659-023-00462-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) contacts endosomes in all parts of a motor neuron, including the axon and presynaptic terminal, to move structural proteins, proteins that send signals, and lipids over long distances. Atlastin (Atl), a large GTPase, is required for membrane fusion and the structural dynamics of the ER tubules. Atl mutations are the second most common cause of Hereditary Spastic Paraplegia (HSP), which causes spasticity in both sexes' lower extremities. Through an unknown mechanism, Atl mutations stimulate the BMP (bone morphogenetic protein) pathway in vertebrates and Drosophila. Synaptic defects are caused by atl mutations, which affect the abundance and distribution of synaptic vesicles (SV) in the bouton. We hypothesize that BMP signaling, does not cause Atl-dependent SV abnormalities in Drosophila. RESULTS We show that atl knockdown in motor neurons (Atl-KD) increases synaptic and satellite boutons in the same way that constitutively activating the BMP-receptor Tkv (thick veins) (Tkv-CA) increases the bouton number. The SV proteins Cysteine string protein (CSP) and glutamate vesicular transporter are reduced in Atl-KD and Tkv-CA larvae. Reducing the activity of the BMP receptor Wishful thinking (wit) can rescue both phenotypes. Unlike Tkv-CA larvae, Atl-KD larvae display altered activity-dependent distributions of CSP staining. Furthermore, Atl-KD larvae display an increased FM 1-43 unload than Control and Tkv-CA larvae. As decreasing wit function does not reduce the phenotype, our hypothesis that BMP signaling is not involved is supported. We also found that Rab11/CSP colocalization increased in Atl-KD larvae, which supports the concept that late recycling endosomes regulate SV movements. CONCLUSIONS Our findings reveal that Atl modulates neurotransmitter release in motor neurons via SV distribution independently of BMP signaling, which could explain the observed SV accumulation and synaptic dysfunction. Our data suggest that Atl is involved in membrane traffic as well as formation and/or recycling of the late endosome.
Collapse
Affiliation(s)
- Francisca Bertin
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jorge Jara-Wilde
- SCIAN-Lab, Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Department of Computational Sciences, Faculty of Physical and Mathematical Sciences, Universidad de Chile, Santiago, Chile
| | - Benedikt Auer
- Laboratory of Neuronal and Synaptic Signals, Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Andrés Köhler-Solís
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Carolina González-Silva
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ulrich Thomas
- Functional Genetics of the Synapse, Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Jimena Sierralta
- Biomedical Neuroscience Institute (BNI), Santiago, Chile.
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
8
|
Ayyar BV, Ettayebi K, Salmen W, Karandikar UC, Neill FH, Tenge VR, Crawford SE, Bieberich E, Prasad BVV, Atmar RL, Estes MK. CLIC and membrane wound repair pathways enable pandemic norovirus entry and infection. Nat Commun 2023; 14:1148. [PMID: 36854760 PMCID: PMC9974061 DOI: 10.1038/s41467-023-36398-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023] Open
Abstract
Globally, most cases of gastroenteritis are caused by pandemic GII.4 human norovirus (HuNoV) strains with no approved therapies or vaccines available. The cellular pathways that these strains exploit for cell entry and internalization are unknown. Here, using nontransformed human jejunal enteroids (HIEs) that recapitulate the physiology of the gastrointestinal tract, we show that infectious GII.4 virions and virus-like particles are endocytosed using a unique combination of endosomal acidification-dependent clathrin-independent carriers (CLIC), acid sphingomyelinase (ASM)-mediated lysosomal exocytosis, and membrane wound repair pathways. We found that besides the known interaction of the viral capsid Protruding (P) domain with host glycans, the Shell (S) domain interacts with both galectin-3 (gal-3) and apoptosis-linked gene 2-interacting protein X (ALIX), to orchestrate GII.4 cell entry. Recognition of the viral and cellular determinants regulating HuNoV entry provides insight into the infection process of a non-enveloped virus highlighting unique pathways and targets for developing effective therapeutics.
Collapse
Affiliation(s)
- B Vijayalakshmi Ayyar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Wilhelm Salmen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Umesh C Karandikar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Frederick H Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Victoria R Tenge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, KY 40506 and VAMC, Lexington, KY, 40502, USA
| | - B V Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
AP2 Regulates Thickveins Trafficking to Attenuate NMJ Growth Signaling in Drosophila. eNeuro 2022; 9:ENEURO.0044-22.2022. [PMID: 36180220 PMCID: PMC9581581 DOI: 10.1523/eneuro.0044-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 12/15/2022] Open
Abstract
Compromised endocytosis in neurons leads to synapse overgrowth and altered organization of synaptic proteins. However, the molecular players and the signaling pathways which regulate the process remain poorly understood. Here, we show that σ2-adaptin, one of the subunits of the AP2-complex, genetically interacts with Mad, Medea and Dad (components of BMP signaling) to control neuromuscular junction (NMJ) growth in Drosophila Ultrastructural analysis of σ2-adaptin mutants show an accumulation of large vesicles and membranous structures akin to endosomes at the synapse. We found that mutations in σ2-adaptin lead to an accumulation of Tkv receptors at the presynaptic membrane. Interestingly, the level of small GTPase Rab11 was significantly reduced in the σ2-adaptin mutant synapses. However, expression of Rab11 does not restore the synaptic defects of σ2-adaptin mutations. We propose a model in which AP2 regulates Tkv internalization and endosomal recycling to control synaptic growth.
Collapse
|
10
|
Zhai X, Du H, Shen Y, Zhang X, Chen Z, Wang Y, Xu Z. FCHSD2 is required for stereocilia maintenance in mouse cochlear hair cells. J Cell Sci 2022; 135:jcs259912. [PMID: 35892293 DOI: 10.1242/jcs.259912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/15/2022] [Indexed: 11/20/2022] Open
Abstract
Stereocilia are F-actin-based protrusions on the apical surface of inner-ear hair cells and are indispensable for hearing and balance perception. The stereocilia of each hair cell are organized into rows of increasing heights, forming a staircase-like pattern. The development and maintenance of stereocilia are tightly regulated, and deficits in these processes lead to stereocilia disorganization and hearing loss. Previously, we showed that the F-BAR protein FCHSD2 is localized along the stereocilia of cochlear hair cells and cooperates with CDC42 to regulate F-actin polymerization and cell protrusion formation in cultured COS-7 cells. In the present work, Fchsd2 knockout mice were established to investigate the role of FCHSD2 in hearing. Our data show that stereocilia maintenance is severely affected in cochlear hair cells of Fchsd2 knockout mice, which leads to progressive hearing loss. Moreover, Fchsd2 knockout mice show increased acoustic vulnerability. Noise exposure causes robust stereocilia degeneration as well as enhanced hearing threshold elevation in Fchsd2 knockout mice. Lastly, Fchsd2/Cdc42 double knockout mice show more severe stereocilia deficits and hearing loss, suggesting that FCHSD2 and CDC42 cooperatively regulate stereocilia maintenance.
Collapse
Affiliation(s)
- Xiaoyan Zhai
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Yuxin Shen
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Xiujuan Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Zhengjun Chen
- State Key Laboratory of Cell Biology , Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS), Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education , School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology , Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
11
|
Blanchette CR, Scalera AL, Harris KP, Zhao Z, Dresselhaus EC, Koles K, Yeh A, Apiki JK, Stewart BA, Rodal AA. Local regulation of extracellular vesicle traffic by the synaptic endocytic machinery. J Cell Biol 2022; 221:e202112094. [PMID: 35320349 PMCID: PMC8952828 DOI: 10.1083/jcb.202112094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
Neuronal extracellular vesicles (EVs) are locally released from presynaptic terminals, carrying cargoes critical for intercellular signaling and disease. EVs are derived from endosomes, but it is unknown how these cargoes are directed to the EV pathway rather than for conventional endolysosomal degradation. Here, we find that endocytic machinery plays an unexpected role in maintaining a release-competent pool of EV cargoes at synapses. Endocytic mutants, including nervous wreck (nwk), shibire/dynamin, and AP-2, unexpectedly exhibit local presynaptic depletion specifically of EV cargoes. Accordingly, nwk mutants phenocopy synaptic plasticity defects associated with loss of the EV cargo synaptotagmin-4 (Syt4) and suppress lethality upon overexpression of the EV cargo amyloid precursor protein (APP). These EV defects are genetically separable from canonical endocytic functions in synaptic vesicle recycling and synaptic growth. Endocytic machinery opposes the endosomal retromer complex to regulate EV cargo levels and acts upstream of synaptic cargo removal by retrograde axonal transport. Our data suggest a novel molecular mechanism that locally promotes cargo loading into synaptic EVs.
