1
|
Li S, Wang F. Vertebrate Evolution Conserves Hindbrain Circuits despite Diverse Feeding and Breathing Modes. eNeuro 2021; 8:ENEURO.0435-20.2021. [PMID: 33707205 PMCID: PMC8174041 DOI: 10.1523/eneuro.0435-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
Feeding and breathing are two functions vital to the survival of all vertebrate species. Throughout the evolution, vertebrates living in different environments have evolved drastically different modes of feeding and breathing through using diversified orofacial and pharyngeal (oropharyngeal) muscles. The oropharyngeal structures are controlled by hindbrain neural circuits. The developing hindbrain shares strikingly conserved organizations and gene expression patterns across vertebrates, thus begs the question of how a highly conserved hindbrain generates circuits subserving diverse feeding/breathing patterns. In this review, we summarize major modes of feeding and breathing and principles underlying their coordination in many vertebrate species. We provide a hypothesis for the existence of a common hindbrain circuit at the phylotypic embryonic stage controlling oropharyngeal movements that is shared across vertebrate species; and reconfiguration and repurposing of this conserved circuit give rise to more complex behaviors in adult higher vertebrates.
Collapse
Affiliation(s)
- Shun Li
- Department of Neurobiology, Duke University, Durham, NC 27710
| | - Fan Wang
- Department of Neurobiology, Duke University, Durham, NC 27710
| |
Collapse
|
2
|
Whitaker-Fornek JR, Nelson JK, Lybbert CW, Pilarski JQ. Development and regulation of breathing rhythms in embryonic and hatchling birds. Respir Physiol Neurobiol 2019; 269:103246. [DOI: 10.1016/j.resp.2019.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/19/2019] [Accepted: 06/23/2019] [Indexed: 11/28/2022]
|
3
|
Momose-Sato Y, Sato K. Development of Spontaneous Activity in the Avian Hindbrain. Front Neural Circuits 2016; 10:63. [PMID: 27570506 PMCID: PMC4981603 DOI: 10.3389/fncir.2016.00063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 07/29/2016] [Indexed: 11/13/2022] Open
Abstract
Spontaneous activity in the developing central nervous system occurs before the brain responds to external sensory inputs, and appears in the hindbrain and spinal cord as rhythmic electrical discharges of cranial and spinal nerves. This spontaneous activity recruits a large population of neurons and propagates like a wave over a wide region of the central nervous system. Here, we review spontaneous activity in the chick hindbrain by focusing on this large-scale synchronized activity. Asynchronous activity that is expressed earlier than the above mentioned synchronized activity and activity originating in midline serotonergic neurons are also briefly mentioned.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University Yokohama, Japan
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's University Tokyo, Japan
| |
Collapse
|
4
|
Baghdadwala MI, Duchcherer M, Paramonov J, Wilson RJA. Three brainstem areas involved in respiratory rhythm generation in bullfrogs. J Physiol 2015; 593:2941-54. [PMID: 25952282 DOI: 10.1113/jp270380] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 04/29/2015] [Indexed: 11/08/2022] Open
Abstract
UNLABELLED For most multiphasic motor patterns, rhythm and pattern are produced by the same circuit elements. For respiration, however, these functions have long been assumed to occur separately. In frogs, the ventilatory motor pattern produced by the isolated brainstem consists of buccal and biphasic lung bursts. Previously, two discrete necessary and sufficient sites for lung and buccal bursts were identified. Here we identify a third site, the Priming Area, important for and having neuronal activity correlated with the first phase of biphasic lung bursts. As each site is important for burst generation of a separate phase, we suggest each major phase of ventilation is produced by an anatomically distinct part of an extensive brainstem network. Embedding of discrete circuit elements producing major phases of respiration within an extensive rhythmogenic brainstem network may be a shared architectural characteristic of vertebrates. ABSTRACT Ventilation in mammals consists of at least three distinct phases: inspiration, post-inspiration and late-expiration. While distinct brainstem rhythm generating and pattern forming networks have long been assumed, recent data suggest the mammalian brainstem contains two coupled neuronal oscillators: one for inspiration and the other for active expiration. However, whether additional burst generating ability is required for generating other phases of ventilation in mammals is controversial. To investigate brainstem circuit architectures capable of producing multiphasic ventilatory rhythms, we utilized the isolated frog brainstem. This preparation produces two types of ventilatory motor patterns, buccal and lung bursts. Lung bursts can be divided into two phases, priming and powerstroke. Previously we identified two putative oscillators, the Buccal and Lung Areas. The Lung Area produces the lung powerstroke and the Buccal Area produces buccal bursts and - we assumed - the priming phase of lung bursts. However, here we identify an additional brainstem region that generates the priming phase. This Priming Area extends rostral and caudal of the Lung Area and is distinct from the Buccal Area. Using AMPA microinjections and reversible synaptic blockade, we demonstrate selective excitation and ablation (respectively) of priming phase activity. We also demonstrate that the Priming Area contains neurons active selectively during the priming phase. Thus, we propose that three distinct neuronal components generate the multiphase respiratory motor pattern produced by the frog brainstem: the buccal, priming and powerstroke burst generators. This raises the possibility that a similar multi-burst generator architecture mediates the three distinct phases of ventilation in mammals.
