1
|
Liu Y, Huang J, Xu B. Relationship of Klotho with cognition and dementia: A systematic review and meta-analysis. Asian J Psychiatr 2025; 106:104417. [PMID: 40048920 DOI: 10.1016/j.ajp.2025.104417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 02/23/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND The protein Klotho, known for its connection to longevity, has attracted growing interest among researchers for its positive effects on the cognitive function and dementia during aging. Nevertheless, the precise correlation between levels of Klotho and cognitive function and dementia remains inadequately elucidated, with conflicting conclusions arising from different studies. OBJECTIVE To conduct a systematic review and Meta-analysis of the relationship between Klotho levels and cognitive function and dementia. METHODS Klotho-related literature from January 1988 to February 2025 was systematically retrieved from five databases, including PubMed, Web of Science, Cochrane Library, Baidu Academic, and Science Direct. Subsequently, a two-person independent screening process was employed to assess bias risk and evaluate the quality of the literature. Finally, the filtered literature underwent systematic review and meta-analysis. RESULTS The meta-analysis, pooling data from 8 studies, involving 6645 subjects, show statistically significant differences in cognitive function scores across Klotho levels [SMD: -1.14; 95 % CI: -2.48 to -0.40, p = 0.007]. Subgroup analyses showed that the positive correlation among α-Klotho, serum Klotho, plasma Klotho and Klotho protein expression levels with cognition and dementia was statistically significant (p = 0.005, 95 % CI: -3.18 to -0.57;p = 0.01, 95 % CI: -5.53 to -0.71;p = 0.0008, 95 % CI: -0.86 to -0.23; p = 0.02, 95 % CI: -2.22 to -0.18). The quality assessment of the ten observational studies showed a low to high level, while the two other randomized controlled trials (RCTs) were at unclear risk of bias. LIMITATIONS Firstly, the number of included studies was limited, with most being observational and only two RCTs. Additionally, the RCTs were conducted at single research centers with small sample sizes, which may limit the generalizability of the results as they have not been replicated in multiple settings. Secondly, some factors affecting the severity of dementia such as age, gender, years of illness, and medication use may be potential confounding variables. Thirdly, the studies included in the meta-analysis were all observational, resulting in initially low quality of evidence. Finally, the meta-analysis showed a high degree of heterogeneity among the included studies. CONCLUSION There appears to be a significant correlation between Klotho and cognitive function and dementia. In addition, subgroup analyses suggests that α-Klotho, serum Klotho, and plasma Klotho could be important biomarkers of cognitive function and neurodegeneration. However, the limited number of RCTs and the predominance of observational studies in the meta-analysis mean that the evidence quality is relatively low. Further high-quality RCTs are needed to establish a definitive relationship.
Collapse
Affiliation(s)
- Yu Liu
- School of Public Health, Zunyi Medical University, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, China
| | | | - Benhong Xu
- School of Public Health, Zunyi Medical University, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, China.
| |
Collapse
|
2
|
Zheng X, Zhou W, Jiang Z, Ding C, Feng M, Li Y, Kurniasari F, Xie S, Xu H. Independent and Combined Associations of Urinary Heavy Metal Exposures with Serum α-Klotho in Middle-Aged and Older Adults. TOXICS 2025; 13:237. [PMID: 40278553 PMCID: PMC12031166 DOI: 10.3390/toxics13040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 04/26/2025]
Abstract
α-Klotho is an anti-aging protein linked to various age-related diseases. Environmental metal exposure has been associated with oxidative stress and aging, but its effect on α-Klotho levels remains unclear. This study investigated the relationship between urinary metal concentrations and serum α-Klotho levels using data from the National Health and Nutrition Examination Survey (NHANES) 2007-2016 cycles. A total of 4071 adults aged 40 to 79 years were included in the analysis. After adjusting for potential confounders, positive associations were found between serum α-Klotho levels and barium (Ba), cesium (Cs), and molybdenum (Mo), while tungsten (W) and uranium (U) were negatively correlated with α-Klotho levels. The combined effects of multiple metals were further analyzed using the qgcomp model, which demonstrated a negative correlation between increased metal mixtures and serum α-Klotho levels. Specifically, U, total arsenic (t-As), W, cadmium (Cd), antimony (Sb), and lead (Pb) contributed to the reduction of α-Klotho levels, while Ba, Cs, dimethylarsinic acid (DMA), Mo, thallium (Tl), and cobalt (Co) were positively associated with α-Klotho levels. These findings suggest that exposure to certain metals, particularly in combination, may reduce serum α-Klotho levels, potentially accelerating aging processes. Further studies should investigate the underlying mechanisms responsible for these associations.
