1
|
Bian KJ, Bao X, Li XD, Bonne D, Zou LW. Recent progress of proline endopeptidase ligands and their effects on protein-protein interactions. Chem Biol Interact 2025; 416:111557. [PMID: 40374138 DOI: 10.1016/j.cbi.2025.111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/02/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Proline endopeptidase (PREP), as a serine protease, plays a crucial role in human physiology and pathology, and is intricately linked to the genesis and progression of a spectrum of illnesses. The fluorescent substrates currently used for PREP lack ideal specificity and are unable to specifically detect PREP activity under physiological conditions. This limitation, to some extent, hinders the in-depth investigation of its physiological and pathophysiological functions. Beyond its enzymatic capabilities, PREP's physiological functions extend to the modulation of protein-protein interactions (PPIs), a dimension whose significance is only beginning to be recognized, and investigations into how PREP inhibitors might influence these PPIs remain sparse. Therefore, based on the outline of the distribution and structural characteristics of PREP, this review systematically summarized the structure-activity relationship (SAR) of PREP ligands concerning their potency and specificity, the associated recognition mechanisms, as well as the regulatory impact of PREP ligands on PPIs. Finally, the obstacles and future prospects of PREP ligands were emphasized, in order to provide suggestions and help for the design and development of PREP specific substrates and inhibitors.
Collapse
Affiliation(s)
- Kun-Jie Bian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Xiaoze Bao
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, China; CNRS, Centrale Med, ISM2, Aix Marseille Univ, 13013, Marseille, France.
| | - Xiao-Dong Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Damien Bonne
- CNRS, Centrale Med, ISM2, Aix Marseille Univ, 13013, Marseille, France
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| |
Collapse
|
2
|
Monnens Y, Theodoropoulou A, Rosier K, Bhalla K, Mahy A, Vanhoutte R, Meulemans S, Cavani E, Antanasijevic A, Lemmens I, Lee JA, Spellicy CJ, Schroer RJ, Maselli RA, Laverty CG, Agostinis P, Pagliarini DJ, Verhelst S, Marcaida MJ, Rochtus A, Dal Peraro M, Creemers JW. Missense variants in CMS22 patients reveal that PREPL has both enzymatic and nonenzymatic functions. JCI Insight 2024; 9:e179276. [PMID: 39078710 PMCID: PMC11385081 DOI: 10.1172/jci.insight.179276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
Congenital myasthenic syndrome-22 (CMS22, OMIM 616224) is a rare genetic disorder caused by deleterious genetic variation in the prolyl endopeptidase-like (PREPL) gene. Previous reports have described patients with deletions and nonsense variants in PREPL, but nothing is known about the effect of missense variants in the pathology of CMS22. In this study, we have functionally characterized missense variants in PREPL from 3 patients with CMS22, all with hallmark phenotypes. Biochemical evaluation revealed that these missense variants do not impair hydrolase activity, thereby challenging the conventional diagnostic criteria and disease mechanism. Structural analysis showed that the variants affect regions most likely involved in intraprotein or protein-protein interactions. Indeed, binding to a selected group of known interactors was differentially reduced for the 3 variants. The importance of nonhydrolytic functions of PREPL was investigated in catalytically inactive PREPL p.Ser559Ala cell lines, which showed that hydrolytic activity of PREPL is needed for normal mitochondrial function but not for regulating AP1-mediated transport in the transgolgi network. In conclusion, these studies showed that CMS22 can be caused not only by deletion and truncation of PREPL but also by missense variants that do not necessarily result in a loss of hydrolytic activity of PREPL.
Collapse
Affiliation(s)
- Yenthe Monnens
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Anastasia Theodoropoulou
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Karen Rosier
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Kritika Bhalla
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Alexia Mahy
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Roeland Vanhoutte
- Laboratory for Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sandra Meulemans
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Edoardo Cavani
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aleksandar Antanasijevic
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Irma Lemmens
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | | | | | | | | | - Patrizia Agostinis
- Laboratory for Cell death Research & Therapy, VIB, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - David J. Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Steven Verhelst
- Laboratory for Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Maria J. Marcaida
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - John W.M. Creemers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Gallagher E, Hou C, Zhu Y, Hsieh CJ, Lee H, Li S, Xu K, Henderson P, Chroneos R, Sheldon M, Riley S, Luk KC, Mach RH, McManus MJ. Positron Emission Tomography with [ 18F]ROStrace Reveals Progressive Elevations in Oxidative Stress in a Mouse Model of Alpha-Synucleinopathy. Int J Mol Sci 2024; 25:4943. [PMID: 38732162 PMCID: PMC11084161 DOI: 10.3390/ijms25094943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The synucleinopathies are a diverse group of neurodegenerative disorders characterized by the accumulation of aggregated alpha-synuclein (aSyn) in vulnerable populations of brain cells. Oxidative stress is both a cause and a consequence of aSyn aggregation in the synucleinopathies; however, noninvasive methods for detecting oxidative stress in living animals have proven elusive. In this study, we used the reactive oxygen species (ROS)-sensitive positron emission tomography (PET) radiotracer [18F]ROStrace to detect increases in oxidative stress in the widely-used A53T mouse model of synucleinopathy. A53T-specific elevations in [18F]ROStrace signal emerged at a relatively early age (6-8 months) and became more widespread within the brain over time, a pattern which paralleled the progressive development of aSyn pathology and oxidative damage in A53T brain tissue. Systemic administration of lipopolysaccharide (LPS) also caused rapid and long-lasting elevations in [18F]ROStrace signal in A53T mice, suggesting that chronic, aSyn-associated oxidative stress may render these animals more vulnerable to further inflammatory insult. Collectively, these results provide novel evidence that oxidative stress is an early and chronic process during the development of synucleinopathy and suggest that PET imaging with [18F]ROStrace holds promise as a means of detecting aSyn-associated oxidative stress noninvasively.
Collapse
Affiliation(s)
- Evan Gallagher
- Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (E.G.)
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.H.); (R.H.M.)
| | - Catherine Hou
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.H.); (R.H.M.)
| | - Yi Zhu
- Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (E.G.)
| | - Chia-Ju Hsieh
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.H.); (R.H.M.)
| | - Hsiaoju Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.H.); (R.H.M.)
| | - Shihong Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.H.); (R.H.M.)
| | - Kuiying Xu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.H.); (R.H.M.)
| | - Patrick Henderson
- Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (E.G.)
| | - Rea Chroneos
- Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (E.G.)
| | - Malkah Sheldon
- Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (E.G.)
| | - Shaipreeah Riley
- Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (E.G.)
| | - Kelvin C. Luk
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert H. Mach
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.H.); (R.H.M.)
| | - Meagan J. McManus
- Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (E.G.)
| |
Collapse
|
4
|
Zhang JB, Li MT, Lin SZ, Cheng YQ, Fan JG, Chen YW. Therapeutic Effect of Prolyl Endopeptidase Inhibitor in High-fat Diet-induced Metabolic Dysfunction-associated Fatty Liver Disease. J Clin Transl Hepatol 2023; 11:1035-1049. [PMID: 37577240 PMCID: PMC10412699 DOI: 10.14218/jcth.2022.00110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND AND AIMS Prolyl endopeptidase (PREP) is a serine endopeptidase that participates in many pathological processes including inflammation, oxidative stress, and autophagy. Our previous studies found that PREP knockout exhibited multiple benefits in high-fat diet (HFD) or methionine choline-deficient diet-induced metabolic dysfunction-associated fatty liver disease (MAFLD). However, cumulative studies have suggested that PREP performs complex functions during disease development. Therefore, further understanding the role of PREP in MAFLD development is the foundation of PREP intervention. METHODS In this study, an HFD-induced MAFLD model at different time points (4, 8, 12, and 16 weeks) was used to explore dynamic changes in the PREP proline-glycine-proline (PGP)/N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) system. To explore its potential value in MAFLD treatment, saline, or the PREP inhibitor, KYP-2047, was administered to HFD-induced MAFLD mice from the 10th to 16th weeks. RESULTS PREP activity and expression were increased in HFD-mice compared with control mice from the 12th week onwards, and increased PREP mainly resulted in the activation of the matrix metalloproteinase 8/9 (MMP8/9)-PREP-PGP axis rather than the thymosin β4-meprin α/PREP-AcSDKP axis. In addition, KYP-2047 reduced HFD-induced liver injury and oxidative stress, improved lipid metabolism through the suppression of lipogenic genes and the induction of β-oxidation-related genes, and attenuated hepatic inflammation by decreasing MMP8/9 and PGP. Moreover, KYP2047 restored HFD-induced impaired autophagy and this was verified in HepG2 cells. CONCLUSIONS These findings suggest that increased PREP activity/expression during MAFLD development might be a key factor in the transition from simple steatosis to steatohepatitis, and KYP-2047 might possess therapeutic potential for MAFLD treatment.
