1
|
Molinaro A, Mazzoli A, Gaudi AU, Chand Gupta A, Silva VRR, Ramel D, Laffargue M, Ruud J, Becattini B, Solinas G. Ablation of PI3Kγ in neurons protects mice from diet-induced obesity MASLD and insulin resistance. iScience 2025; 28:111562. [PMID: 39811649 PMCID: PMC11732162 DOI: 10.1016/j.isci.2024.111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/28/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Mice with genetic ablation of PI3Kγ are protected from diet-induced obesity. However, the cell type responsible for PI3Kγ action in obesity remains unknown. We generated mice with conditional deletion of PI3Kγ in neurons using the nestin promoter to drive the expression of the Cre recombinase (PI3KγNest mice) and investigated their metabolic phenotype in a model of diet-induced obesity. On a chow diet, lean PI3KγNest mice display reduced linear growth and a normal metabolic phenotype. PI3KγNest mice were largely protected from diet-induced obesity and liver steatosis and showed improved glucose tolerance and insulin sensitivity. This phenotype was associated with increased phosphorylation of hormone-sensitive lipase (HSL) at protein kinase A (PKA) sites in white fat. It is concluded that PI3Kγ action in diet-induced obesity depends on its activity in neurons controlling adipose tissue lipolysis. Future clinical studies on PI3Kγ inhibitors capable of crossing the brain-blood barrier will reveal the relevance of these findings to humans.
Collapse
Affiliation(s)
- Angela Molinaro
- The Wallenberg Laboratory, Institute of Medicine University of Gothenburg Sweden, Gothenburg, Sweden
| | - Arianna Mazzoli
- The Wallenberg Laboratory, Institute of Medicine University of Gothenburg Sweden, Gothenburg, Sweden
| | - Andrea Usseglio Gaudi
- The Wallenberg Laboratory, Institute of Medicine University of Gothenburg Sweden, Gothenburg, Sweden
| | - Amit Chand Gupta
- The Wallenberg Laboratory, Institute of Medicine University of Gothenburg Sweden, Gothenburg, Sweden
| | | | - Damien Ramel
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Muriel Laffargue
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Johan Ruud
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Barbara Becattini
- The Wallenberg Laboratory, Institute of Medicine University of Gothenburg Sweden, Gothenburg, Sweden
| | - Giovanni Solinas
- The Wallenberg Laboratory, Institute of Medicine University of Gothenburg Sweden, Gothenburg, Sweden
| |
Collapse
|
2
|
Deng Y, Fang X, Xu L, Wang H, Gan Q, Wang Q, Jiang M. Integrating network pharmacology and experimental models to investigate the efficacy and mechanism of Tiansha mixture on xerosis. Arch Dermatol Res 2024; 316:468. [PMID: 39002062 DOI: 10.1007/s00403-024-03201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 07/15/2024]
Abstract
Epidermal Growth Factor Receptor Inhibitors (EGFRIs) is a common cancer therapy, but they occasionally cause severe side effects such as xerosis. Tiansha mixture (TM), a traditional Chinese medicines formulation, is develpoed to treat xerosis. This study aims to understand mechanisms of TM on xerosis. Bio-active compounds were selected from databases (TCMSP, TCM-ID, HERB, ETCM) and removed for poor oral bioavailability and low drug likeness. Then a network-based approach filtered out potential active compounds against xerosis. KEGG enrichment analysis identified PI3K/AKT and ERK/MAPK pathways, which were further verified by molecular docking. Afterwards, the effect of TM on activation of PI3K/AKT and ERK/MAPK pathways was validated in gefitinib-induced xerosis rats, where AKT-activator SC79 and MAPK-activator CrPic were also applied. Skin damage was assessed by dorsal score and HE and Tunel stainings. the levels of inflammation factors IL-6 and TNF-α in serum and skin tissue were measured by ELISA. Western blot was used to detect protein levels in the pathways. Network pharmacology identified 111 bio-active compounds from TM and 14 potential targets. Docking simulation showed apigenin, luteolin, and quercetin bio-active compounds in TM bound to IKBKG, INSR, and RAF-1 proteins. In xerosis model rats, TM mitigated xerosis damage, decreased inflammation factors, and phosphorylation of PI3K/AKT and ERK/MAPK proteins. SC79 or CrPic or their combination reversed TM's effect. The current study identified potential targets and PI3K/AKT and ERK/MAPK pathways involved in the effect of TM on xerosis, thus providing a foundation for TM clinical application.
Collapse
Affiliation(s)
- Yuan Deng
- Department of Traditional Chinese Medicine pharmacy, Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Xihu District, Hangzhou, Zhejiang, 310007, China
| | - Xinhua Fang
- Department of Traditional Chinese Medicine pharmacy, Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Xihu District, Hangzhou, Zhejiang, 310007, China
| | - Lihua Xu
- Department of Traditional Chinese Medicine pharmacy, Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Xihu District, Hangzhou, Zhejiang, 310007, China
| | - Haixia Wang
- Department of Traditional Chinese Medicine pharmacy, Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Xihu District, Hangzhou, Zhejiang, 310007, China
| | - Qinting Gan
- Department of Traditional Chinese Medicine pharmacy, Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Xihu District, Hangzhou, Zhejiang, 310007, China
| | - Qian Wang
- Department of Traditional Chinese Medicine pharmacy, Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Xihu District, Hangzhou, Zhejiang, 310007, China
| | - Meng Jiang
- Department of Traditional Chinese Medicine pharmacy, Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Xihu District, Hangzhou, Zhejiang, 310007, China.