Collapse
Affiliation(s)
- Mufaddal I Baghdadwala
- Hotchkiss Brain Institute and Alberta Children's Research Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Maryana Duchcherer
- Hotchkiss Brain Institute and Alberta Children's Research Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jenny Paramonov
- Hotchkiss Brain Institute and Alberta Children's Research Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Richard J A Wilson
- Hotchkiss Brain Institute and Alberta Children's Research Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Functional motifs composed of morphologically homologous neurons repeated in the hindbrain segments. J Neurosci 2014; 34:3291-302. [PMID: 24573288 DOI: 10.1523/jneurosci.4610-13.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Segmental organization along the neuraxis is a prominent feature of the CNS in vertebrates. In a wide range of fishes, hindbrain segments contain orderly arranged reticulospinal neurons (RSNs). Individual RSNs in goldfish and zebrafish hindbrain are morphologically identified. RSNs sharing similar morphological features are called segmental homologs and repeated in adjacent segments. However, little is known about functional relationships among segmental homologs. Here we investigated the electrophysiological connectivity between the Mauthner cell (M-cell), a pair of giant RSNs in segment 4 (r4) that are known to trigger fast escape behavior, and different series of homologous RSNs in r4-r6. Paired intracellular recordings in adult goldfish revealed unidirectional connections from the M-cell to RSNs. The connectivity was similar in morphological homologs. A single M-cell spike produced IPSPs in dorsally located RSNs (MiD cells) on the ipsilateral side and excitatory postsynaptic depolarization on the contralateral side, except for MiD2cm cells. The inhibitory or excitatory potentials effectively suppressed or enhanced target RSNs spiking, respectively. In contrast to the lateralized effects on MiD cells, single M-cell spiking elicited equally strong depolarizations on bilateral RSNs located ventrally (MiV cells), and the depolarization was high enough for MiV cells to burst. Therefore, the morphological homology of repeated RSNs in r4-r6 and their functional M-cell connectivity were closely correlated, suggesting that each functional connection works as a functional motif during the M-cell-initiated escape.
Collapse
|
6
|
Duchcherer M, Baghdadwala MI, Paramonov J, Wilson RJ. Localization of essential rhombomeres for respiratory rhythm generation in bullfrog tadpoles using a binary search algorithm: Rhombomere 7 is essential for the gill rhythm and suppresses lung bursts before metamorphosis. Dev Neurobiol 2013; 73:888-98. [DOI: 10.1002/dneu.22108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Maryana Duchcherer
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology; University of Calgary; Calgary Alberta Canada T2N 4N1
| | - Mufaddal I. Baghdadwala
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology; University of Calgary; Calgary Alberta Canada T2N 4N1
| | - Jenny Paramonov
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology; University of Calgary; Calgary Alberta Canada T2N 4N1
| | - Richard J.A. Wilson
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology; University of Calgary; Calgary Alberta Canada T2N 4N1
| |
Collapse
|
7
|
Momose-Sato Y, Sato K. Large-scale synchronized activity in the embryonic brainstem and spinal cord. Front Cell Neurosci 2013; 7:36. [PMID: 23596392 PMCID: PMC3625830 DOI: 10.3389/fncel.2013.00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 03/20/2013] [Indexed: 01/09/2023] Open
Abstract
In the developing central nervous system, spontaneous activity appears well before the brain responds to external sensory inputs. One of the earliest activities is observed in the hindbrain and spinal cord, which is detected as rhythmic electrical discharges of cranial and spinal motoneurons or oscillations of Ca(2+)- and voltage-related optical signals. Shortly after the initial expression, the spontaneous activity appearing in the hindbrain and spinal cord exhibits a large-scale correlated wave that propagates over a wide region of the central nervous system, maximally extending to the lumbosacral cord and to the forebrain. In this review, we describe several aspects of this synchronized activity by focusing on the basic properties, development, origin, propagation pattern, pharmacological characteristics, and possible mechanisms underlying the generation of the activity. These profiles differ from those of the respiratory and locomotion pattern generators observed in the mature brainstem and spinal cord, suggesting that the wave is primordial activity that appears during a specific period of embryonic development and plays some important roles in the development of the central nervous system.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Health and Nutrition, College of Human Environmental Studies, Kanto Gakuin UniversityYokohama, Japan
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's UniversityTokyo, Japan
| |
Collapse
|
8
|
Champagnat J, Morin-Surun MP, Bouvier J, Thoby-Brisson M, Fortin G. Prenatal development of central rhythm generation. Respir Physiol Neurobiol 2011; 178:146-55. [PMID: 21527363 DOI: 10.1016/j.resp.2011.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/08/2011] [Accepted: 04/12/2011] [Indexed: 12/01/2022]
Abstract
Foetal breathing in mice results from prenatal activity of the two coupled hindbrain oscillators considered to be responsible for respiratory rhythm generation after birth: the pre-Bötzinger complex (preBötC) is active shortly before the onset of foetal breathing; the parafacial respiratory group (e-pF in embryo) starts activity one day earlier. Transcription factors have been identified that are essential to specify neural progenitors and lineages forming each of these oscillators during early development of the neural tube: Hoxa1, Egr2 (Krox20), Phox2b, Lbx1 and Atoh1 for the e-pF; Dbx1 and Evx1 for the preBötC which eventually grow contralateral axons requiring expression of Robo3. Inactivation of the genes encoding these factors leads to mis-specification of these neurons and distinct breathing abnormalities: apneic patterns and loss of central chemosensitivity for the e-pF (central congenital hypoventilation syndrome, CCHS, in humans), complete loss of breathing for the preBötC, right-left desynchronized breathing in Robo3 mutants. Mutations affecting development in more rostral (pontine) respiratory territories change the shape of the inspiratory drive without affecting the rhythm. Other (primordial) embryonic oscillators start in the mouse three days before the e-pF, to generate low frequency (LF) rhythms that are probably required for activity-dependent development of neurones at embryonic stages; in the foetus, however, they are actively silenced to avoid detrimental interaction with the on-going respiratory rhythm. Altogether, these observations provide a strong support to the previously proposed hypothesis that the functional organization of the respiratory generator is specified at early stages of development and is dual in nature, comprising two serially non-homologous oscillators.