Collapse
Affiliation(s)
| | | | - Kathryn P. Harris
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Zechuan Zhao
- Department of Biology, Brandeis University, Waltham, MA
| | | | - Kate Koles
- Department of Biology, Brandeis University, Waltham, MA
| | - Anna Yeh
- Department of Biology, Brandeis University, Waltham, MA
| | | | - Bryan A. Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | | |
Collapse
|
12
|
Abouelezz A, Almeida-Souza L. The mammalian endocytic cytoskeleton. Eur J Cell Biol 2022; 101:151222. [DOI: 10.1016/j.ejcb.2022.151222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022] Open
|
13
|
FCHSD2 cooperates with CDC42 and N-WASP to regulate cell protrusion formation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119134. [PMID: 34520816 DOI: 10.1016/j.bbamcr.2021.119134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 11/23/2022]
Abstract
Actin-based, finger-like cell protrusions such as microvilli and filopodia play important roles in epithelial cells. Several proteins have been identified to regulate cell protrusion formation, which helps us to learn about the underlying mechanism of this process. FCH domain and double SH3 domains containing protein 2 (FCHSD2) belongs to the FCH and Bin-Amphiphysin-Rvs (F-BAR) protein family, containing an N-terminal F-BAR domain, two SH3 domains, and a C-terminal PDZ domain-binding interface (PBI). Previously, we found that FCHSD2 interacts with WASP/N-WASP and stimulates ARP2/3-mediated actin polymerization in vitro. In the present work, we show that FCHSD2 promotes the formation of apical and lateral cell protrusions in cultured cells. Our data suggest that FCHSD2 cooperates with CDC42 and N-WASP in regulating apical cell protrusion formation. In line with this, biochemical studies reveal that FCHSD2 and CDC42 simultaneously bind to N-WASP, forming a protein complex. Interestingly, the F-BAR domain of FCHSD2 induces lateral cell protrusion formation independently of N-WASP. Furthermore, we show that the ability of FCHSD2 to induce cell protrusion formation requires its plasma membrane-binding ability. In summary, our present work suggests that FCHSD2 cooperates with CDC42 and N-WASP to regulate cell protrusion formation in a membrane-dependent manner.
Collapse
|
14
|
Sauvola CW, Littleton JT. SNARE Regulatory Proteins in Synaptic Vesicle Fusion and Recycling. Front Mol Neurosci 2021; 14:733138. [PMID: 34421538 PMCID: PMC8377282 DOI: 10.3389/fnmol.2021.733138] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Membrane fusion is a universal feature of eukaryotic protein trafficking and is mediated by the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) family. SNARE proteins embedded in opposing membranes spontaneously assemble to drive membrane fusion and cargo exchange in vitro. Evolution has generated a diverse complement of SNARE regulatory proteins (SRPs) that ensure membrane fusion occurs at the right time and place in vivo. While a core set of SNAREs and SRPs are common to all eukaryotic cells, a specialized set of SRPs within neurons confer additional regulation to synaptic vesicle (SV) fusion. Neuronal communication is characterized by precise spatial and temporal control of SNARE dynamics within presynaptic subdomains specialized for neurotransmitter release. Action potential-elicited Ca2+ influx at these release sites triggers zippering of SNAREs embedded in the SV and plasma membrane to drive bilayer fusion and release of neurotransmitters that activate downstream targets. Here we discuss current models for how SRPs regulate SNARE dynamics and presynaptic output, emphasizing invertebrate genetic findings that advanced our understanding of SRP regulation of SV cycling.
Collapse
Affiliation(s)
- Chad W Sauvola
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
15
|
Del Signore SJ, Kelley CF, Messelaar EM, Lemos T, Marchan MF, Ermanoska B, Mund M, Fai TG, Kaksonen M, Rodal AA. An autoinhibitory clamp of actin assembly constrains and directs synaptic endocytosis. eLife 2021; 10:69597. [PMID: 34324418 PMCID: PMC8321554 DOI: 10.7554/elife.69597] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023] Open
Abstract
Synaptic membrane-remodeling events such as endocytosis require force-generating actin assembly. The endocytic machinery that regulates these actin and membrane dynamics localizes at high concentrations to large areas of the presynaptic membrane, but actin assembly and productive endocytosis are far more restricted in space and time. Here we describe a mechanism whereby autoinhibition clamps the presynaptic endocytic machinery to limit actin assembly to discrete functional events. We found that collective interactions between the Drosophila endocytic proteins Nwk/FCHSD2, Dap160/intersectin, and WASp relieve Nwk autoinhibition and promote robust membrane-coupled actin assembly in vitro. Using automated particle tracking to quantify synaptic actin dynamics in vivo, we discovered that Nwk-Dap160 interactions constrain spurious assembly of WASp-dependent actin structures. These interactions also promote synaptic endocytosis, suggesting that autoinhibition both clamps and primes the synaptic endocytic machinery, thereby constraining actin assembly to drive productive membrane remodeling in response to physiological cues. Neurons constantly talk to each other by sending chemical signals across the tiny gap, or ‘synapse’, that separates two cells. While inside the emitting cell, these molecules are safely packaged into small, membrane-bound vessels. Upon the right signal, the vesicles fuse with the external membrane of the neuron and spill their contents outside, for the receiving cell to take up and decode. The emitting cell must then replenish its vesicle supply at the synapse through a recycling mechanism known as endocytosis. To do so, it uses dynamically assembling rod-like ‘actin’ filaments, which work in concert with many other proteins to pull in patches of membrane as new vesicles. The proteins that control endocytosis and actin assembly abound at neuronal synapses, and, when mutated, are linked to many neurological diseases. Unlike other cell types, neurons appear to ‘pre-deploy’ these actin-assembly proteins to synaptic membranes, but to keep them inactive under normal conditions. How neurons control the way this machinery is recruited and activated remains unknown. To investigate this question, Del Signore et al. conducted two sets of studies. First, they exposed actin to several different purified proteins in initial ‘test tube’ experiments. This revealed that, depending on the conditions, a group of endocytosis proteins could prevent or promote actin assembly: assembly occurred only if the proteins were associated with membranes. Next, Del Signore et al. mutated these proteins in fruit fly larvae, and performed live cell microscopy to determine their impact on actin assembly and endocytosis. Consistent with the test tube findings, endocytosis mutants had more actin assembly overall, implying that the proteins were required to prevent random actin assembly. However, the same mutants had reduced levels of endocytosis, suggesting that the proteins were also necessary for productive actin assembly. Together, these experiments suggest that, much like a mousetrap holds itself poised ready to spring, some endocytic proteins play a dual role to restrain actin assembly when and where it is not needed, and to promote it at sites of endocytosis. These results shed new light on how neurons might build and maintain effective, working synapses. Del Signore et al. hope that this knowledge may help to better understand and combat neurological diseases, such as Alzheimer’s, which are linked to impaired membrane traffic and cell signalling.
Collapse
Affiliation(s)
| | | | | | - Tania Lemos
- Department of Biology, Brandeis University, Walltham, United States
| | | | | | - Markus Mund
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Thomas G Fai
- Department of Mathematics, Brandeis University, Waltham, United States
| | - Marko Kaksonen
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
16
|
Function of Drosophila Synaptotagmins in membrane trafficking at synapses. Cell Mol Life Sci 2021; 78:4335-4364. [PMID: 33619613 PMCID: PMC8164606 DOI: 10.1007/s00018-021-03788-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
The Synaptotagmin (SYT) family of proteins play key roles in regulating membrane trafficking at neuronal synapses. Using both Ca2+-dependent and Ca2+-independent interactions, several SYT isoforms participate in synchronous and asynchronous fusion of synaptic vesicles (SVs) while preventing spontaneous release that occurs in the absence of stimulation. Changes in the function or abundance of the SYT1 and SYT7 isoforms alter the number and route by which SVs fuse at nerve terminals. Several SYT family members also regulate trafficking of other subcellular organelles at synapses, including dense core vesicles (DCV), exosomes, and postsynaptic vesicles. Although SYTs are linked to trafficking of multiple classes of synaptic membrane compartments, how and when they interact with lipids, the SNARE machinery and other release effectors are still being elucidated. Given mutations in the SYT family cause disorders in both the central and peripheral nervous system in humans, ongoing efforts are defining how these proteins regulate vesicle trafficking within distinct neuronal compartments. Here, we review the Drosophila SYT family and examine their role in synaptic communication. Studies in this invertebrate model have revealed key similarities and several differences with the predicted activity of their mammalian counterparts. In addition, we highlight the remaining areas of uncertainty in the field and describe outstanding questions on how the SYT family regulates membrane trafficking at nerve terminals.
Collapse
|
17
|
Roberts AD, Davenport TM, Dickey AM, Ahn R, Sochacki KA, Taraska JW. Structurally distinct endocytic pathways for B cell receptors in B lymphocytes. Mol Biol Cell 2020; 31:2826-2840. [PMID: 33085561 PMCID: PMC7851864 DOI: 10.1091/mbc.e20-08-0532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
B lymphocytes play a critical role in adaptive immunity. On antigen binding, B cell receptors (BCR) cluster on the plasma membrane and are internalized by endocytosis. In this process, B cells capture diverse antigens in various contexts and concentrations. However, it is unclear whether the mechanism of BCR endocytosis changes in response to these factors. Here, we studied the mechanism of soluble antigen-induced BCR clustering and internalization in a cultured human B cell line using correlative superresolution fluorescence and platinum replica electron microscopy. First, by visualizing nanoscale BCR clusters, we provide direct evidence that BCR cluster size increases with F(ab’)2 concentration. Next, we show that the physical mechanism of internalization switches in response to BCR cluster size. At low concentrations of antigen, B cells internalize small BCR clusters by classical clathrin-mediated endocytosis. At high antigen concentrations, when cluster size increases beyond the size of a single clathrin-coated pit, B cells retrieve receptor clusters using large invaginations of the plasma membrane capped with clathrin. At these sites, we observed early and sustained recruitment of actin and an actin polymerizing protein FCHSD2. We further show that actin recruitment is required for the efficient generation of these novel endocytic carriers and for their capture into the cytosol. We propose that in B cells, the mechanism of endocytosis switches to accommodate large receptor clusters formed when cells encounter high concentrations of soluble antigen. This mechanism is regulated by the organization and dynamics of the cortical actin cytoskeleton.
