1
|
Magurova M, Bacova M, Papcunova S, Kiss Bimbova K, Kuruc T, Kisucka A, Ihnatova L, Kucharova K, Lukacova N, Galik J. Exploring synergistic effects: Atorvastatin and electrical stimulation in spinal cord injury therapy. IBRO Neurosci Rep 2025; 18:389-399. [PMID: 40124115 PMCID: PMC11927724 DOI: 10.1016/j.ibneur.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/23/2025] [Indexed: 03/25/2025] Open
Abstract
Spinal cord trauma represents a significant clinical challenge, and improving patient outcomes is a main priority for many scientific teams globally. Despite advances in the understanding its pathogenesis, the overall mechanisms occurring in the spinal cord after traumatic injury remain unclear. This study explores the possible synergistic effects of a regenerative therapy that combines electrical stimulation with the anti-inflammatory drug Atorvastatin (ATR) after spinal cord injury (SCI). SCI was induced at the T9 segment under isoflurane anesthesia and applying a compression force of 40 g for 15 minutes. An oscillating field stimulator (OFS) was implanted subcutaneously, delivering a weak electric current (50 µA) that changed polarity every 15 minutes for six weeks to promote axonal growth at the injury site. Female Wistar albino rats were divided into four groups: SCI with non-functional stimulator (SCI + nOFS), SCI with functional stimulator (SCI+OFS), and two groups that received ATR together with stimulator for 7 days after injury (SCI+OFS+ATR, SCI+nOFS+ATR). Behavioral tests (hot-plate test and BBB scale) showed improvement in sensory and motor performance in animals treated with the combination therapy. The protein levels of astrocytes (GFAP), neurofilaments (NF-L), newly sprouting axons (GAP-43), and oligodendrocytes (PLP -1, CNPase) were analysed by Western blot. The results showed increased neurofilaments, newly sprouting axons and oligodendrocytes in groups receiving both individual and combination therapies, with a decrease in their concentrations in the following order: SCI+OFS+ATR, SCI+nOFS+ATR, SCI+OFS, SCI+nOFS. In addition, astrocyte protein levels were lower in the SCI+OFS+ATR group compared with others. Histological analysis showed a significant reduction in white and gray matter after SCI, but less white and gray matter volume loss was found in the groups receiving therapies (SCI+OFS+ATR, SCI+nOFS+ATR, SCI+OFS). These results suggest that the combination of Atorvastatin with OFS stimulation promotes neural recovery after SCI, highlighting the potential of combination therapies in enhancing regenerative outcomes.
Collapse
Affiliation(s)
- Martina Magurova
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4-6, Kosice 040 01, Slovakia
| | - Maria Bacova
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4-6, Kosice 040 01, Slovakia
| | - Stefania Papcunova
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4-6, Kosice 040 01, Slovakia
| | - Katarina Kiss Bimbova
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4-6, Kosice 040 01, Slovakia
| | - Tomas Kuruc
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4-6, Kosice 040 01, Slovakia
| | - Alexandra Kisucka
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4-6, Kosice 040 01, Slovakia
| | - Lenka Ihnatova
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4-6, Kosice 040 01, Slovakia
| | - Karolina Kucharova
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4-6, Kosice 040 01, Slovakia
| | - Nadezda Lukacova
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4-6, Kosice 040 01, Slovakia
| | - Jan Galik
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4-6, Kosice 040 01, Slovakia
| |
Collapse
|
2
|
Kim G, Seo J, Kim B, Park YH, Lee HJ, Guo F, Lee DS. Oligodendrocyte Precursor Cell-Specific HMGB1 Knockout Reduces Immune Cell Infiltration and Demyelination in Experimental Autoimmune Encephalomyelitis Models. Neurosci Bull 2025:10.1007/s12264-025-01381-9. [PMID: 40111744 DOI: 10.1007/s12264-025-01381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 12/07/2024] [Indexed: 03/22/2025] Open
Abstract
Infiltration and activation of peripheral immune cells are critical in the progression of multiple sclerosis and its experimental animal model, experimental autoimmune encephalomyelitis (EAE). This study investigates the role of high mobility group box 1 (HMGB1) in oligodendrocyte precursor cells (OPCs) in modulating pathogenic T cells infiltrating the central nervous system through the blood-brain barrier (BBB) by using OPC-specific HMGB1 knockout (KO) mice. We found that HMGB1 released from OPCs promotes BBB disruption, subsequently allowing increased immune cell infiltration. The migration of CD4+ T cells isolated from EAE-induced mice was enhanced when co-cultured with OPCs compared to oligodendrocytes (OLs). OPC-specific HMGB1 KO mice exhibited lower BBB permeability and reduced immune cell infiltration into the CNS, leading to less damage to the myelin sheath and mitigated EAE progression. CD4+ T cell migration was also reduced when co-cultured with HMGB1 knock-out OPCs. Our findings reveal that HMGB1 secretion from OPCs is crucial for regulating immune cell infiltration and provides insights into the immunomodulatory function of OPCs in autoimmune diseases.
Collapse
Affiliation(s)
- Gyuree Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - JiHye Seo
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Bokyung Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Illimis Therapeutics, Inc., Seoul, 06376, Republic of Korea
| | - Young-Ho Park
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
| | - Hong Jun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Research Institute, huMetaCELL Inc., 220 Bugwang-ro, Bucheon-si, Gyeonggi-do, 14786, Republic of Korea
| | - Fuzheng Guo
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA
- Department of Neurology, School of Medicine, University of California, Davis, Davis, CA, 95817, USA
| | - Dong-Seok Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
3
|
Martín-Lopez G, Mallavibarrena PR, Villa-Gonzalez M, Vidal N, Pérez-Alvarez MJ. The dynamics of oligodendrocyte populations following permanent ischemia promotes long-term spontaneous remyelination of damaged area. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167270. [PMID: 38823461 DOI: 10.1016/j.bbadis.2024.167270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Stroke is a major public health concern, with limited clinically approved interventions available to enhance sensorimotor recovery beyond reperfusion. Remarkably, spontaneous recovery is observed in certain stroke patients, suggesting the existence of a brain self-repair mechanism not yet fully understood. In a rat model of permanent cerebral ischemia, we described an increase in oligodendrocytes expressing 3RTau in damaged area. Considering that restoration of myelin integrity ameliorates symptoms in many neurodegenerative diseases, here we hypothesize that this cellular response could trigger remyelination. Our results revealed after ischemia an early recruitment of OPCs to damaged area, followed by their differentiation into 3RTau+ pre-myelinating cells and subsequent into remyelinating oligodendrocytes. Using rat brain slices and mouse primary culture we confirmed the presence of 3RTau in pre-myelinating and a subset of mature oligodendrocytes. The myelin status analysis confirmed long-term remyelination in the damaged area. Postmortem samples from stroke subjects showed a reduction in oligodendrocytes, 3RTau+ cells, and myelin complexity in subcortical white matter. In conclusion, the dynamics of oligodendrocyte populations after ischemia reveals a spontaneous brain self-repair mechanism which restores the functionality of neuronal circuits long-term by remyelination of damaged area. This is evidenced by the improvement of sensorimotor functions in ischemic rats. A deep understanding of this mechanism could be valuable in the search for alternative oligodendrocyte-based, therapeutic interventions to reduce the effects of stroke.
Collapse
Affiliation(s)
- Gerardo Martín-Lopez
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Paula R Mallavibarrena
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mario Villa-Gonzalez
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Noemi Vidal
- Departamento de Patología, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Maria José Pérez-Alvarez
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid, Centro de Biología Molecular Severo Ochoa (CBM), Departamento de Neuropatología Molecular UAM-CSIC, 28049 Madrid, Spain.
| |
Collapse
|
4
|
Emery B, Wood TL. Regulators of Oligodendrocyte Differentiation. Cold Spring Harb Perspect Biol 2024; 16:a041358. [PMID: 38503504 PMCID: PMC11146316 DOI: 10.1101/cshperspect.a041358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Myelination has evolved as a mechanism to ensure fast and efficient propagation of nerve impulses along axons. Within the central nervous system (CNS), myelination is carried out by highly specialized glial cells, oligodendrocytes. The formation of myelin is a prolonged aspect of CNS development that occurs well into adulthood in humans, continuing throughout life in response to injury or as a component of neuroplasticity. The timing of myelination is tightly tied to the generation of oligodendrocytes through the differentiation of their committed progenitors, oligodendrocyte precursor cells (OPCs), which reside throughout the developing and adult CNS. In this article, we summarize our current understanding of some of the signals and pathways that regulate the differentiation of OPCs, and thus the myelination of CNS axons.