Collapse
Affiliation(s)
- Jian-Bin Zhang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China
| | - Meng-Ting Li
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Gastroenterology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shuang-Zhe Lin
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Qing Cheng
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan-Wen Chen
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China
- Department of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Wang G, Moitessier N, Mittermaier AK. Computational and biophysical methods for the discovery and optimization of covalent drugs. Chem Commun (Camb) 2023; 59:10866-10882. [PMID: 37609777 DOI: 10.1039/d3cc03285j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Drugs that act by covalently attaching to their targets have been used to treat human diseases for over a hundred years. However, the deliberate design of covalent drugs was discouraged due to concerns of toxicity and off-target effects. Recent successes in covalent drug discovery have sparked fresh interest in this field. New screening and testing methods aimed at covalent inhibitors can play pivotal roles in facilitating the discovery process. This feature article focuses on computational and biophysical advances originating from our labs over the past decade and how these approaches have contributed to the design of prolyl oligopeptidase (POP) and SARS-CoV-2 3CLpro covalent inhibitors.
Collapse
Affiliation(s)
- Guanyu Wang
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| | - Nicolas Moitessier
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| | - Anthony K Mittermaier
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
6
|
Han S, Wang S, Fan X, Chen M, Wang X, Huang Y, Zhang H, Ma Y, Wang J, Zhang C. Abnormal Expression of Prolyl Oligopeptidase (POP) and Its Catalytic Products Ac-SDKP Contributes to the Ovarian Fibrosis Change in Polycystic Ovary Syndrome (PCOS) Mice. Biomedicines 2023; 11:1927. [PMID: 37509566 PMCID: PMC10377061 DOI: 10.3390/biomedicines11071927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder and metabolic syndrome. Ovarian fibrosis pathological change in PCOS has gradually attracted people's attention. In this study, we constructed a PCOS mouse model through the use of dehydroepiandrosterone. Sirius red staining showed that the ovarian tissues in PCOS mice had obvious fibrosis. Prolyl oligopeptidase (POP) is a serine protease and N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is its catalytic product. Studies show that abnormal expression and activity of POP and Ac-SDKP are closely related to tissue fibrosis. It was found that the expression of POP and Ac-SDKP was decreased in the ovaries of PCOS mice. Further studies showed that POP and Ac-SDKP promoted the expression of matrix metalloproteinases 2 (MMP-2) expression and decreased the expression of transforming growth factor beta 1 (TGF-β1) in granulosa cells. Hyperandrogenemia is a typical symptom of PCOS. We found that testosterone induced the low expression of POP and MMP2 and high expression of TGF-β1 in granulosa cells. POP overexpression and Ac-SDKP treatment inhibited the effect of testosterone on TGF-β1 and MMP2 in vitro and inhibited ovarian fibrosis in the PCOS mouse model. In conclusion, PCOS ovarian tissue showed obvious fibrosis. Low expression of POP and Ac-SDKP and changes in fibrotic factors contribute to the ovarian pathological fibrosis induced by androgen.
Collapse
Affiliation(s)
- Suo Han
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
- Center for Drug Inspection of Guizhou Medical Products Administration, Guizhou Medical Products Administration, Guiyang 550081, China
| | - Shimeng Wang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Xiang Fan
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Mengchi Chen
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Xiaojie Wang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Yingtong Huang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Hongdan Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Yinyin Ma
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Jing Wang
- Department of Microbiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Chunping Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| |
Collapse
|
7
|
Eteläinen TS, Silva MC, Uhari-Väänänen JK, De Lorenzo F, Jäntti MH, Cui H, Chavero-Pieres M, Kilpeläinen T, Mechtler C, Svarcbahs R, Seppälä E, Savinainen JR, Puris E, Fricker G, Gynther M, Julku UH, Huttunen HJ, Haggarty SJ, Myöhänen TT. A prolyl oligopeptidase inhibitor reduces tau pathology in cellular models and in mice with tauopathy. Sci Transl Med 2023; 15:eabq2915. [PMID: 37043557 DOI: 10.1126/scitranslmed.abq2915] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Tauopathies are neurodegenerative diseases that are characterized by accumulation of hyperphosphorylated tau protein, higher-order aggregates, and tau filaments. Protein phosphatase 2A (PP2A) is a major tau dephosphorylating phosphatase, and a decrease in its activity has been demonstrated in tauopathies, including Alzheimer's disease. Prolyl oligopeptidase is a serine protease that is associated with neurodegeneration, and its inhibition normalizes PP2A activity without toxicity under pathological conditions. Here, we assessed whether prolyl oligopeptidase inhibition could protect against tau-mediated toxicity in cellular models in vitro and in the PS19 transgenic mouse model of tauopathy carrying the human tau-P301S mutation. We show that inhibition of prolyl oligopeptidase with the inhibitor KYP-2047 reduced tau aggregation in tau-transfected HEK-293 cells and N2A cells as well as in human iPSC-derived neurons carrying either the P301L or tau-A152T mutation. Treatment with KYP-2047 resulted in increased PP2A activity and activation of autophagic flux in HEK-293 cells and N2A cells and in patient-derived iNeurons, as indicated by changes in autophagosome and autophagy receptor markers; this contributed to clearance of insoluble tau. Furthermore, treatment of PS19 transgenic mice for 1 month with KYP-2047 reduced tau burden in the brain and cerebrospinal fluid and slowed cognitive decline according to several behavioral tests. In addition, a reduction in an oxidative stress marker was seen in mouse brains after KYP-2047 treatment. This study suggests that inhibition of prolyl oligopeptidase could help to ameliorate tau-dependent neurodegeneration.
Collapse
Affiliation(s)
- Tony S Eteläinen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - M Catarina Silva
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Johanna K Uhari-Väänänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Francesca De Lorenzo
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Maria H Jäntti
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Hengjing Cui
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Marta Chavero-Pieres
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Tommi Kilpeläinen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Christina Mechtler
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Reinis Svarcbahs
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Erin Seppälä
- School of Medicine / Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Juha R Savinainen
- School of Medicine / Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Elena Puris
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht Karls University, Heidelberg D-69120, Germany
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht Karls University, Heidelberg D-69120, Germany
| | - Mikko Gynther
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht Karls University, Heidelberg D-69120, Germany
| | - Ulrika H Julku
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Henri J Huttunen
- Neuroscience Center, University of Helsinki, Helsinki 00014, Finland
- Herantis Pharma Plc., Espoo 02600, Finland
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| |
Collapse
|
8
|
Vila È, Pinacho R, Prades R, Tarragó T, Castro E, Munarriz-Cuezva E, Meana JJ, Eugui-Anta A, Roldan M, Vera-Montecinos A, Ramos B. Inhibition of Prolyl Oligopeptidase Restores Prohibitin 2 Levels in Psychosis Models: Relationship to Cognitive Deficits in Schizophrenia. Int J Mol Sci 2023; 24:6016. [PMID: 37046989 PMCID: PMC10093989 DOI: 10.3390/ijms24076016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Cognitive impairment represents one of the core features of schizophrenia. Prolyl Oligopeptidase (POP) inhibition is an emerging strategy for compensating cognitive deficits in hypoglutamatergic states such as schizophrenia, although little is known about how POP inhibitors exert their pharmacological activity. The mitochondrial and nuclear protein Prohibitin 2 (PHB2) could be dysregulated in schizophrenia. However, altered PHB2 levels in schizophrenia linked to N-methyl-D-aspartate receptor (NMDAR) activity and cognitive deficits are still unknown. To shed light on this, we measured the PHB2 levels by immunoblot in a postmortem dorsolateral prefrontal cortex (DLPFC) of schizophrenia subjects, in the frontal pole of mice treated with the NMDAR antagonists phencyclidine and dizocilpine, and in rat cortical astrocytes and neurons treated with dizocilpine. Mice and cells were treated in combination with the POP inhibitor IPR19. The PHB2 levels were also analyzed by immunocytochemistry in rat neurons. The PHB2 levels increased in DLPFC in cases of chronic schizophrenia and were associated with cognitive impairments. NMDAR antagonists increased PHB2 levels in the frontal pole of mice and in rat astrocytes and neurons. High levels of PHB2 were found in the nucleus and cytoplasm of neurons upon NMDAR inhibition. IPR19 restored PHB2 levels in the acute NMDAR inhibition. These results show that IPR19 restores the upregulation of PHB2 in an acute NMDAR hypoactivity stage suggesting that the modulation of PHB2 could compensate NMDAR-dependent cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Èlia Vila
- Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| | - Raquel Pinacho
- Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| | - Roger Prades
- Iproteos S.L., Baldiri i Reixac, 10, 08028 Barcelona, Spain
| | - Teresa Tarragó
- Iproteos S.L., Baldiri i Reixac, 10, 08028 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri i Reixac, 10, 08028 Barcelona, Spain
| | - Elena Castro