Collapse
Affiliation(s)
- Aleah D Roberts
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Thaddeus M Davenport
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Andrea M Dickey
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Regina Ahn
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kem A Sochacki
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
18
|
Bernadzki KM, Daszczuk P, Rojek KO, Pęziński M, Gawor M, Pradhan BS, de Cicco T, Bijata M, Bijata K, Włodarczyk J, Prószyński TJ, Niewiadomski P. Arhgef5 Binds α-Dystrobrevin 1 and Regulates Neuromuscular Junction Integrity. Front Mol Neurosci 2020; 13:104. [PMID: 32587503 PMCID: PMC7299196 DOI: 10.3389/fnmol.2020.00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/13/2020] [Indexed: 01/09/2023] Open
Abstract
The neuromuscular junctions (NMJs) connect muscle fibers with motor neurons and enable the coordinated contraction of skeletal muscles. The dystrophin-associated glycoprotein complex (DGC) is an essential component of the postsynaptic machinery of the NMJ and is important for the maintenance of NMJ structural integrity. To identify novel proteins that are important for NMJ organization, we performed a mass spectrometry-based screen for interactors of α-dystrobrevin 1 (aDB1), one of the components of the DGC. The guanidine nucleotide exchange factor (GEF) Arhgef5 was found to be one of the aDB1 binding partners that is recruited to Tyr-713 in a phospho-dependent manner. We show here that Arhgef5 localizes to the NMJ and that its genetic depletion in the muscle causes the fragmentation of the synapses in conditional knockout mice. Arhgef5 loss in vivo is associated with a reduction in the levels of active GTP-bound RhoA and Cdc42 GTPases, highlighting the importance of actin dynamics regulation for the maintenance of NMJ integrity.
Collapse
Affiliation(s)
- Krzysztof M Bernadzki
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Patrycja Daszczuk
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Katarzyna O Rojek
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland.,Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Pęziński
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta Gawor
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bhola S Pradhan
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Teresa de Cicco
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Krystian Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Tomasz J Prószyński
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland.,Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
| | - Paweł Niewiadomski
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland.,Laboratory of Molecular and Cellular Signaling, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
19
|
Abstract
The actin remodeling factor N-WASP is best known as an Arp2/3 complex activator in processes like endocytosis, extracellular matrix degradation, and host-pathogen interaction. In this issue of Developmental Cell, Juin et al. establish a novel trafficking function for N-WASP in driving lysophosphatidic acid-dependent chemotaxis and metastasis of pancreatic cancer cells.
Collapse
Affiliation(s)
- Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), Rebenring 56, 38106 Braunschweig, Germany.
| | - Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
20
|
Guan Z, Quiñones-Frías MC, Akbergenova Y, Littleton JT. Drosophila Synaptotagmin 7 negatively regulates synaptic vesicle release and replenishment in a dosage-dependent manner. eLife 2020; 9:e55443. [PMID: 32343229 PMCID: PMC7224696 DOI: 10.7554/elife.55443] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023] Open
Abstract
Synchronous neurotransmitter release is triggered by Ca2+ binding to the synaptic vesicle protein Synaptotagmin 1, while asynchronous fusion and short-term facilitation is hypothesized to be mediated by plasma membrane-localized Synaptotagmin 7 (SYT7). We generated mutations in Drosophila Syt7 to determine if it plays a conserved role as the Ca2+ sensor for these processes. Electrophysiology and quantal imaging revealed evoked release was elevated 2-fold. Syt7 mutants also had a larger pool of readily-releasable vesicles, faster recovery following stimulation, and intact facilitation. Syt1/Syt7 double mutants displayed more release than Syt1 mutants alone, indicating SYT7 does not mediate the residual asynchronous release remaining in the absence of SYT1. SYT7 localizes to an internal membrane tubular network within the peri-active zone, but does not enrich at active zones. These findings indicate the two Ca2+ sensor model of SYT1 and SYT7 mediating all phases of neurotransmitter release and facilitation is not applicable at Drosophila synapses.
Collapse
Affiliation(s)
- Zhuo Guan
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Monica C Quiñones-Frías
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
21
|
Transcriptomic and proteomic profiling of glial versus neuronal Dube3a overexpression reveals common molecular changes in gliopathic epilepsies. Neurobiol Dis 2020; 141:104879. [PMID: 32344153 DOI: 10.1016/j.nbd.2020.104879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/04/2020] [Accepted: 04/23/2020] [Indexed: 01/05/2023] Open
Abstract
Epilepsy affects millions of individuals worldwide and many cases are pharmacoresistant. Duplication 15q syndrome (Dup15q) is a genetic disorder caused by duplications of the 15q11.2-q13.1 region. Phenotypes include a high rate of pharmacoresistant epilepsy. We developed a Dup15q model in Drosophila melanogaster that recapitulates seizures in Dup15q by over-expressing fly Dube3a or human UBE3A in glial cells, but not neurons, implicating glia in the Dup15q epilepsy phenotype. We compared Dube3a overexpression in glia (repo>Dube3a) versus neurons (elav>Dube3a) using transcriptomics and proteomics of whole fly head extracts. We identified 851 transcripts differentially regulated in repo>Dube3a, including an upregulation of glutathione S-transferase (GST) genes that occurred cell autonomously within glial cells. We reliably measured approximately 2,500 proteins by proteomics, most of which were also quantified at the transcript level. Combined transcriptomic and proteomic analysis revealed an enrichment of 21 synaptic transmission genes downregulated at the transcript and protein in repo>Dube3a indicating synaptic proteins change in a cell non-autonomous manner in repo>Dube3a flies. We identified 6 additional glia originating bang-sensitive seizure lines and found upregulation of GSTs in 4 out of these 6 lines. These data suggest GST upregulation is common among gliopathic seizures and may ultimately provide insight for treating epilepsy.
Collapse
|
22
|
Genetic Networks Underlying Natural Variation in Basal and Induced Activity Levels in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2020; 10:1247-1260. [PMID: 32014853 PMCID: PMC7144082 DOI: 10.1534/g3.119.401034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exercise is recommended by health professionals across the globe as part of a healthy lifestyle to prevent and/or treat the consequences of obesity. While overall, the health benefits of exercise and an active lifestyle are well understood, very little is known about how genetics impacts an individual's inclination for and response to exercise. To address this knowledge gap, we investigated the genetic architecture underlying natural variation in activity levels in the model system Drosophila melanogaster Activity levels were assayed in the Drosophila Genetics Reference Panel fly strains at baseline and in response to a gentle exercise treatment using the Rotational Exercise Quantification System. We found significant, sex-dependent variation in both activity measures and identified over 100 genes that contribute to basal and induced exercise activity levels. This gene set was enriched for genes with functions in the central nervous system and in neuromuscular junctions and included several candidate genes with known activity phenotypes such as flightlessness or uncoordinated movement. Interestingly, there were also several chromatin proteins among the candidate genes, two of which were validated and shown to impact activity levels. Thus, the study described here reveals the complex genetic architecture controlling basal and exercise-induced activity levels in D. melanogaster and provides a resource for exercise biologists.
Collapse
|
23
|
McNeill EM, Thompson C, Berke B, Chou VT, Rusch J, Duckworth A, DeProto J, Taylor A, Gates J, Gertler F, Keshishian H, Van Vactor D. Drosophila enabled promotes synapse morphogenesis and regulates active zone form and function. Neural Dev 2020; 15:4. [PMID: 32183907 PMCID: PMC7076993 DOI: 10.1186/s13064-020-00141-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/25/2020] [Indexed: 11/10/2022] Open
Abstract
Background Recent studies of synapse form and function highlight the importance of the actin cytoskeleton in regulating multiple aspects of morphogenesis, neurotransmission, and neural plasticity. The conserved actin-associated protein Enabled (Ena) is known to regulate development of the Drosophila larval neuromuscular junction through a postsynaptic mechanism. However, the functions and regulation of Ena within the presynaptic terminal has not been determined. Methods Here, we use a conditional genetic approach to address a presynaptic role for Ena on presynaptic morphology and ultrastructure, and also examine the pathway in which Ena functions through epistasis experiments. Results We find that Ena is required to promote the morphogenesis of presynaptic boutons and branches, in contrast to its inhibitory role in muscle. Moreover, while postsynaptic Ena is regulated by microRNA-mediated mechanisms, presynaptic Ena relays the output of the highly conserved receptor protein tyrosine phosphatase Dlar and associated proteins including the heparan sulfate proteoglycan Syndecan, and the non-receptor Abelson tyrosine kinase to regulate addition of presynaptic varicosities. Interestingly, Ena also influences active zones, where it restricts active zone size, regulates the recruitment of synaptic vesicles, and controls the amplitude and frequency of spontaneous glutamate release. Conclusion We thus show that Ena, under control of the Dlar pathway, is required for presynaptic terminal morphogenesis and bouton addition and that Ena has active zone and neurotransmission phenotypes. Notably, in contrast to Dlar, Ena appears to integrate multiple pathways that regulate synapse form and function.