| |
Collapse
|
3
|
Li H, Wang X, Hu C, Cui J, Li H, Luo X, Hao Y. IL-6 Enhances the Activation of PI3K-AKT/mTOR-GSK-3β by Upregulating GRPR in Hippocampal Neurons of Autistic Mice. J Neuroimmune Pharmacol 2024; 19:12. [PMID: 38536552 PMCID: PMC10972920 DOI: 10.1007/s11481-024-10111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/23/2024] [Indexed: 04/11/2024]
Abstract
Autism spectrum disorder (ASD) is a neurological disorder associated with brain inflammation. The underlying mechanisms could be attributed to the activation of PI3K signaling in the inflamed brain of ASD. Multiple studies highlight the role of GRPR in regulating ASD like abnormal behavior and enhancing the PI3K signaling. However, the molecular mechanism by which GRPR regulates PI3K signaling in neurons of individuals with ASD is still unclear. In this study, we utilized a maternal immune activation model to investigate the effects of GRPR on PI3K signaling in the inflamed brain of ASD mice. We used HT22 cells with and without GRPR to examine the impact of GRP-GRPR on the PI3K-AKT pathway with IL-6 treatment. We analyzed a dataset of hippocampus samples from ASD mice to identify hub genes. Our results demonstrated increased expression of IL-6, GRPR, and PI3K-AKT signaling in the hippocampus of ASD mice. Additionally, we observed increased GRPR expression and PI3K-AKT/mTOR activation in HT22 cells after IL-6 treatment, but decreased expression in HT22 cells with GRPR knockdown. NetworkAnalyst identified GSK-3β as the most crucial gene in the PI3K-AKT/mTOR pathway in the hippocampus of ASD. Furthermore, we found that IL-6 upregulated the expression of GSK-3β in HT22 cells by upregulating GRP-GRPR. Our findings suggest that IL-6 can enhance the activation of PI3K-AKT/mTOR-GSK-3β in hippocampal neurons of ASD mice by upregulating GRPR.
Collapse
Affiliation(s)
- Heli Li
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinyuan Wang
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cong Hu
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinru Cui
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Li
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Hao
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Ren X, Liu S, Virlogeux A, Kang SJ, Brusch J, Liu Y, Dymecki SM, Han S, Goulding M, Acton D. Identification of an essential spinoparabrachial pathway for mechanical itch. Neuron 2023; 111:1812-1829.e6. [PMID: 37023756 PMCID: PMC10446756 DOI: 10.1016/j.neuron.2023.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 01/31/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
The sensation of itch is a protective response that is elicited by either mechanical or chemical stimuli. The neural pathways for itch transmission in the skin and spinal cord have been characterized previously, but the ascending pathways that transmit sensory information to the brain to evoke itch perception have not been identified. Here, we show that spinoparabrachial neurons co-expressing Calcrl and Lbx1 are essential for generating scratching responses to mechanical itch stimuli. Moreover, we find that mechanical and chemical itch are transmitted by separate ascending pathways to the parabrachial nucleus, where they engage separate populations of FoxP2PBN neurons to drive scratching behavior. In addition to revealing the architecture of the itch transmission circuitry required for protective scratching in healthy animals, we identify the cellular mechanisms underlying pathological itch by showing the ascending pathways for mechanical and chemical itch function cooperatively with the FoxP2PBN neurons to drive chronic itch and hyperknesis/alloknesis.
Collapse
Affiliation(s)
- Xiangyu Ren
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA; Biology Graduate Program, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr, San Diego, CA 92093, USA
| | - Shijia Liu
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA; Biology Graduate Program, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr, San Diego, CA 92093, USA
| | - Amandine Virlogeux
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Sukjae J Kang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Jeremy Brusch
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Yuanyuan Liu
- NIDCR, National Institute of Health, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - David Acton
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Grpr expression defines a population of superficial dorsal horn vertical cells that have a role in both itch and pain. Pain 2023; 164:149-170. [PMID: 35543635 PMCID: PMC9756441 DOI: 10.1097/j.pain.0000000000002677] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/06/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Neurons in the superficial dorsal horn that express the gastrin-releasing peptide receptor (GRPR) are strongly implicated in spinal itch pathways. However, a recent study reported that many of these correspond to vertical cells, a population of interneurons that are believed to transmit nociceptive information. In this study, we have used a GRPR CreERT2 mouse line to identify and target cells that possess Grpr mRNA. We find that the GRPR cells are highly concentrated in lamina I and the outer part of lamina II, that they are all glutamatergic, and that they account for ∼15% of the excitatory neurons in the superficial dorsal horn. We had previously identified 6 neurochemically distinct excitatory interneuron populations in this region based on neuropeptide expression and the GRPR cells are largely separate from these, although they show some overlap with cells that express substance P. Anatomical analysis revealed that the GRPR neurons are indeed vertical cells, and that their axons target each other, as well as arborising in regions that contain projection neurons: lamina I, the lateral spinal nucleus, and the lateral part of lamina V. Surprisingly, given the proposed role of GRPR cells in itch, we found that most of the cells received monosynaptic input from Trpv1-expressing (nociceptive) afferents, that the majority responded to noxious and pruritic stimuli, and that chemogenetically activating them resulted in pain-related and itch-related behaviours. Together, these findings suggest that the GRPR cells are involved in spinal cord circuits that underlie both pain and itch.
