1
|
Terauchi A, Johnson-Venkatesh EM, Umemori H. Establishing functionally segregated dopaminergic circuits. Trends Neurosci 2025; 48:156-170. [PMID: 39863490 PMCID: PMC11951916 DOI: 10.1016/j.tins.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/04/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025]
Abstract
Despite accounting for only ~0.001% of all neurons in the human brain, midbrain dopaminergic neurons control numerous behaviors and are associated with many neuropsychiatric disorders that affect our physical and mental health. Dopaminergic neurons form various anatomically and functionally segregated pathways. Having such defined dopaminergic pathways is key to controlling varied sets of brain functions; therefore, segregated dopaminergic pathways must be properly and uniquely formed during development. How are these segregated pathways established? The three key developmental stages that dopaminergic neurons go through are cell migration, axon guidance, and synapse formation. In each stage, dopaminergic neurons and their processes receive unique molecular cues to guide the formation of specific dopaminergic pathways. Here, we outline the molecular mechanisms underlying the establishment of segregated dopaminergic pathways during each developmental stage in the mouse brain, focusing on the formation of the three major dopaminergic pathways: the nigrostriatal, mesolimbic, and mesocortical pathways. We propose that multiple stage-specific molecular gradients cooperate to establish functionally segregated dopaminergic circuits.
Collapse
Affiliation(s)
- Akiko Terauchi
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Erin M Johnson-Venkatesh
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Rybiczka-Tešulov M, Garritsen O, Venø MT, Wieg L, Dijk RV, Rahimi K, Gomes-Duarte A, Wit MD, van de Haar LL, Michels L, van Kronenburg NCH, van der Meer C, Kjems J, Vangoor VR, Pasterkamp RJ. Circular RNAs regulate neuron size and migration of midbrain dopamine neurons during development. Nat Commun 2024; 15:6773. [PMID: 39117691 PMCID: PMC11310423 DOI: 10.1038/s41467-024-51041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Midbrain dopamine (mDA) neurons play an essential role in cognitive and motor behaviours and are linked to different brain disorders. However, the molecular mechanisms underlying their development, and in particular the role of non-coding RNAs (ncRNAs), remain incompletely understood. Here, we establish the transcriptomic landscape and alternative splicing patterns of circular RNAs (circRNAs) at key developmental timepoints in mouse mDA neurons in vivo using fluorescence-activated cell sorting followed by short- and long-read RNA sequencing. In situ hybridisation shows expression of several circRNAs during early mDA neuron development and post-transcriptional silencing unveils roles for different circRNAs in regulating mDA neuron morphology. Finally, in utero electroporation and time-lapse imaging implicate circRmst, a circRNA with widespread morphological effects, in the migration of developing mDA neurons in vivo. Together, these data for the first time suggest a functional role for circRNAs in developing mDA neurons and characterise poorly defined aspects of mDA neuron development.