Collapse
Affiliation(s)
- Elizabeth M McNeill
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA.
| | - Cheryl Thompson
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Brett Berke
- Department of Biology, Yale University, New Haven, CT, USA
| | - Vivian T Chou
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Jannette Rusch
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - April Duckworth
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jamin DeProto
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Alicia Taylor
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA.,Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Julie Gates
- Department of Biology, Bucknell University, Lewisburg, PA, USA
| | - Frank Gertler
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, England
| | | | - David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Dong X, Jin S, Shao Z. Glia Promote Synaptogenesis through an IQGAP PES-7 in C. elegans. Cell Rep 2020; 30:2614-2626.e2. [PMID: 32101740 DOI: 10.1016/j.celrep.2020.01.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 11/11/2019] [Accepted: 01/29/2020] [Indexed: 11/25/2022] Open
Abstract
Synapses are fundamental to the normal function of the nervous system. Glia play a pivotal role in regulating synaptic formation. However, how presynaptic neurons assemble synaptic structure in response to the glial signals remains largely unexplored. To address this question, we use cima-1 mutant C. elegans as an in vivo model, in which the astrocyte-like VCSC glial processes ectopically reach an asynaptic neurite region and promote presynaptic formation there. Through an RNAi screen, we find that the Rho GTPase CDC-42 and IQGAP PES-7 are required in presynaptic neurons for VCSC glia-induced presynaptic formation. In addition, we find that cdc-42 and pes-7 are also required for normal synaptogenesis during postembryonic developmental stages. PES-7 activated by CDC-42 promotes presynaptic formation, most likely through regulating F-actin assembly. Given the evolutionary conservation of CDC-42 and IQGAPs, we speculate that our findings in C. elegans apply to vertebrates.
Collapse
Affiliation(s)
- Xiaohua Dong
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shuhan Jin
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhiyong Shao
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
25
|
Latcheva NK, Delaney TL, Viveiros JM, Smith RA, Bernard KM, Harsin B, Marenda DR, Liebl FLW. The CHD Protein, Kismet, is Important for the Recycling of Synaptic Vesicles during Endocytosis. Sci Rep 2019; 9:19368. [PMID: 31852969 PMCID: PMC6920434 DOI: 10.1038/s41598-019-55900-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022] Open
Abstract
Chromatin remodeling proteins of the chromodomain DNA-binding protein family, CHD7 and CHD8, mediate early neurodevelopmental events including neural migration and differentiation. As such, mutations in either protein can lead to neurodevelopmental disorders. How chromatin remodeling proteins influence the activity of mature synapses, however, is relatively unexplored. A critical feature of mature neurons is well-regulated endocytosis, which is vital for synaptic function to recycle membrane and synaptic proteins enabling the continued release of synaptic vesicles. Here we show that Kismet, the Drosophila homolog of CHD7 and CHD8, regulates endocytosis. Kismet positively influenced transcript levels and bound to dap160 and endophilin B transcription start sites and promoters in whole nervous systems and influenced the synaptic localization of Dynamin/Shibire. In addition, kismet mutants exhibit reduced VGLUT, a synaptic vesicle marker, at stimulated but not resting synapses and reduced levels of synaptic Rab11. Endocytosis is restored at kismet mutant synapses by pharmacologically inhibiting the function of histone deacetyltransferases (HDACs). These data suggest that HDAC activity may oppose Kismet to promote synaptic vesicle endocytosis. A deeper understanding of how CHD proteins regulate the function of mature neurons will help better understand neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nina K Latcheva
- Department of Biology, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, USA.,Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Taylor L Delaney
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Jennifer M Viveiros
- Department of Biology, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, USA
| | - Rachel A Smith
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Kelsey M Bernard
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Benjamin Harsin
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Daniel R Marenda
- Department of Biology, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, USA.,Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA, USA.,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA.
| |
Collapse
|
26
|
Taylor KL, Taylor RJ, Richters KE, Huynh B, Carrington J, McDermott ME, Wilson RL, Dent EW. Opposing functions of F-BAR proteins in neuronal membrane protrusion, tubule formation, and neurite outgrowth. Life Sci Alliance 2019; 2:2/3/e201800288. [PMID: 31160379 PMCID: PMC6549137 DOI: 10.26508/lsa.201800288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 01/08/2023] Open
Abstract
Neurite formation is a fundamental antecedent to axon and dendrite formation, but the mechanisms that underlie this important process are poorly characterized. Here, we demonstrate that two F-BAR proteins, CIP4 and FBP17, have opposing functions in early cortical neuron development. The F-BAR family of proteins play important roles in many cellular processes by regulating both membrane and actin dynamics. The CIP4 family of F-BAR proteins is widely recognized to function in endocytosis by elongating endocytosing vesicles. However, in primary cortical neurons, CIP4 concentrates at the tips of extending lamellipodia and filopodia and inhibits neurite outgrowth. Here, we report that the highly homologous CIP4 family member, FBP17, induces tubular structures in primary cortical neurons and results in precocious neurite formation. Through domain swapping and deletion experiments, we demonstrate that a novel polybasic region between the F-BAR and HR1 domains is required for membrane bending. Moreover, the presence of a poly-PxxP region in longer splice isoforms of CIP4 and FBP17 largely reverses the localization and function of these proteins. Thus, CIP4 and FBP17 function as an antagonistic pair to fine-tune membrane protrusion, endocytosis, and neurite formation during early neuronal development.
Collapse
Affiliation(s)
- Kendra L Taylor
- University of Wisconsin-Madison, Neuroscience Training Program, Madison, WI, USA
| | - Russell J Taylor
- University of Wisconsin-Madison, Neuroscience Training Program, Madison, WI, USA
| | - Karl E Richters
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Brandon Huynh
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Justin Carrington
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Maeve E McDermott
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Rebecca L Wilson
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Erik W Dent
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| |
Collapse
|
27
|
BMP-dependent synaptic development requires Abi-Abl-Rac signaling of BMP receptor macropinocytosis. Nat Commun 2019; 10:684. [PMID: 30737382 PMCID: PMC6368546 DOI: 10.1038/s41467-019-08533-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 01/09/2019] [Indexed: 12/01/2022] Open
Abstract
Retrograde BMP trans-synaptic signaling is essential for synaptic development. Despite the importance of endocytosis-regulated BMP receptor (BMPR) control of this developmental signaling, the mechanism remains unknown. Here, we provide evidence that Abelson interactor (Abi), a substrate for Abl kinase and component of the SCAR/WAVE complex, links Abl and Rac1 GTPase signaling to BMPR macropinocytosis to restrain BMP-mediated synaptic development. We find that Abi acts downstream of Abl and Rac1, and that BMP ligand Glass bottom boat (Gbb) induces macropinocytosis dependent on Rac1/SCAR signaling, Abl-mediated Abi phosphorylation, and BMPR activation. Macropinocytosis acts as the major internalization route for BMPRs at the synapse in a process driven by Gbb activation and resulting in receptor degradation. Key regulators of macropinocytosis (Rabankyrin and CtBP) control BMPR trafficking to limit BMP trans-synaptic signaling. We conclude that BMP-induced macropinocytosis acts as a BMPR homeostatic mechanism to regulate BMP-mediated synaptic development. BMP ligands act as retrograde signalling molecules to regulate presynaptic development, and regulation of BMP receptors by endocytosis may be an important component of this signalling pathway. Here, the authors show that Abi-mediated macropinocytosis of BMP receptors in Drosophila larva and contributes to neuromuscular development.
Collapse
|
28
|
Role for ERK1/2-dependent activation of FCHSD2 in cancer cell-selective regulation of clathrin-mediated endocytosis. Proc Natl Acad Sci U S A 2018; 115:E9570-E9579. [PMID: 30249660 DOI: 10.1073/pnas.1810209115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) regulates the uptake of cell-surface receptors as well as their downstream signaling activities. We recently reported that signaling can reciprocally regulate CME in cancer cells and that this crosstalk can contribute to cancer progression. To further explore the nature and extent of the crosstalk between signaling and CME in cancer cell biology, we analyzed a panel of oncogenic signaling kinase inhibitors for their effects on CME across a panel of normal and cancerous cells. Inhibition of several kinases selectively affected CME in cancer cells, including inhibition of ERK1/2, which selectively inhibited CME by decreasing the rate of clathrin-coated pit (CCP) initiation. We identified an ERK1/2 substrate, the FCH/F-BAR and SH3 domain-containing protein FCHSD2, as being essential for the ERK1/2-dependent effects on CME and CCP initiation. Our data suggest that ERK1/2 phosphorylation activates FCHSD2 and regulates EGF receptor (EGFR) endocytic trafficking as well as downstream signaling activities. Loss of FCHSD2 activity in nonsmall cell lung cancer (NSCLC) cells leads to increased cell-surface expression and altered signaling downstream of EGFR, resulting in enhanced cell proliferation and migration. The expression level of FCHSD2 is positively correlated with higher NSCLC patient survival rates, suggesting that FCHSD2 can negatively affect cancer progression. These findings provide insight into the mechanisms and consequences of the reciprocal regulation of signaling and CME in cancer cells.