Collapse
Affiliation(s)
- Xinliang Zheng
- School of Public Health, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, 182 Tianmushan Road, Xihu District, Hangzhou 310013, China; (X.Z.); (W.Z.); (Z.J.); (C.D.); (M.F.); (Y.L.)
| | - Wenxin Zhou
- School of Public Health, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, 182 Tianmushan Road, Xihu District, Hangzhou 310013, China; (X.Z.); (W.Z.); (Z.J.); (C.D.); (M.F.); (Y.L.)
| | - Zhuoying Jiang
- School of Public Health, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, 182 Tianmushan Road, Xihu District, Hangzhou 310013, China; (X.Z.); (W.Z.); (Z.J.); (C.D.); (M.F.); (Y.L.)
| | - Chan Ding
- School of Public Health, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, 182 Tianmushan Road, Xihu District, Hangzhou 310013, China; (X.Z.); (W.Z.); (Z.J.); (C.D.); (M.F.); (Y.L.)
| | - Minqian Feng
- School of Public Health, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, 182 Tianmushan Road, Xihu District, Hangzhou 310013, China; (X.Z.); (W.Z.); (Z.J.); (C.D.); (M.F.); (Y.L.)
| | - Yongxin Li
- School of Public Health, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, 182 Tianmushan Road, Xihu District, Hangzhou 310013, China; (X.Z.); (W.Z.); (Z.J.); (C.D.); (M.F.); (Y.L.)
| | - Fitri Kurniasari
- Department of Environmental Health, Faculty of Public Health, University of Indonesia, Depok 16424, West Java, Indonesia;
| | - Shuanghua Xie
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Huadong Xu
- School of Public Health, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, 182 Tianmushan Road, Xihu District, Hangzhou 310013, China; (X.Z.); (W.Z.); (Z.J.); (C.D.); (M.F.); (Y.L.)
| |
Collapse
|
3
|
Esandi J, Renault P, Capilla-López MD, Blanch R, Edo Á, Ramirez-Gómez D, Bosch A, Almolda B, Saura CA, Giraldo J, Chillón M. HEBE: A novel chimeric chronokine for ameliorating memory deficits in Alzheimer's disease. Biomed Pharmacother 2025; 183:117815. [PMID: 39818099 DOI: 10.1016/j.biopha.2025.117815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by amyloid-β and Tau protein depositions, with treatments focusing on single proteins have shown limited success due to the complexity of pathways involved. This study explored the potential of chronokines -proteins that modulate aging-related processes- as an alternative therapeutic approach. Specifically, we focused on a novel pleiotropic chimeric protein named HEBE, combining s-KL, sTREM2 and TIMP2, guided by bioinformatic analyses to ensure the preservation of each protein's conformation, crucial for their functions. In vitro studies confirmed HEBE's stability and enzymatic activities, even suggesting it has different activities compared to the individual chronokines. In vivo experiments on APP/Tau mice revealed improved learning and memory functions with HEBE treatment, along with decreased levels of phosphorylated Tau and minor effects on amyloid-β levels. These findings suggest that HEBE is as a promising therapeutic candidate for ameliorating memory deficits and reducing pTau in an AD mouse model.
Collapse
Affiliation(s)
- Jon Esandi
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain.
| | - Pedro Renault
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Unitat de Neurociència Translacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Bellaterra 08193, Spain.
| | - Maria Dolores Capilla-López
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28029, Spain.
| | - Rebeca Blanch
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain.
| | - Ángel Edo
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain.
| | - David Ramirez-Gómez
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain.
| | - Assumpció Bosch
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain.
| | - Beatriz Almolda
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain.
| | - Carlos Alberto Saura
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid 28029, Spain.