Collapse
Affiliation(s)
- Mateja Rybiczka-Tešulov
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Oxana Garritsen
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Morten T Venø
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus C, Denmark
- Omiics ApS, Aarhus N, Denmark
| | - Laura Wieg
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Roland van Dijk
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- VectorY Therapeutics, Matrix Innovation Center VI, Amsterdam, The Netherlands
| | - Karim Rahimi
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus C, Denmark
- Department of Genetics, Blavatnik Institute, Harvard Medical School, MA, Boston, USA
| | - Andreia Gomes-Duarte
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- VectorY Therapeutics, Matrix Innovation Center VI, Amsterdam, The Netherlands
| | - Marina de Wit
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lieke L van de Haar
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany
| | - Lars Michels
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- VectorY Therapeutics, Matrix Innovation Center VI, Amsterdam, The Netherlands
| | - Nicky C H van Kronenburg
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Christiaan van der Meer
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus C, Denmark
| | - Vamshidhar R Vangoor
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Hoops D, Yee Y, Hammill C, Wong S, Manitt C, Bedell BJ, Cahill L, Lerch JP, Flores C, Sled JG. Disproportionate neuroanatomical effects of DCC haploinsufficiency in adolescence compared with adulthood: links to dopamine, connectivity, covariance, and gene expression brain maps in mice. J Psychiatry Neurosci 2024; 49:E157-E171. [PMID: 38692693 PMCID: PMC11068426 DOI: 10.1503/jpn.230106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/23/2024] [Accepted: 03/06/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Critical adolescent neural refinement is controlled by the DCC (deleted in colorectal cancer) protein, a receptor for the netrin-1 guidance cue. We sought to describe the effects of reduced DCC on neuroanatomy in the adolescent and adult mouse brain. METHODS We examined neuronal connectivity, structural covariance, and molecular processes in a DCC-haploinsufficient mouse model, compared with wild-type mice, using new, custom analytical tools designed to leverage publicly available databases from the Allen Institute. RESULTS We included 11 DCC-haploinsufficient mice and 16 wild-type littermates. Neuroanatomical effects of DCC haploinsufficiency were more severe in adolescence than adulthood and were largely restricted to the mesocorticolimbic dopamine system. The latter finding was consistent whether we identified the regions of the mesocorticolimbic dopamine system a priori or used connectivity data from the Allen Brain Atlas to determine de novo where these dopamine axons terminated. Covariance analyses found that DCC haploinsufficiency disrupted the coordinated development of the brain regions that make up the mesocorticolimbic dopamine system. Gene expression maps pointed to molecular processes involving the expression of DCC, UNC5C (encoding DCC's co-receptor), and NTN1 (encoding its ligand, netrin-1) as underlying our structural findings. LIMITATIONS Our study involved a single sex (males) at only 2 ages. CONCLUSION The neuroanatomical phenotype of DCC haploinsufficiency described in mice parallels that observed in DCC-haploinsufficient humans. It is critical to understand the DCC-haploinsufficient mouse as a clinically relevant model system.
Collapse
Affiliation(s)
- Daniel Hoops
- From the Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ont. (Hoops, Yee, Hammill, Wong, Lerch, Sled); the Department of Medical Biophysics, University of Toronto, Ont. (Hoops, Yee, Lerch, Sled); the Department of Psychiatry, McGill University, Montréal, Que. (Hoops, Flores); the Douglas Mental Health University Institute, Montréal, Que. (Hoops, Manitt, Flores); the Department of Chemistry, Memorial University, St. John's, N.L. (Hoops, Cahill); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Bedell, Flores); the Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neuroscience, University of Oxford, U.K. (Lerch); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montréal, Que. (Flores)
| | - Yohan Yee
- From the Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ont. (Hoops, Yee, Hammill, Wong, Lerch, Sled); the Department of Medical Biophysics, University of Toronto, Ont. (Hoops, Yee, Lerch, Sled); the Department of Psychiatry, McGill University, Montréal, Que. (Hoops, Flores); the Douglas Mental Health University Institute, Montréal, Que. (Hoops, Manitt, Flores); the Department of Chemistry, Memorial University, St. John's, N.L. (Hoops, Cahill); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Bedell, Flores); the Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neuroscience, University of Oxford, U.K. (Lerch); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montréal, Que. (Flores)