Collapse
Affiliation(s)
- Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| |
Collapse
|
5
|
Ishibashi S, Kamei N, Tsuchikawa Y, Nakamae T, Akimoto T, Miyaki S, Adachi N. Myelin-Specific microRNA-23a/b Cluster Deletion Inhibits Myelination in the Central Nervous System during Postnatal Growth and Aging. Genes (Basel) 2024; 15:402. [PMID: 38674338 PMCID: PMC11049049 DOI: 10.3390/genes15040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Microribonucleic acids (miRNAs) comprising miR-23a/b clusters, specifically miR-23a and miR-27a, are recognized for their divergent roles in myelination within the central nervous system. However, cluster-specific miRNA functions remain controversial as miRNAs within the same cluster have been suggested to function complementarily. This study aims to clarify the role of miR-23a/b clusters in myelination using mice with a miR-23a/b cluster deletion (KO mice), specifically in myelin expressing proteolipid protein (PLP). Inducible conditional KO mice were generated by crossing miR-23a/b clusterflox/flox mice with PlpCre-ERT2 mice; the offspring were injected with tamoxifen at 10 days or 10 weeks of age to induce a myelin-specific miR-23a/b cluster deletion. Evaluation was performed at 10 weeks or 12 months of age and compared with control mice that were not treated with tamoxifen. KO mice exhibit impaired motor function and hypoplastic myelin sheaths in the brain and spinal cord at 10 weeks and 12 months of age. Simultaneously, significant decreases in myelin basic protein (MBP) and PLP expression occur in KO mice. The percentages of oligodendrocyte precursors and mature oligodendrocytes are consistent between the KO and control mice. However, the proportion of oligodendrocytes expressing MBP is significantly lower in KO mice. Moreover, changes in protein expression occur in KO mice, with increased leucine zipper-like transcriptional regulator 1 expression, decreased R-RAS expression, and decreased phosphorylation of extracellular signal-regulated kinases. These findings highlight the significant influence of miR-23a/b clusters on myelination during postnatal growth and aging.
Collapse
Affiliation(s)
- Shigeki Ishibashi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.I.); (T.N.); (S.M.); (N.A.)
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.I.); (T.N.); (S.M.); (N.A.)
| | - Yuji Tsuchikawa
- Orthopedics and Micro-Surgical Spine Center, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima 731-0293, Japan;
| | - Toshio Nakamae
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.I.); (T.N.); (S.M.); (N.A.)
| | - Takayuki Akimoto
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan;
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.I.); (T.N.); (S.M.); (N.A.)
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.I.); (T.N.); (S.M.); (N.A.)
| |
Collapse
|
6
|
Perrier S, Gauquelin L, Bernard G. Inherited white matter disorders: Hypomyelination (myelin disorders). HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:197-223. [PMID: 39322379 DOI: 10.1016/b978-0-323-99209-1.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hypomyelinating leukodystrophies are a subset of genetic white matter diseases characterized by insufficient myelin deposition during development. MRI patterns are used to identify hypomyelinating disorders, and genetic testing is used to determine the causal genes implicated in individual disease forms. Clinical course can range from severe, with patients manifesting neurologic symptoms in infancy or early childhood, to mild, with onset in adolescence or adulthood. This chapter discusses the most common hypomyelinating leukodystrophies, including X-linked Pelizaeus-Merzbacher disease and other PLP1-related disorders, autosomal recessive Pelizaeus-Merzbacher-like disease, and POLR3-related leukodystrophy. PLP1-related disorders are caused by hemizygous pathogenic variants in the proteolipid protein 1 (PLP1) gene, and encompass classic Pelizaeus-Merzbacher disease, the severe connatal form, PLP1-null syndrome, spastic paraplegia type 2, and hypomyelination of early myelinating structures. Pelizaeus-Merzbacher-like disease presents a similar clinical picture to Pelizaeus-Merzbacher disease, however, it is caused by biallelic pathogenic variants in the GJC2 gene, which encodes for the gap junction protein Connexin-47. POLR3-related leukodystrophy, or 4H leukodystrophy (hypomyelination, hypodontia, and hypogonadotropic hypogonadism), is caused by biallelic pathogenic variants in genes encoding specific subunits of the transcription enzyme RNA polymerase III. In this chapter, the clinical features, disease pathophysiology and genetics, imaging patterns, as well as supportive and future therapies are discussed for each disorder.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Laurence Gauquelin
- Division of Pediatric Neurology, Department of Pediatrics, CHUL et Centre Mère-Enfant Soleil du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Departments of Pediatrics and Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
7
|
Zhu Y, Luan C, Gong L, Gu Y, Wang X, Sun H, Chen Z, Zhou Q, Liu C, Shan Q, Gu X, Zhou S. SnRNA-seq reveals the heterogeneity of spinal ventral horn and mechanism of motor neuron axon regeneration. iScience 2023; 26:107264. [PMID: 37502257 PMCID: PMC10368823 DOI: 10.1016/j.isci.2023.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/02/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Spinal motor neurons, the distinctive neurons of the central nervous system, extend into the peripheral nervous system and have outstanding ability of axon regeneration after injury. Here, we explored the heterogeneity of spinal ventral horn cells after rat sciatic nerve crush via single-nuclei RNA sequencing. Interestingly, regeneration mainly occurred in a Sncg+ and Anxa2+ motor neuron subtype (MN2) surrounded by a newly emerged microglia subtype (Mg6) after injury. Subsequently, microglia depletion slowed down the regeneration of sciatic nerve. OPCs were also involved into the regeneration process. Knockdown of Cacna2d2 in vitro and systemic blocking of Cacna2d2 in vivo improved the axon growth ability, hinting us the importance of Ca2+. Ultimately, we proposed three possible phases of motor neuron axon regeneration: preparation stage, early regeneration stage, and regeneration stage. Taken together, our study provided a resource for deciphering the underlying mechanism of motor neuron axon regeneration in a single cell dimension.
Collapse
Affiliation(s)
- Ye Zhu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China
| | - Chengcheng Luan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China
| | - Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Yun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Zhifeng Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Qiang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Chang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Qi Shan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300000, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
8
|
Valeri A, Chiricosta L, D’Angiolini S, Pollastro F, Salamone S, Mazzon E. Cannabichromene Induces Neuronal Differentiation in NSC-34 Cells: Insights from Transcriptomic Analysis. Life (Basel) 2023; 13:life13030742. [PMID: 36983897 PMCID: PMC10051538 DOI: 10.3390/life13030742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Phytocannabinoids, with their variety of beneficial effects, represent a valid group of substances that could be employed as neurogenesis-enhancers or neuronal differentiation inducers. We focused our attention on the neuronal-related potential of cannabichromene (CBC) when administered to undifferentiated NSC-34 for 24 h. Transcriptomic analysis showed an upregulation of several neuronal markers, such as Neurod1 and Tubb3, as well as indicators of neuronal differentiation process progression, such as Pax6. An in-depth investigation of the processes involved in neuronal differentiation indicates positive cytoskeleton remodeling by upregulation of Cfl2 and Tubg1, and active differentiation-targeted transcriptional program, suggested by Phox2b and Hes1. After 48 h of treatment, the markers previously examined in the transcriptomic analysis are still overexpressed, like Ache and Hes1, indicating that the differentiation process is still in progress. The lack of GFAP protein suggests that no astroglial differentiation is taking place, and it is reasonable to indicate the neuronal one as the ongoing one. These results indicate CBC as a potential neuronal differentiation inducer for NSC-34 cells.
Collapse
Affiliation(s)
- Andrea Valeri
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Simone D’Angiolini
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- Plantachem S.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- Plantachem S.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
- Correspondence:
| |
Collapse
|
9
|
Woods C, Flockton AR, Wallace LE, Keenan CM, Macklin WB, Sharkey KA, Belkind-Gerson J. Proteolipid protein 1 is involved in the regulation of intestinal motility and barrier function in the mouse. Am J Physiol Gastrointest Liver Physiol 2023; 324:G115-G130. [PMID: 36511517 DOI: 10.1152/ajpgi.00171.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Proteolipid protein 1 (Plp1) is highly expressed in enteric glia, labeling cells throughout the mucosa, muscularis, and the extrinsic innervation. Plp1 is a major constituent of myelin in the central and peripheral nervous systems, but the absence of myelin in the enteric nervous system (ENS) suggests another role for Plp1 in the gut. Although the functions of enteric glia are still being established, there is strong evidence that they regulate intestinal motility and permeability. To interrogate the role of Plp1 in enteric glia, we investigated gut motility, secretomotor function and permeability, and evaluated the ENS in mice lacking Plp1. We studied two time points: ∼3 mo (young) and >1 yr (old). Old Plp1 null mice exhibited increased fecal output, decreased fecal water content, faster whole gut transit times, reduced intestinal permeability, and faster colonic migrating motor complexes. Interestingly, in both young and old mice, the ENS exhibited normal glial and neuronal numbers as well as glial arborization density in the absence of Plp1. As Plp1-associated functions involve mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (Mapk/Erk1/2) signaling and Mapk/Erk1/2 are reported to have a regulatory role in intestinal motility, we measured protein expression of Erk1/2 and its active form in the small intestine. Old Plp1 null mice had reduced levels of phosphorylated-Erk1/2. Although Plp1 is not required for the normal appearance of enteric glial cells, it has a regulatory role in intestinal motility and barrier function. Our results suggest that functional changes mediated by Plp1-expressing enteric glia may involve Erk1/2 activation.NEW & NOTEWORTHY Here, we describe that Plp1 regulates gut motility and barrier function. The functional effects of Plp1 eradication are only seen in old mice, not young. The effects of Plp1 appear to be mediated through the Erk1/2 pathway.