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Unitat de Neurociència Translacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Bellaterra 08193, Spain.
| | - Miguel Chillón
- Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain.
| |
Collapse
|
4
|
Cook N, Driscoll I, Gaitán JM, Glittenberg M, Betthauser TJ, Carlsson CM, Johnson SC, Asthana S, Zetterberg H, Blennow K, Kollmorgen G, Quijano-Rubio C, Dubal DB, Okonkwo OC. Amyloid-β positivity is less prevalent in cognitively unimpaired KLOTHO KL-VS heterozygotes. J Alzheimers Dis 2024; 102:480-490. [PMID: 39529379 PMCID: PMC12025201 DOI: 10.1177/13872877241289785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND Klotho, encoded by the KLOTHO gene, is an anti-aging and neuroprotective protein. KLOTHO KL-VS heterozygosity (KL-VSHET) is hypothesized to be protective against the accumulation of Alzheimer's disease (AD) neuropathological hallmarks (amyloid-β (Aβ) and tau). OBJECTIVE We examine whether being positive for Aβ (A+) or tau (T+), or A/T joint status [positive for Aβ (A + T-), tau (A-T+), both (A + T+) or neither (A-T-)] vary by KL-VS and whether serum klotho protein levels vary based on A+, T+, or A/T status in a cohort enriched for AD risk. METHODS The sample consisted of 704 cognitively unimpaired, late middle-aged, and older adults; MeanAge(SD) = 64.9(8.3). Serum klotho was available for a sub-sample of 396 participants; MeanAge(SD) = 66.8(7.4). Covariate-adjusted logistic regression examined whether A + or T+, and multinomial regression examined whether A/T status, vary by KL-VS genotype. Covariate-adjusted linear regression examined whether serum klotho levels differ based on A+, T+, or A/T status. RESULTS A+ prevalence was lower in KL-VSHET (p = 0.05), with no differences in T + prevalence (p = 0.52). KL-VSHET also had marginally lower odds of being A + T- (p = 0.07). Serum klotho levels did not differ based on A+, T+, or A/T status (all ps ≥ 0.40). CONCLUSIONS KL-VSHET is associated with lower odds of being positive for Aβ, regardless of whether one is also positive for tau. Conversely, the likelihood of being tau positive did not differ based on KL-VS genotype. Our findings add to the growing KLOTHO literature and suggests the need for further research focused on understanding the mechanisms underlying KL-VS-related putative resilience to AD.
Collapse
Affiliation(s)
- Noah Cook
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ira Driscoll
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, Madison, WI, USA
| | - Julian M. Gaitán
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Matthew Glittenberg
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Tobey J. Betthauser
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Cynthia M. Carlsson
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton VA Hospital, Madison, WI, USA
| | - Sterling C. Johnson
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, Madison, WI, USA
| | - Sanjay Asthana
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton VA Hospital, Madison, WI, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | | | - Dena B. Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Ozioma C. Okonkwo
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton VA Hospital, Madison, WI, USA
| |
Collapse
|
5
|
Prud’homme GJ, Wang Q. Anti-Inflammatory Role of the Klotho Protein and Relevance to Aging. Cells 2024; 13:1413. [PMID: 39272986 PMCID: PMC11394293 DOI: 10.3390/cells13171413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The α-Klotho protein (hereafter Klotho) is an obligate coreceptor for fibroblast growth factor 23 (FGF23). It is produced in the kidneys, brain and other sites. Klotho insufficiency causes hyperphosphatemia and other anomalies. Importantly, it is associated with chronic pathologies (often age-related) that have an inflammatory component. This includes atherosclerosis, diabetes and Alzheimer's disease. Its mode of action in these diseases is not well understood, but it inhibits or regulates multiple major pathways. Klotho has a membrane form and a soluble form (s-Klotho). Cytosolic Klotho is postulated but not well characterized. s-Klotho has endocrine properties that are incompletely elucidated. It binds to the FGF receptor 1c (FGFR1c) that is widely expressed (including endothelial cells). It also attaches to soluble FGF23, and FGF23/Klotho binds to FGFRs. Thus, s-Klotho might be a roaming FGF23 coreceptor, but it has other functions. Notably, Klotho (cell-bound or soluble) counteracts inflammation and appears to mitigate related aging (inflammaging). It inhibits NF-κB and the NLRP3 inflammasome. This inflammasome requires priming by NF-κB and produces active IL-1β, membrane pores and cell death (pyroptosis). In accord, Klotho countered inflammation and cell injury induced by toxins, damage-associated molecular patterns (DAMPs), cytokines, and reactive oxygen species (ROS). s-Klotho also blocks the TGF-β receptor and Wnt ligands, which lessens fibrotic disease. Low Klotho is associated with loss of muscle mass (sarcopenia), as occurs in aging and chronic diseases. s-Klotho counters the inhibitory effects of myostatin and TGF-β on muscle, reduces inflammation, and improves muscle repair following injury. The inhibition of TGF-β and other factors may also be protective in diabetic retinopathy and age-related macular degeneration (AMD). This review examines Klotho functions especially as related to inflammation and potential applications.