Collapse
|
6
|
Liu B, Chen R, Wang J, Li Y, Yin C, Tai Y, Nie H, Zeng D, Fang J, Du J, Liang Y, Shao X, Fang J, Liu B. Exploring neuronal mechanisms involved in the scratching behavior of a mouse model of allergic contact dermatitis by transcriptomics. Cell Mol Biol Lett 2022; 27:16. [PMID: 35183104 PMCID: PMC8903649 DOI: 10.1186/s11658-022-00316-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
Background Allergic contact dermatitis (ACD) is a common skin condition characterized by contact hypersensitivity to allergens, accompanied with skin inflammation and a mixed itch and pain sensation. The itch and pain dramatically affects patients’ quality of life. However, still little is known about the mechanisms triggering pain and itch sensations in ACD. Methods We established a mouse model of ACD by sensitization and repetitive challenge with the hapten oxazolone. Skin pathological analysis, transcriptome RNA sequencing (RNA-seq), qPCR, Ca2+ imaging, immunostaining, and behavioral assay were used for identifying gene expression changes in dorsal root ganglion innervating the inflamed skin of ACD model mice and for further functional validations. Results The model mice developed typical ACD symptoms, including skin dryness, erythema, excoriation, edema, epidermal hyperplasia, inflammatory cell infiltration, and scratching behavior, accompanied with development of eczematous lesions. Transcriptome RNA-seq revealed a number of differentially expressed genes (DEGs), including 1436-DEG mRNAs and 374-DEG-long noncoding RNAs (lncRNAs). We identified a number of DEGs specifically related to sensory neuron signal transduction, pain, itch, and neuroinflammation. Comparison of our dataset with another published dataset of atopic dermatitis mouse model identified a core set of genes in peripheral sensory neurons that are exclusively affected by local skin inflammation. We further found that the expression of the pain and itch receptor MrgprD was functionally upregulated in dorsal root ganglia (DRG) neurons innervating the inflamed skin of ACD model mice. MrgprD activation induced by its agonist β-alanine resulted in exaggerated scratching responses in ACD model mice compared with naïve mice. Conclusions We identified the molecular changes and cellular pathways in peripheral sensory ganglia during ACD that might participate in neurogenic inflammation, pain, and itch. We further revealed that the pain and itch receptor MrgprD is functionally upregulated in DRG neurons, which might contribute to peripheral pain and itch sensitization during ACD. Thus, targeting MrgprD may be an effective method for alleviating itch and pain in ACD. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00316-w.
Collapse
|
7
|
Li HP, Wang XY, Chen C, Li JJ, Yu C, Lin LX, Yu ZE, Jin ZY, Zhu H, Xiang HC, Hu XF, Cao J, Jing XH, Li M. 100 Hz Electroacupuncture Alleviated Chronic Itch and GRPR Expression Through Activation of Kappa Opioid Receptors in Spinal Dorsal Horn. Front Neurosci 2021; 15:625471. [PMID: 33664646 PMCID: PMC7921323 DOI: 10.3389/fnins.2021.625471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/20/2021] [Indexed: 11/19/2022] Open
Abstract
Background Clinical studies have shown that electroacupuncture (EA) alleviates chronic itch. Gastrin-releasing peptide receptor (GRPR) and dynorphin (DYN) in the spinal dorsal horn positively or negatively regulate itch, respectively. However, which frequency of EA is effective on relieving chronic itch and reducing the expression of GRPR, whether DYN-A in the spinal cord is involved in the underlying mechanism of the antipruritus effect of EA remains unknown. Methods The mixture of acetone and diethyl ether (1:1) [designated as AEW (acetone/diethyl ether and water) treatment] was used to induce the dry skin model of chronic itch. EA was applied to Quchi (LI11) and Hegu (LI4). Western blot was used to detect the expression of GRPR and DYN-A. Immunofluorescence was used to detect the expression of DYN-A. Results The AEW administration induced remarkable spontaneous scratching, enhanced the expression of GRPR, and reduced the expression of DYN-A. Compared with the sham EA, 2 Hz EA, or 15 Hz EA group, 100 Hz EA was the most effective frequency for relieving chronic itch, reducing the expression of GRPR, and increasing the expression of DYN-A in the cervical dorsal horn. Furthermore, intraperitoneal injection of kappa opioid receptors (KORs) antagonist nor-Binaltorphimine dihydrochloride (nor-BNI) significantly reversed the effect of 100 Hz EA on the inhibition of both itching behavior and GRPR expression. Conclusion EA at 100 Hz is the most effective frequency that inhibits chronic itch and GRPR expression through activation of KORs in the spinal dorsal horn, which can effectively guide the clinical treatment and improve the antipruritic effect of acupuncture.
Collapse
Affiliation(s)
- Hong-Ping Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chao Chen
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi Yu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Xue Lin
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zi-E Yu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Yuan Jin
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - He Zhu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Chun Xiang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Fei Hu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Hong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Lin Z, Wang Y, Lin S, Liu D, Mo G, Zhang H, Dou Y. Identification of potential biomarkers for abdominal pain in IBS patients by bioinformatics approach. BMC Gastroenterol 2021; 21:48. [PMID: 33530940 PMCID: PMC7852366 DOI: 10.1186/s12876-021-01626-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
Background Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disease characterized by chronic abdominal discomfort and pain. The mechanisms of abdominal pain, as a relevant symptom, in IBS are still unclear. We aimed to explore the key genes and neurobiological changes specially involved in abdominal pain in IBS. Methods Gene expression data (GSE36701) was downloaded from Gene Expression Omnibus database. Fifty-three rectal mucosa samples from 27 irritable bowel syndrome with diarrhea (IBS-D) patients and 40 samples from 21 healthy volunteers as controls were included. Differentially expressed genes (DEGs) between two groups were identified using the GEO2R online tool. Functional enrichment analysis of DEGs was performed on the DAVID database. Then a protein–protein interaction network was constructed and visualized using STRING database and Cytoscape. Results The microarray analysis demonstrated a subset of genes (CCKBR, CCL13, ACPP, BDKRB2, GRPR, SLC1A2, NPFF, P2RX4, TRPA1, CCKBR, TLX2, MRGPRX3, PAX2, CXCR1) specially involved in pain transmission. Among these genes, we identified GRPR, NPFF and TRPA1 genes as potential biomarkers for irritating abdominal pain of IBS patients. Conclusions Overexpression of certain pain-related genes (GRPR, NPFF and TRPA1) may contribute to chronic visceral hypersensitivity, therefore be partly responsible for recurrent abdominal pain or discomfort in IBS patients. Several synapses modification and biological process of psychological distress may be risk factors of IBS.