Collapse
Affiliation(s)
- Jean Champagnat
- Neurobiologie et Développement (UPR 3294, CNRS), Neuro-Sud Paris (IFR 144), Centre de Recherche de Gif-sur Yvette (CNRS, FRC 3115), Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
9
|
Genetic factors determining the functional organization of neural circuits controlling rhythmic movements the murine embryonic parafacial rhythm generator. PROGRESS IN BRAIN RESEARCH 2011. [PMID: 21111199 DOI: 10.1016/b978-0-444-53613-6.00003-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
In mammals, fetal movements governed by central pattern generators are essential for the development of adaptive behaviors such as breathing, walking, and chewing, which are vital after birth. Combining targeted mutations and genetic fate mapping can help to define the molecular determinants that control the development of these central pattern generators. In this chapter, recent results are presented on the embryonic parafacial (e-pF) rhythm generator, one of the two oscillators involved in controlling the breathing behavior and chemosensitive responsiveness.
Collapse
|
10
|
Makki N, Capecchi MR. Hoxa1 lineage tracing indicates a direct role for Hoxa1 in the development of the inner ear, the heart, and the third rhombomere. Dev Biol 2010; 341:499-509. [PMID: 20171203 PMCID: PMC2862106 DOI: 10.1016/j.ydbio.2010.02.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/22/2010] [Accepted: 02/10/2010] [Indexed: 11/16/2022]
Abstract
Loss of Hoxa1 function results in severe defects of the brainstem, inner ear, and cranial ganglia in humans and mice as well as cardiovascular abnormalities in humans. Because Hoxa1 is expressed very transiently during an early embryonic stage, it has been difficult to determine whether Hoxa1 plays a direct role in the precursors of the affected organs or if all defects result from indirect effects due to mispatterning of the hindbrain. In this study we use a Hoxa1-IRES-Cre mouse to genetically label the early Hoxa1-expressing cells and determine their contribution to each of the affected organs, allowing us to conclude in which precursor tissue Hoxa1 is expressed. We found Hoxa1 lineage-labeled cells in all tissues expected to be derived from the Hoxa1 domain, such as the facial and abducens nuclei and nerves as well as r4 neural crest cells. In addition, we detected the lineage in derivatives that were not thought to have expressed Hoxa1 during development. In the brainstem, the anterior border of the lineage was found to be in r3, which is more anterior than previously reported. We also observed an interesting pattern of the lineage in the inner ear, namely a strong contribution to the otic epithelium with the exception of sensory patches. Moreover, lineage-labeled cells were detected in the atria and outflow tract of the developing heart. In conclusion, Hoxa1 lineage tracing uncovered new domains of Hoxa1 expression in rhombomere 3, the otic epithelium, and cardiac precursors, suggesting a more direct role for Hoxa1 in development of these tissues than previously believed.
Collapse
Affiliation(s)
- Nadja Makki
- Howard Hughes Medical Institute and Department of Human Genetics
| | | |
Collapse
|
11
|
Thoby-Brisson M, Karlén M, Wu N, Charnay P, Champagnat J, Fortin G. Genetic identification of an embryonic parafacial oscillator coupling to the preBötzinger complex. Nat Neurosci 2009; 12:1028-35. [PMID: 19578380 DOI: 10.1038/nn.2354] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 05/29/2009] [Indexed: 11/08/2022]
Abstract
The hindbrain transcription factors Phox2b and Egr2 (also known as Krox20) are linked to the development of the autonomic nervous system and rhombomere-related regulation of breathing, respectively. Mutations in these proteins can lead to abnormal breathing behavior as a result of an alteration in an unidentified neuronal system. We characterized a bilateral embryonic parafacial (e-pF) population of rhythmically bursting neurons at embryonic day (E) 14.5 in mice. These cells expressed Phox2b, were derived from Egr2-expressing precursors and their development was dependent on the integrity of the Egr2 gene. Silencing or eliminating the e-pF oscillator, but not the putative inspiratory oscillator (preBötzinger complex, preBötC), led to an abnormally slow rhythm, demonstrating that the e-pF controls the respiratory rhythm. The e-pF oscillator, the only one active at E14.5, entrained and then coupled with the preBötC, which emerged independently at E15.5. These data establish the dual organization of the respiratory rhythm generator at the time of its inception, when it begins to drive fetal breathing.