| | - Christopher Hammill
- From the Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ont. (Hoops, Yee, Hammill, Wong, Lerch, Sled); the Department of Medical Biophysics, University of Toronto, Ont. (Hoops, Yee, Lerch, Sled); the Department of Psychiatry, McGill University, Montréal, Que. (Hoops, Flores); the Douglas Mental Health University Institute, Montréal, Que. (Hoops, Manitt, Flores); the Department of Chemistry, Memorial University, St. John's, N.L. (Hoops, Cahill); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Bedell, Flores); the Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neuroscience, University of Oxford, U.K. (Lerch); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montréal, Que. (Flores)
| | - Sammi Wong
- From the Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ont. (Hoops, Yee, Hammill, Wong, Lerch, Sled); the Department of Medical Biophysics, University of Toronto, Ont. (Hoops, Yee, Lerch, Sled); the Department of Psychiatry, McGill University, Montréal, Que. (Hoops, Flores); the Douglas Mental Health University Institute, Montréal, Que. (Hoops, Manitt, Flores); the Department of Chemistry, Memorial University, St. John's, N.L. (Hoops, Cahill); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Bedell, Flores); the Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neuroscience, University of Oxford, U.K. (Lerch); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montréal, Que. (Flores)
| | - Colleen Manitt
- From the Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ont. (Hoops, Yee, Hammill, Wong, Lerch, Sled); the Department of Medical Biophysics, University of Toronto, Ont. (Hoops, Yee, Lerch, Sled); the Department of Psychiatry, McGill University, Montréal, Que. (Hoops, Flores); the Douglas Mental Health University Institute, Montréal, Que. (Hoops, Manitt, Flores); the Department of Chemistry, Memorial University, St. John's, N.L. (Hoops, Cahill); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Bedell, Flores); the Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neuroscience, University of Oxford, U.K. (Lerch); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montréal, Que. (Flores)
| | - Barry J Bedell
- From the Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ont. (Hoops, Yee, Hammill, Wong, Lerch, Sled); the Department of Medical Biophysics, University of Toronto, Ont. (Hoops, Yee, Lerch, Sled); the Department of Psychiatry, McGill University, Montréal, Que. (Hoops, Flores); the Douglas Mental Health University Institute, Montréal, Que. (Hoops, Manitt, Flores); the Department of Chemistry, Memorial University, St. John's, N.L. (Hoops, Cahill); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Bedell, Flores); the Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neuroscience, University of Oxford, U.K. (Lerch); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montréal, Que. (Flores)
| | - Lindsay Cahill
- From the Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ont. (Hoops, Yee, Hammill, Wong, Lerch, Sled); the Department of Medical Biophysics, University of Toronto, Ont. (Hoops, Yee, Lerch, Sled); the Department of Psychiatry, McGill University, Montréal, Que. (Hoops, Flores); the Douglas Mental Health University Institute, Montréal, Que. (Hoops, Manitt, Flores); the Department of Chemistry, Memorial University, St. John's, N.L. (Hoops, Cahill); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Bedell, Flores); the Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neuroscience, University of Oxford, U.K. (Lerch); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montréal, Que. (Flores)
| | - Jason P Lerch
- From the Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ont. (Hoops, Yee, Hammill, Wong, Lerch, Sled); the Department of Medical Biophysics, University of Toronto, Ont. (Hoops, Yee, Lerch, Sled); the Department of Psychiatry, McGill University, Montréal, Que. (Hoops, Flores); the Douglas Mental Health University Institute, Montréal, Que. (Hoops, Manitt, Flores); the Department of Chemistry, Memorial University, St. John's, N.L. (Hoops, Cahill); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Bedell, Flores); the Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neuroscience, University of Oxford, U.K. (Lerch); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montréal, Que. (Flores)
| | - Cecilia Flores
- From the Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ont. (Hoops, Yee, Hammill, Wong, Lerch, Sled); the Department of Medical Biophysics, University of Toronto, Ont. (Hoops, Yee, Lerch, Sled); the Department of Psychiatry, McGill University, Montréal, Que. (Hoops, Flores); the Douglas Mental Health University Institute, Montréal, Que. (Hoops, Manitt, Flores); the Department of Chemistry, Memorial University, St. John's, N.L. (Hoops, Cahill); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Bedell, Flores); the Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neuroscience, University of Oxford, U.K. (Lerch); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montréal, Que. (Flores)