Collapse
Affiliation(s)
- Crystal Woods
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Amanda R Flockton
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Laurie E Wallace
- Department of Physiology and Pharmacology, Cumming School of Medicine, Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Catherine M Keenan
- Department of Physiology and Pharmacology, Cumming School of Medicine, Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Wendy B Macklin
- Department of Cell & Developmental Biology, University of Colorado, Aurora, Colorado
| | - Keith A Sharkey
- Department of Physiology and Pharmacology, Cumming School of Medicine, Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jaime Belkind-Gerson
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado, Aurora, Colorado.,Neurogastroenterology and Motility Program, Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
10
|
Romero JC, Berlinicke C, Chow S, Duan Y, Wang Y, Chamling X, Smirnova L. Oligodendrogenesis and myelination tracing in a CRISPR/Cas9-engineered brain microphysiological system. Front Cell Neurosci 2023; 16:1094291. [PMID: 36744062 PMCID: PMC9893511 DOI: 10.3389/fncel.2022.1094291] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Oligodendrocytes (OLs) are the myelin-forming cells of the central nervous system (CNS). Although OLs can be differentiated from human-induced pluripotent stem cells (hiPSCs), the in vitro modeling of axon myelination in human cells remains challenging. Brain microphysiological systems (bMPS, e.g. organoids) are complex three-dimensional (3D) cultures that offer an ideal system to study this process as OLs differentiate in a more in vivo-like environment; surrounded by neurons and astrocytes, which support the myelination of axons. Methods Here, we take advantage of CRISPR/Cas9 technology to generate a hiPSC line in which proteolipid protein 1 (PLP1), an OLs marker, is tagged with super-fold GFP (sfGFP). While generating the PLP1-sfGFP reporter, we used reverse transfection and obtained higher Knock-In (KI) efficiency compared to forward transfection (61-72 vs. 46%). Results After validation of the KI and quality control of the PLP1-sfGFP line, selected clones were differentiated into bMPS, and the fidelity, specificity, and function of the tagged PLP protein were verified in this model. We tracked different stages of oligodendrogenesis in the verified lines based on PLP1-sfGFP+ cells' morphology, and the presence of PLP1-sfGFP surrounding axons during bMPS' differentiation. Finally, we challenged the bMPS with cuprizone and quantified changes in both the percentage of PLP1-sfGFP expressing cells and the intensity of GFP expression. Discussion This work demonstrates an efficient method for generating hiPSC KI lines and the description of a new 3D model to study OL differentiation, migration, and maturation both during in vitro neurodevelopment as well as in response to environmental chemicals or disease-associated stressors.
Collapse
Affiliation(s)
- July Carolina Romero
- Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, MD, United States
| | - Cynthia Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sharon Chow
- Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, MD, United States
| | - Yukan Duan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yifei Wang
- Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, MD, United States
| | - Xitiz Chamling
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lena Smirnova
- Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
11
|
Cristobal CD, Lee HK. Development of myelinating glia: An overview. Glia 2022; 70:2237-2259. [PMID: 35785432 PMCID: PMC9561084 DOI: 10.1002/glia.24238] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023]
Abstract
Myelin is essential to nervous system function, playing roles in saltatory conduction and trophic support. Oligodendrocytes (OLs) and Schwann cells (SCs) form myelin in the central and peripheral nervous systems respectively and follow different developmental paths. OLs are neural stem-cell derived and follow an intrinsic developmental program resulting in a largely irreversible differentiation state. During embryonic development, OL precursor cells (OPCs) are produced in distinct waves originating from different locations in the central nervous system, with a subset developing into myelinating OLs. OPCs remain evenly distributed throughout life, providing a population of responsive, multifunctional cells with the capacity to remyelinate after injury. SCs derive from the neural crest, are highly dependent on extrinsic signals, and have plastic differentiation states. SC precursors (SCPs) are produced in early embryonic nerve structures and differentiate into multipotent immature SCs (iSCs), which initiate radial sorting and differentiate into myelinating and non-myelinating SCs. Differentiated SCs retain the capacity to radically change phenotypes in response to external signals, including becoming repair SCs, which drive peripheral regeneration. While several transcription factors and myelin components are common between OLs and SCs, their differentiation mechanisms are highly distinct, owing to their unique lineages and their respective environments. In addition, both OLs and SCs respond to neuronal activity and regulate nervous system output in reciprocal manners, possibly through different pathways. Here, we outline their basic developmental programs, mechanisms regulating their differentiation, and recent advances in the field.
Collapse
Affiliation(s)
- Carlo D. Cristobal
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA,Department of PediatricsBaylor College of MedicineHoustonTexasUSA,Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
12
|
Wang J, Yang L, Jiang M, Zhao C, Liu X, Berry K, Waisman A, Langseth AJ, Novitch BG, Bergles DE, Nishiyama A, Lu QR. Olig2 Ablation in Immature Oligodendrocytes Does Not Enhance CNS Myelination and Remyelination. J Neurosci 2022; 42:8542-8555. [PMID: 36198499 PMCID: PMC9665935 DOI: 10.1523/jneurosci.0237-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
The oligodendrocyte (OL) lineage transcription factor Olig2 is expressed throughout oligodendroglial development and is essential for oligodendroglial progenitor specification and differentiation. It was previously reported that deletion of Olig2 enhanced the maturation and myelination of immature OLs and accelerated the remyelination process. However, by analyzing multiple Olig2 conditional KO mouse lines (male and female), we conclude that Olig2 has the opposite effect and is required for OL maturation and remyelination. We found that deletion of Olig2 in immature OLs driven by an immature OL-expressing Plp1 promoter resulted in defects in OL maturation and myelination, and did not enhance remyelination after demyelination. Similarly, Olig2 deletion during premyelinating stages in immature OLs using Mobp or Mog promoter-driven Cre lines also did not enhance OL maturation in the CNS. Further, we found that Olig2 was not required for myelin maintenance in mature OLs but was critical for remyelination after lysolecithin-induced demyelinating injury. Analysis of genomic occupancy in immature and mature OLs revealed that Olig2 targets the enhancers of key myelination-related genes for OL maturation from immature OLs. Together, by leveraging multiple immature OL-expressing Cre lines, these studies indicate that Olig2 is essential for differentiation and myelination of immature OLs and myelin repair. Our findings raise fundamental questions about the previously proposed role of Olig2 in opposing OL myelination and highlight the importance of using Cre-dependent reporter(s) for lineage tracing in studying cell state progression.SIGNIFICANCE STATEMENT Identification of the regulators that promote oligodendrocyte (OL) myelination and remyelination is important for promoting myelin repair in devastating demyelinating diseases. Olig2 is expressed throughout OL lineage development. Ablation of Olig2 was reported to induce maturation, myelination, and remyelination from immature OLs. However, lineage-mapping analysis of Olig2-ablated cells was not conducted. Here, by leveraging multiple immature OL-expressing Cre lines, we observed no evidence that Olig2 ablation promotes maturation or remyelination of immature OLs. Instead, we find that Olig2 is required for immature OL maturation, myelination, and myelin repair. These data raise fundamental questions about the proposed inhibitory role of Olig2 against OL maturation and remyelination. Our findings highlight the importance of validating genetic manipulation with cell lineage tracing in studying myelination.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Lijun Yang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Minqing Jiang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Chuntao Zhao
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Xuezhao Liu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Kalen Berry
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Ari Waisman
- Institute for Molecular Medicine, Langenbeckstrasse 1, Mainz, 55131, Germany
| | - Abraham J Langseth
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Bennett G Novitch
- Department of Neurobiology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, Maryland 21205
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|
13
|
Kister A, Kister I. Overview of myelin, major myelin lipids, and myelin-associated proteins. Front Chem 2022; 10:1041961. [PMID: 36896314 PMCID: PMC9989179 DOI: 10.3389/fchem.2022.1041961] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/23/2022] [Indexed: 02/23/2023] Open
Abstract
Myelin is a modified cell membrane that forms a multilayer sheath around the axon. It retains the main characteristics of biological membranes, such as lipid bilayer, but differs from them in several important respects. In this review, we focus on aspects of myelin composition that are peculiar to this structure and differentiate it from the more conventional cell membranes, with special attention to its constituent lipid components and several of the most common and important myelin proteins: myelin basic protein, proteolipid protein, and myelin protein zero. We also discuss the many-fold functions of myelin, which include reliable electrical insulation of axons to ensure rapid propagation of nerve impulses, provision of trophic support along the axon and organization of the unmyelinated nodes of Ranvier, as well as the relationship between myelin biology and neurologic disease such as multiple sclerosis. We conclude with a brief history of discovery in the field and outline questions for future research.
Collapse
Affiliation(s)
- Alexander Kister
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Ilya Kister
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
14
|
Kempfle JS. Endoscopic-Assisted Drug Delivery for Inner Ear Regeneration. Otolaryngol Clin North Am 2021; 54:189-200. [PMID: 33243375 DOI: 10.1016/j.otc.2020.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sensorineural hearing loss is caused by irreversible loss of auditory hair cells and/or neurons and is increasing in prevalence. Hair cells and neurons do not regenerate after damage, but novel regeneration therapies based on small molecule drugs, gene therapy, and cell replacement strategies offer promising therapeutic options. Endogenous and exogenous regeneration techniques are discussed in context of their feasibility for hair cell and neuron regeneration. Gene therapy and treatment of synaptopathy represent promising future therapies. Minimally invasive endoscopic ear surgery offers a viable approach to aid in delivery of pharmacologic compounds, cells, or viral vectors to the inner ear for all of these techniques.