Collapse
Affiliation(s)
- Muriel Thoby-Brisson
- Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique UPR2216, Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|
12
|
Mochida H, Fortin G, Champagnat J, Glover JC. Differential Involvement of Projection Neurons During Emergence of Spontaneous Activity in the Developing Avian Hindbrain. J Neurophysiol 2009; 101:591-602. [DOI: 10.1152/jn.90835.2008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To better characterize the emergence of spontaneous neuronal activity in the developing hindbrain, spontaneous activity was recorded optically from defined projection neuron populations in isolated preparations of the brain stem of the chicken embryo. Ipsilaterally projecting reticulospinal (RS) neurons and several groups of vestibuloocular (VO) neurons were labeled retrogradely with Calcium Green-1 dextran amine and spontaneous calcium transients were recorded using a charge-coupled-device camera mounted on a fluorescence microscope. Simultaneous extracellular recordings were made from one of the trigeminal motor nerves (nV) to register the occurrence of spontaneous synchronous bursts of activity. Two types of spontaneous activity were observed: synchronous events (SEs), which occurred in register with spontaneous bursts in nV once every few minutes and were tetrodotoxin (TTX) dependent, and asynchronous events (AEs), which occurred in the intervals between SEs and were TTX resistant. AEs occurred developmentally before SEs and were in general smaller and more variable in amplitude than SEs. SEs appeared at the same stage as nV bursts early on embryonic day 4, first in RS neurons and then in VO neurons. All RS neurons participated equally in SEs from the outset, whereas different subpopulations of VO neurons participated differentially, both in terms of the proportion of neurons that exhibited SEs, the fidelity with which the SEs in individual neurons followed the nV bursts, and the developmental stage at which SEs appeared and matured. The results show that spontaneous activity is expressed heterogeneously among hindbrain projection neuron populations, suggesting its differential involvement in the formation of different functional neuronal circuits.
Collapse
|
13
|
Gray PA. Transcription factors and the genetic organization of brain stem respiratory neurons. J Appl Physiol (1985) 2008; 104:1513-21. [PMID: 18218908 DOI: 10.1152/japplphysiol.01383.2007] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Breathing is a genetically determined behavior generated by neurons in the brain stem. Transcription factors, in part, determine the basic developmental identity of neurons, but the relationships between these genes and the neural populations generating and modulating respiration are unclear. The diversity of brain stem populations has been proposed to result from a combinatorial code of transcription factor expression corresponding to the anterior-posterior (A-P) and dorsal-ventral (D-V) location of a neuron's birth. I provide a schematic of transcription factor coding identifying at least 15 genetically distinct D-V subdivisions of brain stem neurons that, combined with A-P patterning, may provide a genetic organization of the brain stem in general, with the eventual goal of describing respiratory populations in particular. Using a combination of fate mapping in transgenic mouse lines and immunohistochemistry, we confirm the parabrachial nuclei are derived from a subset of Atoh1 expression progenitor neurons. I hypothesize the Kölliker-Fuse nucleus can be uniquely defined in the neonate mouse by the coexpression of the transcription factor FoxP2 in Atoh1-derived neurons of rhombomere 1.
Collapse
Affiliation(s)
- Paul A Gray
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110-1093, USA.
| |
Collapse
|
14
|
Chatonnet F, Wrobel LJ, Mézières V, Pasqualetti M, Ducret S, Taillebourg E, Charnay P, Rijli FM, Champagnat J. Distinct roles of Hoxa2 and Krox20 in the development of rhythmic neural networks controlling inspiratory depth, respiratory frequency, and jaw opening. Neural Dev 2007; 2:19. [PMID: 17897445 PMCID: PMC2098766 DOI: 10.1186/1749-8104-2-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 09/26/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about the involvement of molecular determinants of segmental patterning of rhombomeres (r) in the development of rhythmic neural networks in the mouse hindbrain. Here, we compare the phenotypes of mice carrying targeted inactivations of Hoxa2, the only Hox gene expressed up to r2, and of Krox20, expressed in r3 and r5. We investigated the impact of such mutations on the neural circuits controlling jaw opening and breathing in newborn mice, compatible with Hoxa2-dependent trigeminal defects and direct regulation of Hoxa2 by Krox20 in r3. RESULTS We found that Hoxa2 mutants displayed an impaired oro-buccal reflex, similarly to Krox20 mutants. In contrast, while Krox20 is required for the development of the rhythm-promoting parafacial respiratory group (pFRG) modulating respiratory frequency, Hoxa2 inactivation did not affect neonatal breathing frequency. Instead, we found that Hoxa2-/- but not Krox20-/- mutation leads to the elimination of a transient control of the inspiratory amplitude normally occurring during the first hours following birth. Tracing of r2-specific progenies of Hoxa2 expressing cells indicated that the control of inspiratory activity resides in rostral pontine areas and required an intact r2-derived territory. CONCLUSION Thus, inspiratory shaping and respiratory frequency are under the control of distinct Hox-dependent segmental cues in the mammalian brain. Moreover, these data point to the importance of rhombomere-specific genetic control in the development of modular neural networks in the mammalian hindbrain.