Collapse
|
29
|
A Flat BAR Protein Promotes Actin Polymerization at the Base of Clathrin-Coated Pits. Cell 2018; 174:325-337.e14. [PMID: 29887380 PMCID: PMC6057269 DOI: 10.1016/j.cell.2018.05.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 02/28/2018] [Accepted: 05/09/2018] [Indexed: 02/07/2023]
Abstract
Multiple proteins act co-operatively in mammalian clathrin-mediated endocytosis (CME) to generate endocytic vesicles from the plasma membrane. The principles controlling the activation and organization of the actin cytoskeleton during mammalian CME are, however, not fully understood. Here, we show that the protein FCHSD2 is a major activator of actin polymerization during CME. FCHSD2 deletion leads to decreased ligand uptake caused by slowed pit maturation. FCHSD2 is recruited to endocytic pits by the scaffold protein intersectin via an unusual SH3-SH3 interaction. Here, its flat F-BAR domain binds to the planar region of the plasma membrane surrounding the developing pit forming an annulus. When bound to the membrane, FCHSD2 activates actin polymerization by a mechanism that combines oligomerization and recruitment of N-WASP to PI(4,5)P2, thus promoting pit maturation. Our data therefore describe a molecular mechanism for linking spatiotemporally the plasma membrane to a force-generating actin platform guiding endocytic vesicle maturation. FCHSD2 is a bona fide CME protein recruited to CCPs by intersectin Intersectin recruits FCHSD2 via an SH3-SH3 interaction FCHSD2 is a major activator of actin during CME FCHSD2 binds to the surrounding membrane around CCPs via its flat F-BAR domain
Collapse
|
30
|
Sathe M, Muthukrishnan G, Rae J, Disanza A, Thattai M, Scita G, Parton RG, Mayor S. Small GTPases and BAR domain proteins regulate branched actin polymerisation for clathrin and dynamin-independent endocytosis. Nat Commun 2018; 9:1835. [PMID: 29743604 PMCID: PMC5943408 DOI: 10.1038/s41467-018-03955-w] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/22/2018] [Indexed: 01/10/2023] Open
Abstract
Using real-time TIRF microscopy imaging, we identify sites of clathrin and dynamin-independent CLIC/GEEC (CG) endocytic vesicle formation. This allows spatio-temporal localisation of known molecules affecting CG endocytosis; GBF1 (a GEF for ARF1), ARF1 and CDC42 which appear sequentially over 60 s, preceding scission. In an RNAi screen for BAR domain proteins affecting CG endocytosis, IRSp53 and PICK1, known interactors of CDC42 and ARF1, respectively, were selected. Removal of IRSp53, a negative curvature sensing protein, abolishes CG endocytosis. Furthermore, the identification of ARP2/3 complex at CG endocytic sites, maintained in an inactive state reveals a function for PICK1, an ARP2/3 inhibitor. The spatio-temporal sequence of the arrival and disappearance of the molecules suggest a mechanism for a clathrin and dynamin-independent endocytic process. Coincident with the loss of PICK1 by GBF1-activated ARF1, CDC42 recruitment leads to the activation of IRSp53 and the ARP2/3 complex, resulting in a burst of F-actin polymerisation potentially powering scission. Several endocytic pathways operate simultaneously at the cell surface, including the clathrin and dynamin-independent CLIC/GEEC (CG) pathway. Here the authors show that small GTPases and BAR domain proteins regulate branched actin to make clathrin and dynamin-independent endocytic vesicles.
Collapse
Affiliation(s)
- Mugdha Sathe
- National Centre for Biological Science (TIFR), Bellary Road, Bangalore, 560065, India
| | - Gayatri Muthukrishnan
- National Centre for Biological Science (TIFR), Bellary Road, Bangalore, 560065, India
| | - James Rae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.,Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrea Disanza
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, 20139, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy
| | - Mukund Thattai
- National Centre for Biological Science (TIFR), Bellary Road, Bangalore, 560065, India.,Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore, 560065, India
| | - Giorgio Scita
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, 20139, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.,Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Satyajit Mayor
- National Centre for Biological Science (TIFR), Bellary Road, Bangalore, 560065, India. .,Institute for Stem Cell Biology and Regenerative Medicine, Bellary Road, Bangalore, 560065, India.
| |
Collapse
|
31
|
Hur JH, Lee SH, Kim AY, Koh YH. Regulation of synaptic architecture and synaptic vesicle pools by Nervous wreck at Drosophila Type 1b glutamatergic synapses. Exp Mol Med 2018; 50:e462. [PMID: 29568072 PMCID: PMC5898900 DOI: 10.1038/emm.2017.303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/29/2017] [Accepted: 09/29/2017] [Indexed: 02/07/2023] Open
Abstract
Nervous wreck (Nwk), a protein that is present at Type 1 glutamatergic synapses that contains an SH3 domain and an FCH motif, is a Drosophila homolog of the human srGAP3/MEGAP protein, which is associated with mental retardation. Confocal microscopy revealed that circles in Nwk reticulum enclosed T-shaped active zones (T-AZs) and partially colocalized with synaptic vesicle (SV) markers and both exocytosis and endocytosis components. Results from an electron microscopic (EM) analysis showed that Nwk proteins localized at synaptic edges and in SV pools. Both the synaptic areas and the number of SVs in the readily releasable (RRPs) and reserve (RPs) SV pools in nwk2 were significantly reduced. Synergistic, morphological phenotypes observed from eag1;nwk2 neuromuscular junctions suggested that Nwk may regulate synaptic plasticity differently from activity-dependent Hebbian plasticity. Although the synaptic areas in eag1;nwk2 boutons were not significantly different from those of nwk2, the number of SVs in the RRPs was similar to those of Canton-S. In addition, three-dimensional, high-voltage EM tomographic analysis demonstrated that significantly fewer enlarged SVs were present in nwk2 RRPs. Furthermore, Nwk formed protein complexes with Drosophila Synapsin and Synaptotagmin 1 (DSypt1). Taken together, these findings suggest that Nwk is able to maintain synaptic architecture and both SV size and distribution at T-AZs by interacting with Synapsin and DSypt1.
Collapse
Affiliation(s)
- Joon Haeng Hur
- ILSONG Institute of Life Science, Hallym University, Anyang, Republic of Korea.,Department of Bio-Medical Gerontology, Hallym University Graduate School, Chuncheon, Republic of Korea
| | - Sang-Hee Lee
- BioMedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - A-Young Kim
- ILSONG Institute of Life Science, Hallym University, Anyang, Republic of Korea.,Department of Bio-Medical Gerontology, Hallym University Graduate School, Chuncheon, Republic of Korea
| | - Young Ho Koh
- ILSONG Institute of Life Science, Hallym University, Anyang, Republic of Korea.,Department of Bio-Medical Gerontology, Hallym University Graduate School, Chuncheon, Republic of Korea
| |
Collapse
|
32
|
Milosevic I. Revisiting the Role of Clathrin-Mediated Endoytosis in Synaptic Vesicle Recycling. Front Cell Neurosci 2018; 12:27. [PMID: 29467622 PMCID: PMC5807904 DOI: 10.3389/fncel.2018.00027] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Without robust mechanisms to efficiently form new synaptic vesicles (SVs), the tens to hundreds of SVs typically present at the neuronal synapse would be rapidly used up, even at modest levels of neuronal activity. SV recycling is thus critical for synaptic physiology and proper function of sensory and nervous systems. Yet, more than four decades after it was originally proposed that the SVs are formed and recycled locally at the presynaptic terminals, the mechanisms of endocytic processes at the synapse are heavily debated. Clathrin-mediated endocytosis, a type of endocytosis that capitalizes on the clathrin coat, a number of adaptor and accessory proteins, and the GTPase dynamin, is well understood, while the contributions of clathrin-independent fast endocytosis, kiss-and-run, bulk endocytosis and ultrafast endocytosis are still being evaluated. This review article revisits and summarizes the current knowledge on the SV reformation with a focus on clathrin-mediated endocytosis, and it discusses the modes of SV formation from endosome-like structures at the synapse. Given the importance of this topic, future advances in this active field are expected to contribute to better comprehension of neurotransmission, and to have general implications for neuroscience and medicine.
Collapse
Affiliation(s)
- Ira Milosevic
- Synaptic Vesicle Dynamics Group, European Neuroscience Institute (ENI), University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
33
|
Aspenström P. BAR Domain Proteins Regulate Rho GTPase Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:33-53. [PMID: 30151649 DOI: 10.1007/5584_2018_259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Bin-Amphiphysin-Rvs (BAR) domain is a membrane lipid binding domain present in a wide variety of proteins, often proteins with a role in Rho-regulated signaling pathways. BAR domains do not only confer binding to lipid bilayers, they also possess a membrane sculpturing ability and thereby directly control the topology of biomembranes. BAR domain-containing proteins participate in a plethora of physiological processes but the common denominator is their capacity to link membrane dynamics to actin dynamics and thereby integrate processes such as endocytosis, exocytosis, vesicle trafficking, cell morphogenesis and cell migration. The Rho family of small GTPases constitutes an important bridging theme for many BAR domain-containing proteins. This review article will focus predominantly on the role of BAR proteins as regulators or effectors of Rho GTPases and it will only briefly discuss the structural and biophysical function of the BAR domains.