Collapse
Affiliation(s)
- Gérald J. Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 220 Walmer Rd, Toronto, ON M5R 3R7, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai 200030, China
- Shanghai Innogen Pharmaceutical Co., Ltd., Shanghai 201318, China
| |
Collapse
|
6
|
Marino F, Wang D, Merrihew GE, MacCoss MJ, Dubal DB. A second X chromosome improves cognition in aging male and female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605328. [PMID: 39091744 PMCID: PMC11291180 DOI: 10.1101/2024.07.26.605328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Women show resilience to cognitive aging, in the absence of dementia, in many populations. To dissect sex differences, we utilized the FCG and XY* mouse models. Female gonads and sex chromosomes improved cognition in aging mice of both sexes. Further, presence of a second X in male and female mice conferred cognitive resilience while its absence in females blocked it. In the hippocampal proteome of aging female mice, the second X increased proteins involved in synaptogenesis signaling - a potential pathway to improved cognition.
Collapse
Affiliation(s)
- Francesca Marino
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Neurosciences Graduate Program, University of California, San Francisco, CA, US
| | - Dan Wang
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Dena B. Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Neurosciences Graduate Program, University of California, San Francisco, CA, US
| |
Collapse
|
7
|
Miller A, York EM, Stopka SA, Martínez-François JR, Hossain MA, Baquer G, Regan MS, Agar NYR, Yellen G. Spatially resolved metabolomics and isotope tracing reveal dynamic metabolic responses of dentate granule neurons with acute stimulation. Nat Metab 2023; 5:1820-1835. [PMID: 37798473 PMCID: PMC10626993 DOI: 10.1038/s42255-023-00890-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/09/2023] [Indexed: 10/07/2023]
Abstract
Neuronal activity creates an intense energy demand that must be met by rapid metabolic responses. To investigate metabolic adaptations in the neuron-enriched dentate granule cell (DGC) layer within its native tissue environment, we employed murine acute hippocampal brain slices, coupled with fast metabolite preservation and followed by mass spectrometry (MS) imaging, to generate spatially resolved metabolomics and isotope-tracing data. Here we show that membrane depolarization induces broad metabolic changes, including increased glycolytic activity in DGCs. Increased glucose metabolism in response to stimulation is accompanied by mobilization of endogenous inosine into pentose phosphates via the action of purine nucleotide phosphorylase (PNP). The PNP reaction is an integral part of the neuronal response to stimulation, because inhibition of PNP leaves DGCs energetically impaired during recovery from strong activation. Performing MS imaging on brain slices bridges the gap between live-cell physiology and the deep chemical analysis enabled by MS.