Collapse
Affiliation(s)
- Fabrice Chatonnet
- NGI, UPR 2216, Institut de Neurobiologie Alfred Fessard IFR2218, Centre National de la Recherche Scientifique, F-91198 Gif sur Yvette Cedex, France
- IGFL UMR 5242 CNRS/INRA/UCB/École Normale Supérieure de Lyon, allée d'Italie, 69364 Lyon Cedex 07, France
| | - Ludovic J Wrobel
- NGI, UPR 2216, Institut de Neurobiologie Alfred Fessard IFR2218, Centre National de la Recherche Scientifique, F-91198 Gif sur Yvette Cedex, France
| | - Valérie Mézières
- NGI, UPR 2216, Institut de Neurobiologie Alfred Fessard IFR2218, Centre National de la Recherche Scientifique, F-91198 Gif sur Yvette Cedex, France
| | - Massimo Pasqualetti
- IGBMC, UMR 7104, CNRS/INSERM/ULP/Collège de France, CU de Strasbourg, F-67404 Illkirch Cedex, France
- Laboratori di Biologia Cellulare e dello Sviluppo, Università di Pisa, Via G Carducci, Pisa, Italy
| | - Sébastien Ducret
- IGBMC, UMR 7104, CNRS/INSERM/ULP/Collège de France, CU de Strasbourg, F-67404 Illkirch Cedex, France
| | - Emmanuel Taillebourg
- INSERM, U 784, Ecole Normale Supérieure, rue d'Ulm, 75230 Paris Cedex 05, France
- CEA, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, 38054 Grenoble, France
| | - Patrick Charnay
- INSERM, U 784, Ecole Normale Supérieure, rue d'Ulm, 75230 Paris Cedex 05, France
| | - Filippo M Rijli
- IGBMC, UMR 7104, CNRS/INSERM/ULP/Collège de France, CU de Strasbourg, F-67404 Illkirch Cedex, France
| | - Jean Champagnat
- NGI, UPR 2216, Institut de Neurobiologie Alfred Fessard IFR2218, Centre National de la Recherche Scientifique, F-91198 Gif sur Yvette Cedex, France
| |
Collapse
|
15
|
DNMT1 interacts with the developmental transcriptional repressor HESX1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:131-43. [PMID: 17931718 PMCID: PMC2233781 DOI: 10.1016/j.bbamcr.2007.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 08/28/2007] [Accepted: 08/28/2007] [Indexed: 01/18/2023]
Abstract
Hesx1 is a highly conserved homeobox gene present in vertebrates, but absent from invertebrates. Gene targeting experiments in mice have shown that this transcriptional repressor is required for normal forebrain and pituitary development. In humans, mutations in HESX1 impairing either its repressing activity or DNA binding properties lead to a comparable phenotype to that observed in Hesx1 deficient mice. In an attempt to gain insights into the molecular function of HESX1, we have performed a yeast two-hybrid screen and identified DNA methyltransferase 1 (DNMT1) as a HESX1 binding protein. We show that Dnmt1 is co-expressed with Hesx1 within the anterior forebrain and in the developing Rathke's pouch. Mapping of the interacting regions indicates that the entire HESX1 protein is required to establish binding to a portion of the N-terminus of DNMT1 and its catalytic domain in the C-terminus. The HESX1–DNMT1 complexes can be immunoprecipitated in cells and co-localise in the nucleus. These results establish a link between HESX1 and DNMT1 and suggest a novel mechanism for the repressing properties of HESX1.
Collapse
|
16
|
Guimarães L, Domínguez-del-Toro E, Chatonnet F, Wrobel L, Pujades C, Monteiro LS, Champagnat J. Exposure to retinoic acid at the onset of hindbrain segmentation induces episodic breathing in mice. Eur J Neurosci 2007; 25:3526-36. [PMID: 17610572 DOI: 10.1111/j.1460-9568.2007.05609.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hyperpnoeic episodic breathing (HEB), a cyclic waxing and waning of breathing, has been widely reported in pre-term neonates, patients with Joubert syndrome and adults (Cheyne-Stokes respiration) with congestive heart failure and brainstem infarction. We now provide a developmental mouse model of neonatal HEB. We used retinoic acid (RA) (0.5-10 mg/kg of maternal weight) to alter embryonic development of the respiratory neuronal network at the onset of hindbrain segmentation (7.5 days post-coitum). HEB was observed in vivo after RA treatment during post-natal days 1-7 but not in control animals. HEB persisted after reduction of the chemoafferent input by hypocapnic hyperoxia (100% O(2)). A large increase and decrease of the rhythm resembling an HEB episode was induced in vitro by stimulating the parafacial respiratory oscillator in treated but not in control neonates. Post-natal localization of the superior cerebellar peduncle and adjacent dorsal tegmentum was found to be abnormal in the pons of RA-treated juvenile mice. Thus, early developmental specifications in the rostral hindbrain are required for the development of neurones that stabilize the function of the respiratory rhythm generator, thereby preventing HEB during post-natal maturation.