Collapse
Affiliation(s)
- Judith S Kempfle
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Eaton-Peabody Laboratories, C360, 243 Charles Street, Boston, MA 02114, USA.
| |
Collapse
|
15
|
Perera SN, Williams RM, Lyne R, Stubbs O, Buehler DP, Sauka-Spengler T, Noda M, Micklem G, Southard-Smith EM, Baker CVH. Insights into olfactory ensheathing cell development from a laser-microdissection and transcriptome-profiling approach. Glia 2020; 68:2550-2584. [PMID: 32857879 PMCID: PMC7116175 DOI: 10.1002/glia.23870] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
Olfactory ensheathing cells (OECs) are neural crest-derived glia that ensheath bundles of olfactory axons from their peripheral origins in the olfactory epithelium to their central targets in the olfactory bulb. We took an unbiased laser microdissection and differential RNA-seq approach, validated by in situ hybridization, to identify candidate molecular mechanisms underlying mouse OEC development and differences with the neural crest-derived Schwann cells developing on other peripheral nerves. We identified 25 novel markers for developing OECs in the olfactory mucosa and/or the olfactory nerve layer surrounding the olfactory bulb, of which 15 were OEC-specific (that is, not expressed by Schwann cells). One pan-OEC-specific gene, Ptprz1, encodes a receptor-like tyrosine phosphatase that blocks oligodendrocyte differentiation. Mutant analysis suggests Ptprz1 may also act as a brake on OEC differentiation, and that its loss disrupts olfactory axon targeting. Overall, our results provide new insights into OEC development and the diversification of neural crest-derived glia.
Collapse
Affiliation(s)
- Surangi N. Perera
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ruth M. Williams
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rachel Lyne
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Oliver Stubbs
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Dennis P. Buehler
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Japan
| | - Gos Micklem
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - E. Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Clare V. H. Baker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Kempfle JS, Luu NNC, Petrillo M, Al-Asad R, Zhang A, Edge ASB. Lin28 reprograms inner ear glia to a neuronal fate. Stem Cells 2020; 38:890-903. [PMID: 32246510 PMCID: PMC10908373 DOI: 10.1002/stem.3181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 12/16/2022]
Abstract
Sensorineural hearing loss is irreversible and can be caused by loss of auditory neurons. Regeneration of neural cells from endogenous cells may offer a future tool to restore the auditory circuit and to enhance the performance of implantable hearing devices. Neurons and glial cells in the peripheral nervous system are closely related and originate from a common progenitor. Prior work in our lab indicated that in the early postnatal mouse inner ear, proteolipid protein 1 (Plp1) expressing glial cells could act as progenitor cells for neurons in vitro. Here, we used a transgenic mouse model to transiently overexpress Lin28, a neural stem cell regulator, in Plp1-positive glial cells. Lin28 promoted proliferation and conversion of auditory glial cells into neurons in vitro. To study the effects of Lin28 on endogenous glial cells after loss of auditory neurons in vivo, we produced a model of auditory neuropathy by selectively damaging auditory neurons with ouabain. After neural damage was confirmed by the auditory brainstem response, we briefly upregulated the Lin28 in Plp1-expressing inner ear glial cells. One month later, we analyzed the cochlea for neural marker expression by quantitative RT-PCR and immunohistochemistry. We found that transient Lin28 overexpression in Plp1-expressing glial cells induced expression of neural stem cell markers and subsequent conversion into neurons. This suggests the potential for inner ear glia to be converted into neurons as a regeneration therapy for neural replacement in auditory neuropathy.
Collapse
Affiliation(s)
- Judith S. Kempfle
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
- University Department of Otolaryngology, Head and Neck Surgery, Tübingen, Germany
| | - Ngoc-Nhi C. Luu
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
- University Department of Otolaryngology, Head and Neck Surgery, Zürich, Switzerland
| | - Marco Petrillo
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Reef Al-Asad
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Andrea Zhang
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Albert S. B. Edge
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
17
|
Sobel RA, Eaton MJ, Jaju PD, Lowry E, Hinojoza JR. Anti-Myelin Proteolipid Protein Peptide Monoclonal Antibodies Recognize Cell Surface Proteins on Developing Neurons and Inhibit Their Differentiation. J Neuropathol Exp Neurol 2020; 78:819-843. [PMID: 31400116 PMCID: PMC6703999 DOI: 10.1093/jnen/nlz058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/30/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022] Open
Abstract
Using a panel of monoclonal antibodies (mAbs) to myelin proteolipid protein (PLP) peptides, we found that in addition to CNS myelin, mAbs to external face but not cytoplasmic face epitopes immunostained neurons in immature human CNS tissues and in adult hippocampal dentate gyrus and olfactory bulbs, that is neural stem cell niches (NSCN). To explore the pathobiological significance of these observations, we assessed the mAb effects on neurodifferentiation in vitro. The mAbs to PLP 50-69 (IgG1κ and IgG2aκ), and 178-191 and 200-219 (both IgG1κ) immunostained live cell surfaces and inhibited neurite outgrowth of E18 rat hippocampal precursor cells and of PC12 cells, which do not express PLP. Proteins immunoprecipitated from PC12 cell extracts and captured by mAb-coated magnetic beads were identified by GeLC-MS/MS. Each neurite outgrowth-inhibiting mAb captured a distinct set of neurodifferentiation molecules including sequence-similar M6 proteins and other unrelated membrane and extracellular matrix proteins, for example integrins, Eph receptors, NCAM-1, and protocadherins. These molecules are expressed in adult human NSCN and are implicated in the pathogenesis of many chronic CNS disease processes. Thus, diverse anti-PLP epitope autoantibodies may inhibit neuronal precursor cell differentiation via multispecific recognition of cell surface molecules thereby potentially impeding endogenous neuroregeneration in NSCN and in vivo differentiation of exogenous neural stem cells.
Collapse
Affiliation(s)
- Raymond A Sobel
- Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Mary Jane Eaton
- Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Prajakta Dilip Jaju
- Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Eugene Lowry
- Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Julian R Hinojoza
- Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
18
|
Guo S, Wang Y, Wang A. Identity and lineage fate of proteolipid protein 1 gene (Plp1)-expressing cells in the embryonic murine spinal cord. Dev Dyn 2020; 249:946-960. [PMID: 32353175 DOI: 10.1002/dvdy.184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/10/2020] [Accepted: 04/21/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The proteolipid protein (PLP) is the most abundant protein in the myelin sheath of the central nervous system (CNS). The gene coding PLP, proteolipid protein 1 (Plp1) is highly expressed in oligodendrocytes, the myelin-forming cells in the CNS. Previous studies demonstrate that Plp1 gene is expressed in the embryonic CNS much earlier before the generation of oligodendrocytes. However, the progenitor identity and the fate of Plp1-expressing cells are still elusive. RESULTS We employed genetic approaches to permanently label Plp1-expressing cells with the reporter enhanced yellow fluorescence protein (EYFP) and used multicolored immunohistochemistry to characterize their identity and lineage fate. We found that Plp1-expressing cells were initially present without spatial restrictions and later confined to the ventral progenitor domains of the embryonic spinal cord. Our fate-mapping results showed that Plp1-expressing cells during early embryogenesis were multipotent neural progenitor cells that gave rise to not only neurons but also glial progenitor cells whereas they were bipotent glial progenitor cells during later neural development stages and generated oligodendroglial and astroglial lineage cells but not neurons. Intriguingly, postnatal astrocytes generated from embryonic Plp1-expressing glial progenitor cells were present only in the ventral spinal cord. CONCLUSION Our study reveals that Plp1-expressing cells during embryonic neural development display dynamic cellular identities and have a broader lineage fate than oligodendroglial lineage.
Collapse
Affiliation(s)
- Shujing Guo
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, USA.,Mira Loma High School, Sacramento, California, USA
| | - Yan Wang
- Department of Neurology, School of Medicine, University of California Davis, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA.,Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| |
Collapse
|
19
|
Li S, Oh BC, Chu C, Arnold A, Jablonska A, Furtmüller GJ, Qin HM, Boltze J, Magnus T, Ludewig P, Janowski M, Brandacher G, Walczak P. Induction of immunological tolerance to myelinogenic glial-restricted progenitor allografts. Brain 2020; 142:3456-3472. [PMID: 31529023 DOI: 10.1093/brain/awz275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 06/22/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
The immunological barrier currently precludes the clinical utilization of allogeneic stem cells. Although glial-restricted progenitors have become attractive candidates to treat a wide variety of neurological diseases, their survival in immunocompetent recipients is limited. In this study, we adopted a short-term, systemically applicable co-stimulation blockade-based strategy using CTLA4-Ig and anti-CD154 antibodies to modulate T-cell activation in the context of allogeneic glial-restricted progenitor transplantation. We found that co-stimulation blockade successfully prevented rejection of allogeneic glial-restricted progenitors from immunocompetent mouse brains. The long-term engrafted glial-restricted progenitors myelinated dysmyelinated adult mouse brains within one month. Furthermore, we identified a set of plasma miRNAs whose levels specifically correlated to the dynamic changes of immunoreactivity and as such could serve as biomarkers for graft rejection or tolerance. We put forward a successful strategy to induce alloantigen-specific hyporesponsiveness towards stem cells in the CNS, which will foster effective therapeutic application of allogeneic stem cells.