- Departamento de Fisiología y Farmacología, Universidad de Cantabria, Avda. Cardenal Herrera Oria s/n, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM (Biomedical Network Research Center of Mental Health), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Eva Munarriz-Cuezva
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM (Biomedical Network Research Center of Mental Health), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - J. Javier Meana
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM (Biomedical Network Research Center of Mental Health), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Ania Eugui-Anta
- Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| | - Mònica Roldan
- Unitat de Microscòpia Confocal i Imatge Cel·lular, Servei de Medicina Genètica i Molecular, Institut Pediàtric de Malaties Rares (IPER), Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - América Vera-Montecinos
- Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| | - Belén Ramos
- Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM (Biomedical Network Research Center of Mental Health), Institute of Health Carlos III, 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia, 08500 Vic, Spain
| |
Collapse
|
9
|
Eteläinen TS, Kilpeläinen TP, Ignatius A, Auno S, De Lorenzo F, Uhari-Väänänen JK, Julku UH, Myöhänen TT. Removal of proteinase K resistant αSyn species does not correlate with cell survival in a virus vector-based Parkinson's disease mouse model. Neuropharmacology 2022; 218:109213. [PMID: 35964686 DOI: 10.1016/j.neuropharm.2022.109213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 10/31/2022]
Abstract
Parkinson's disease (PD) is characterized by degeneration of nigrostriatal dopaminergic neurons and accumulation of α-synuclein (αSyn) as Lewy bodies. Currently, there is no disease-modifying therapy available for PD. We have shown that a small molecular inhibitor for prolyl oligopeptidase (PREP), KYP-2047, relieves αSyn-induced toxicity in various PD models by inducing autophagy and preventing αSyn aggregation. In this study, we wanted to study the effects of PREP inhibition on different αSyn species by using cell culture and in vivo models. We used Neuro2A cells with transient αSyn overexpression and oxidative stress or proteasomal inhibition-induced αSyn aggregation to assess the effect of KYP-2047 on soluble αSyn oligomers and on cell viability. Here, the levels of soluble αSyn were measured by using ELISA, and the impact of KYP-2047 was compared to anle138b, nilotinib and deferiprone. To evaluate the effect of KYP-2047 on αSyn fibrillization in vivo, we used unilateral nigral AAV1/2-A53T-αSyn mouse model, where the KYP-2047 treatment was initiated two- or four-weeks post injection. KYP-2047 and anle138b protected cells from αSyn toxicity but interestingly, KYP-2047 did not reduce soluble αSyn oligomers. In AAV-A53T-αSyn mouse model, KYP-2047 reduced significantly proteinase K-resistant αSyn oligomers and oxidative damage related to αSyn aggregation. However, the KYP-2047 treatment that was initiated at the time of symptom onset, failed to protect the nigrostriatal dopaminergic neurons. Our results emphasize the importance of whole αSyn aggregation process in the pathology of PD and raise an important question about the forms of αSyn that are reasonable targets for PD drug therapy.
Collapse
Affiliation(s)
- Tony S Eteläinen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Tommi P Kilpeläinen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Adele Ignatius
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Samuli Auno
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Francesca De Lorenzo
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Johanna K Uhari-Väänänen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Ulrika H Julku
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Finland.
| |
Collapse
|
10
|
Plescia J, Hédou D, Pousse ME, Labarre A, Dufresne C, Mittermaier A, Moitessier N. Modulating the selectivity of inhibitors for prolyl oligopeptidase inhibitors and fibroblast activation protein-α for different indications. Eur J Med Chem 2022; 240:114543. [DOI: 10.1016/j.ejmech.2022.114543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
|
11
|
Moon SH, Kwon Y, Huh YE, Choi HJ. Trehalose ameliorates prodromal non-motor deficits and aberrant protein accumulation in a rotenone-induced mouse model of Parkinson's disease. Arch Pharm Res 2022; 45:417-432. [PMID: 35618982 DOI: 10.1007/s12272-022-01386-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/18/2022] [Indexed: 02/03/2023]
Abstract
Trehalose has been recently revealed as an attractive candidate to prevent and modify Parkinson's disease (PD) progression by regulating autophagy; however, studies have only focused on the reduction of motor symptoms rather than the modulation of disease course from prodromal stage. This study aimed to evaluate whether trehalose has a disease-modifying effect at the prodromal stage before the onset of a motor deficit in 8-week-old male C57BL/6 mice exposed to rotenone. We found significant decrease in tyrosine hydroxylase immunoreactivity in the substantia nigra and motor dysfunction after 2 weeks rotenone treatment. Mice exposed to rotenone for a week showed an accumulation of protein aggregates in the brain and prodromal non-motor deficits, such as depression and olfactory dysfunction, prior to motor deficits. Trehalose significantly improved olfactory dysfunction and depressive-like behaviors and markedly reduced α-synuclein and p62 deposition in the brain. Trehalose further ameliorated motor impairment and loss of nigral tyrosine hydroxylase-positive cells in rotenone-treated mice. We demonstrated that prodromal non-motor signs in a rotenone-induced PD mouse model are associated with protein aggregate accumulation in the brain and that an autophagy inducer could be valuable to prevent PD progression from prodromal stage by regulating abnormal protein accumulation.
Collapse
Affiliation(s)
- Soung Hee Moon
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, Republic of Korea
| | - Yoonjung Kwon
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, Republic of Korea
| | - Young Eun Huh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea.
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, Republic of Korea.
| |
Collapse
|
12
|
Zolotov NN, Schepetkin IA, Voronina TA, Pozdnev VF, Khlebnikov AI, Krylova IV, Quinn MT. Therapeutic Effect of Novel Cyanopyrrolidine-Based Prolyl Oligopeptidase Inhibitors in Rat Models of Amnesia. Front Chem 2022; 9:780958. [PMID: 35004610 PMCID: PMC8727363 DOI: 10.3389/fchem.2021.780958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/06/2021] [Indexed: 01/03/2023] Open
Abstract
Prolyl oligopeptidase (POP) is a large cytosolic serine peptidase that is altered in patients with Alzheimer’s disease, Parkinsonian syndrome, muscular dystrophies, and other denervating diseases. Thus, POP may represent a relevant therapeutic target for treatment of neuropsychiatric disorders and neurodegenerative diseases. Here, we report the characterization of five novel cyanopyrrolidine-based compounds (BocTrpPrdN, BocGlyPrdN, CbzMetPrdN, CbzGlnPrdN, and CbzAlaPrdN) and show that they are potent inhibitors of POP and are predicted to penetrate the blood-brain barrier (BBB). Indeed, we show that CbzMetPrdN penetrates the rat BBB and effectively inhibits POP in the brain when administered intraperitoneally. Furthermore, molecular modeling confirmed these compounds likely inhibit POP via interaction with the POP catalytic site. We evaluated protective effects of the cyanopyrrolidine-based POP inhibitors using scopolamine- and maximal electroshock-induced models of amnesia in rats and showed that BocTrpPrdN, BocGlyPrdN, CbzMetPrdN, and CbzGlnPrdN significantly prolonged conditioned passive avoidance reflex (CPAR) retention time when administered intraperitoneally (1 and 2 mg/kg) before evaluation in both models of amnesia, although CbzAlaPrdN was not effective in scopolamine-induced amnesia. Our data support previous reports on the antiamnesic effects of prolinal-based POP inhibitors and indicate an important role of POP in the regulation of learning and memory processes in the CNS.
Collapse
Affiliation(s)
| | - Igor A Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | | | | | - Andrei I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, Russia.,Institute of Pharmacy, Altai State Medical University, Barnaul, Russia
| | | | - Mark T Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
13
|
Cui H, Norrbacka S, Myöhänen TT. Prolyl oligopeptidase acts as a link between chaperone-mediated autophagy and macroautophagy. Biochem Pharmacol 2021; 197:114899. [PMID: 34968496 DOI: 10.1016/j.bcp.2021.114899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 01/18/2023]
Abstract
The accumulation of aggregated α-synuclein (α-syn) has been identified as the primary component of Lewy bodies that are the pathological hallmarks of Parkinson's disease (PD). Several preclinical studies have shown α-syn aggregation, and particularly the intermediates formed during the aggregation process to be toxic to cells. Current PD treatments only provide symptomatic relief, and α-syn serves as a promising target to develop a disease-modifying therapy for PD. Our previous studies have revealed that a small-molecular inhibitor for prolyl oligopeptidase (PREP), KYP-2047, increases α-syn degradation by accelerating macroautophagy (MA) leading to disease-modifying effects in preclinical PD models. However, α-syn is also degraded by chaperone-mediated autophagy (CMA). In the present study, we tested the effects of PREP inhibition or deletion on CMA activation and α-syn degradation. HEK-293 cells were transfected with α-syn and incubated with 1 & 10 µM KYP-2047 for 24 h. Both 1 & 10 µM KYP-2047 increased LAMP-2A levels, induced α-syn degradation and reduced the expression of Hsc70, suggesting that the PREP inhibitor prevented α-syn aggregation by activating the CMA pathway. Similarly, KYP-2047 increased the LAMP-2A immunoreactivity and reduced the Hsc70 levels in mouse primary cortical neurons. When LAMP-2A was silenced by a siRNA, KYP-2047 increased the LC3BII/LC3BI ratio and accelerated the clearance of α-syn. Additionally, KYP-2047 induced CMA effectively also when MA was blocked by bafilomycin A1. Based on our results, we suggest that PREP might function as a core network node in MA-CMA crosstalk, and PREP inhibition can reduce α-syn levels via both main autophagy systems.