Collapse
Affiliation(s)
- Anne Miller
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Elisa M York
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Md Amin Hossain
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gerard Baquer
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Park C, Hahn O, Gupta S, Moreno AJ, Marino F, Kedir B, Wang D, Villeda SA, Wyss-Coray T, Dubal DB. Platelet factors are induced by longevity factor klotho and enhance cognition in young and aging mice. NATURE AGING 2023; 3:1067-1078. [PMID: 37587231 PMCID: PMC10501899 DOI: 10.1038/s43587-023-00468-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
Platelet factors regulate wound healing and can signal from the blood to the brain1,2. However, whether platelet factors modulate cognition, a highly valued and central manifestation of brain function, is unknown. Here we show that systemic platelet factor 4 (PF4) permeates the brain and enhances cognition. We found that, in mice, peripheral administration of klotho, a longevity and cognition-enhancing protein3-7, increased the levels of multiple platelet factors in plasma, including PF4. A pharmacologic intervention that inhibits platelet activation blocked klotho-mediated cognitive enhancement, indicating that klotho may require platelets to enhance cognition. To directly test the effects of platelet factors on the brain, we treated mice with vehicle or systemic PF4. In young mice, PF4 enhanced synaptic plasticity and cognition. In old mice, PF4 decreased cognitive deficits and restored aging-induced increases of select factors associated with cognitive performance in the hippocampus. The effects of klotho on cognition were still present in mice lacking PF4, suggesting this platelet factor is sufficient to enhance cognition but not necessary for the effects of klotho-and that other unidentified factors probably contribute. Augmenting platelet factors, possible messengers of klotho, may enhance cognition in the young brain and decrease cognitive deficits in the aging brain.
Collapse
Affiliation(s)
- Cana Park
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Shweta Gupta
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Arturo J Moreno
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Francesca Marino
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Neurosciences Graduate Program, University of California, San Francisco, CA, USA
| | - Blen Kedir
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Dan Wang
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Saul A Villeda
- Department of Anatomy, University of California, San Francisco, CA, USA
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- The Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Dena B Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
- Neurosciences Graduate Program, University of California, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Klotho, a longevity factor, improves cognitive function in aging nonhuman primates. NATURE AGING 2023; 3:915-916. [PMID: 37429952 DOI: 10.1038/s43587-023-00466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
|
10
|
Castner SA, Gupta S, Wang D, Moreno AJ, Park C, Chen C, Poon Y, Groen A, Greenberg K, David N, Boone T, Baxter MG, Williams GV, Dubal DB. Longevity factor klotho enhances cognition in aged nonhuman primates. NATURE AGING 2023; 3:931-937. [PMID: 37400721 PMCID: PMC10432271 DOI: 10.1038/s43587-023-00441-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/23/2023] [Indexed: 07/05/2023]
Abstract
Cognitive dysfunction in aging is a major biomedical challenge. Whether treatment with klotho, a longevity factor, could enhance cognition in human-relevant models such as in nonhuman primates is unknown and represents a major knowledge gap in the path to therapeutics. We validated the rhesus form of the klotho protein in mice showing it increased synaptic plasticity and cognition. We then found that a single administration of low-dose, but not high-dose, klotho enhanced memory in aged nonhuman primates. Systemic low-dose klotho treatment may prove therapeutic in aging humans.
Collapse
Affiliation(s)
- Stacy A Castner
- Department of Psychiatry and VA Connecticut Healthcare System, Yale School of Medicine, West Haven, CT, USA
| | - Shweta Gupta
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Dan Wang
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Arturo J Moreno
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Cana Park
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Chen Chen
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Yan Poon
- Unity Biotechnology, Brisbane, CA, USA
| | | | | | | | - Tom Boone
- Tom Boone Consulting, Newbury Park, CA, USA
| | - Mark G Baxter
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Graham V Williams
- Department of Psychiatry and VA Connecticut Healthcare System, Yale School of Medicine, West Haven, CT, USA
| | - Dena B Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
11
|
Miller A, York E, Stopka S, Martínez-François J, Hossain MA, Baquer G, Regan M, Agar N, Yellen G. Spatially resolved metabolomics and isotope tracing reveal dynamic metabolic responses of dentate granule neurons with acute stimulation. RESEARCH SQUARE 2023:rs.3.rs-2276903. [PMID: 37546759 PMCID: PMC10402263 DOI: 10.21203/rs.3.rs-2276903/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Neuronal activity creates an intense energy demand that must be met by rapid metabolic responses. To investigate metabolic adaptations in the neuron-enriched dentate granule cell (DGC) layer within its native tissue environment, we employed murine acute hippocampal brain slices coupled with fast metabolite preservation, followed by mass spectrometry imaging (MALDI-MSI) to generate spatially resolved metabolomics and isotope tracing data. Here we show that membrane depolarization induces broad metabolic changes, including increased glycolytic activity in DGCs. Increased glucose metabolism in response to stimulation is accompanied by mobilization of endogenous inosine into pentose phosphates, via the action of purine nucleotide phosphorylase (PNP). The PNP reaction is an integral part of the neuronal response to stimulation, as inhibiting PNP leaves DGCs energetically impaired during recovery from strong activation. Performing MSI on brain slices bridges the gap between live cell physiology and the deep chemical analysis enabled by mass spectrometry.