Collapse
Affiliation(s)
- Laura Guimarães
- Neurobiologie Génétique et Intégrative, UPR 2216, CNRS, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Borday C, Vias C, Autran S, Thoby-Brisson M, Champagnat J, Fortin G. The pre-Bötzinger oscillator in the mouse embryo. ACTA ACUST UNITED AC 2007; 100:284-9. [PMID: 17628453 DOI: 10.1016/j.jphysparis.2007.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studies of the sites and mechanisms involved in mammalian respiratory rhythm generation point to two clusters of rhythmic neurons forming a coupled oscillator network within the brainstem. The location of these oscillators, the pre-Bötzinger complex (preBötC) at vagal level, and the para-facial respiratory group at facial level, probably result from regional patterning schemes specifying neural types in the hindbrain during embryogenesis. Here, we report evidence that the preBötC oscillator (i) is first active at embryonic stages, (ii) originates in the post-otic hindbrain neural tube and (iii) requires the glutamate vesicular transporter 2 for rhythm generation.
Collapse
Affiliation(s)
- C Borday
- Neurobiologie Génétique et Intégrative, Institut de Neurobiologie Alfred Fessard, CNRS, 1 av. de la terrasse, 91198 Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|
18
|
Momose-Sato Y, Sato K, Kinoshita M. Spontaneous depolarization waves of multiple origins in the embryonic rat CNS. Eur J Neurosci 2007; 25:929-44. [PMID: 17331191 DOI: 10.1111/j.1460-9568.2007.05352.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During development, correlated neuronal activity plays an important role in the establishment of the central nervous system (CNS). We have previously reported that a widely propagating correlated neuronal activity, termed the depolarization wave, is evoked by various sensory inputs. A remarkable feature of the depolarization wave is that it spreads broadly through the brain and spinal cord. In the present study, we examined whether the depolarization wave occurs spontaneously in the embryonic rat CNS and, if so, where it originates. In E15-16 rat embryos, spontaneous optically-revealed signals appeared in association with the rhythmic discharges of cranial motoneurons and propagated widely with similar characteristics to the evoked depolarization wave. At E15, the spontaneous wave mostly originated in the cervical to upper lumbar cords. At E16, the wave was predominantly generated in the lumbosacral cord although a wave associated with the second oscillatory burst was initiated in the rostral cord. At E16, a few waves also originated in the rostral ventrolateral medulla and the dorsomedial pons. When the influence of the caudal cord was removed by transecting the spinal cord, the contribution of the medulla and pons became more significant. These results show that the depolarization wave can be triggered by the spontaneous activity of multiple neuronal populations which are distributed widely from the pons to the lumbosacral cord, although the spinal cord usually plays a predominant role. This network possibly works as a self-distributing system that maintains the incidence and complicated patterns of the correlated activity in the developing CNS.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Physiology, Tokyo Medical and Dental University, Graduate School and Faculty of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | |
Collapse
|
19
|
Borday C, Coutinho A, Germon I, Champagnat J, Fortin G. Pre-/post-otic rhombomeric interactions control the emergence of a fetal-like respiratory rhythm in the mouse embryo. ACTA ACUST UNITED AC 2006; 66:1285-301. [PMID: 16967510 DOI: 10.1002/neu.20271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
How regional patterning of the neural tube in vertebrate embryos may influence the emergence and the function of neural networks remains elusive. We have begun to address this issue in the embryonic mouse hindbrain by studying rhythmogenic properties of different neural tube segments. We have isolated pre- and post-otic hindbrain segments and spinal segments of the mouse neural tube, when they form at embryonic day (E) 9, and grafted them into the same positions in stage-matched chick hosts. Three days after grafting, in vitro recordings of the activity in the cranial nerves exiting the grafts indicate that a high frequency (HF) rhythm (order: 10 bursts/min) is generated in post-otic segments while more anterior pre-otic and more posterior spinal territories generate a low frequency (LF) rhythm (order: 1 burst/min). Comparison with homo-specific grafting of corresponding chick segments points to conservation in mouse and chick of the link between the patterning of activities and the axial origin of the hindbrain segment. This HF rhythm is reminiscent of the respiratory rhythm known to appear at E15 in mice. We also report on pre-/post-otic interactions. The pre-otic rhombomere 5 prevents the emergence of the HF rhythm at E12. Although the nature of the interaction with r5 remains obscure, we propose that ontogeny of fetal-like respiratory circuits relies on: (i) a selective developmental program enforcing HF rhythm generation, already set at E9 in post-otic segments, and (ii) trans-segmental interactions with pre-otic territories that may control the time when this rhythm appears.