Collapse
Affiliation(s)
- Shen Li
- Neurology Department, Dalian Municipal Central Hospital affiliated to Dalian Medical University, Dalian, China.,Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Byoung Chol Oh
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chengyan Chu
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Antje Arnold
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Anna Jablonska
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Georg J Furtmüller
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hua-Min Qin
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Tim Magnus
- Neurology Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Ludewig
- Neurology Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mirosław Janowski
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Piotr Walczak
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
20
|
Roles of Progesterone, Testosterone and Their Nuclear Receptors in Central Nervous System Myelination and Remyelination. Int J Mol Sci 2020; 21:ijms21093163. [PMID: 32365806 PMCID: PMC7246940 DOI: 10.3390/ijms21093163] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Progesterone and testosterone, beyond their roles as sex hormones, are neuroactive steroids, playing crucial regulatory functions within the nervous system. Among these, neuroprotection and myelin regeneration are important ones. The present review aims to discuss the stimulatory effects of progesterone and testosterone on the process of myelination and remyelination. These effects have been demonstrated in vitro (i.e., organotypic cultures) and in vivo (cuprizone- or lysolecithin-induced demyelination and experimental autoimmune encephalomyelitis (EAE)). Both steroids stimulate myelin formation and regeneration by acting through their respective intracellular receptors: progesterone receptors (PR) and androgen receptors (AR). Activation of these receptors results in multiple events involving direct transcription and translation, regulating general homeostasis, cell proliferation, differentiation, growth and myelination. It also ameliorates immune response as seen in the EAE model, resulting in a significant decrease in inflammation leading to a fast recovery. Although natural progesterone and testosterone have a therapeutic potential, their synthetic derivatives—the 19-norprogesterone (nestorone) and 7α-methyl-nortestosterone (MENT), already used as hormonal contraception or in postmenopausal hormone replacement therapies, may offer enhanced benefits for myelin repair. We summarize here a recent advancement in the field of myelin biology, to treat demyelinating disorders using the natural as well as synthetic analogs of progesterone and testosterone.
Collapse
|
21
|
Mechanistic Target of Rapamycin Regulates the Oligodendrocyte Cytoskeleton during Myelination. J Neurosci 2020; 40:2993-3007. [PMID: 32139584 DOI: 10.1523/jneurosci.1434-18.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
During differentiation, oligodendrocyte precursor cells (OPCs) extend a network of processes that make contact with axons and initiate myelination. Recent studies revealed that actin polymerization is required for initiation of myelination whereas actin depolymerization promotes myelin wrapping. Here, we used primary OPCs in culture isolated from neonatal rat cortices of both sexes and young male and female mice with oligodendrocyte-specific deletion of mechanistic target of rapamycin (mTOR) to demonstrate that mTOR regulates expression of specific cytoskeletal targets and actin reorganization in oligodendrocytes during developmental myelination. Loss or inhibition of mTOR reduced expression of profilin2 and ARPC3, actin polymerizing factors, and elevated levels of active cofilin, which mediates actin depolymerization. The deficits in actin polymerization were revealed in reduced phalloidin and deficits in oligodendrocyte cellular branching complexity at the peak of morphologic differentiation and a delay in initiation of myelination. We further show a critical role for mTOR in expression and localization of myelin basic protein (Mbp) mRNA and MBP protein to the cellular processes where it is necessary at the myelin membrane for axon wrapping. Mbp mRNA transport deficits were confirmed by single molecule RNA FISH. Moreover, expression of the kinesin family member 1B, an Mbp mRNA transport protein, was reduced in CC1+ cells in the mTOR cKO and in mTOR inhibited oligodendrocytes undergoing differentiation in vitro These data support the conclusion that mTOR regulates both initiation of myelination and axon wrapping by targeting cytoskeletal reorganization and MBP localization to oligodendrocyte processes.SIGNIFICANCE STATEMENT Myelination is essential for normal CNS development and adult axon preservation and function. The mechanistic target of rapamycin (mTOR) signaling pathway has been implicated in promoting CNS myelination; however, there is a gap in our understanding of the mechanisms by which mTOR promotes developmental myelination through regulating specific downstream targets. Here, we present evidence that mTOR promotes the initiation of myelination through regulating specific cytoskeletal targets and cellular process expansion by oligodendrocyte precursor cells as well as expression and cellular localization of myelin basic protein.
Collapse
|
22
|
Molina-Gonzalez I, Miron VE. Astrocytes in myelination and remyelination. Neurosci Lett 2019; 713:134532. [PMID: 31589903 DOI: 10.1016/j.neulet.2019.134532] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/13/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes are known to play critical roles in central nervous system development, homeostasis, and response to injury. In addition to well-defined functions in synaptic signalling and blood-brain barrier control, astrocytes are now emerging as important contributors to white matter health. Here, we review the roles of astrocytes in myelin formation and regeneration (remyelination), focusing on both direct interactions with oligodendrocyte lineage cells, and indirect influences via crosstalk with central nervous system resident macrophages, microglia.
Collapse
Affiliation(s)
- Irene Molina-Gonzalez
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Veronique E Miron
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
23
|
Oligodendrocytes in Development, Myelin Generation and Beyond. Cells 2019; 8:cells8111424. [PMID: 31726662 PMCID: PMC6912544 DOI: 10.3390/cells8111424] [Citation(s) in RCA: 375] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system (CNS) that are generated from oligodendrocyte progenitor cells (OPC). OPC are distributed throughout the CNS and represent a pool of migratory and proliferative adult progenitor cells that can differentiate into oligodendrocytes. The central function of oligodendrocytes is to generate myelin, which is an extended membrane from the cell that wraps tightly around axons. Due to this energy consuming process and the associated high metabolic turnover oligodendrocytes are vulnerable to cytotoxic and excitotoxic factors. Oligodendrocyte pathology is therefore evident in a range of disorders including multiple sclerosis, schizophrenia and Alzheimer’s disease. Deceased oligodendrocytes can be replenished from the adult OPC pool and lost myelin can be regenerated during remyelination, which can prevent axonal degeneration and can restore function. Cell population studies have recently identified novel immunomodulatory functions of oligodendrocytes, the implications of which, e.g., for diseases with primary oligodendrocyte pathology, are not yet clear. Here, we review the journey of oligodendrocytes from the embryonic stage to their role in homeostasis and their fate in disease. We will also discuss the most common models used to study oligodendrocytes and describe newly discovered functions of oligodendrocytes.
Collapse
|
24
|
Gopalasingam G, Bartlett CA, McGonigle T, Majimbi M, Warnock A, Ford A, Gough A, Toomey LM, Fitzgerald M. The effects of a combination of ion channel inhibitors on pathology in a model of demyelinating disease. Mult Scler Relat Disord 2019; 34:1-8. [PMID: 31202958 DOI: 10.1016/j.msard.2019.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 05/16/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) has been shown to feature oxidative damage, which can be modelled using the cuprizone model of demyelinating disease. Oxidative damage can occur as a result of excessive influx of calcium ions (Ca2+) and oligodendroglia are particularly vulnerable. However, the effects of limiting excess Ca2+ influx on oxidative damage, oligodendroglia and myelin structure are unknown. OBJECTIVE This study investigated the effects of limiting excess Ca2+ flux on oxidative damage and associated changes in oligodendroglial densities and Node of Ranvier structure in the cuprizone model. METHODS The effects of three weeks of cuprizone administration and of treatment with a combination of three ion channel inhibitors (Lomerizine, Brilliant Blue G (BBG) and YM872), were semi-quantified immunohistochemically. Outcomes assessed were protein nitration (3-nitrotyrosine (3NT)) oxidative damage to DNA (8-hydroxy deoxyguanosine (8OHDG)), advanced glycation end-products (carboxymethyl lysine (CML)), immunoreactivity of microglia (Iba1) and astrocytes (glial acidic fibrillary protein (GFAP)), densities of oligodendrocyte precursor cells (OPCs) (platelet derived growth factor alpha receptor (PDGFαR) with olig2) and oligodendrocytes (olig2 and CC1), and structural elements of the Node of Ranvier (contactin associated protein (Caspr)). RESULTS The administration of cuprizone resulted in increased protein nitration, DNA damage, and astrocyte and microglial immunoreactivity, a decrease in the density of oligodendrocytes and OPCs, together with altered structure of the Node of Ranvier and reduced myelin basic protein immunoreactivity. Treatment with the ion channel inhibitor combination significantly lowered protein nitration, increased the density of OPCs and reduced the number of atypical Node of Ranvier complexes; other outcomes were unaffected. CONCLUSION Our findings suggest that excess Ca2+ influx contributes to protein nitration, and associated changes to OPC densities and Node of Ranvier structure in demyelinating disease.