Collapse
Affiliation(s)
- Zhongyuan Lin
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Yimin Wang
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou, 510000, Guangdong, China
| | - Shiqing Lin
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Decheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Guohui Mo
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Hui Zhang
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou, 510000, Guangdong, China.
| | - Yunling Dou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
9
|
Spinal Inhibitory Ptf1a-Derived Neurons Prevent Self-Generated Itch. Cell Rep 2020; 33:108422. [PMID: 33238109 DOI: 10.1016/j.celrep.2020.108422] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/27/2020] [Accepted: 11/02/2020] [Indexed: 01/13/2023] Open
Abstract
Chronic itch represents an incapacitating burden on patients suffering from a spectrum of diseases. Despite recent advances in our understanding of the cells and circuits implicated in the processing of itch information, chronic itch often presents itself without an apparent cause. Here, we identify a spinal subpopulation of inhibitory neurons defined by the expression of Ptf1a, involved in gating mechanosensory information self-generated during movement. These neurons receive tactile and motor input and establish presynaptic inhibitory contacts on mechanosensory afferents. Loss of Ptf1a neurons leads to increased hairy skin sensitivity and chronic itch, partially mediated by the classic itch pathway involving gastrin-releasing peptide receptor (GRPR) spinal neurons. Conversely, chemogenetic activation of GRPR neurons elicits itch, which is suppressed by concomitant activation of Ptf1a neurons. These findings shed light on the circuit mechanisms implicated in chronic itch and open novel targets for therapy developments.
Collapse
|
10
|
GRPR/Extracellular Signal-Regulated Kinase and NPRA/Extracellular Signal-Regulated Kinase Signaling Pathways Play a Critical Role in Spinal Transmission of Chronic Itch. J Invest Dermatol 2020; 141:863-873. [PMID: 33039402 DOI: 10.1016/j.jid.2020.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
Intractable or recurrent chronic itch greatly reduces the patients' QOL and impairs their daily activities. In this study, we investigated whether there are certain key signaling molecules downstream of the recently identified peptides mediating itch in the spinal cord. RNA sequencing analysis of mouse spinal cord in chronic itch models induced by squaric acid dibutylester and imiquimod showed that extracellular signal-regulated kinase (ERK) 1/2 cascade is the most significantly upregulated gene cluster in both models. In four different mouse models of chronic itch, sustained ERK phosphorylation was detected mainly in spinal neurons, and MAPK/ERK kinase inhibitors significantly inhibited chronic itch in these models. Phosphorylated ERK was observed in the interneurons expressing the receptors of different neuropeptides for itch, including gastrin-releasing peptide receptor, natriuretic peptide receptor A, neuromedin B receptor, and sst2A. Blocking gastrin-releasing peptide receptor and natriuretic peptide receptor A by genetic approaches or toxins in mice significantly attenuated or ablated spinal phosphorylated ERK. When human embryonic kidney 293T cells transfected with these receptors were exposed to their respective agonists, ERK was the most significantly activated intracellular signaling molecule. Together, our work showed that phosphorylated ERK is a unique marker for itch signal transmission in the spinal cord and an attractive target for the treatment of chronic itch.
Collapse
|
11
|
Bell AM, Gutierrez-Mecinas M, Stevenson A, Casas-Benito A, Wildner H, West SJ, Watanabe M, Todd AJ. Expression of green fluorescent protein defines a specific population of lamina II excitatory interneurons in the GRP::eGFP mouse. Sci Rep 2020; 10:13176. [PMID: 32764601 PMCID: PMC7411045 DOI: 10.1038/s41598-020-69711-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/15/2020] [Indexed: 01/27/2023] Open
Abstract
Dorsal horn excitatory interneurons that express gastrin-releasing peptide (GRP) are part of the circuit for pruritogen-evoked itch. They have been extensively studied in a transgenic line in which enhanced green fluorescent protein (eGFP) is expressed under control of the Grp gene. The GRP-eGFP cells are separate from several other neurochemically-defined excitatory interneuron populations, and correspond to a class previously defined as transient central cells. However, mRNA for GRP is widely distributed among excitatory interneurons in superficial dorsal horn. Here we show that although Grp mRNA is present in several transcriptomically-defined populations, eGFP is restricted to a discrete subset of cells in the GRP::eGFP mouse, some of which express the neuromedin receptor 2 and likely belong to a cluster defined as Glut8. We show that these cells receive much of their excitatory synaptic input from MrgA3/MrgD-expressing nociceptive/pruritoceptive afferents and C-low threshold mechanoreceptors. Although the cells were not innervated by pruritoceptors expressing brain natriuretic peptide (BNP) most of them contained mRNA for NPR1, the receptor for BNP. In contrast, these cells received only ~ 10% of their excitatory input from other interneurons. These findings demonstrate that the GRP-eGFP cells constitute a discrete population of excitatory interneurons with a characteristic pattern of synaptic input.
Collapse
Affiliation(s)
- Andrew M Bell
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, Glasgow, G12 8QQ, UK.
| | - Maria Gutierrez-Mecinas
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, Glasgow, G12 8QQ, UK
| | - Anna Stevenson
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, Glasgow, G12 8QQ, UK
| | - Adrian Casas-Benito
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, Glasgow, G12 8QQ, UK
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland.,Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Steven J West
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan
| | - Andrew J Todd
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, Glasgow, G12 8QQ, UK.