Collapse
|
12
|
Shaw C, Abdulai-Saiku S, Marino F, Wang D, Davis E, Panning B, Dubal D. X Chromosome Factor Kdm6a Enhances Cognition Independent of Its Demethylase Function in the Aging XY Male Brain. J Gerontol A Biol Sci Med Sci 2023; 78:938-943. [PMID: 36617879 PMCID: PMC10235195 DOI: 10.1093/gerona/glad007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/10/2023] Open
Abstract
Males exhibit shorter life span and more cognitive deficits, in the absence of dementia, in aging human populations. In mammals, the X chromosome is enriched for neural genes and is a major source of biologic sex difference, in part, because males show decreased expression of select X factors (XY). While each sex (XX and XY) harbors one active X due to X chromosome inactivation in females, some genes, such as Kdm6a, transcriptionally escape silencing in females-resulting in lower transcript levels in males. Kdm6a is a known histone demethylase (H3K27me2/3) with multiple functional domains that is linked with synaptic plasticity and cognition. Whether elevating Kdm6a could benefit the aged male brain and whether this requires its demethylase function remains unknown. We used lentiviral-mediated overexpression of the X factor in the hippocampus of aging male mice and tested their cognition and behavior in the Morris water-maze. We found that acutely increasing Kdm6a-in a form without demethylase function-selectively improved learning and memory, in the aging XY brain, without altering total activity or anxiety-like measures. Further understanding the demethylase-independent downstream mechanisms of Kdm6a may lead to novel therapies for treating age-induced cognitive deficits in both sexes.
Collapse
Affiliation(s)
- Cayce K Shaw
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Rehabilitation Sciences Graduate Program, University of California, San Francisco, California, USA
| | - Samira Abdulai-Saiku
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Francesca Marino
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Neuroscience Graduate Program, University of California, San Francisco, California, USA
| | - Dan Wang
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Emily J Davis
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Barbara Panning
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Dena B Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Neuroscience Graduate Program, University of California, San Francisco, California, USA
| |
Collapse
|
13
|
Li SS, Sheng MJ, Sun ZY, Liang Y, Yu LX, Liu QF. Upstream and downstream regulators of Klotho expression in chronic kidney disease. Metabolism 2023; 142:155530. [PMID: 36868370 DOI: 10.1016/j.metabol.2023.155530] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Klotho is a critical protein that protects the kidney. Klotho is severely downregulated in chronic kidney disease (CKD), and its deficiency is implicated in the pathogenesis and progression of CKD. Conversely, an increase in Klotho levels results in improved kidney function and delays CKD progression, supporting the notion that modulating Klotho levels could represent a possible therapeutic strategy for CKD treatment. Nevertheless, the regulatory mechanisms responsible for the loss of Klotho remain elusive. Previous studies have demonstrated that oxidative stress, inflammation, and epigenetic modifications can modulate Klotho levels. These mechanisms result in a decrease in Klotho mRNA transcript levels and reduced translation, thus can be grouped together as upstream regulatory mechanisms. However, therapeutic strategies that aim to rescue Klotho levels by targeting these upstream mechanisms do not always result in increased Klotho, indicating the involvement of other regulatory mechanisms. Emerging evidence has shown that endoplasmic reticulum (ER) stress, the unfolded protein response, and ER-associated degradation also affect the modification, translocation, and degradation of Klotho, and thus are proposed to be downstream regulatory mechanisms. Here, we discuss the current understanding of upstream and downstream regulatory mechanisms of Klotho and examine potential therapeutic strategies to upregulate Klotho expression for CKD treatment.