Collapse
Affiliation(s)
- Pontus Aspenström
- Department of Microbiology, and Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
34
|
Heo K, Nahm M, Lee MJ, Kim YE, Ki CS, Kim SH, Lee S. The Rap activator Gef26 regulates synaptic growth and neuronal survival via inhibition of BMP signaling. Mol Brain 2017; 10:62. [PMID: 29282074 PMCID: PMC5745669 DOI: 10.1186/s13041-017-0342-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022] Open
Abstract
In Drosophila, precise regulation of BMP signaling is essential for normal synaptic growth at the larval neuromuscular junction (NMJ) and neuronal survival in the adult brain. However, the molecular mechanisms underlying fine-tuning of BMP signaling in neurons remain poorly understood. We show that loss of the Drosophila PDZ guanine nucleotide exchange factor Gef26 significantly increases synaptic growth at the NMJ and enhances BMP signaling in motor neurons. We further show that Gef26 functions upstream of Rap1 in motor neurons to restrain synaptic growth. Synaptic overgrowth in gef26 or rap1 mutants requires BMP signaling, indicating that Gef26 and Rap1 regulate synaptic growth via inhibition of BMP signaling. We also show that Gef26 is involved in the endocytic downregulation of surface expression of the BMP receptors thickveins (Tkv) and wishful thinking (Wit). Finally, we demonstrate that loss of Gef26 also induces progressive brain neurodegeneration through Rap1- and BMP signaling-dependent mechanisms. Taken together, these results suggest that the Gef26-Rap1 signaling pathway regulates both synaptic growth and neuronal survival by controlling BMP signaling.
Collapse
Affiliation(s)
- Keunjung Heo
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea.,Department of Cell & Developmental Biology, Dental Research Institute, Seoul National University, Seoul, 03080, South Korea
| | - Minyeop Nahm
- Department of Neurology, Hanyang University College of Medicine, Seoul, 04763, South Korea
| | - Min-Jung Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea.,Department of Cell & Developmental Biology, Dental Research Institute, Seoul National University, Seoul, 03080, South Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Seung Hyun Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, 04763, South Korea
| | - Seungbok Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
35
|
Drosophila Syd-1 Has RhoGAP Activity That Is Required for Presynaptic Clustering of Bruchpilot/ELKS but Not Neurexin-1. Genetics 2017; 208:705-716. [PMID: 29217522 DOI: 10.1534/genetics.117.300538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/22/2017] [Indexed: 12/23/2022] Open
Abstract
Syd-1 proteins are required for presynaptic development in worm, fly, and mouse. Syd-1 proteins in all three species contain a Rho GTPase activating protein (GAP)-like domain of unclear significance: invertebrate Syd-1s are thought to lack GAP activity, and mouse mSYD1A has GAP activity that is thought to be dispensable for its function. Here, we show that Drosophila melanogaster Syd-1 can interact with all six fly Rhos and has GAP activity toward Rac1 and Cdc42. During development, fly Syd-1 clusters multiple presynaptic proteins at the neuromuscular junction (NMJ), including the cell adhesion molecule Neurexin (Nrx-1) and the active zone (AZ) component Bruchpilot (Brp), both of which Syd-1 binds directly. We show that a mutant form of Syd-1 that specifically lacks GAP activity localizes normally to presynaptic sites and is sufficient to recruit Nrx-1 but fails to cluster Brp normally. We provide evidence that Syd-1 participates with Rac1 in two separate functions: (1) together with the Rac guanine exchange factor (RacGEF) Trio, GAP-active Syd-1 is required to regulate the nucleotide-bound state of Rac1, thereby promoting Brp clustering; and (2) Syd-1, independent of its GAP activity, is required for the recruitment of Nrx-1 to boutons, including the recruitment of Nrx-1 that is promoted by GTP-bound Rac1. We conclude that, contrary to current models, the GAP domain of fly Syd-1 is active and required for presynaptic development; we suggest that the same may be true of vertebrate Syd-1 proteins. In addition, our data provide new molecular insight into the ability of Rac1 to promote presynaptic development.
Collapse
|
36
|
Complexin Mutants Reveal Partial Segregation between Recycling Pathways That Drive Evoked and Spontaneous Neurotransmission. J Neurosci 2017; 37:383-396. [PMID: 28077717 DOI: 10.1523/jneurosci.1854-16.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 11/21/2022] Open
Abstract
Synaptic vesicles fuse at morphological specializations in the presynaptic terminal termed active zones (AZs). Vesicle fusion can occur spontaneously or in response to an action potential. Following fusion, vesicles are retrieved and recycled within nerve terminals. It is still unclear whether vesicles that fuse spontaneously or following evoked release share similar recycling mechanisms. Genetic deletion of the SNARE-binding protein complexin dramatically increases spontaneous fusion, with the protein serving as the synaptic vesicle fusion clamp at Drosophila synapses. We examined synaptic vesicle recycling pathways at complexin null neuromuscular junctions, where spontaneous release is dramatically enhanced. We combined loading of the lipophilic dye FM1-43 with photoconversion, electron microscopy, and electrophysiology to monitor evoked and spontaneous recycling vesicle pools. We found that the total number of recycling vesicles was equal to those retrieved through spontaneous and evoked pools, suggesting that retrieval following fusion is partially segregated for spontaneous and evoked release. In addition, the kinetics of FM1-43 destaining and synaptic depression measured in the presence of the vesicle-refilling blocker bafilomycin indicated that spontaneous and evoked recycling pools partially intermix during the release process. Finally, FM1-43 photoconversion combined with electron microscopy analysis indicated that spontaneous recycling preferentially involves synaptic vesicles in the vicinity of AZs, whereas vesicles recycled following evoked release involve a larger intraterminal pool. Together, these results suggest that spontaneous and evoked vesicles use separable recycling pathways and then partially intermix during subsequent rounds of fusion. SIGNIFICANCE STATEMENT Neurotransmitter release involves fusion of synaptic vesicles with the plasma membrane in response to an action potential, or spontaneously in the absence of stimulation. Upon fusion, vesicles are retrieved and recycled, and it is unclear whether recycling pathways for evoked and spontaneous vesicles are segregated after fusion. We addressed this question by taking advantage of preparations lacking the synaptic protein complexin, which have elevated spontaneous release that enables reliable tracking of the spontaneous recycling pool. Our results suggest that spontaneous and evoked recycling pathways are segregated during the retrieval process but can partially intermix during stimulation.
Collapse
|
37
|
Mallik B, Dwivedi MK, Mushtaq Z, Kumari M, Verma PK, Kumar V. Regulation of neuromuscular junction organization by Rab2 and its effector ICA69 in Drosophila. Development 2017; 144:2032-2044. [PMID: 28455372 DOI: 10.1242/dev.145920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
The mechanisms underlying synaptic differentiation, which involves neuronal membrane and cytoskeletal remodeling, are not completely understood. We performed a targeted RNAi-mediated screen of Drosophila BAR-domain proteins and identified islet cell autoantigen 69 kDa (ICA69) as one of the key regulators of morphological differentiation of the larval neuromuscular junction (NMJ). We show that Drosophila ICA69 colocalizes with α-Spectrin at the NMJ. The conserved N-BAR domain of ICA69 deforms liposomes in vitro Full-length ICA69 and the ICAC but not the N-BAR domain of ICA69 induce filopodia in cultured cells. Consistent with its cytoskeleton regulatory role, ICA69 mutants show reduced α-Spectrin immunoreactivity at the larval NMJ. Manipulating levels of ICA69 or its interactor PICK1 alters the synaptic level of ionotropic glutamate receptors (iGluRs). Moreover, reducing PICK1 or Rab2 levels phenocopies ICA69 mutation. Interestingly, Rab2 regulates not only synaptic iGluR but also ICA69 levels. Thus, our data suggest that: (1) ICA69 regulates NMJ organization through a pathway that involves PICK1 and Rab2, and (2) Rab2 functions genetically upstream of ICA69 and regulates NMJ organization and targeting/retention of iGluRs by regulating ICA69 levels.