Collapse
Affiliation(s)
- H Cui
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Finland
| | - S Norrbacka
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Finland
| | - T T Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Finland; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
14
|
Pätsi HT, Kilpeläinen TP, Auno S, Dillemuth PMJ, Arja K, Lahtela-Kakkonen MK, Myöhänen TT, Wallén EAA. 2-Imidazole as a Substitute for the Electrophilic Group Gives Highly Potent Prolyl Oligopeptidase Inhibitors. ACS Med Chem Lett 2021; 12:1578-1584. [PMID: 34671446 PMCID: PMC8521653 DOI: 10.1021/acsmedchemlett.1c00399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 11/28/2022] Open
Abstract
![]()
Different five-membered
nitrogen-containing heteroaromatics in
the position of the typical electrophilic group in prolyl oligopeptidase
(PREP) inhibitors were investigated and compared to tetrazole. The
2-imidazoles were highly potent inhibitors of the proteolytic activity.
The binding mode for the basic imidazole was studied by molecular
docking as it was expected to differ from the acidic tetrazole. A
new putative noncovalent binding mode with an interaction to His680
was found for the 2-imidazoles. Inhibition of the proteolytic activity
did not correlate with the modulating effect on protein–protein-interaction-derived
functions of PREP (i.e., dimerization of alpha-synuclein and autophagy).
Among the highly potent PREP inhibiting 2-imidazoles, only one was
also a potent modulator of PREP-catalyzed alpha-synuclein dimerization,
indicating that the linker length on the opposite side of the molecule
from the five-membered heteroaromatic is critical for the disconnected
structure–activity relationships.
Collapse
Affiliation(s)
- Henri T. Pätsi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Tommi P. Kilpeläinen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Samuli Auno
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Pyry M. J. Dillemuth
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Khaled Arja
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Maija K. Lahtela-Kakkonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland
| | - Timo T. Myöhänen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Kiinanmyllynkatu 10, 20014 Turku, Finland
| | - Erik A. A. Wallén
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| |
Collapse
|
15
|
Cui H, Kilpeläinen T, Zouzoula L, Auno S, Trontti K, Kurvonen S, Norrbacka S, Hovatta I, Jensen PH, Myöhänen TT. Prolyl oligopeptidase inhibition reduces alpha-synuclein aggregation in a cellular model of multiple system atrophy. J Cell Mol Med 2021; 25:9634-9646. [PMID: 34486218 PMCID: PMC8505845 DOI: 10.1111/jcmm.16910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
Multiple system atrophy (MSA) is a fatal neurodegenerative disease where the histopathological hallmark is glial cytoplasmic inclusions in oligodendrocytes, rich of aggregated alpha‐synuclein (aSyn). Therefore, therapies targeting aSyn aggregation and toxicity have been studied as a possible disease‐modifying therapy for MSA. Our earlier studies show that inhibition of prolyl oligopeptidase (PREP) with KYP‐2047 reduces aSyn aggregates in several models. Here, we tested the effects of KYP‐2047 on a MSA cellular models, using rat OLN‐AS7 and human MO3.13 oligodendrocyte cells. As translocation of p25α to cell cytosol has been identified as an inducer of aSyn aggregation in MSA models, the cells were transiently transfected with p25α. Similar to earlier studies, p25α increased aSyn phosphorylation and aggregation, and caused tubulin retraction and impaired autophagy in OLN‐AS7 cells. In both cellular models, p25α transfection increased significantly aSyn mRNA levels and also increased the levels of inactive protein phosphatase 2A (PP2A). However, aSyn or p25α did not cause any cellular death in MO3.13 cells, questioning their use as a MSA model. Simultaneous administration of 10 µM KYP‐2047 improved cell viability, decreased insoluble phosphorylated aSyn and normalized autophagy in OLN‐AS7 cells but similar impact was not seen in MO3.13 cells.
Collapse
Affiliation(s)
- Hengjing Cui
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Tommi Kilpeläinen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Lydia Zouzoula
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Samuli Auno
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Kalevi Trontti
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Sampo Kurvonen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Susanna Norrbacka
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | | | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland.,Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Turku, Finland.,School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
16
|
Eteläinen T, Kulmala V, Svarcbahs R, Jäntti M, Myöhänen TT. Prolyl oligopeptidase inhibition reduces oxidative stress via reducing NADPH oxidase activity by activating protein phosphatase 2A. Free Radic Biol Med 2021; 169:14-23. [PMID: 33838285 DOI: 10.1016/j.freeradbiomed.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/19/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
Oxidative stress (OS) is a common toxic feature in various neurodegenerative diseases. Therefore, reducing OS could provide a potential approach to achieve neuroprotection. Prolyl oligopeptidase (PREP) is a serine protease that is linked to neurodegeneration, as endogenous PREP inhibits autophagy and induces the accumulation of detrimental protein aggregates. As such, inhibition of PREP by a small-molecular inhibitor has provided neuroprotection in preclinical models of neurodegenerative diseases. In addition, PREP inhibition has been shown to reduce production of reactive oxygen species (ROS) and the absence of PREP blocks stress-induced ROS production. However, the mechanism behind PREP-related ROS regulation is not known. As we recently discovered PREP's physiological role as a protein phosphatase 2A (PP2A) regulator, we wanted to characterize PREP inhibition as an approach to reduce OS. We studied the impact of a PREP inhibitor, KYP-2047, on hydrogen peroxide and ferrous chloride induced ROS production and on cellular antioxidant response in HEK-293 and SH-SY5Y cells. In addition, we used HEK-293 and SH-SY5Y PREP knock-out cells to validate the role of PREP on stress-induced ROS production. We were able to show that absence of PREP almost entirely blocks the stress-induced ROS production in both cell lines. Reduced ROS production and smaller antioxidant response was also seen in both cell lines after PREP inhibition by 10 μM KYP-2047. Our results also revealed that the OS reducing mechanism of PREP inhibition is related to reduced activation of ROS producing NADPH oxidase through enhanced PP2A activation. In conclusion, our results suggest that PREP inhibition could also provide neuroprotection by reducing OS, thus broadening the scope of its beneficial effects on neurodegeneration.
Collapse
Affiliation(s)
- T Eteläinen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - V Kulmala
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - R Svarcbahs
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - M Jäntti
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - T T Myöhänen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland; Integrative Physiology and Pharmacology Unit, Institute of Biotechnology, Faculty of Medicine, University of Turku, Finland; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Finland.
| |
Collapse
|
17
|
Computer-Aided Drug Discovery Identifies Alkaloid Inhibitors of Parkinson's Disease Associated Protein, Prolyl Oligopeptidase. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6687572. [PMID: 33897801 PMCID: PMC8052153 DOI: 10.1155/2021/6687572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/25/2020] [Accepted: 02/19/2021] [Indexed: 01/18/2023]
Abstract
Parkinson's disease is a common neurodegenerative disorder marked by the accumulation of the protein alpha synuclein. Studies have indicated the role of prolyl oligopeptidase (POP), a serine protease, in alpha synuclein accumulation. Therefore, POP emerges as an attractive medicinal target. Traditionally, most of the early medicines have been plant-based owing to their ready availability and negligible side effects. Alkaloids owing to their neurotransmitter modulatory, anti-amyloid, anti-oxidant, and anti-inflammatory activities have shown potential in neurodegenerative disease. In this work, we computationally evaluated alkaloid class of phytochemicals for their therapeutic efficacy against POP. Alkaloids were retrieved from the publically available database, Chemical Entities of Biological Interest (ChEBI), and screened for their drug likeness (Lipinski's rule of 5) and absorption, distribution, metabolism, and excretion, and toxicity (ADMET) in Discovery Studio by ensuring parameters suitable for a central nervous system disease such as blood-brain barrier (BBB) level set to ≤2, absorption level set to 0 and solubility level permitted set to 2, 3, or 4. Next, molecular docking was performed to learn about the affinity of the filtered alkaloids with the POP. Subsequently, molecular dynamic simulations were conducted to assess the reliability and stability of the alkaloid-protein complex. Our study identified metergoline, pipercallosine, celacinnine, lobeline, cystodytin G, lycoperine A, hookerianamide J, and martefragin A as putative lead compounds against POP. Among these, metergoline, pipercallosine, hookerianamide J, and lobeline showed the most promising results. These compounds demonstrated better or equivalent molecular docking scores in comparison to three POP inhibitors that had reached clinical trials, i.e., Z-321, S-17092, and JTP-4819. MD simulations indicated that these compounds remained intact at the active site while adhering to the binding mode and interaction patterns as that of the reported inhibitors. The research conducted here, therefore, provides evidence for conducting in vitro POP inhibitory studies of these newly identified plant-based POP inhibitors.