| | - John G Sled
- From the Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ont. (Hoops, Yee, Hammill, Wong, Lerch, Sled); the Department of Medical Biophysics, University of Toronto, Ont. (Hoops, Yee, Lerch, Sled); the Department of Psychiatry, McGill University, Montréal, Que. (Hoops, Flores); the Douglas Mental Health University Institute, Montréal, Que. (Hoops, Manitt, Flores); the Department of Chemistry, Memorial University, St. John's, N.L. (Hoops, Cahill); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Bedell, Flores); the Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neuroscience, University of Oxford, U.K. (Lerch); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montréal, Que. (Flores)
| |
Collapse
|
4
|
Ceci C, Lacal PM, Barbaccia ML, Mercuri NB, Graziani G, Ledonne A. The VEGFs/VEGFRs system in Alzheimer's and Parkinson's diseases: Pathophysiological roles and therapeutic implications. Pharmacol Res 2024; 201:107101. [PMID: 38336311 DOI: 10.1016/j.phrs.2024.107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The vascular endothelial growth factors (VEGFs) and their cognate receptors (VEGFRs), besides their well-known involvement in physiological angiogenesis/lymphangiogenesis and in diseases associated to pathological vessel formation, play multifaceted functions in the central nervous system (CNS). In addition to shaping brain development, by controlling cerebral vasculogenesis and regulating neurogenesis as well as astrocyte differentiation, the VEGFs/VEGFRs axis exerts essential functions in the adult brain both in physiological and pathological contexts. In this article, after describing the physiological VEGFs/VEGFRs functions in the CNS, we focus on the VEGFs/VEGFRs involvement in neurodegenerative diseases by reviewing the current literature on the rather complex VEGFs/VEGFRs contribution to the pathogenic mechanisms of Alzheimer's (AD) and Parkinson's (PD) diseases. Thereafter, based on the outcome of VEGFs/VEGFRs targeting in animal models of AD and PD, we discuss the factual relevance of pharmacological VEGFs/VEGFRs modulation as a novel and potential disease-modifying approach for these neurodegenerative pathologies. Specific VEGFRs targeting, aimed at selective VEGFR-1 inhibition, while preserving VEGFR-2 signal transduction, appears as a promising strategy to hit the molecular mechanisms underlying AD pathology. Moreover, therapeutic VEGFs-based approaches can be proposed for PD treatment, with the aim of fine-tuning their brain levels to amplify neurotrophic/neuroprotective effects while limiting an excessive impact on vascular permeability.
Collapse
Affiliation(s)
- Claudia Ceci
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Maria Luisa Barbaccia
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Santa Lucia Foundation, Department of Experimental Neuroscience, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Grazia Graziani
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Ada Ledonne
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Santa Lucia Foundation, Department of Experimental Neuroscience, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
5
|
Reynolds LM, Hernandez G, MacGowan D, Popescu C, Nouel D, Cuesta S, Burke S, Savell KE, Zhao J, Restrepo-Lozano JM, Giroux M, Israel S, Orsini T, He S, Wodzinski M, Avramescu RG, Pokinko M, Epelbaum JG, Niu Z, Pantoja-Urbán AH, Trudeau LÉ, Kolb B, Day JJ, Flores C. Amphetamine disrupts dopamine axon growth in adolescence by a sex-specific mechanism in mice. Nat Commun 2023; 14:4035. [PMID: 37419977 PMCID: PMC10329029 DOI: 10.1038/s41467-023-39665-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Initiating drug use during adolescence increases the risk of developing addiction or other psychopathologies later in life, with long-term outcomes varying according to sex and exact timing of use. The cellular and molecular underpinnings explaining this differential sensitivity to detrimental drug effects remain unexplained. The Netrin-1/DCC guidance cue system segregates cortical and limbic dopamine pathways in adolescence. Here we show that amphetamine, by dysregulating Netrin-1/DCC signaling, triggers ectopic growth of mesolimbic dopamine axons to the prefrontal cortex, only in early-adolescent male mice, underlying a male-specific vulnerability to enduring cognitive deficits. In adolescent females, compensatory changes in Netrin-1 protect against the deleterious consequences of amphetamine on dopamine connectivity and cognitive outcomes. Netrin-1/DCC signaling functions as a molecular switch which can be differentially regulated by the same drug experience as function of an individual's sex and adolescent age, and lead to divergent long-term outcomes associated with vulnerable or resilient phenotypes.