Collapse
Affiliation(s)
- Sha-Sha Li
- Clinical Research & Lab Centre, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu 215300, China
| | - Ming-Jie Sheng
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu 215300, China
| | - Zhuo-Yi Sun
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu 215300, China
| | - Yan Liang
- Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, 91 Qianjin West Road, Kunshan, Jiangsu 215300, China
| | - Li-Xia Yu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu 215300, China.
| | - Qi-Feng Liu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu 215300, China; Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, 91 Qianjin West Road, Kunshan, Jiangsu 215300, China.
| |
Collapse
|
14
|
Roig-Soriano J, Sánchez-de-Diego C, Esandi-Jauregui J, Verdés S, Abraham CR, Bosch A, Ventura F, Chillón M. Differential toxicity profile of secreted and processed α-Klotho expression over mineral metabolism and bone microstructure. Sci Rep 2023; 13:4211. [PMID: 36918615 PMCID: PMC10014869 DOI: 10.1038/s41598-023-31117-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
The aging-protective gene α-Klotho (KL) produces two main transcripts. The full-length mRNA generates a transmembrane protein that after proteolytic ectodomain shedding can be detected in serum as processed Klotho (p-KL), and a shorter transcript which codes for a putatively secreted protein (s-KL). Both isoforms exhibit potent pleiotropic beneficial properties, although previous reports showed negative side effects on mineral homeostasis after increasing p-KL concentration exogenously. Here, we expressed independently both isoforms using gene transfer vectors, to assess s-KL effects on mineral metabolism. While mice treated with p-KL presented altered expression of several kidney ion channels, as well as altered levels of Pi and Ca2+ in blood, s-KL treated mice had levels comparable to Null-treated control mice. Besides, bone gene expression of Fgf23 showed a fourfold increase after p-KL treatment, effects not observed with the s-KL isoform. Similarly, bone microstructure parameters of p-KL-treated mice were significantly worse than in control animals, while this was not observed for s-KL, which showed an unexpected increase in trabecular thickness and cortical mineral density. As a conclusion, s-KL (but not p-KL) is a safe therapeutic strategy to exploit KL anti-aging protective effects, presenting no apparent negative effects over mineral metabolism and bone microstructure.
Collapse
Affiliation(s)
- Joan Roig-Soriano
- Department of Biochemistry and Molecular Biology, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Cristina Sánchez-de-Diego
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Jon Esandi-Jauregui
- Department of Biochemistry and Molecular Biology, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Sergi Verdés
- Department of Biochemistry and Molecular Biology, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Carmela R Abraham
- Departments of Biochemistry and Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Assumpció Bosch
- Department of Biochemistry and Molecular Biology, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Miguel Chillón
- Department of Biochemistry and Molecular Biology, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain.
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.
- Unitat Producció de Vectors (UPV), Universitat Autònoma Barcelona, Bellaterra, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
15
|
Coenen L, Lehallier B, de Vries HE, Middeldorp J. Markers of aging: Unsupervised integrated analyses of the human plasma proteome. FRONTIERS IN AGING 2023; 4:1112109. [PMID: 36911498 PMCID: PMC9992741 DOI: 10.3389/fragi.2023.1112109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Aging associates with an increased susceptibility for disease and decreased quality of life. To date, processes underlying aging are still not well understood, leading to limited interventions with unknown mechanisms to promote healthy aging. Previous research suggests that changes in the blood proteome are reflective of age-associated phenotypes such as frailty. Moreover, experimentally induced changes in the blood proteome composition can accelerate or decelerate underlying aging processes. The aim of this study is to identify a set of proteins in the human plasma associated with aging by integration of the data of four independent, large-scaled datasets using the aptamer-based SomaScan platform on the human aging plasma proteome. Using this approach, we identified a set of 273 plasma proteins significantly associated with aging (aging proteins, APs) across these cohorts consisting of healthy individuals and individuals with comorbidities and highlight their biological functions. We validated the age-associated effects in an independent study using a centenarian population, showing highly concordant effects. Our results suggest that APs are more associated to diseases than other plasma proteins. Plasma levels of APs can predict chronological age, and a reduced selection of 15 APs can still predict individuals' age accurately, highlighting their potential as biomarkers of aging processes. Furthermore, we show that individuals presenting accelerated or decelerated aging based on their plasma proteome, respectively have a more aged or younger systemic environment. These results provide novel insights in the understanding of the aging process and its underlying mechanisms and highlight potential modulators contributing to healthy aging.