Collapse
|
18
|
The Inhibition of Prolyl Oligopeptidase as New Target to Counteract Chronic Venous Insufficiency: Findings in a Mouse Model. Biomedicines 2020; 8:biomedicines8120604. [PMID: 33322134 PMCID: PMC7764674 DOI: 10.3390/biomedicines8120604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
(1) Background: Chronic venous insufficiency (CVI) is a common disorder related to functional and morphological abnormalities of the venous system. Inflammatory processes and angiogenesis alterations greatly concur to the onset of varicose vein. KYP-2047 is a selective inhibitor of prolyl oligopeptidase (POP), a serine protease involved in the release of pro-angiogenic molecules. The aim of the present study is to evaluate the capacity of KYP-2047 to influence the angiogenic and inflammatory mechanisms involved in the pathophysiology of CVI. (2) Methods: An in vivo model of CVI-induced by saphene vein ligation (SVL) and a tissue block culture study were performed. Mice were subjected to SVL followed by KYP-2047 treatment (intraperitoneal, 10 mg/kg) for 7 days. Histological analysis, Masson's trichrome, Van Gieson staining, and mast cells evaluation were performed. Release of cytokines, nitric oxide synthase production, TGF-beta, VEGF, α-smooth muscle actin, PREP, Endoglin, and IL-8 quantification were investigated. (3) Results: KYP-2047 treatment ameliorated the histological abnormalities of the venous wall, reduced the collagen increase and modulated elastin content, lowered cytokines levels and prevented mast degranulation. Moreover, a decreased expression of TGF-beta, eNOS, VEGF, α-smooth muscle actin, IL-8, and PREP was observed in in vivo study; also a reduction in VEGF and Endoglin expression was confirmed in tissue block culture study. (4) Conclusions: For the first time, this research, highlighting the importance of POP as new target for vascular disorders, revealed the therapeutic potential of KYP-2047 as a helpful treatment for the management of CVI.
Collapse
|
19
|
Rostami J, Jäntti M, Cui H, Rinne MK, Kukkonen JP, Falk A, Erlandsson A, Myöhänen T. Prolyl oligopeptidase inhibition by KYP-2407 increases alpha-synuclein fibril degradation in neuron-like cells. Biomed Pharmacother 2020; 131:110788. [PMID: 33152946 DOI: 10.1016/j.biopha.2020.110788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 01/01/2023] Open
Abstract
Growing evidence emphasizes insufficient clearance of pathological alpha-synuclein (αSYN) aggregates in the progression of Parkinson's disease (PD). Consequently, cellular degradation pathways represent a potential therapeutic target. Prolyl oligopeptidase (PREP) is highly expressed in the brain and has been suggested to increase αSYN aggregation and negatively regulate the autophagy pathway. Inhibition of PREP with a small molecule inhibitor, KYP-2407, stimulates autophagy and reduces the oligomeric species of αSYN aggregates in PD mouse models. However, whether PREP inhibition has any effects on intracellular αSYN fibrils has not been studied before. In this study, the effect of KYP2407 on αSYN preformed fibrils (PFFs) was tested in SH-SY5Y cells and human astrocytes. Immunostaining analysis revealed that both cell types accumulated αSYN PFFs intracellularly but KYP-2047 decreased intracellular αSYN deposits only in SH-SY5Y cells, as astrocytes did not show any PREP activity. Western blot analysis confirmed the reduction of high molecular weight αSYN species in SH-SY5Y cell lysates, and secretion of αSYN from SH-SY5Y cells also decreased in the presence of KYP-2407. Accumulation of αSYN inside the SH-SY5Y cells resulted in an increase of the auto-lysosomal proteins p62 and LC3BII, as well as calpain 1 and 2, which have been shown to be associated with PD pathology. Notably, treatment with KYP-2407 significantly reduced p62 and LC3BII levels, indicating an increased autophagic flux, and calpain 1 and 2 levels returned to normal in the presence of KYP-2407. Our findings indicate that PREP inhibition can potentially be used as therapy to reduce the insoluble intracellular αSYN aggregates.
Collapse
Affiliation(s)
- Jinar Rostami
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Maria Jäntti
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, University of Helsinki, Finland
| | - Hengjing Cui
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, University of Helsinki, Finland
| | - Maiju K Rinne
- Division of Pharmaceutical Chemistry and Technology/Drug Research Program, Faculty of Pharmacy, P.O. Box 56, 00014, University of Helsinki, Finland
| | - Jyrki P Kukkonen
- Department of Pharmacology, Institute of Biomedicine, Faculty of Medicine, P.O. Box 63, 00014, University of Helsinki, Finland
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Anna Erlandsson
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Timo Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, University of Helsinki, Finland; Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, 20014, University of Turku, Finland.
| |
Collapse
|
20
|
Prolyl Endopeptidase-Like Facilitates the α-Synuclein Aggregation Seeding, and This Effect Is Reverted by Serine Peptidase Inhibitor PMSF. Biomolecules 2020; 10:biom10060962. [PMID: 32630529 PMCID: PMC7355856 DOI: 10.3390/biom10060962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
The aggregation of α-synuclein (α-Syn) is a characteristic of Parkinson’s disease (PD). α-Syn oligomerization/aggregation is accelerated by the serine peptidase, prolyl oligopeptidase (POP). Factors that affect POP conformation, including most of its inhibitors and an impairing mutation in its active site, influence the acceleration of α-Syn aggregation resulting from the interaction of these proteins. It is noteworthy, however, that α-Syn is not cleaved by POP. Prolyl endopeptidase-like (PREPL) protein is structurally related to the serine peptidases belonging to the POP family. Based on the α-Syn–POP studies and knowing that PREPL may contribute to the regulation of synaptic vesicle exocytosis, when this protein can encounter α-Syn, we investigated the α-Syn–PREPL interaction. The binding of these two human proteins was observed with an apparent affinity constant of about 5.7 μM and, as in the α-Syn assays with POP, the presence of PREPL accelerated the oligomerization/aggregation events, with no α-Syn cleavage. Furthermore, despite this lack of hydrolytic cleavage, the serine peptidase active site inhibitor phenylmethylsulfonyl fluoride (PMSF) abolished the enhancement of the α-Syn aggregation by PREPL. Therefore, given the attention to POP inhibitors as potential drugs to treat synucleinopathies, the present data point to PREPL as another potential target to be explored for this purpose.
Collapse
|
21
|
Baicalin Represses C/EBP β via Its Antioxidative Effect in Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8951907. [PMID: 32566108 PMCID: PMC7261332 DOI: 10.1155/2020/8951907] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/19/2020] [Accepted: 05/02/2020] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the gradual loss of dopaminergic (DA) neurons in the substantia nigra (SN) and the formation of intracellular Lewy bodies (LB) in the brain, which aggregates α-synuclein (α-Syn) as the main component. The interest of flavonoids as potential neuroprotective agents is increasing due to its high efficiency and low side effects. Baicalin is one of the flavonoid compounds, which is a predominant flavonoid isolated from Scutellaria baicalensis Georgi. However, the key molecular mechanism by which Baicalin can prevent the PD pathogenesis remains unclear. In this study, we used bioinformatic assessment including Gene Ontology (GO) to elucidate the correlation between oxidative stress and PD pathogenesis. RNA-Seq methods were used to examine the global expression profiles of noncoding RNAs and found that C/EBPβ expression was upregulated in PD patients compared with healthy controls. Interestingly, Baicalin could protect DA neurons against reactive oxygen species (ROS) and decreased C/EBPβ and α-synuclein expression in pLVX-Tet3G-α-synuclein SH-SY5Y cells. In a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced PD mouse model, the results revealed that treatment with Baicalin improved the PD model's behavioral performance and reduced dopaminergic neuron loss in the substantia nigra, associated with the inactivation of proinflammatory cytokines and oxidative stress. Hence, our study supported that Baicalin repressed C/EBPβ via redox homeostasis, which may be an effective potential treatment for PD.