Collapse
Affiliation(s)
- Lauren M Reynolds
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France
| | | | - Del MacGowan
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Christina Popescu
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Dominique Nouel
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Santiago Cuesta
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Samuel Burke
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Katherine E Savell
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Janet Zhao
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Jose Maria Restrepo-Lozano
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Michel Giroux
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Sonia Israel
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Taylor Orsini
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Susan He
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | | | - Radu G Avramescu
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Matthew Pokinko
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Julia G Epelbaum
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Zhipeng Niu
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Andrea Harée Pantoja-Urbán
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Louis-Éric Trudeau
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Bryan Kolb
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cecilia Flores
- Douglas Mental Health University Institute, Montréal, QC, Canada.
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Montréal, Canada.
| |
Collapse
|
6
|
Li Q, Ma N, Li X, Yang C, Zhang W, Xiong J, Zhu L, Li J, Wen Q, Gao L, Yang C, Rao L, Gao L, Zhang X, Rao J. Reverse effect of Semaphorin-3F on rituximab resistance in diffuse large B-cell lymphoma via the Hippo pathway. Chin Med J (Engl) 2023; 136:1448-1458. [PMID: 37114652 PMCID: PMC10278727 DOI: 10.1097/cm9.0000000000002686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Exploring the underlying mechanism of rituximab resistance is critical to improve the outcomes of patients with diffuse large B-cell lymphoma (DLBCL). Here, we tried to identify the effects of the axon guidance factor semaphorin-3F (SEMA3F) on rituximab resistance as well as its therapeutic value in DLBCL. METHODS The effects of SEMA3F on the treatment response to rituximab were investigated by gain- or loss-of-function experiments. The role of the Hippo pathway in SEMA3F-mediated activity was explored. A xenograft mouse model generated by SEMA3F knockdown in cells was used to evaluate rituximab sensitivity and combined therapeutic effects. The prognostic value of SEMA3F and TAZ (WW domain-containing transcription regulator protein 1) was examined in the Gene Expression Omnibus (GEO) database and human DLBCL specimens. RESULTS We found that loss of SEMA3F was related to a poor prognosis in patients who received rituximab-based immunochemotherapy instead of chemotherapy regimen. Knockdown of SEMA3F significantly repressed the expression of CD20 and reduced the proapoptotic activity and complement-dependent cytotoxicity (CDC) activity induced by rituximab. We further demonstrated that the Hippo pathway was involved in the SEMA3F-mediated regulation of CD20. Knockdown of SEMA3F expression induced the nuclear accumulation of TAZ and inhibited CD20 transcriptional levels via direct binding of the transcription factor TEAD2 and the CD20 promoter. Moreover, in patients with DLBCL, SEMA3F expression was negatively correlated with TAZ, and patients with SEMA3F low TAZ high had a limited benefit from a rituximab-based strategy. Specifically, treatment of DLBCL cells with rituximab and a YAP/TAZ inhibitor showed promising therapeutic effects in vitro and in vivo . CONCLUSION Our study thus defined a previously unknown mechanism of SEMA3F-mediated rituximab resistance through TAZ activation in DLBCL and identified potential therapeutic targets in patients.
Collapse
Affiliation(s)
- Qiong Li
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Naya Ma
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Xinlei Li
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Chao Yang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Wei Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Jingkang Xiong
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Lidan Zhu
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Jiali Li
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Qin Wen
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Lei Gao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Cheng Yang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Lingyi Rao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Li Gao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Jun Rao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing 400037, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Hildebrandt BA, Lee JR, Culbert KM, Sisk CL, Johnson AW, Klump KL. The organizational role of ovarian hormones during puberty on risk for binge-like eating in rats. Physiol Behav 2023; 265:114177. [PMID: 36967031 PMCID: PMC10121844 DOI: 10.1016/j.physbeh.2023.114177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/28/2023]
Abstract
Puberty is a high-risk period for the development of dysregulated eating, including binge eating. While risk for binge eating in animals and humans increases in both males and females during puberty, the increased prevalence is significantly greater in females. Emerging data suggest that the organizational effects of gonadal hormones may contribute to the female preponderance of binge eating. In this narrative review, we discuss studies conducted in animals that have examined these organizational effects as well as the neural systems that may serve as intermediary mechanisms. Relatively few studies have been conducted, but data thus far suggest that pubertal estrogens may organize risk for binge eating, potentially by altering key circuits in brain reward pathways. These promising results highlight the need for future studies to directly test organizational effects of pubertal hormones using hormone replacement techniques and circuit-level manipulations that can identify pathways contributing to binge eating across development.