Collapse
Affiliation(s)
- C Borday
- Neurobiologie Génétique et Intégrative, Institut de Neurobiologie Alfred Fessard, C.N.R.S., 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
20
|
Chatonnet F, Borday C, Wrobel L, Thoby-Brisson M, Fortin G, McLean H, Champagnat J. Ontogeny of central rhythm generation in chicks and rodents. Respir Physiol Neurobiol 2006; 154:37-46. [PMID: 16533622 DOI: 10.1016/j.resp.2006.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/31/2006] [Accepted: 02/01/2006] [Indexed: 10/24/2022]
Abstract
Recent studies help in understanding how the basic organization of brainstem neuronal circuits along the anterior-posterior (AP) axis is set by the Hox-dependent segmentation of the neural tube in vertebrate embryos. Neonatal respiratory abnormalities in Krox20(-/-), Hoxa1(-/-) and kreisler mutant mice indicate the vital role of a para-facial (Krox20-dependent, rhombomere 4-derived) respiratory group, that is distinct from the more caudal rhythm generator called Pre-Bötzinger complex. Embryological studies in the chick suggest homology and conservation of this Krox20-dependent induction of parafacial rhythms in birds and mammals. Calcium imaging in embryo indicate that rhythm generators may derive from different cell lineages within rhombomeres. In mice, the Pre-Bötzinger complex is found to be distinct from oscillators producing the earliest neuronal activity, a primordial low-frequency rhythm. In contrast, in chicks, maturation of the parafacial generator is tightly linked to the evolution of this primordial rhythm. It seems therefore that ontogeny of brainstem rhythm generation involves conserved processes specifying distinct AP domains in the neural tube, followed by diverse, lineage-specific regulations allowing the emergence of organized rhythm generators at a given AP level.
Collapse
Affiliation(s)
- F Chatonnet
- UPR 2216, Neurobiologie Génétique et Integrative, Institut fédératif de Neurobiologie Alfred Fessard, C.N.R.S. 1, Avenue de la terrasse, Gif sur Yvette, 91198 Cedex, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Hunt PN, McCabe AK, Gust J, Bosma MM. Spatial restriction of spontaneous activity towards the rostral primary initiating zone during development of the embryonic mouse hindbrain. ACTA ACUST UNITED AC 2006; 66:1225-38. [PMID: 16902989 DOI: 10.1002/neu.20260] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the developing embryonic mouse hindbrain, we have previously shown that synchronized spontaneous activity is driven by midline serotonergic neurons at E11.5. This is mediated, at least in part, by the 5-HT2A receptor, which is expressed laterally in the hindbrain. Activity at E11.5 is widespread within the hindbrain tissue, propagating from the midline to more lateral regions. Using rapid acquisition of [Ca2+]i events along the midline, we now show that the rostral midline, primarily in the region of former rhombomere r2, is the primary initiating zone for this activity. We propose that at E11.5, the combined events along the rostral-caudal axis in combination with events propagating along the medial-lateral axis could assign positional information to developing neurons within the hindbrain. With further development, to E13.5, both the lateral and caudal dimensions of spontaneous activity retract to the rostral midline, occupying an area only 14% of that exhibited at E11.5. We also show that increased levels of [K+]o (to 8 mM) at E13.5 are able to increase the spread of spontaneous activity laterally and rostro-caudally. This suggests that spontaneous activity in the hindbrain depends in a dynamic way on the dominant initiating zone of the rostral midline, and that this relationship changes over development.
Collapse
Affiliation(s)
- P N Hunt
- Department of Biology, University of Washington, Seattle, Washington 89195-1800, USA
| | | | | | | |
Collapse
|
22
|
Wilson RJA, Vasilakos K, Remmers JE. Phylogeny of vertebrate respiratory rhythm generators: the Oscillator Homology Hypothesis. Respir Physiol Neurobiol 2006; 154:47-60. [PMID: 16750658 DOI: 10.1016/j.resp.2006.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 04/11/2006] [Accepted: 04/11/2006] [Indexed: 11/30/2022]
Abstract
A revolution is underway in our understanding of respiratory rhythm generation in mammals. Until recently, a major focus of research within the field has centered around the question of locating and elucidating the mechanism of rhythmogenesis of a single respiratory neuronal oscillator which is reiterated bilaterally within the brainstem. Now it appears that each hemisection may contain at least two oscillators that interact to generate the respiratory rhythm in mammals. Comparative studies have hinted at the existence of multiple respiratory oscillators in non-mammalian vertebrates for some time, raising the possibility of homologous oscillators. Here, we consider available tools to identify neuronal oscillators and critically review the evidence for the importance and existence of multiple respiratory oscillators in vertebrates. First focusing on a comparison between frogs and mammals, we then evaluate the hypothesis that ventilatory oscillators in extant tetrapods evolved from ancestral oscillators present in fish (the Oscillator Homology Hypothesis). While supporting data are incomplete, the Oscillator Homology Hypothesis will likely serve as a useful framework to motivate further studies of respiratory rhythm generation in lower vertebrates.