Collapse
|
22
|
Kilpeläinen T, Julku UH, Svarcbahs R, Myöhänen TT. Behavioural and dopaminergic changes in double mutated human A30P*A53T alpha-synuclein transgenic mouse model of Parkinson´s disease. Sci Rep 2019; 9:17382. [PMID: 31758049 PMCID: PMC6874660 DOI: 10.1038/s41598-019-54034-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/08/2019] [Indexed: 12/23/2022] Open
Abstract
Alpha-synuclein (aSyn) is the main component of Lewy bodies, the histopathological marker in Parkinson's disease (PD), and point mutations and multiplications of the aSyn coding SNCA gene correlate with early onset PD. Therefore, various transgenic mouse models overexpressing native or point-mutated aSyn have been developed. Although these models show highly increased aSyn expression they rarely capture dopaminergic cell loss and show a behavioural phenotype only at old age, whereas SNCA mutations are risk factors for PD with earlier onset. The aim of our study was to re-characterize a transgenic mouse strain carrying both A30P and A53T mutated human aSyn. Our study revealed decreased locomotor activity for homozygous transgenic mice starting from 3 months of age which was different from previous studies with this mouse strain that had behavioural deficits starting only after 7-9 months. Additionally, we found a decreased amphetamine response in locomotor activity and decreased extracellular dopaminergic markers in the striatum and substantia nigra with significantly elevated levels of aSyn oligomers. In conclusion, homozygous transgenic A30P*A53T aSyn mice capture several phenotypes of PD with early onset and could be a useful tool for aSyn studies.
Collapse
Affiliation(s)
- Tommi Kilpeläinen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ulrika H Julku
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Reinis Svarcbahs
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
23
|
Svarcbahs R, Jäntti M, Kilpeläinen T, Julku UH, Urvas L, Kivioja S, Norrbacka S, Myöhänen TT. Prolyl oligopeptidase inhibition activates autophagy via protein phosphatase 2A. Pharmacol Res 2019; 151:104558. [PMID: 31759088 DOI: 10.1016/j.phrs.2019.104558] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/02/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Prolyl oligopeptidase (PREP) is a serine protease that has been studied particularly in the context of neurodegenerative diseases for decades but its physiological function has remained unclear. We have previously found that PREP negatively regulates beclin1-mediated macroautophagy (autophagy), and that PREP inhibition by a small-molecule inhibitor induces clearance of protein aggregates in Parkinson's disease models. Since autophagy induction has been suggested as a potential therapy for several diseases, we wanted to further characterize how PREP regulates autophagy. We measured the levels of various kinases and proteins regulating beclin1-autophagy in HEK-293 and SH-SY5Y cell cultures after PREP inhibition, PREP deletion, and PREP overexpression and restoration, and verified the results in vivo by using PREP knock-out and wild-type mouse tissue where PREP was restored or overexpressed, respectively. We found that PREP regulates autophagy by interacting with protein phosphatase 2A (PP2A) and its endogenous inhibitor, protein phosphatase methylesterase 1 (PME1), and activator (protein phosphatase 2 phosphatase activator, PTPA), thus adjusting its activity and the levels of PP2A in the intracellular pool. PREP inhibition and deletion increased PP2A activity, leading to activation of death-associated protein kinase 1 (DAPK1), beclin1 phosphorylation and induced autophagy while PREP overexpression reduced this. Lowered activity of PP2A is connected to several neurodegenerative disorders and cancers, and PP2A activators would have enormous potential as drug therapy but development of such compounds has been a challenge. The concept of PREP inhibition has been proved safe, and therefore, our study supports the further development of PREP inhibitors as PP2A activators.
Collapse
Affiliation(s)
- Reinis Svarcbahs
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Maria Jäntti
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Tommi Kilpeläinen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Ulrika H Julku
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Lauri Urvas
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Saara Kivioja
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Susanna Norrbacka
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
24
|
Xu P, Bao R, Zhang Y, Lu E, Feng F, Zhang L, Li J, Wang J, Tan X, Tang M, Hu C, Li G, Zhang C. Prolyl oligopeptidase regulates progesterone secretion via the ERK signaling pathway in murine luteal cells. Mol Reprod Dev 2019; 86:714-726. [PMID: 30990944 DOI: 10.1002/mrd.23149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/31/2019] [Accepted: 03/12/2019] [Indexed: 12/29/2022]
Abstract
Prolyl oligopeptidase (POP), one of the most widely distributed serine endopeptidases, is highly expressed in the ovaries. However, the physiological role of POP in the ovaries is not clear. In this study, we investigated the significance of POP in the corpus luteum. Murine luteal cells were cultured in vitro and treated with a POP selective inhibitor, (2S)-1[[(2 S)-1-(1-oxo-4-phenylbutyl)-2-pyrrolidinyl carbonyl]-2-pyrrolidinecarbonitrile (KYP-2047). We found that KYP-2047 treatment decreased progesterone secretion. In contrast, POP overexpression increased progesterone secretion. Three essential steroidogenic enzymes, including p450 cholesterol side-chain cleavage enzyme (CYP11A), 3β-hydroxysteroid dehydrogenase (3β-HSD), and the steroidogenic acute regulatory protein (StAR), were regulated by POP. Further studies showed that POP overexpression increased ERK1/2 phosphorylation and increased the expression of steroidogenic factor 1 (SF1), while KYP-2047 treatment decreased ERK1/2 phosphorylation and SF1 expression. To clarify the role of ERK1/2 signaling in POP-regulated progesterone synthesis, U0126-EtOH, an inhibitor of the ERK signaling pathway, was used to treat luteal cells. We found that U0126-EtOH decreased progesterone production and the expression of steroidogenic enzymes and SF1. POP overexpression did not reverse the effects of U0126-EtOH. Overall, POP regulates progesterone secretion by stimulating the expression of CYP11A, 3β-HSD, and StAR in luteal cells. ERK signaling and downstream SF1 expression contribute to this process.
Collapse
Affiliation(s)
- Ping Xu
- Second Clinical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Riqiang Bao
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yaqiong Zhang
- Department of Medical Genetics, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Enhang Lu
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Fen Feng
- Department of Cell Biology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Luyin Zhang
- Second Clinical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jiaheng Li
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jing Wang
- Department of Microbiology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Ximin Tan
- Forth Clinical College, School of Medicine, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Min Tang
- Department of Cell Biology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Chuan Hu
- Department of Cell Biology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Gang Li
- Department of Cell Biology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Chunping Zhang
- Department of Cell Biology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
25
|
Eskelinen EL. Autophagy: Supporting cellular and organismal homeostasis by self-eating. Int J Biochem Cell Biol 2019; 111:1-10. [PMID: 30940605 DOI: 10.1016/j.biocel.2019.03.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 01/07/2023]
Abstract
Autophagy is a conserved catabolic process that delivers cytoplasmic components and organelles to lysosomes for degradation and recycling. This pathway serves to degrade nonfunctional organelles and aggregate-prone proteins, as well as to produce substrates for energy production and biosynthesis. Autophagy is especially important for the maintenance of stem cells, and for the survival and homeostasis of post-mitotic cells like neurons. Functional autophagy promotes longevity in several model organisms. Autophagy regulates immunity and inflammation at several levels and has both anti- and pro-tumorigenic roles in cancer. This review provides a concise overview of autophagy and its importance in cellular and organismal homeostasis, with emphasis on aging, stem cells, neuronal cells, immunity, inflammation, and cancer.
Collapse
Affiliation(s)
- Eeva-Liisa Eskelinen
- University of Turku, Institute of Biomedicine, Turku, Finland; University of Helsinki, Molecular and Integrative Biosciences Research Programme, Helsinki, Finland.
| |
Collapse
|
26
|
Martinelli AHS, Lopes FC, John EBO, Carlini CR, Ligabue-Braun R. Modulation of Disordered Proteins with a Focus on Neurodegenerative Diseases and Other Pathologies. Int J Mol Sci 2019; 20:ijms20061322. [PMID: 30875980 PMCID: PMC6471803 DOI: 10.3390/ijms20061322] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/03/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) do not have rigid 3D structures, showing changes in their folding depending on the environment or ligands. Intrinsically disordered proteins are widely spread in eukaryotic genomes, and these proteins participate in many cell regulatory metabolism processes. Some IDPs, when aberrantly folded, can be the cause of some diseases such as Alzheimer′s, Parkinson′s, and prionic, among others. In these diseases, there are modifications in parts of the protein or in its entirety. A common conformational variation of these IDPs is misfolding and aggregation, forming, for instance, neurotoxic amyloid plaques. In this review, we discuss some IDPs that are involved in neurodegenerative diseases (such as beta amyloid, alpha synuclein, tau, and the “IDP-like” PrP), cancer (p53, c-Myc), and diabetes (amylin), focusing on the structural changes of these IDPs that are linked to such pathologies. We also present the IDP modulation mechanisms that can be explored in new strategies for drug design. Lastly, we show some candidate drugs that can be used in the future for the treatment of diseases caused by misfolded IDPs, considering that cancer therapy has more advanced research in comparison to other diseases, while also discussing recent and future developments in this area of research. Therefore, we aim to provide support to the study of IDPs and their modulation mechanisms as promising approaches to combat such severe diseases.