Collapse
Affiliation(s)
- Bhagaban Mallik
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Manish Kumar Dwivedi
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Zeeshan Mushtaq
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Manisha Kumari
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Praveen Kumar Verma
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Vimlesh Kumar
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
38
|
Dbo/Henji Modulates Synaptic dPAK to Gate Glutamate Receptor Abundance and Postsynaptic Response. PLoS Genet 2016; 12:e1006362. [PMID: 27736876 PMCID: PMC5065118 DOI: 10.1371/journal.pgen.1006362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/13/2016] [Indexed: 01/28/2023] Open
Abstract
In response to environmental and physiological changes, the synapse manifests plasticity while simultaneously maintains homeostasis. Here, we analyzed mutant synapses of henji, also known as dbo, at the Drosophila neuromuscular junction (NMJ). In henji mutants, NMJ growth is defective with appearance of satellite boutons. Transmission electron microscopy analysis indicates that the synaptic membrane region is expanded. The postsynaptic density (PSD) houses glutamate receptors GluRIIA and GluRIIB, which have distinct transmission properties. In henji mutants, GluRIIA abundance is upregulated but that of GluRIIB is not. Electrophysiological results also support a GluR compositional shift towards a higher IIA/IIB ratio at henji NMJs. Strikingly, dPAK, a positive regulator for GluRIIA synaptic localization, accumulates at the henji PSD. Reducing the dpak gene dosage suppresses satellite boutons and GluRIIA accumulation at henji NMJs. In addition, dPAK associated with Henji through the Kelch repeats which is the domain essential for Henji localization and function at postsynapses. We propose that Henji acts at postsynapses to restrict both presynaptic bouton growth and postsynaptic GluRIIA abundance by modulating dPAK. To meet various developmental or environmental needs, the communication between pre- and postsynapse can be modulated in different aspects. The release of presynaptic vesicles can be regulated at the steps of docking, membrane fusion and endocytosis. Upon receiving neurotransmitter stimuli from presynaptic terminals, postsynaptic cells tune their responses by controlling the abundance of different neurotransmitter receptors at the synaptic membrane. The Drosophila NMJ is a well-defined genetic system to study the function and physiology of synapses. Two types of glutamate receptors (GluRs), IIA and IIB, present at the NMJ, exhibit distinct desensitization kinetics: GluRIIA desensitizes much slower than GluRIIB does, resulting in more ionic influx and larger postsynaptic responses. By altering the ratio of GluRIIA to GluRIIB, muscle cells modulate their responses to presynaptic release efficiently. However, how to regulate this intricate GluRIIA/GluRIIB ratio requires further study. Here, we describe a negative regulation for dPAK, a crucial regulator of GluRIIA localization at the PSD. Henji specifically binds to dPAK near the postsynaptic region and hinders dPAK localization from the PSD. By negatively controlling dPAK levels, synaptic GluRIIA abundance can be restrained within an appropriate range, protecting the synapse from unwanted fluctuations in synaptic strengths or the detriment of excitotoxicity.
Collapse
|
39
|
Herrero-Garcia E, O'Bryan JP. Intersectin scaffold proteins and their role in cell signaling and endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:23-30. [PMID: 27746143 DOI: 10.1016/j.bbamcr.2016.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/08/2016] [Indexed: 11/29/2022]
Abstract
Intersectins (ITSNs) are a family of multi-domain proteins involved in regulation of diverse cellular pathways. These scaffold proteins are well known for regulating endocytosis but also play important roles in cell signaling pathways including kinase regulation and Ras activation. ITSNs participate in several human cancers, such as neuroblastomas and glioblastomas, while their downregulation is associated with lung injury. Alterations in ITSN expression have been found in neurodegenerative diseases such as Down Syndrome and Alzheimer's disease. Binding proteins for ITSNs include endocytic regulatory factors, cytoskeleton related proteins (i.e. actin or dynamin), signaling proteins as well as herpes virus proteins. This review will summarize recent studies on ITSNs, highlighting the importance of these scaffold proteins in the aforementioned processes.
Collapse
Affiliation(s)
- Erika Herrero-Garcia
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - John P O'Bryan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
40
|
Stanishneva-Konovalova T, Derkacheva N, Polevova S, Sokolova O. The Role of BAR Domain Proteins in the Regulation of Membrane Dynamics. Acta Naturae 2016; 8:60-69. [PMID: 28050267 PMCID: PMC5199207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 11/09/2022] Open
Abstract
Many cellular processes are associated with membrane remodeling. The BAR domain protein family plays a key role in the formation and detection of local membrane curvatures and in attracting other proteins, including the regulators of actin dynamics. Based on their structural and phylogenetic properties, BAR domains are divided into several groups which affect membrane in various ways and perform different functions in cells. However, recent studies have uncovered evidence of functional differences even within the same group. This review discusses the principles underlying the interactions of different groups of BAR domains, and their individual representatives ,with membranes.
Collapse
Affiliation(s)
| | - N.I. Derkacheva
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Department of Biochemistry, Delegatskaya Str. 20, Bld 1, Moscow, 127473, Russia
| | - S.V. Polevova
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1, Bld 12, Moscow, 119234 , Russia
| | - O.S. Sokolova
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1, Bld 12, Moscow, 119234 , Russia
| |
Collapse
|
41
|
Coordinated autoinhibition of F-BAR domain membrane binding and WASp activation by Nervous Wreck. Proc Natl Acad Sci U S A 2016; 113:E5552-61. [PMID: 27601635 DOI: 10.1073/pnas.1524412113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane remodeling by Fes/Cip4 homology-Bin/Amphiphysin/Rvs167 (F-BAR) proteins is regulated by autoinhibitory interactions between their SRC homology 3 (SH3) and F-BAR domains. The structural basis of autoregulation, and whether it affects interactions of SH3 domains with other cellular ligands, remain unclear. Here we used single-particle electron microscopy to determine the structure of the F-BAR protein Nervous Wreck (Nwk) in both soluble and membrane-bound states. On membrane binding, Nwk SH3 domains do not completely dissociate from the F-BAR dimer, but instead shift from its concave surface to positions on either side of the dimer. Unexpectedly, along with controlling membrane binding, these autoregulatory interactions inhibit the ability of Nwk-SH3a to activate Wiskott-Aldrich syndrome protein (WASp)/actin related protein (Arp) 2/3-dependent actin filament assembly. In Drosophila neurons, Nwk autoregulation restricts SH3a domain-dependent synaptopod formation, synaptic growth, and actin organization. Our results define structural rearrangements in Nwk that control F-BAR-membrane interactions as well as SH3 domain activities, and suggest that these two functions are tightly coordinated in vitro and in vivo.
Collapse
|
42
|
Abstract
As cells grow, move, and divide, they must reorganize and rearrange their membranes and cytoskeleton. The F-BAR protein family links cellular membranes with actin cytoskeletal rearrangements in processes including endocytosis, cytokinesis, and cell motility. Here we review emerging information on mechanisms of F-BAR domain oligomerization and membrane binding, and how these activities are coordinated with additional domains to accomplish scaffolding and signaling functions.
Collapse
Affiliation(s)
- Nathan A McDonald
- a Department of Cell and Developmental Biology , Vanderbilt University , Nashville , TN , USA
| | - Kathleen L Gould
- a Department of Cell and Developmental Biology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
43
|
Membrane Charge Directs the Outcome of F-BAR Domain Lipid Binding and Autoregulation. Cell Rep 2015; 13:2597-2609. [PMID: 26686642 DOI: 10.1016/j.celrep.2015.11.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 10/20/2015] [Accepted: 11/12/2015] [Indexed: 12/23/2022] Open
Abstract
F-BAR domain proteins regulate and sense membrane curvature by interacting with negatively charged phospholipids and assembling into higher-order scaffolds. However, regulatory mechanisms controlling these interactions are poorly understood. Here, we show that Drosophila Nervous Wreck (Nwk) is autoregulated by a C-terminal SH3 domain module that interacts directly with its F-BAR domain. Surprisingly, this autoregulation does not mediate a simple "on-off" switch for membrane remodeling. Instead, the isolated Nwk F-BAR domain efficiently assembles into higher-order structures and deforms membranes only within a limited range of negative membrane charge, and autoregulation elevates this range. Thus, autoregulation could either reduce membrane binding or promote higher-order assembly, depending on local cellular membrane composition. Our findings uncover an unexpected mechanism by which lipid composition directs membrane remodeling.
Collapse
|
44
|
Deshpande M, Rodal AA. The Crossroads of Synaptic Growth Signaling, Membrane Traffic and Neurological Disease: Insights from Drosophila. Traffic 2015; 17:87-101. [PMID: 26538429 DOI: 10.1111/tra.12345] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022]
Abstract
Neurons require target-derived autocrine and paracrine growth factors to maintain proper identity, innervation, homeostasis and survival. Neuronal growth factor signaling is highly dependent on membrane traffic, both for the packaging and release of the growth factors themselves, and for regulation of intracellular signaling by their transmembrane receptors. Here, we review recent findings from the Drosophila larval neuromuscular junction (NMJ) that illustrate how specific steps of intracellular traffic and inter-organelle interactions impinge on signaling, particularly in the bone morphogenic protein, Wingless and c-Jun-activated kinase pathways, regulating elaboration and stability of NMJ arbors, construction of synapses and synaptic transmission and homeostasis. These membrane trafficking and signaling pathways have been implicated in human motor neuron diseases including amyotrophic lateral sclerosis and hereditary spastic paraplegia, highlighting their importance for neuronal health and survival.