Collapse
Affiliation(s)
- Gopana Gopalasingam
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Nedlands, Western Australia 6009, Australia; School of Human Sciences, The University of Western Australia, 35 Stirling Hwy, Nedlands, Western Australia 6009, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Nedlands, Western Australia 6009, Australia
| | - Terence McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia
| | - Maimuna Majimbi
- Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia
| | - Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia
| | - Abbey Ford
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Nedlands, Western Australia 6009, Australia
| | - Alexander Gough
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Nedlands, Western Australia 6009, Australia
| | - Lillian M Toomey
- Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, Western Australia 6009, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Nedlands, Western Australia 6009, Australia; Curtin Health Innovation Research Institute, Curtin University, Belmont, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, Western Australia 6009, Australia.
| |
Collapse
|
25
|
Preston MA, Finseth LT, Bourne JN, Macklin WB. A novel myelin protein zero transgenic zebrafish designed for rapid readout of in vivo myelination. Glia 2019; 67:650-667. [PMID: 30623975 PMCID: PMC6555554 DOI: 10.1002/glia.23559] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022]
Abstract
Demyelination occurs following many neurological insults, most notably in multiple sclerosis (MS). Therapeutics that promote remyelination could slow the neurological decline associated with chronic demyelination; however, in vivo testing of candidate small molecule drugs and signaling cascades known to impact myelination is expensive and labor intensive. Here, we describe the development of a novel zebrafish line which uses the putative promoter of Myelin Protein Zero (mpz), a major structural protein in myelin, to drive expression of Enhanced Green Fluorescent Protein (mEGFP) specifically in the processes and nascent internodes of myelinating glia. We observe that changes in fluorescence intensity in Tg(mpz:mEGFP) larvae are a reliable surrogate for changes in myelin membrane production per se in live larvae following bath application of drugs. These changes in fluorescence are strongly predictive of changes in myelin-specific mRNAs [mpz, 36K and myelin basic protein (mbp)] and protein production (Mbp). Finally, we observe that certain drugs alter nascent internode number and length, impacting the overall amount of myelin membrane synthesized and a number of axons myelinated without significantly changing the number of myelinating oligodendrocytes. These studies demonstrate that the Tg(mpz:mEGFP) reporter line responds effectively to positive and negative small molecule regulators of myelination, and could be useful for identifying candidate drugs that specifically target myelin membrane production in vivo. Combined with high throughput cell-based screening of large chemical libraries and automated imaging systems, this transgenic line is useful for rapid large scale whole animal screening to identify novel myelinating small molecule compounds in vivo.
Collapse
Affiliation(s)
- Marnie A Preston
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Lisbet T Finseth
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jennifer N Bourne
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
26
|
Haindl MT, Köck U, Zeitelhofer‐Adzemovic M, Fazekas F, Hochmeister S. The formation of a glial scar does not prohibit remyelination in an animal model of multiple sclerosis. Glia 2019; 67:467-481. [PMID: 30484905 PMCID: PMC6588096 DOI: 10.1002/glia.23556] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 01/12/2023]
Abstract
The role of astrocytes in the pathophysiology of multiple sclerosis (MS) is discussed controversially. Especially the formation of the glial scar is often believed to act as a barrier for remyelination. At the same time, astrocytes are known to produce factors that influence oligodendrocyte precursor cell (OPC) survival. To explore these mechanisms, we investigated the astrocytic reaction in an animal model induced by immunization with myelin oligodendrocyte glycoprotein (MOG) in Dark Agouti (DA) rats, which mimics most of the histological features of MS. We correlated the astroglial reaction by immunohistochemistry (IHC) for glial fibrillary acidic protein (GFAP) to the remyelination capacity by in situ hybridization for mRNA of proteolipid protein (PLP), indicative of OPCs, over the full course of the disease. PLP mRNA peaked in early remyelinating lesions while the amount of GFAP positive astrocytes was highest in remyelinated lesions. In shadow plaques, we found at the same time all features of a glial scar and numbers of OPCs and mature oligodendrocytes, which were nearly equal to that in unaffected white matter areas. To assess the plaque environment, we furthermore quantitatively analyzed factors expressed by astrocytes previously suggested to influence remyelination. From our data, we conclude that remyelination occurs despite an abundant glial reaction in this animal model. The different patterns of astrocytic factors and the occurrence of different astrocytic phenotypes during lesion evolution furthermore indicate a finely regulated, balanced astrocytic involvement leading to successful repair.
Collapse
Affiliation(s)
| | - Ulrike Köck
- Center for Brain ResearchMedical University of ViennaViennaAustria
| | | | - Franz Fazekas
- Department of NeurologyMedical University of GrazGrazAustria
| | | |
Collapse
|
27
|
Ocklenburg S, Anderson C, Gerding WM, Fraenz C, Schlüter C, Friedrich P, Raane M, Mädler B, Schlaffke L, Arning L, Epplen JT, Güntürkün O, Beste C, Genç E. Myelin Water Fraction Imaging Reveals Hemispheric Asymmetries in Human White Matter That Are Associated with Genetic Variation in PLP1. Mol Neurobiol 2018; 56:3999-4012. [PMID: 30242727 DOI: 10.1007/s12035-018-1351-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022]
Abstract
Myelination of axons in the central nervous system is critical for human cognition and behavior. The predominant protein in myelin is proteolipid protein-making PLP1, the gene that encodes for proteolipid protein, one of the primary candidate genes for white matter structure in the human brain. Here, we investigated the relation of genetic variation within PLP1 and white matter microstructure as assessed with myelin water fraction imaging, a neuroimaging technique that has the advantage over conventional diffusion tensor imaging in that it allows for a more direct assessment of myelin content. We observed significant asymmetries in myelin water fraction that were strongest and rightward in the parietal lobe. Importantly, these parietal myelin water fraction asymmetries were associated with genetic variation in PLP1. These findings support the assumption that genetic variation in PLP1 affects white matter myelination in the healthy human brain.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University Bochum, Bochum, Germany.
| | - Catrona Anderson
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University Bochum, Bochum, Germany.,Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Wanda M Gerding
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Christoph Fraenz
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Caroline Schlüter
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Patrick Friedrich
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Maximilian Raane
- Faculty of Health, ZBAF, University of Witten/Herdecke, Witten, Germany
| | | | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Larissa Arning
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Jörg T Epplen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany.,Faculty of Health, ZBAF, University of Witten/Herdecke, Witten, Germany
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Erhan Genç
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
28
|
Groh J, Friedman HC, Orel N, Ip CW, Fischer S, Spahn I, Schäffner E, Hörner M, Stadler D, Buttmann M, Varallyay C, Solymosi L, Sendtner M, Peterson AC, Martini R. Pathogenic inflammation in the CNS of mice carrying human PLP1 mutations. Hum Mol Genet 2018; 25:4686-4702. [PMID: 28173160 DOI: 10.1093/hmg/ddw296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/12/2016] [Accepted: 08/21/2016] [Indexed: 01/03/2023] Open
Abstract
Progressive forms of multiple sclerosis lead to chronic disability, substantial decline in quality of life and reduced longevity. It is often suggested that they occur independently of inflammation. Here we investigated the disease progression in mouse models carrying PLP1 point mutations previously found in patients displaying clinical features of multiple sclerosis. These mouse models show loss-of-function of PLP1 associated with neuroinflammation; the latter leading to clinically relevant axonal degeneration, neuronal loss and brain atrophy as demonstrated by inactivation of the recombination activating gene 1. Moreover, these pathological hallmarks were substantially amplified when we attenuated immune regulation by inactivation of the programmed cell death-1 gene. Our observations support the view that primary oligodendroglial abnormalities can evoke pathogenically relevant neuroinflammation that drives neurodegeneration, as observed in some forms of multiple sclerosis but also in other, genetically-mediated neurodegenerative disorders of the human nervous system. As many potent immunomodulatory drugs have emerged during the last years, it is tempting to consider immunomodulation as a treatment option not only for multiple sclerosis, but also for so far non-treatable, genetically-mediated disorders of the nervous system accompanied by pathogenic neuroinflammation.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Hana C Friedman
- Laboratory of Developmental Biology, Ludmer Research and Training Building, McGill University, Montreal, QC, Canada
| | - Nadiya Orel
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Stefan Fischer
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Irene Spahn
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Erik Schäffner
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Michaela Hörner
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - David Stadler
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| | - Mathias Buttmann
- Department of Neurology, Multiple Sclerosis and Neuroimmunology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Csanad Varallyay
- Division of Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - László Solymosi
- Division of Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Alan C Peterson
- Laboratory of Developmental Biology, Ludmer Research and Training Building, McGill University, Montreal, QC, Canada
| | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080 Wuerzburg, Germany
| |
Collapse
|
29
|
McKenzie AT, Moyon S, Wang M, Katsyv I, Song WM, Zhou X, Dammer EB, Duong DM, Aaker J, Zhao Y, Beckmann N, Wang P, Zhu J, Lah JJ, Seyfried NT, Levey AI, Katsel P, Haroutunian V, Schadt EE, Popko B, Casaccia P, Zhang B. Multiscale network modeling of oligodendrocytes reveals molecular components of myelin dysregulation in Alzheimer's disease. Mol Neurodegener 2017; 12:82. [PMID: 29110684 PMCID: PMC5674813 DOI: 10.1186/s13024-017-0219-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/17/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Oligodendrocytes (OLs) and myelin are critical for normal brain function and have been implicated in neurodegeneration. Several lines of evidence including neuroimaging and neuropathological data suggest that Alzheimer's disease (AD) may be associated with dysmyelination and a breakdown of OL-axon communication. METHODS In order to understand this phenomenon on a molecular level, we systematically interrogated OL-enriched gene networks constructed from large-scale genomic, transcriptomic and proteomic data obtained from human AD postmortem brain samples. We then validated these networks using gene expression datasets generated from mice with ablation of major gene expression nodes identified in our AD-dysregulated networks. RESULTS The robust OL gene coexpression networks that we identified were highly enriched for genes associated with AD risk variants, such as BIN1 and demonstrated strong dysregulation in AD. We further corroborated the structure of the corresponding gene causal networks using datasets generated from the brain of mice with ablation of key network drivers, such as UGT8, CNP and PLP1, which were identified from human AD brain data. Further, we found that mice with genetic ablations of Cnp mimicked aspects of myelin and mitochondrial gene expression dysregulation seen in brain samples from patients with AD, including decreased protein expression of BIN1 and GOT2. CONCLUSIONS This study provides a molecular blueprint of the dysregulation of gene expression networks of OL in AD and identifies key OL- and myelination-related genes and networks that are highly associated with AD.