| |
Collapse
|
12
|
Khasabov SG, Truong H, Rogness VM, Alloway KD, Simone DA, Giesler GJ. Responses of neurons in the primary somatosensory cortex to itch- and pain-producing stimuli in rats. J Neurophysiol 2020; 123:1944-1954. [PMID: 32292106 DOI: 10.1152/jn.00038.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding of cortical encoding of itch is limited. Injection of pruritogens and algogens into the skin of the cheek produces distinct behaviors, making the rodent cheek a useful model for understanding mechanisms of itch and pain. We examined responses of neurons in the primary somatosensory cortex by application of mechanical stimuli (brush, pressure, and pinch) and stimulations with intradermal injections of pruritic and algesic chemical of receptive fields located on the skin of the cheek in urethane-anesthetized rats. Stimuli included chloroquine, serotonin, β-alanine, histamine, capsaicin, and mustard oil. All 33 neurons studied were excited by noxious mechanical stimuli applied to the cheek. Based on mechanical stimulation most neurons were functionally classified as high threshold. Of 31 neurons tested for response to chemical stimuli, 84% were activated by one or more pruritogens/partial pruritogens. No cells were activated by all five substances. Histamine activated the greatest percentage of neurons and evoked the greatest mean discharge. Importantly, no cells were excited exclusively by pruritogens or partial pruritogens. The recording sites of all neurons that responded to chemical stimuli applied to the cheek were located in the dysgranular zone (DZ) and in deep laminae of the medial border of the vibrissal barrel fields (VBF). Therefore, neurons in the DZ/VBF of rats encode mechanical and chemical pruritogens and algogens. This cortical region appears to contain primarily nociceptive neurons as defined by responses to noxious pinching of the skin. Its role in encoding itch and pain from the cheek of the face needs further study.NEW & NOTEWORTHY Processing of information related to itch sensation at the level of cerebral cortex is not well understood. In this first single-unit electrophysiological study of pruriceptive cortical neurons, we show that neurons responsive to noxious and pruritic stimulation of the cheek of the face are concentrated in a small area of the dysgranular cortex, indicating that these neurons encode information related to itch and pain.
Collapse
Affiliation(s)
- Sergey G Khasabov
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota
| | - Hai Truong
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Victoria M Rogness
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota
| | - Kevin D Alloway
- Center for Neural Engineering, Penn State University, University Park, Pennsylvania.,Department of Neural and Behavioral Sciences, Penn State University, University Park, Pennsylvania
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota
| | - Glenn J Giesler
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
13
|
Potenzieri A, Riva B, Genazzani AA. Unexpected Ca 2+-mobilization of oxaliplatin via H1 histamine receptors. Cell Calcium 2019; 86:102128. [PMID: 31841953 DOI: 10.1016/j.ceca.2019.102128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 11/19/2022]
Abstract
Oxaliplatin is a widely used chemotherapeutic drug and represents the cornerstone of colorectal cancer therapy, in combination with 5-fluorouracil and folinic acid. As with many chemotherapeutic agents, its use is associated with a number of side effects, ranging from hypersensitivity reactions to haematological dyscrasias. Oxaliplatin also induces acute and chronic peripheral neuropathy. While it is likely that the haematological side effects are associated with its anti-proliferative effects and with the ability to form DNA adducts, the molecular mechanisms underlying peripheral neuropathy and hypersensitivity reactions are poorly understood, and therefore the choice of adequate supportive therapies is largely empirical. Here we show that an acute low dose oxaliplatin application on DRG neurons is able to induce an increase in intracellular calcium that is dependent on the Histamine 1 receptor (H1). Oxaliplatin-induced intracellular calcium rises are blocked by two selective H1 antagonist, as well as by U73122, a PLC inhibitor, and by 2-APB, a non-specific IP3 receptor blocker. Moreover, expression of the H1 receptor on HEK293 t cells unmasks an oxaliplatin-induced Ca2+-rise. Last, activation of H1 via either histamine or oxaliplatin activates TRPV1 receptors, a mechanism that has been associated with itch. These data, together with literature data that has shown that anti-histamine agents reduce the incidence of oxaliplatin-induced hypersensitivity, may provide a molecular mechanism of this side effect in oncological patients.
Collapse
Affiliation(s)
- A Potenzieri
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Via Bovio 6, I-28100 Novara, Italy
| | - B Riva
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Via Bovio 6, I-28100 Novara, Italy
| | - A A Genazzani
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Via Bovio 6, I-28100 Novara, Italy.
| |
Collapse
|
14
|
Crosson T, Roversi K, Balood M, Othman R, Ahmadi M, Wang JC, Seadi Pereira PJ, Tabatabaei M, Couture R, Eichwald T, Latini A, Prediger RD, Rangachari M, Seehus CR, Foster SL, Talbot S. Profiling of how nociceptor neurons detect danger - new and old foes. J Intern Med 2019; 286:268-289. [PMID: 31282104 DOI: 10.1111/joim.12957] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The host evolves redundant mechanisms to preserve physiological processing and homeostasis. These functions range from sensing internal and external threats, creating a memory of the insult and generating reflexes, which aim to resolve inflammation. Impairment in such functioning leads to chronic inflammatory diseases. By interacting through a common language of ligands and receptors, the immune and sensory nervous systems work in concert to accomplish such protective functions. Whilst this bidirectional communication helps to protect from danger, it can contribute to disease pathophysiology. Thus, the somatosensory nervous system is anatomically positioned within primary and secondary lymphoid tissues and mucosa to modulate immunity directly. Upstream of this interplay, neurons detect danger, which prompts the release of neuropeptides initiating (i) defensive reflexes (ranging from withdrawal response to coughing) and (ii) chemotaxis, adhesion and local infiltration of immune cells. The resulting outcome of such neuro-immune interplay is still ill-defined, but consensual findings start to emerge and support neuropeptides not only as blockers of TH 1-mediated immunity but also as drivers of TH 2 immune responses. However, the modalities detected by nociceptors revealed broader than mechanical pressure and temperature sensing and include signals as various as cytokines and pathogens to immunoglobulins and even microRNAs. Along these lines, we aggregated various dorsal root ganglion sensory neuron expression profiling datasets supporting such wide-ranging sensing capabilities to help identifying new danger detection modalities of these cells. Thus, revealing unexpected aspects of nociceptor neuron biology might prompt the identification of novel drivers of immunity, means to resolve inflammation and strategies to safeguard homeostasis.