Collapse
Affiliation(s)
- L. Coenen
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - H. E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - J. Middeldorp
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, Netherlands
| |
Collapse
|
16
|
Prud’homme GJ, Kurt M, Wang Q. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations. FRONTIERS IN AGING 2022; 3:931331. [PMID: 35903083 PMCID: PMC9314780 DOI: 10.3389/fragi.2022.931331] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/06/2022]
Abstract
The α-Klotho protein (henceforth denoted Klotho) has antiaging properties, as first observed in mice homozygous for a hypomorphic Klotho gene (kl/kl). These mice have a shortened lifespan, stunted growth, renal disease, hyperphosphatemia, hypercalcemia, vascular calcification, cardiac hypertrophy, hypertension, pulmonary disease, cognitive impairment, multi-organ atrophy and fibrosis. Overexpression of Klotho has opposite effects, extending lifespan. In humans, Klotho levels decline with age, chronic kidney disease, diabetes, Alzheimer’s disease and other conditions. Low Klotho levels correlate with an increase in the death rate from all causes. Klotho acts either as an obligate coreceptor for fibroblast growth factor 23 (FGF23), or as a soluble pleiotropic endocrine hormone (s-Klotho). It is mainly produced in the kidneys, but also in the brain, pancreas and other tissues. On renal tubular-cell membranes, it associates with FGF receptors to bind FGF23. Produced in bones, FGF23 regulates renal excretion of phosphate (phosphaturic effect) and vitamin D metabolism. Lack of Klotho or FGF23 results in hyperphosphatemia and hypervitaminosis D. With age, human renal function often deteriorates, lowering Klotho levels. This appears to promote age-related pathology. Remarkably, Klotho inhibits four pathways that have been linked to aging in various ways: Transforming growth factor β (TGF-β), insulin-like growth factor 1 (IGF-1), Wnt and NF-κB. These can induce cellular senescence, apoptosis, inflammation, immune dysfunction, fibrosis and neoplasia. Furthermore, Klotho increases cell-protective antioxidant enzymes through Nrf2 and FoxO. In accord, preclinical Klotho therapy ameliorated renal, cardiovascular, diabetes-related and neurodegenerative diseases, as well as cancer. s-Klotho protein injection was effective, but requires further investigation. Several drugs enhance circulating Klotho levels, and some cross the blood-brain barrier to potentially act in the brain. In clinical trials, increased Klotho was noted with renin-angiotensin system inhibitors (losartan, valsartan), a statin (fluvastatin), mTOR inhibitors (rapamycin, everolimus), vitamin D and pentoxifylline. In preclinical work, antidiabetic drugs (metformin, GLP-1-based, GABA, PPAR-γ agonists) also enhanced Klotho. Several traditional medicines and/or nutraceuticals increased Klotho in rodents, including astaxanthin, curcumin, ginseng, ligustilide and resveratrol. Notably, exercise and sport activity increased Klotho. This review addresses molecular, physiological and therapeutic aspects of Klotho.
Collapse
Affiliation(s)
- Gérald J. Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
- *Correspondence: Gérald J. Prud’homme,
| | - Mervé Kurt
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
- Shanghai Yinuo Pharmaceutical Co., Ltd., Shanghai, China
| |
Collapse
|