Collapse
Affiliation(s)
- Andrew T. McKenzie
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Sarah Moyon
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Neuroscience Initiative, The City University of New York, Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY 10031 USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Igor Katsyv
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Eric B. Dammer
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Duc M. Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
- Integrated Proteomics Core Facility, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Joshua Aaker
- Department of Neurology, The University of Chicago Pritzker School of Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637 USA
| | - Yongzhong Zhao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Noam Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - James J. Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
- Integrated Proteomics Core Facility, Emory University School of Medicine, Atlanta, GA 30322 USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Allan I. Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Pavel Katsel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Vahram Haroutunian
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center, Bronx, NY 10468 USA
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Brian Popko
- Department of Neurology, The University of Chicago Pritzker School of Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637 USA
| | - Patrizia Casaccia
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Neuroscience Initiative, The City University of New York, Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY 10031 USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| |
Collapse
|
30
|
Abi Ghanem C, Degerny C, Hussain R, Liere P, Pianos A, Tourpin S, Habert R, Macklin WB, Schumacher M, Ghoumari AM. Long-lasting masculinizing effects of postnatal androgens on myelin governed by the brain androgen receptor. PLoS Genet 2017; 13:e1007049. [PMID: 29107990 PMCID: PMC5690690 DOI: 10.1371/journal.pgen.1007049] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/16/2017] [Accepted: 09/28/2017] [Indexed: 12/17/2022] Open
Abstract
The oligodendrocyte density is greater and myelin sheaths are thicker in the adult male mouse brain when compared with females. Here, we show that these sex differences emerge during the first 10 postnatal days, precisely at a stage when a late wave of oligodendrocyte progenitor cells arises and starts differentiating. Androgen levels, analyzed by gas chromatography/tandem-mass spectrometry, were higher in males than in females during this period. Treating male pups with flutamide, an androgen receptor (AR) antagonist, or female pups with 5α-dihydrotestosterone (5α-DHT), revealed the importance of postnatal androgens in masculinizing myelin and their persistent effect into adulthood. A key role of the brain AR in establishing the sexual phenotype of myelin was demonstrated by its conditional deletion. Our results uncover a new persistent effect of postnatal AR signaling, with implications for neurodevelopmental disorders and sex differences in multiple sclerosis. Sex differences in brain structure are of great scientific and medical interest because the incidence and progress of many neurological and psychiatric disorders differ between males and females. They affect neural networks and also the myelin sheaths that insulate and protect axons and thus allow the rapid conduction of electrical impulses. In the central nervous system, myelin is formed by a particular type of cells named oligodendrocytes. In the male mouse brain, the density of oligodendrocytes is greater and myelin sheaths are thicker when compared with females. We show that these sex differences in myelin result from the long-lasting actions of androgens in males during their first 10 postnatal days. Importantly, the postnatal masculinizing effects of androgens involve brain androgen receptors as shown by the use of pharmacological and genetic tools. These findings are important for understanding sex-related differences in the susceptibility and progression of demyelinating diseases such as multiple sclerosis. They also reveal a so far unknown role of androgen receptor signaling in sexual differentiation of the brain.
Collapse
Affiliation(s)
- Charly Abi Ghanem
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
| | - Cindy Degerny
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
| | - Rashad Hussain
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
- Department of Neurosurgery, Institute for Translational Neuromedicine, University of Rochester, Rochester, NY, United States of America
| | - Philippe Liere
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
| | - Antoine Pianos
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
| | - Sophie Tourpin
- U566 Inserm, CEA, Universities Paris-Diderot and Paris-Sud, Fontenay aux Roses, France
| | - René Habert
- U566 Inserm, CEA, Universities Paris-Diderot and Paris-Sud, Fontenay aux Roses, France
| | - Wendy B. Macklin
- Department of Cell and Developmental Biology, University of Colorado, Aurora, CO, United States of America
| | - Michael Schumacher
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
- * E-mail: (AMG); (MS)
| | - Abdel M. Ghoumari
- U1195 Inserm and Universities Paris-Sud and Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre, France
- * E-mail: (AMG); (MS)
| |
Collapse
|
31
|
Kashfi S, Peymani M, Ghaedi K, Baharvand H, Nasr-Esfahani MH, Javan M. Purinergic Receptor Expression and Potential Association with Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cell Development. CELL JOURNAL 2017; 19:386-402. [PMID: 28836401 PMCID: PMC5570404 DOI: 10.22074/cellj.2017.3906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 08/28/2016] [Indexed: 12/19/2022]
Abstract
Objective Due to recent progress in production of human embryonic stem cell-derived oligodendrocyte progenitor cells (hESC-OPCs) for ameliorating myelin disease
such as multiple sclerosis (MS) and the role of purinergic signaling in OPCs development, we avaluated the profile of purinergic receptors expression during development
of OPCs from hESC. Materials and Methods In this experimental study, we used reverse transcription and
quantitative polymerase chain reaction (RT-qPCR) to obtain more information about
potential roles of purinergic receptors during in vitro production of hESC-OPCs. We
first determined the expression level of different subtypes of purinergic receptors in
hESCs, embryoid bodies (EBs), and hESC-OPCs. The effects of A1adenosine receptor (A1AR)
activation on hESC-OPCs development were subsequently examined. Results hESCs and OPCs had different mRNA expression levels of the AR subtypes.
ARs mRNA were expressed in the EB stage, except for A2AAR. We observed expressions
of several P2X (P2X1, 2, 3, 4, 5, 7) and P2Y (P2Y1, 2, 4, 6, 11-14) genes in hESCs. hESC-OPCs
expressed different subtypes of P2X (P2X1, 2, 3,4,5,7) and P2Y (P2Y1, 2, 4, 6, 11-14). Except for P2X1
and P2X6, all other P2X and P2Y purinergic receptor subtypes expressed in EBs. We also
indicate that A1AR might be involved in modulating gene expression levels of cell cycle
regulators in an agonist and/or dose-dependent manner.
Conclusion Elucidation of the expression pattern of purinergic receptors and the effects
of different subtypes of these receptors in hESC-OPCs may have a promising role in future cell-based therapy or drug design for demyelinating disease.
Collapse
Affiliation(s)
- Shirin Kashfi
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.,Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Maryam Peymani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.,Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mohammad Javan
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
32
|
Chaban YHG, Chen Y, Hertz E, Hertz L. Severe Convulsions and Dysmyelination in Both Jimpy and Cx32/47 -/- Mice may Associate Astrocytic L-Channel Function with Myelination and Oligodendrocytic Connexins with Internodal K v Channels. Neurochem Res 2017; 42:1747-1766. [PMID: 28214987 DOI: 10.1007/s11064-017-2194-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/12/2022]
Abstract
The Jimpy mouse illustrates the importance of interactions between astrocytes and oligodendrocytes. It has a mutation in Plp coding for proteolipid protein and DM20. Its behavior is normal at birth but from the age of ~2 weeks it shows severe convulsions associated with oligodendrocyte/myelination deficits and early death. A normally occurring increase in oxygen consumption by highly elevated K+ concentrations is absent in Jimpy brain slices and cultured astrocytes, reflecting that Plp at early embryonic stages affects common precursors as also shown by the ability of conditioned medium from normal astrocytes to counteract histological abnormalities. This metabolic response is now known to reflect opening of L-channels for Ca2+. The resulting deficiency in Ca2+ entry has many consequences, including lack of K+-stimulated glycogenolysis and release of gliotransmitter ATP. Lack of purinergic stimulation compromises oligodendrocyte survival and myelination and affects connexins and K+ channels. Mice lacking the oligodendrocytic connexins Cx32 and 47 show similar neurological dysfunction as Jimpy. This possibly reflects that K+ released by intermodal axonal Kv channels is transported underneath a loosened myelin sheath instead of reaching the extracellular space via connexin-mediated transport to oligodendrocytes, followed by release and astrocytic Na+,K+-ATPase-driven uptake with subsequent Kir4.1-facilitated release and neuronal uptake.