Collapse
Affiliation(s)
- T Crosson
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - K Roversi
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Departamento de Farmacologia Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Balood
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Axe Neurosciences, Centre de recherche du CHU, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - R Othman
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - M Ahmadi
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - J-C Wang
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - M Tabatabaei
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - R Couture
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - T Eichwald
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - A Latini
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - R D Prediger
- Departamento de Farmacologia Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - M Rangachari
- Axe Neurosciences, Centre de recherche du CHU, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - C R Seehus
- FM Kirby Neurobiology Center, Children's Hospital, Boston, MA, USA
| | - S L Foster
- Depression Clinical Research Program, Massachusetts General Hospital, Boston, MA, USA
| | - S Talbot
- From the, Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
15
|
Function, Regulation and Biological Roles of PI3Kγ Variants. Biomolecules 2019; 9:biom9090427. [PMID: 31480354 PMCID: PMC6770443 DOI: 10.3390/biom9090427] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022] Open
Abstract
Phosphatidylinositide 3-kinase (PI3K) γ is the only class IB PI3K member playing significant roles in the G-protein-dependent regulation of cell signaling in health and disease. Originally found in the immune system, increasing evidence suggest a wide array of functions in the whole organism. PI3Kγ occur as two different heterodimeric variants: PI3Kγ (p87) and PI3Kγ (p101), which share the same p110γ catalytic subunit but differ in their associated non-catalytic subunit. Here we concentrate on specific PI3Kγ features including its regulation and biological functions. In particular, the roles of its non-catalytic subunits serving as the main regulators determining specificity of class IB PI3Kγ enzymes are highlighted.
Collapse
|
16
|
Pagani M, Albisetti GW, Sivakumar N, Wildner H, Santello M, Johannssen HC, Zeilhofer HU. How Gastrin-Releasing Peptide Opens the Spinal Gate for Itch. Neuron 2019; 103:102-117.e5. [PMID: 31103358 PMCID: PMC6616317 DOI: 10.1016/j.neuron.2019.04.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/01/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022]
Abstract
Spinal transmission of pruritoceptive (itch) signals requires transneuronal signaling by gastrin-releasing peptide (GRP) produced by a subpopulation of dorsal horn excitatory interneurons. These neurons also express the glutamatergic marker vGluT2, raising the question of why glutamate alone is insufficient for spinal itch relay. Using optogenetics together with slice electrophysiology and mouse behavior, we demonstrate that baseline synaptic coupling between GRP and GRP receptor (GRPR) neurons is too weak for suprathreshold excitation. Only when we mimicked the endogenous firing of GRP neurons and stimulated them repetitively to fire bursts of action potentials did GRPR neurons depolarize progressively and become excitable by GRP neurons. GRPR but not glutamate receptor antagonism prevented this action. Provoking itch-like behavior by optogenetic activation of spinal GRP neurons required similar stimulation paradigms. These results establish a spinal gating mechanism for itch that requires sustained repetitive activity of presynaptic GRP neurons and postsynaptic GRP signaling to drive GRPR neuron output. Spinal itch relay requires effective communication from GRP to GRP receptor neurons Single action potentials in GRP neurons fail to release sufficient GRP Only burst firing releases enough GRP to prime GRP receptor neurons for activation GRP acts as a volume transmitter probably explaining why itch is hard to localize
Collapse
Affiliation(s)
- Martina Pagani
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Gioele W Albisetti
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nandhini Sivakumar
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mirko Santello
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Helge C Johannssen
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Drug Discovery Network Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8090 Zurich, Switzerland.
| |
Collapse
|
17
|
Du L, Hu X, Yang W, Yasheng H, Liu S, Zhang W, Zhou Y, Cui W, Zhu J, Qiao Z, Maoying Q, Chu Y, Zhou H, Wang Y, Mi W. Spinal IL-33/ST2 signaling mediates chronic itch in mice through the astrocytic JAK2-STAT3 cascade. Glia 2019; 67:1680-1693. [PMID: 31087583 DOI: 10.1002/glia.23639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 03/29/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022]
Abstract
Interleukin-33 (IL-33) and its receptor ST2 contribute to spinal glial activation and chronic pain. A recent study showed that peripheral IL-33 plays a pivotal role in the pathogenesis of chronic itch induced by poison ivy. However, how IL-33/ST2 signaling in the spinal cord potentially mediates chronic itch remains elusive. Here, we determined that St2-/- substantially reduced scratching behaviors in 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) as well as acetone and diethylether followed by water-induced dry skin in mice. Intrathecal administration of the neutralizing anti-ST2 or anti-IL-33 antibody remarkably decreased the scratching response in DNFB-induced ACD mice. Expression of spinal IL-33 and ST2 significantly increased in ACD mice, as evidenced by increased mRNA and protein levels. Immunofluorescence and in situ hybridization demonstrated that increased expression of spinal IL-33 was predominant in oligodendrocytes and astrocytes, whereas ST2 was mainly expressed in astrocytes. Further studies showed that in ACD mice, the activation of astrocytes and increased phosphorylation of signal transducer and activator of transcription 3 (STAT3) were markedly attenuated by St2-/- . Intrathecal injection of Janus Kinase 2 Inhibitor AG490 significantly alleviated scratching behaviors in ACD mice. rIL-33 pretreatment exacerbated gastrin-releasing peptide (GRP)-evoked scratching behaviors. This increased gastrin-releasing peptide receptor (GRPR) expression was abolished by St2-/- . Tnf-α upregulation was suppressed by St2-/- . Our results indicate that the spinal IL-33/ST2 signaling pathway contributes to chronic itch via astrocytic JAK2-STAT3 cascade activation, promoting TNF-α release to regulate the GRP/GRPR signaling-related itch response. Thus, these findings provide a potential therapeutic option for treating chronic pruritus.