Collapse
Affiliation(s)
- Anne H S Martinelli
- Department of Molecular Biology and Biotechnology & Department of Biophysics, Biosciences Institute-IB, (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
| | - Fernanda C Lopes
- Center for Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
- Graduate Program in Cell and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
| | - Elisa B O John
- Center for Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
- Graduate Program in Cell and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
| | - Célia R Carlini
- Graduate Program in Cell and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
- Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 91410-000, RS, Brazil.
- Brain Institute-InsCer, Laboratory of Neurotoxins, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, RS, Brazil.
| | - Rodrigo Ligabue-Braun
- Department of Pharmaceutical Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre CEP 90050-170, RS, Brazil.
| |
Collapse
|
27
|
Albert K, Voutilainen MH, Domanskyi A, Piepponen TP, Ahola S, Tuominen RK, Richie C, Harvey BK, Airavaara M. Downregulation of tyrosine hydroxylase phenotype after AAV injection above substantia nigra: Caution in experimental models of Parkinson's disease. J Neurosci Res 2019; 97:346-361. [PMID: 30548446 PMCID: PMC11863348 DOI: 10.1002/jnr.24363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022]
Abstract
Adeno-associated virus (AAV) vector-mediated delivery of human α-synuclein (α-syn) gene in rat substantia nigra (SN) results in increased expression of α-syn protein in the SN and striatum which can progressively degenerate dopaminergic neurons. Therefore, this model is thought to recapitulate the neurodegeneration in Parkinson's disease. Here, using AAV to deliver α-syn above the SN in male and female rats resulted in clear expression of human α-syn in the SN and striatum. The protein was associated with moderate behavioral deficits and some loss of tyrosine hydroxylase (TH) in the nigrostriatal areas. However, the immunohistochemistry results were highly variable and showed little to no correlation with behavior and the amount of α-syn present. Expression of green fluorescent protein (GFP) was used as a control to monitor gene delivery and expression efficacy. AAV-GFP resulted in a similar or greater TH loss compared to AAV-α-syn and therefore an additional vector that does not express a protein was tested. Vectors with double-floxed inverse open reading frame (DIO ORF) encoding fluorescent proteins that generate RNA that is not translated also resulted in TH downregulation in the SN but showed no significant behavioral deficits. These results demonstrate that although expression of wild-type human α-syn can cause neurodegeneration, the variability and lack of correlation with outcome measures are drawbacks with the model. Furthermore, design and control selection should be considered carefully because of conflicting conclusions due to AAV downregulation of TH, and we recommend caution with having highly regulated TH as the only marker for the dopamine system.
Collapse
Affiliation(s)
- Katrina Albert
- Institute of Biotechnology, Program of Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Merja H. Voutilainen
- Institute of Biotechnology, Program of Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Andrii Domanskyi
- Institute of Biotechnology, Program of Developmental Biology, University of Helsinki, Helsinki, Finland
| | - T. Petteri Piepponen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Sari Ahola
- Institute of Biotechnology, Program of Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Raimo K. Tuominen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Christopher Richie
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, USA
| | - Brandon K. Harvey
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, USA
| | - Mikko Airavaara
- Institute of Biotechnology, Program of Developmental Biology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
New tricks of prolyl oligopeptidase inhibitors - A common drug therapy for several neurodegenerative diseases. Biochem Pharmacol 2019; 161:113-120. [PMID: 30660495 DOI: 10.1016/j.bcp.2019.01.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/15/2019] [Indexed: 12/14/2022]
Abstract
Changes in prolyl oligopeptidase (PREP) expression levels, protein distribution, and activity correlate with aging and are reported in many neurodegenerative conditions. Together with decreased neuropeptide levels observed in aging and neurodegeneration, and PREP's ability to cleave only small peptides, PREP was identified as a druggable target. Known PREP non-enzymatic functions were disregarded or attributed to PREP enzymatic activity, and several potent small molecule PREP inhibitors were developed during early stages of PREP research. These showed a lot of potential but with variable results in experimental memory models, however, the initial excitement was short-lived and all of the clinical trials were discontinued in either Phase I or II clinical trials for unknown reasons. Recently, PREP's ability to form protein-protein interactions, alter cell proliferation and autophagy has gained more attention than earlier recognized catalytical activity. Of new findings, particularly the aggregation of alpha-synuclein (aSyn) that is seen in the presence of PREP is especially interesting because PREP inhibitors are capable of altering aSyn-PREP interaction in a manner that reduces the aSyn dimerization process. Therefore, it is possible that PREP inhibitors that are altering interactions could have different characteristics than those aimed for strong inhibition of catalytic activity. Moreover, PREP co-localization with aSyn, tau, and amyloid-beta hints to PREP's possible role not only in the synucleinopathies but in other neurodegenerative diseases as well. This commentary will focus on less well-acknowledged non-enzymatic functions of PREP that may provide a better approach for the development of PREP inhibitors for the treatment of neurodegenerative disorders.
Collapse
|
29
|
Novello S, Arcuri L, Dovero S, Dutheil N, Shimshek DR, Bezard E, Morari M. G2019S LRRK2 mutation facilitates α-synuclein neuropathology in aged mice. Neurobiol Dis 2018; 120:21-33. [PMID: 30172844 DOI: 10.1016/j.nbd.2018.08.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022] Open
Abstract
Fibrillization of α-synuclein is instrumental for the development of Parkinson's disease (PD), thus modulating this process can have profound impact on disease initiation/progression. Here, the impact of the p.G2019S mutation of leucine-rich repeat kinase 2 (LRRK2), which is most frequently associated with familial and sporadic PD, on α-synuclein pathology was investigated. G2019S knock-in mice and wild-type controls were injected with a recombinant adeno-associated viral vector serotype 2/9 (AAV2/9) overexpressing human mutant p.A53T α-synuclein (AAV2/9-hα-syn). Control animals were injected with AAV2/9 carrying green fluorescent protein. Motor behavior, transgene expression, α-syn and pSer129 α-syn load, number of nigral dopamine neurons and density of striatal dopaminergic terminals were evaluated. To investigate the effect of aging, experiments were performed in 3- and 12-month-old mice, evaluated 20 and 12 weeks after virus injection, respectively. hα-syn overexpression induced progressive motor deficits, loss of nigral dopaminergic neurons and striatal terminals, and appearance of proteinase K-resistant aggregates of pSer129 α-syn in both young and old mice. Although no genotype difference was observed in 3-month-old mice, degeneration of nigral dopaminergic neurons was higher in 12-month-old G2019S knock-in mice compared with age-matched wild-type controls (-55% vs -39%, respectively). Consistently, a two-fold higher load of pSer129 α-syn aggregates was found in 12-month-old G2019S knock-in mice. We conclude that G2019S LRRK2 facilitates α-synucleinopathy and degeneration of nigral dopaminergic neurons, and that aging is a major determinant of this effect.
Collapse
Affiliation(s)
- Salvatore Novello
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, National Institute of Neuroscience, Ferrara, Italy
| | - Ludovico Arcuri
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, National Institute of Neuroscience, Ferrara, Italy
| | - Sandra Dovero
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Nathalie Dutheil
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Derya R Shimshek
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, National Institute of Neuroscience, Ferrara, Italy.
| |
Collapse
|
30
|
Guardiola S, Prades R, Mendieta L, Brouwer AJ, Streefkerk J, Nevola L, Tarragó T, Liskamp RM, Giralt E. Targeted Covalent Inhibition of Prolyl Oligopeptidase (POP): Discovery of Sulfonylfluoride Peptidomimetics. Cell Chem Biol 2018; 25:1031-1037.e4. [DOI: 10.1016/j.chembiol.2018.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/14/2018] [Accepted: 04/12/2018] [Indexed: 01/30/2023]
|
31
|
Ciampa E, Li Y, Dillon S, Lecarpentier E, Sorabella L, Libermann TA, Karumanchi SA, Hess PE. Cerebrospinal Fluid Protein Changes in Preeclampsia. Hypertension 2018; 72:219-226. [PMID: 29844151 DOI: 10.1161/hypertensionaha.118.11153] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/15/2018] [Accepted: 05/06/2018] [Indexed: 01/21/2023]
Abstract
The molecular mechanisms underlying seizure susceptibility in preeclampsia are unknown. We hypothesized that altered expression of distinct proteins in the cerebrospinal fluid (CSF) may reflect pathophysiological changes in the central nervous system that contribute to the neurological manifestations of severe preeclampsia. We obtained CSF samples from 13 patients with preeclampsia and 14 control patients during spinal anesthesia before delivery and analyzed them by SOMAscan, an aptamer-based proteomics platform for alterations in 1310 protein levels. Ingenuity Pathway Analysis was conducted to highlight relationships between preeclampsia-specific proteins found to be significantly altered. For 2 of the target proteins, we validated the difference in CSF concentrations by ELISA. SOMAscan revealed 82 proteins, whose expression levels were significantly different (P<0.05) in CSF from patients with preeclampsia versus controls. Principal component analysis achieved perfect separation of the preeclampsia and control groups in 2 dimensions. The differentially expressed proteins converge around 4 signaling molecules: TGF-β (transforming growth factor-β), VEGFA (vascular endothelial growth factor A), angiotensinogen, and IL-6 (interleukin-6). Within the TGF-β pathway, upregulation of activin A (301.6±47.4 versus 151.6±20.5 pg/mL; P=0.0074) and follistatin-related gene (5129±347 versus 3016±188 pg/mL; P<0.0001) in preeclampsia was confirmed by ELISA. In summary, signaling pathways important for vascular remodeling, inflammation, and neuronal growth, signaling, and electrophysiology were well represented among the proteins found to be altered in CSF in patients with preeclampsia.