Collapse
Affiliation(s)
| | - Ye Chen
- Henry M. Jackson Foundation, Bethesda, MD, 20817, USA
| | - Elna Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, People's Republic of China
| | - Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
33
|
Nevin ZS, Factor DC, Karl RT, Douvaras P, Laukka J, Windrem MS, Goldman SA, Fossati V, Hobson GM, Tesar PJ. Modeling the Mutational and Phenotypic Landscapes of Pelizaeus-Merzbacher Disease with Human iPSC-Derived Oligodendrocytes. Am J Hum Genet 2017; 100:617-634. [PMID: 28366443 DOI: 10.1016/j.ajhg.2017.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/09/2017] [Indexed: 02/07/2023] Open
Abstract
Pelizaeus-Merzbacher disease (PMD) is a pediatric disease of myelin in the central nervous system and manifests with a wide spectrum of clinical severities. Although PMD is a rare monogenic disease, hundreds of mutations in the X-linked myelin gene proteolipid protein 1 (PLP1) have been identified in humans. Attempts to identify a common pathogenic process underlying PMD have been complicated by an incomplete understanding of PLP1 dysfunction and limited access to primary human oligodendrocytes. To address this, we generated panels of human induced pluripotent stem cells (hiPSCs) and hiPSC-derived oligodendrocytes from 12 individuals with mutations spanning the genetic and clinical diversity of PMD-including point mutations and duplication, triplication, and deletion of PLP1-and developed an in vitro platform for molecular and cellular characterization of all 12 mutations simultaneously. We identified individual and shared defects in PLP1 mRNA expression and splicing, oligodendrocyte progenitor development, and oligodendrocyte morphology and capacity for myelination. These observations enabled classification of PMD subgroups by cell-intrinsic phenotypes and identified a subset of mutations for targeted testing of small-molecule modulators of the endoplasmic reticulum stress response, which improved both morphologic and myelination defects. Collectively, these data provide insights into the pathogeneses of a variety of PLP1 mutations and suggest that disparate etiologies of PMD could require specific treatment approaches for subsets of individuals. More broadly, this study demonstrates the versatility of a hiPSC-based panel spanning the mutational heterogeneity within a single disease and establishes a widely applicable platform for genotype-phenotype correlation and drug screening in any human myelin disorder.
Collapse
Affiliation(s)
- Zachary S Nevin
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daniel C Factor
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Robert T Karl
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Jeremy Laukka
- Departments of Neurology and Neuroscience, College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA
| | - Martha S Windrem
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Neuroscience, Faculty of Medicine and Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Valentina Fossati
- New York Stem Cell Foundation Research Institute, New York, NY 10032, USA
| | - Grace M Hobson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Department of Pediatrics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
34
|
Myers KR, Liu G, Feng Y, Zheng JQ. Oligodendroglial defects during quakingviable cerebellar development. Dev Neurobiol 2015; 76:972-82. [PMID: 26645409 DOI: 10.1002/dneu.22369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/16/2015] [Accepted: 12/01/2015] [Indexed: 11/06/2022]
Abstract
The selective RNA-binding protein Quaking I (QKI) has previously been implicated in RNA localization and stabilization, alternative splicing, cell proliferation, and differentiation. The spontaneously-occurring quakingviable (qkv) mutant mouse exhibits a sharply attenuated level of QKI in myelin-producing cells, including oligodendrocytes (OL) because of the loss of an OL-specific promoter. The disruption of QKI in OLs results in severe hypomyelination of the central nervous system, but the underlying cellular mechanisms remain to be fully elucidated. In this study, we used the qkv mutant mouse as a model to study myelination defects in the cerebellum. We found that oligodendroglial development and myelination are adversely affected in the cerebellum of qkv mice. Specifically, we identified an increase in the total number of oligodendroglial precursor cells in qkv cerebella, a substantial portion of which migrated into the grey matter. Furthermore, these mislocalized oligodendroglial precursor cells retained their migratory morphology late into development. Interestingly, a number of these presumptive oligodendrocyte precursors were found at the Purkinje cell layer in qkv cerebella, resembling Bergman glia. These findings indicate that QKI is involved in multiple aspects of oligodendroglial development. QKI disruption can impact the cell fate of oligodendrocyte precursor cells, their migration and differentiation, and ultimately myelination in the cerebellum. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 972-982, 2016.
Collapse
Affiliation(s)
- Kenneth R Myers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, 30322.,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Guanglu Liu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Yue Feng
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - James Q Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, 30322.,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia, 30322.,Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, 30322
| |
Collapse
|
35
|
Myelin Proteolipid Protein Complexes with αv Integrin and AMPA Receptors In Vivo and Regulates AMPA-Dependent Oligodendrocyte Progenitor Cell Migration through the Modulation of Cell-Surface GluR2 Expression. J Neurosci 2015; 35:12018-32. [PMID: 26311781 DOI: 10.1523/jneurosci.5151-14.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED In previous studies, stimulation of ionotropic AMPA/kainate glutamate receptors on cultured oligodendrocyte cells induced the formation of a signaling complex that includes the AMPA receptor, integrins, calcium-binding proteins, and, surprisingly, the myelin proteolipid protein (PLP). AMPA stimulation of cultured oligodendrocyte progenitor cells (OPCs) also caused an increase in OPC migration. The current studies focused primarily on the formation of the PLP-αv integrin-AMPA receptor complex in vivo and whether complex formation impacts OPC migration in the brain. We found that in wild-type cerebellum, PLP associates with αv integrin and the calcium-impermeable GluR2 subunit of the AMPA receptor, but in mice lacking PLP, αv integrin did not associate with GluR2. Live imaging studies of OPC migration in ex vivo cerebellar slices demonstrated altered OPC migratory responses to neurotransmitter stimulation in the absence of PLP and GluR2 or when αv integrin levels were reduced. Chemotaxis assays of purified OPCs revealed that AMPA stimulation was neither attractive nor repulsive but clearly increased the migration rate of wild-type but not PLP null OPCs. AMPA receptor stimulation of wild-type OPCs caused decreased cell-surface expression of the GluR2 AMPA receptor subunit and increased intracellular Ca(2+) signaling, whereas PLP null OPCs did not reduce GluR2 at the cell surface or increase Ca(2+) signaling in response to AMPA treatment. Together, these studies demonstrate that PLP is critical for OPC responses to glutamate signaling and has important implications for OPC responses when levels of glutamate are high in the extracellular space, such as following demyelination. SIGNIFICANCE STATEMENT After demyelination, such as occurs in multiple sclerosis, remyelination of axons is often incomplete, leading to loss of neuronal function and clinical disability. Remyelination may fail because oligodendrocyte precursor cells (OPCs) do not completely migrate into demyelinated areas or OPCs in lesions may not mature into myelinating oligodendrocytes. We have found that the myelin proteolipid protein is critical to regulating OPC migratory responses to the neurotransmitter glutamate through modulation of cell-surface expression of the calcium-impermeable GluR2 subunit of the AMPA glutamate receptor and increased intercellular Ca(2+) signaling. Altered glutamate homeostasis has been reported in demyelinated lesions. Therefore, understanding how OPCs respond to glutamate has important implications for treatment after white matter injury and disease.
Collapse
|
36
|
The Wnt effector transcription factor 7-like 2 positively regulates oligodendrocyte differentiation in a manner independent of Wnt/β-catenin signaling. J Neurosci 2015; 35:5007-22. [PMID: 25810530 DOI: 10.1523/jneurosci.4787-14.2015] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genetic or pharmacological activation of canonical Wnt/β-catenin signaling inhibits oligodendrocyte differentiation. Transcription factor 7-like 2 (TCF7l2), also known as TCF4, is a Wnt effector induced transiently in the oligodendroglial lineage. A well accepted dogma is that TCF7l2 inhibits oligodendrocyte differentiation through activation of Wnt/β-catenin signaling. We report that TCF7l2 is upregulated transiently in postmitotic, newly differentiated oligodendrocytes. Using in vivo gene conditional ablation, we found surprisingly that TCF7l2 positively regulates neonatal and postnatal mouse oligodendrocyte differentiation during developmental myelination and remyelination in a manner independent of the Wnt/β-catenin signaling pathway. We also reveal a novel role of TCF7l2 in repressing a bone morphogenetic protein signaling pathway that is known to inhibit oligodendrocyte differentiation. Thus, our study provides novel data justifying therapeutic attempts to enhance, rather than inhibit, TCF7l2 signaling to overcome arrested oligodendroglial differentiation in multiple sclerosis and other demyelinating diseases.
Collapse
|
37
|
Chew LJ, DeBoy CA, Senatorov VV. Finding degrees of separation: experimental approaches for astroglial and oligodendroglial cell isolation and genetic targeting. J Neurosci Methods 2014; 236:125-47. [PMID: 25169049 PMCID: PMC4171043 DOI: 10.1016/j.jneumeth.2014.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022]
Abstract
The study of CNS glial cell function requires experimental methods to detect, purify, and manipulate each cell population with fidelity and specificity. With the identification and cloning of cell- and stage-specific markers, glial cell analysis techniques have grown beyond physical methods of tissue dissociation and cell culture, and become highly specific with immunoselection of cell cultures in vitro and genetic targeting in vivo. The unique plasticity of glial cells offers the potential for cell replacement therapies in neurological disease that utilize neural cells derived from transplanted neural stem and progenitor cells. In this mini-review, we outline general physical and genetic approaches for macroglial cell generation. We summarize cell culture methods to obtain astrocytes and oligodendrocytes and their precursors, from developing and adult tissue, as well as approaches to obtain human neural progenitor cells through the establishment of stem cells. We discuss popular targeting rodent strains designed for cell-specific detection, selection and manipulation of neuroglial cell progenitors and their committed progeny. Based on shared markers between astrocytes and stem cells, we discuss genetically modified mouse strains with overlapping expression, and highlight SOX-expressing strains available for targeting of stem and progenitor cell populations. We also include recently established mouse strains for detection, and tag-assisted RNA and miRNA analysis. This discussion aims to provide a brief overview of the rapidly expanding collection of experimental approaches and genetic resources for the isolation and targeting of macroglial cells, their sources, progeny and gene products to facilitate our understanding of their properties and potential application in pathology.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, United States.
| | - Cynthia A DeBoy
- Biology Department, Trinity Washington University, Washington, DC, United States
| | - Vladimir V Senatorov
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| |
Collapse
|