Collapse
Affiliation(s)
- Lixia Du
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Xueming Hu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Wei Yang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Hanikezi Yasheng
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Shenbin Liu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Wenwen Zhang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Yang Zhou
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Wenqiang Cui
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Jianyu Zhu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Zheng Qiao
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Qiliang Maoying
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Yuxia Chu
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, Institutes of Integrative Medicine, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Manjavachi MN, Passos GF, Trevisan G, Araújo SB, Pontes JP, Fernandes ES, Costa R, Calixto JB. Spinal blockage of CXCL1 and its receptor CXCR2 inhibits paclitaxel-induced peripheral neuropathy in mice. Neuropharmacology 2019; 151:136-143. [PMID: 30991054 DOI: 10.1016/j.neuropharm.2019.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/27/2019] [Accepted: 04/12/2019] [Indexed: 10/27/2022]
Abstract
Painful peripheral neuropathy is the most dose-limiting side effect of paclitaxel (PTX), a widely used anti-cancer drug to treat solid tumours. The understanding of the mechanisms involved in this side effect is crucial to the development of new therapeutic approaches. CXCL1 chemokine and its receptor CXCR2 have been pointed as promising targets to treat chronic pain. Herein, we sought to evaluate the possible involvement of CXCL1 and CXCR2 in the pathogenesis of PTX-induced neuropathic pain in mice. PTX treatment led to increased levels of CXCL1 in both dorsal root ganglion and spinal cord samples. Systemic treatment with the anti-CXCL1 antibody (10 μg/kg, i.v.) or the selective CXCR2 antagonist (SB225002, 3 mg/kg, i.p.) had minor effect on PTX-induced mechanical hypersensitivity. On the other hand, the intrathecal (i.t.) treatment with anti-CXCL1 (1 ng/site) or SB225002 (10 μg/site) consistently inhibited the nociceptive responses of PTX-treated mice. Similar results were obtained by inhibiting the PI3Kγ enzyme a downstream pathway of CXCL1/CXCR2 signalling with either the selective AS605240 (5 μg/site, i.t.) or the non-selective wortmannin PI3K inhibitor (0.4 μg/site, i.t.). Overall, the data indicates that the up-regulation of CXCL1 is important for the development and maintenance of PTX-induced neuropathic pain in mice. Therefore, the spinal blockage of CXCL1/CXCR2 signalling might be a new innovative therapeutic approach to treat this clinical side effect of PTX.
Collapse
Affiliation(s)
- Marianne N Manjavachi
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Giselle F Passos
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriela Trevisan
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Suzana B Araújo
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | - Robson Costa
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joao B Calixto
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Centro de Inovação e Ensaios Pre-Clínicos - CIEnP, Florianópolis, SC, Brazil.
| |
Collapse
|
19
|
Rajchgot T, Thomas SC, Wang JC, Ahmadi M, Balood M, Crosson T, Dias JP, Couture R, Claing A, Talbot S. Neurons and Microglia; A Sickly-Sweet Duo in Diabetic Pain Neuropathy. Front Neurosci 2019; 13:25. [PMID: 30766472 PMCID: PMC6365454 DOI: 10.3389/fnins.2019.00025] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
Diabetes is a common condition characterized by persistent hyperglycemia. High blood sugar primarily affects cells that have a limited capacity to regulate their glucose intake. These cells include capillary endothelial cells in the retina, mesangial cells in the renal glomerulus, Schwann cells, and neurons of the peripheral and central nervous systems. As a result, hyperglycemia leads to largely intractable complications such as retinopathy, nephropathy, hypertension, and neuropathy. Diabetic pain neuropathy is a complex and multifactorial disease that has been associated with poor glycemic control, longer diabetes duration, hypertension, advanced age, smoking status, hypoinsulinemia, and dyslipidemia. While many of the driving factors involved in diabetic pain are still being investigated, they can be broadly classified as either neuron -intrinsic or -extrinsic. In neurons, hyperglycemia impairs the polyol pathway, leading to an overproduction of reactive oxygen species and reactive nitrogen species, an enhanced formation of advanced glycation end products, and a disruption in Na+/K+ ATPase pump function. In terms of the extrinsic pathway, hyperglycemia leads to the generation of both overactive microglia and microangiopathy. The former incites a feed-forward inflammatory loop that hypersensitizes nociceptor neurons, as observed at the onset of diabetic pain neuropathy. The latter reduces neurons' access to oxygen, glucose and nutrients, prompting reductions in nociceptor terminal expression and losses in sensation, as observed in the later stages of diabetic pain neuropathy. Overall, microglia can be seen as potent and long-lasting amplifiers of nociceptor neuron activity, and may therefore constitute a potential therapeutic target in the treatment of diabetic pain neuropathy.