Collapse
Affiliation(s)
- Erin Ciampa
- From the Departments of Anesthesia (E.C., Y.L., L.S., P.E.H.)
| | - Yunping Li
- From the Departments of Anesthesia (E.C., Y.L., L.S., P.E.H.)
| | - Simon Dillon
- Medicine (S.D., E.L., T.A.L., S.A.K.).,Genomics, Proteomics, Bioinformatics, and Systems Biology Center (S.D., T.A.L.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Edouard Lecarpentier
- Medicine (S.D., E.L., T.A.L., S.A.K.).,Faculté de médecine de Créteil Université Paris Est Créteil - Paris XII, and Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, France (E.L.)
| | - Laura Sorabella
- From the Departments of Anesthesia (E.C., Y.L., L.S., P.E.H.).,Department of Anesthesia, Vanderbilt University Medical Center, Nashville, TN (L.S.)
| | - Towia A Libermann
- Medicine (S.D., E.L., T.A.L., S.A.K.).,Genomics, Proteomics, Bioinformatics, and Systems Biology Center (S.D., T.A.L.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - S Ananth Karumanchi
- Medicine (S.D., E.L., T.A.L., S.A.K.) .,Obstetrics and Gynecology (S.A.K.).,Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (S.A.K.)
| | - Philip E Hess
- From the Departments of Anesthesia (E.C., Y.L., L.S., P.E.H.)
| |
Collapse
|
32
|
Yan X, Uronen RL, Huttunen HJ. The interaction of α-synuclein and Tau: A molecular conspiracy in neurodegeneration? Semin Cell Dev Biol 2018; 99:55-64. [PMID: 29738880 DOI: 10.1016/j.semcdb.2018.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/06/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022]
Abstract
α-synuclein and Tau are proteins prone to pathological misfolding and aggregation that are normally found in the presynaptic and axonal compartments of neurons. Misfolding initiates a homo-oligomerization and aggregation cascade culminating in cerebral accumulation of aggregated α-synuclein and Tau in insoluble protein inclusions in multiple neurodegenerative diseases. Traditionally, α-synuclein-containing Lewy bodies have been associated with Parkinson's disease and Tau-containing neurofibrillary tangles with Alzheimer's disease and various frontotemporal dementia syndromes. However, there is significant overlap and co-occurrence of α-synuclein and Tau pathologies in a spectrum of neurodegenerative diseases. Importantly, α-synuclein and Tau can interact in cells, and their pathological conformations are capable of templating further misfolding and aggregation of each other. They also share a number of protein interactors indicating that network perturbations may contribute to chronic proteotoxic stress and neuronal dysfunction in synucleinopathies and tauopathies, some of which share similarities in both neuropathological and clinical manifestations. In this review, we focus on the protein interactions of these two pathologically important proteins and consider a network biology perspective towards neurodegenerative diseases.
Collapse
Affiliation(s)
- Xu Yan
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Riikka-Liisa Uronen
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Henri J Huttunen
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
33
|
Svarcbahs R, Julku UH, Norrbacka S, Myöhänen TT. Removal of prolyl oligopeptidase reduces alpha-synuclein toxicity in cells and in vivo. Sci Rep 2018; 8:1552. [PMID: 29367610 PMCID: PMC5784134 DOI: 10.1038/s41598-018-19823-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023] Open
Abstract
Prolyl oligopeptidase (PREP) inhibition by small-molecule inhibitors can reduce alpha-synuclein (aSyn) aggregation, a key player in Parkinson's disease pathology. However, the significance of PREP protein for aSyn aggregation and toxicity is not known. We studied this in vivo by using PREP knock-out mice with viral vector injections of aSyn and PREP. Animal behavior was studied by locomotor activity and cylinder tests, microdialysis and HPLC were used to analyze dopamine levels, and different aSyn forms and loss of dopaminergic neurons were studied by immunostainings. Additionally, PREP knock-out cells were used to characterize the impact of PREP and aSyn on autophagy, proteasomal system and aSyn secretion. PREP knock-out animals were nonresponsive to aSyn-induced unilateral toxicity but combination of PREP and aSyn injections increased aSyn toxicity. Phosphorylated p129, proteinase K resistant aSyn levels and tyrosine hydroxylase positive cells were decreased in aSyn and PREP injected knock-out animals. These changes were accompanied by altered dopamine metabolite levels. PREP knock-out cells showed reduced response to aSyn, while cells were restored to wild-type cell levels after PREP overexpression. Taken together, our data suggests that PREP can enhance aSyn toxicity in vivo.
Collapse
Affiliation(s)
- Reinis Svarcbahs
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland
| | - Ulrika H Julku
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland
| | - Susanna Norrbacka
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland
| | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
34
|
Mochizuki H, Choong CJ, Masliah E. A refined concept: α-synuclein dysregulation disease. Neurochem Int 2018; 119:84-96. [PMID: 29305061 DOI: 10.1016/j.neuint.2017.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 12/23/2022]
Abstract
α-synuclein (αSyn) still remains a mysterious protein even two decades after SNCA encoding it was identified as the first causative gene of familial Parkinson's disease (PD). Accumulation of αSyn causes α-synucleinopathies including PD, dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Recent advances in therapeutic approaches offer new antibody-, vaccine-, antisense-oligonucleotide- and small molecule-based options to reduce αSyn protein levels and aggregates in patient's brain. Gathering research information of other neurological disease particularly Alzheimer's disease, recent disappointment of an experimental amyloid plaques busting antibody in clinical trials underscores the difficulty of treating people who show even mild dementia as damage in their brain may already be too extensive. Prodromal intervention to inhibit the accumulation of pathogenic protein may advantageously provide a better outcome. However, treatment prior to onset is not ethically justified as standard practice at present. In this review, we initiate a refined concept to define early pathogenic state of αSyn accumulation before occurrence of brain damage as a disease criterion for αSyn dysregulation disease.
Collapse
Affiliation(s)
- Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| | - Chi-Jing Choong
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Eliezer Masliah
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
35
|
Albert K, Voutilainen MH, Domanskyi A, Airavaara M. AAV Vector-Mediated Gene Delivery to Substantia Nigra Dopamine Neurons: Implications for Gene Therapy and Disease Models. Genes (Basel) 2017; 8:genes8020063. [PMID: 28208742 PMCID: PMC5333052 DOI: 10.3390/genes8020063] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/03/2017] [Indexed: 12/21/2022] Open
Abstract
Gene delivery using adeno-associated virus (AAV) vectors is a widely used method to transduce neurons in the brain, especially due to its safety, efficacy, and long-lasting expression. In addition, by varying AAV serotype, promotor, and titer, it is possible to affect the cell specificity of expression or the expression levels of the protein of interest. Dopamine neurons in the substantia nigra projecting to the striatum, comprising the nigrostriatal pathway, are involved in movement control and degenerate in Parkinson’s disease. AAV-based gene targeting to the projection area of these neurons in the striatum has been studied extensively to induce the production of neurotrophic factors for disease-modifying therapies for Parkinson’s disease. Much less emphasis has been put on AAV-based gene therapy targeting dopamine neurons in substantia nigra. We will review the literature related to targeting striatum and/or substantia nigra dopamine neurons using AAVs in order to express neuroprotective and neurorestorative molecules, as well as produce animal disease models of Parkinson’s disease. We discuss difficulties in targeting substantia nigra dopamine neurons and their vulnerability to stress in general. Therefore, choosing a proper control for experimental work is not trivial. Since the axons along the nigrostriatal tract are the first to degenerate in Parkinson’s disease, the location to deliver the therapy must be carefully considered. We also review studies using AAV-α-synuclein (α-syn) to target substantia nigra dopamine neurons to produce an α-syn overexpression disease model in rats. Though these studies are able to produce mild dopamine system degeneration in the striatum and substantia nigra and some behavioural effects, there are studies pointing to the toxicity of AAV-carrying green fluorescent protein (GFP), which is often used as a control. Therefore, we discuss the potential difficulties in overexpressing proteins in general in the substantia nigra.
Collapse
Affiliation(s)
- Katrina Albert
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
| | - Merja H Voutilainen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
| | - Andrii Domanskyi
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
| | - Mikko Airavaara
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|