Collapse
Affiliation(s)
| | - Avital A Rodal
- Department of Biology, Brandeis University, Waltham, MA, USA
| |
Collapse
|
45
|
Ukken FP, Bruckner JJ, Weir KL, Hope SJ, Sison SL, Birschbach RM, Hicks L, Taylor KL, Dent EW, Gonsalvez GB, O'Connor-Giles KM. BAR-SH3 sorting nexins are conserved interacting proteins of Nervous wreck that organize synapses and promote neurotransmission. J Cell Sci 2015; 129:166-77. [PMID: 26567222 PMCID: PMC4732300 DOI: 10.1242/jcs.178699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/11/2015] [Indexed: 12/13/2022] Open
Abstract
Nervous wreck (Nwk) is a conserved F-BAR protein that attenuates synaptic growth and promotes synaptic function in Drosophila. In an effort to understand how Nwk carries out its dual roles, we isolated interacting proteins using mass spectrometry. We report a conserved interaction between Nwk proteins and BAR-SH3 sorting nexins, a family of membrane-binding proteins implicated in diverse intracellular trafficking processes. In mammalian cells, BAR-SH3 sorting nexins induce plasma membrane tubules that localize NWK2, consistent with a possible functional interaction during the early stages of endocytic trafficking. To study the role of BAR-SH3 sorting nexins in vivo, we took advantage of the lack of genetic redundancy in Drosophila and employed CRISPR-based genome engineering to generate null and endogenously tagged alleles of SH3PX1. SH3PX1 localizes to neuromuscular junctions where it regulates synaptic ultrastructure, but not synapse number. Consistently, neurotransmitter release was significantly diminished in SH3PX1 mutants. Double-mutant and tissue-specific-rescue experiments indicate that SH3PX1 promotes neurotransmitter release presynaptically, at least in part through functional interactions with Nwk, and might act to distinguish the roles of Nwk in regulating synaptic growth and function.
Collapse
Affiliation(s)
- Fiona P Ukken
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joseph J Bruckner
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kurt L Weir
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah J Hope
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samantha L Sison
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ryan M Birschbach
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lawrence Hicks
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Kendra L Taylor
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erik W Dent
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Graydon B Gonsalvez
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Kate M O'Connor-Giles
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
46
|
Deregulation of SLIT2-mediated Cdc42 activity is associated with esophageal cancer metastasis and poor prognosis. J Thorac Oncol 2015; 10:189-98. [PMID: 25490006 DOI: 10.1097/jto.0000000000000369] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION SLIT2, a secreted protein, has been found to inactivate Cdc42 GTPase to modulate neural cell migration. However, alteration of SLIT2-mediated Cdc42 in terms of migration regulation remains undefined in esophageal squamous cell carcinoma (ESCC). METHODS We report here in ESCC cell, animal, and clinical models that SLIT2 acts as a migration suppressor and serves as a prognostic biomarker. RESULTS The immunohistochemistry data indicated that 31.8% (49 of 154) of tumors from ESCC patients showed low expression of SLIT2 protein which correlated with poor overall survival and disease-free survival. DNA methylation analysis suggested that promoter hypermethylation is responsible for low expression of SLIT2 in ESCC. Knockdown of SLIT2 increased ESCC cell migration, while SLIT2 stable overexpression reduced cell migration. ESCC cells treated with conditioned media from cells overexpressing SLIT2 also suppressed cell migration. Importantly, silencing of SLIT2 decreased the complex formation, and thus induced Cdc42 activity and promoted membrane localization of focal adhesion kinase and Paxillin. Anti-metastatic effect of SLIT2 was confirmed in an experimental metastasis model of SLIT2 knockdown ESCC cells. CONCLUSION Our results provide novel evidence that low expression of SLIT2 correlates with poor prognosis and promotes metastasis in ESCC, which may be regulated by the Cdc42-mediated pathways.
Collapse
|
47
|
Harris KP, Littleton JT. Transmission, Development, and Plasticity of Synapses. Genetics 2015; 201:345-75. [PMID: 26447126 PMCID: PMC4596655 DOI: 10.1534/genetics.115.176529] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/28/2015] [Indexed: 01/03/2023] Open
Abstract
Chemical synapses are sites of contact and information transfer between a neuron and its partner cell. Each synapse is a specialized junction, where the presynaptic cell assembles machinery for the release of neurotransmitter, and the postsynaptic cell assembles components to receive and integrate this signal. Synapses also exhibit plasticity, during which synaptic function and/or structure are modified in response to activity. With a robust panel of genetic, imaging, and electrophysiology approaches, and strong evolutionary conservation of molecular components, Drosophila has emerged as an essential model system for investigating the mechanisms underlying synaptic assembly, function, and plasticity. We will discuss techniques for studying synapses in Drosophila, with a focus on the larval neuromuscular junction (NMJ), a well-established model glutamatergic synapse. Vesicle fusion, which underlies synaptic release of neurotransmitters, has been well characterized at this synapse. In addition, studies of synaptic assembly and organization of active zones and postsynaptic densities have revealed pathways that coordinate those events across the synaptic cleft. We will also review modes of synaptic growth and plasticity at the fly NMJ, and discuss how pre- and postsynaptic cells communicate to regulate plasticity in response to activity.
Collapse
Affiliation(s)
- Kathryn P Harris
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - J Troy Littleton
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
48
|
Abstract
To create a presynaptic terminal, molecular signaling events must be orchestrated across a number of subcellular compartments. In the soma, presynaptic proteins need to be synthesized, packaged together, and attached to microtubule motors for shipment through the axon. Within the axon, transport of presynaptic packages is regulated to ensure that developing synapses receive an adequate supply of components. At individual axonal sites, extracellular interactions must be translated into intracellular signals that can incorporate mobile transport vesicles into the nascent presynaptic terminal. Even once the initial recruitment process is complete, the components and subsequent functionality of presynaptic terminals need to constantly be remodeled. Perhaps most remarkably, all of these processes need to be coordinated in space and time. In this review, we discuss how these dynamic cellular processes occur in neurons of the central nervous system in order to generate presynaptic terminals in the brain.
Collapse
Affiliation(s)
- Luke A D Bury
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Shasta L Sabo
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
49
|
Abstract
BAR proteins comprise a heterogeneous group of multi-domain proteins with diverse biological functions. The common denominator is the Bin-Amphiphysin-Rvs (BAR) domain that not only confers targeting to lipid bilayers, but also provides scaffolding to mold lipid membranes into concave or convex surfaces. This function of BAR proteins is an important determinant in the dynamic reconstruction of membrane vesicles, as well as of the plasma membrane. Several BAR proteins function as linkers between cytoskeletal regulation and membrane dynamics. These links are provided by direct interactions between BAR proteins and actin-nucleation-promoting factors of the Wiskott-Aldrich syndrome protein family and the Diaphanous-related formins. The Rho GTPases are key factors for orchestration of this intricate interplay. This review describes how BAR proteins regulate the activity of Rho GTPases, as well as how Rho GTPases regulate the function of BAR proteins. This mutual collaboration is a central factor in the regulation of vital cellular processes, such as cell migration, cytokinesis, intracellular transport, endocytosis, and exocytosis.
Collapse
Affiliation(s)
- Pontus Aspenström
- a Department of Microbiology and Tumor and Cell Biology; Karolinska Institutet ; Stockholm , Sweden
| |
Collapse
|
50
|
Liu S, Xiong X, Zhao X, Yang X, Wang H. F-BAR family proteins, emerging regulators for cell membrane dynamic changes-from structure to human diseases. J Hematol Oncol 2015; 8:47. [PMID: 25956236 PMCID: PMC4437251 DOI: 10.1186/s13045-015-0144-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/27/2015] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic cell membrane dynamics change in curvature during physiological and pathological processes. In the past ten years, a novel protein family, Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain proteins, has been identified to be the most important coordinators in membrane curvature regulation. The F-BAR domain family is a member of the Bin/Amphiphysin/Rvs (BAR) domain superfamily that is associated with dynamic changes in cell membrane. However, the molecular basis in membrane structure regulation and the biological functions of F-BAR protein are unclear. The pathophysiological role of F-BAR protein is unknown. This review summarizes the current understanding of structure and function in the BAR domain superfamily, classifies F-BAR family proteins into nine subfamilies based on domain structure, and characterizes F-BAR protein structure, domain interaction, and functional relevance. In general, F-BAR protein binds to cell membrane via F-BAR domain association with membrane phospholipids and initiates membrane curvature and scission via Src homology-3 (SH3) domain interaction with its partner proteins. This process causes membrane dynamic changes and leads to seven important cellular biological functions, which include endocytosis, phagocytosis, filopodium, lamellipodium, cytokinesis, adhesion, and podosome formation, via distinct signaling pathways determined by specific domain-binding partners. These cellular functions play important roles in many physiological and pathophysiological processes. We further summarize F-BAR protein expression and mutation changes observed in various diseases and developmental disorders. Considering the structure feature and functional implication of F-BAR proteins, we anticipate that F-BAR proteins modulate physiological and pathophysiological processes via transferring extracellular materials, regulating cell trafficking and mobility, presenting antigens, mediating extracellular matrix degradation, and transmitting signaling for cell proliferation.
Collapse
Affiliation(s)
- Suxuan Liu
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China. .,Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Xinyu Xiong
- Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Xianxian Zhao
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Cardiovascular Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Hong Wang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China. .,Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Cardiovascular Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|