Collapse
Affiliation(s)
- Trevor Rajchgot
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Sini Christine Thomas
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jo-Chiao Wang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Maryam Ahmadi
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Mohammad Balood
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Théo Crosson
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jenny Pena Dias
- Johns Hopkins University School of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, United States
| | - Réjean Couture
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Audrey Claing
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Talbot
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
20
|
Wang X, Zhang B, Lu X, Wang R. Gastrin‐releasing peptide receptor gene silencing inhibits the development of the epithelial–mesenchymal transition and formation of a calcium oxalate crystal in renal tubular epithelial cells in mice with kidney stones via the PI3K/Akt signaling pathway. J Cell Physiol 2018; 234:1567-1577. [DOI: 10.1002/jcp.27023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 06/26/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Xin‐Fang Wang
- Department of Blood Purification The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Bei‐Hao Zhang
- Department of Blood Purification The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Xiao‐Qing Lu
- Department of Blood Purification The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Rui‐Qiang Wang
- Department of Nephrology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| |
Collapse
|
21
|
Epigallocatechin-3-gallate attenuates acute and chronic psoriatic itch in mice: Involvement of antioxidant, anti-inflammatory effects and suppression of ERK and Akt signaling pathways. Biochem Biophys Res Commun 2018; 496:1062-1068. [PMID: 29402411 DOI: 10.1016/j.bbrc.2018.01.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 01/12/2023]
Abstract
Chronic itch is a distressing symptom of many skin diseases and negatively impacts quality of life. However, there is no medication for most forms of chronic itch, although antihistamines are often used for anti-itch treatment. Epigallocatechin-3-gallate (EGCG), a major green tea polyphenol, exhibits anti-oxidative and anti-inflammatory properties. Our previous studies highlighted a key role of oxidative stress and proinflammatory cytokines in acute and chronic itch. Here, we evaluated the effects of green tea polyphenon 60 and EGCG on acute and chronic itch in mouse models and explored its potential mechanisms. The effects of EGCG were determined by behavioral tests in mouse models of acute and chronic itch, which were induced by compound 48/80, chloroquine (CQ), and 5% imiquimod cream treatment, respectively. We found that systemic or local administration of green tea polyphenon 60 or EGCG significantly alleviated compound 48/80- and chloroquine-induced acute itch in a dose-dependent manner in mice. Incubation of EGCG significantly decreased the accumulation of intracellular reactive oxygen species (ROS) directly induced by compound 48/80 and CQ in cultured ND7-23 cells, a dorsal root ganglia derived cell line. EGCG also attenuated imiquimod-induced chronic psoriatic itch behaviors and skin epidermal hyperplasia in mice. In addition, EGCG inhibited the expression of IL-23 mRNA in skin and TRPV1 mRNA in dorsal root ganglia (DRG). Finally, EGCG remarkably inhibited compound 48/80-induced phosphorylation of extracellular signal-regulated kinase (ERK) and imiquimod-induced p-AKT in the spinal cord of mice, respectively. Collectively, these results indicated EGCG could be a promising strategy for anti-itch therapy.
Collapse
|
22
|
Qu X, Wang H, Liu R. Recent insights into biological functions of mammalian bombesin-like peptides and their receptors. Curr Opin Endocrinol Diabetes Obes 2018; 25:36-41. [PMID: 29120926 DOI: 10.1097/med.0000000000000375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The current review highlights recent advances in physiological and pharmacological researches in biology of mammalian bombesin-like peptides (BLPs). RECENT FINDINGS BLPs and their receptors were found to have regulatory roles in many biological processes in central nervous system. Two BLPs, neuromedin B and gastrin-releasing peptide (GRP), and their receptors are required for regulation of basal and induced sighing activity in rodents. This is the first study demonstrating central pathways involved in regulation of sighing activity. GRP receptor (GRPR) expressing neurons are excitatory glutamatergic interneurons located in the dorsal lamina without projections outside the spinal cord and mediate itch signals via vesicular glutamate transporter 2. Those neurons receive itch signals and make synapses with the parabrachial nucleus projecting spinal neurons to transmit itch signals to parabrachial nucleus. GRP expressing interneurons function in a proposed 'leaky gate model' to interpret the mechanism of both pain and itch transmission. In addition to recent advances of biology in nervous system, BLPs and their receptors were found to play potential regulatory roles in innate and adaptive immune responses and tissue development. SUMMARY Several important biological roles of BLPs and their receptors in nervous system were identified. Together with researches regarding central roles of BLPs, studies revealing the regulatory roles of BLPs and their receptors in immunology and tissue development provide us with novel insights into understanding of the biology of BLPs and their receptors.
Collapse
Affiliation(s)
- Xiangping Qu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | | | | |
Collapse
|
23
|
Abstract
Peripheral itch stimuli are transmitted by sensory neurons to the spinal cord dorsal horn, which then transmits the information to the brain. The molecular and cellular mechanisms within the dorsal horn for itch transmission have only been investigated and identified during the past ten years. This review covers the progress that has been made in identifying the peptide families in sensory neurons and the receptor families in dorsal horn neurons as putative itch transmitters, with a focus on gastrin-releasing peptide (GRP)-GRP receptor signaling. Also discussed are the signaling mechanisms, including opioids, by which various types of itch are transmitted and modulated, as well as the many conflicting results arising from recent studies.
Collapse
|
24
|
Meng J, Steinhoff M. Molecular mechanisms of pruritus. Curr Res Transl Med 2016; 64:203-206. [PMID: 27939459 DOI: 10.1016/j.retram.2016.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/16/2016] [Indexed: 02/08/2023]
Abstract
Pruritus is an unpleasant sensation that evokes the urgent desire to scratch. It is a symptom derived from many nervous system disorders that affects a large population of humans and is treated by a variety of pharmacological agents with variable access. Chronic itch is a huge unmet health problem which affect upward 20% of people worldwide. The mechanisms underlying the chronic pruritus are complex. Studies of the neurobiology, neurophysiology and cellular biology of itch have gradually been clarifying the mechanism of chronic itch both peripherally and centrally. The discussion has been focused on pruriceptive nerves and their receptors as well as the cytokines/chemokines that play major roles in itch induction. Though it is historically hypothesized that pain convey signal generated with the stimuli under high intensity, and itch transduces signal from the same nerves of pain but under low intensity, recently, with the identification of distinct itch specific sensory afferent fibers the theory has twisted the "intensity" to a existence of a complete separation of pain and itch pathways. This review helps to understand the unique properties of itch signaling pathways and their clinical importance of the itch perception and pruritic diseases.
Collapse
Affiliation(s)
- J Meng
- Department of Dermatology and UCD Charles Institute for Translational Dermatology, Dublin, Ireland.
| | - M Steinhoff
- Department of Dermatology and UCD Charles Institute for Translational Dermatology, Dublin, Ireland.
| |
Collapse
|