Collapse
Affiliation(s)
- Richard J A Wilson
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alta., Canada.
| | | | | |
Collapse
|
23
|
Thoby-Brisson M, Trinh JB, Champagnat J, Fortin G. Emergence of the pre-Bötzinger respiratory rhythm generator in the mouse embryo. J Neurosci 2006; 25:4307-18. [PMID: 15858057 PMCID: PMC6725099 DOI: 10.1523/jneurosci.0551-05.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To obtain insights into the emergence of rhythmogenic circuits supporting respiration, we monitored spontaneous activities in isolated brainstem and medullary transverse slice preparations of mouse embryos, combining electrophysiological and calcium imaging techniques. At embryonic day 15 (E15), in a restricted region ventral to the nucleus ambiguus, we observed the onset of a sustained high-frequency (HF) respiratory-like activity in addition to a preexisting low-frequency activity having a distinct initiation site, spatial extension, and susceptibility to gap junction blockers. At the time of its onset, the HF generator starts to express the neurokinin 1 receptor, is connected bilaterally, requires active AMPA/kainate glutamatergic synapses, and is modulated by substance P and the mu-opioid agonist D-Ala2-N-Me-Phe4-Glycol5-enkephalin. We conclude that a rhythm generator sharing the properties of the neonatal pre-Bötzinger complex becomes active during E15 in mice.
Collapse
Affiliation(s)
- Muriel Thoby-Brisson
- Laboratoire de Neurobiologie Génétique et Intégrative, Institut Alfred Fessard, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France
| | | | | | | |
Collapse
|
24
|
Abstract
Recent experiments in vivo and in vitro have advanced our understanding of the sites and mechanisms involved in mammalian respiratory rhythm generation. Here we evaluate and interpret the new evidence for two separate brainstem respiratory oscillators and for the essential role of emergent network properties in rhythm generation. Lesion studies suggest that respiratory cell death might explain morbidity and mortality associated with neurodegenerative disorders and ageing.
Collapse
Affiliation(s)
- Jack L Feldman
- Department of Neurobiology, David Geffen School of Medicine at the University of California, Los Angeles, BOX 951763, Los Angeles, California 90095-1763, USA.
| | | |
Collapse
|
25
|
Hunt PN, Gust J, McCabe AK, Bosma MM. Primary role of the serotonergic midline system in synchronized spontaneous activity during development of the embryonic mouse hindbrain. ACTA ACUST UNITED AC 2006; 66:1239-52. [PMID: 16902991 DOI: 10.1002/neu.20259] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the developing embryonic mouse hindbrain, we have shown that previously widespread synchronized spontaneous activity at E11.5 retracts to the initiating zone of the rostral hindbrain by E13.5, and ceases completely by E14.5. We now confirm that at E11.5 and E13.5, the primary driver of spontaneous activity is serotonergic input, while other transmitters (GABA, glutamate, NE, and ATP) have only modulatory roles. Using immunocytochemistry, we also show that at E13.5, 5-HT-positive neurons in the midline extend over a larger rostro-caudal distance than at E11.5, and that in the presumptive initiating zone, cell bodies occupy a band that extends 200 microm laterally on each side of the midline, with extensive axonal processes. The 5-HT2A receptor retains expression in lateral tissue over this developmental time. We find that in addition to being sensitive to 5-HT receptor antagonists, spontaneous activity is also abolished by blockers of gap junctions, and is increased in frequency and lateral spread by application of ammonium, presumably via increased intracellular pH augmenting gap junction conductance. Thus, 5-HT neurons of the midline remain the primary drivers of spontaneous activity at several stages of development in the hindbrain, relying in part on gap junctional communication during initiation of activity.
Collapse
Affiliation(s)
- P N Hunt
- Department of Biology, University of Washington, Seattle, Washington 98195-1800, USA
| | | | | | | |
Collapse
|
26
|
Borday C, Chatonnet F, Thoby-Brisson M, Champagnat J, Fortin G. Neural tube patterning by Krox20 and emergence of a respiratory control. Respir Physiol Neurobiol 2005; 149:63-72. [PMID: 16203212 DOI: 10.1016/j.resp.2005.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 02/16/2005] [Accepted: 02/17/2005] [Indexed: 11/15/2022]
Abstract
Recent data begin to bridge the gap between developmental events controlling hindbrain neural tube regional patterning and the emergence of breathing behaviour in the fetus and its vital adaptive function after birth. In vertebrates, Hox paralogs and Hox-regulating genes orchestrate, in a conserved manner, the transient formation of developmental compartments in the hindbrain, the rhombomeres, in which rhythmic neuronal networks of the brainstem develop. Genetic inactivation of some of these genes in mice leads to pathological breathing at birth pointing to the vital importance of rhombomere 3 and 4 derived territories for maintenance of the breathing frequency. In chick embryo at E7, we investigated neuronal activities generated in neural tube islands deriving from combinations of rhombomeres isolated at embryonic day E1.5. Using a gain of function approach, we reveal a role of the transcription factor Krox20, specifying rhombomeres 3 and 5, in inducing a rhythm generator at the parafacial level of the hindbrain. The developmental genes selecting and regionally coordinating the fate of CNS progenitors may hold further clues to conserved aspects of neuronal network formation and function. However, the most immediate concern is to take advantage of early generated rhythmic activities in the hindbrain to pursue their downstream cellular and molecular targets, for it seems likely that it will be here that rhythmogenic properties will eventually take on a vital role at birth.
Collapse
Affiliation(s)
- C Borday
- UPR 2216 Neurobiologie Génétique et Integrative, Institut fédératif de Neurobiologie Alfred Fessard, C.N.R.S., 1, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | | | | | | | | |
Collapse
|