Collapse
Affiliation(s)
- Britny A Hildebrandt
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jenna R Lee
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Kristen M Culbert
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Cheryl L Sisk
- Department of Psychology, Michigan State University, East Lansing, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Alexander W Johnson
- Department of Psychology, Michigan State University, East Lansing, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Kelly L Klump
- Department of Psychology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
8
|
Abstract
The midbrain dopamine (mDA) system is composed of molecularly and functionally distinct neuron subtypes that mediate specific behaviours and are linked to various brain diseases. Considerable progress has been made in identifying mDA neuron subtypes, and recent work has begun to unveil how these neuronal subtypes develop and organize into functional brain structures. This progress is important for further understanding the disparate physiological functions of mDA neurons and their selective vulnerability in disease, and will ultimately accelerate therapy development. This Review discusses recent advances in our understanding of molecularly defined mDA neuron subtypes and their circuits, ranging from early developmental events, such as neuron migration and axon guidance, to their wiring and function, and future implications for therapeutic strategies.
Collapse
|
9
|
Chang X, Chua KY, Ng FL, Wang L, Liu J, Yuan JM, Khor CC, Heng CK, Dorajoo R, Koh WP. Increased BMI and late-life mobility dysfunction; overlap of genetic effects in brain regions. Int J Obes (Lond) 2023; 47:358-364. [PMID: 36788305 DOI: 10.1038/s41366-023-01275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND How obesity earlier in life impacts upon mobility dysfunctions in late life is not well understood. Pernicious effects of excess weight on the musculoskeletal system and mobility dysfunctions are well-recognized. However, increasingly more data support the link of obesity to overall motor defects that are regulated in the brain. OBJECTIVES To assess the causal relationship between body mass index (BMI) at midlife and performance of the Timed Up-and-Go test (TUG) in late life among a population-based longitudinal cohort of Chinese adults living in Singapore. METHODS We evaluated genetic predispositions for BMI in 8342 participants who were followed up from measurement of BMI at average 53 years, to TUG test (as a functional mobility measure) 20 years later. RESULTS A robust 75.83% of genetically determined BMI effects on late-life TUG scores were mediated through midlife BMI (Pindirect-effect = 9.24 × 10-21). Utilizing Mendelian randomization, we demonstrated a causal effect between BMI and functional mobility in late life (βIVW = 0.180, PIVW = 0.001). Secondary gene enrichment evaluations highlighted down-regulation of genes at BMI risk loci that were correlated with poorer functional mobility in the substantia nigra and amygdala regions as compared to all other tissues. These genes also exhibit differential expression patterns during human brain development. CONCLUSIONS We report a causal effect of obesity on mobility dysfunction. Our findings highlight potential neuronal dysfunctions in regulating predispositions on the causal pathway from obesity to mobility dysfunction.
Collapse
Affiliation(s)
- Xuling Chang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.,Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, 119074, Singapore.,Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, VIC, Australia
| | - Kevin Yiqiang Chua
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, 119077, Singapore
| | - Fang Lin Ng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.,Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, 119074, Singapore
| | - Ling Wang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA.,Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Chiea-Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore.,Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore. .,Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, 119074, Singapore.
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore. .,Health Systems and Services Research, Duke-NUS Medical School Singapore, Singapore, 169857, Singapore.
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore, 117609, Singapore
| |
Collapse
|
10
|
Anatomical Development of the Cerebellothalamic Tract in Embryonic Mice. Cells 2022; 11:cells11233800. [PMID: 36497060 PMCID: PMC9738252 DOI: 10.3390/cells11233800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022] Open
Abstract
The main connection from cerebellum to cerebrum is formed by cerebellar nuclei axons that synapse in the thalamus. Apart from its role in coordinating sensorimotor integration in the adult brain, the cerebello-thalamic tract (CbT) has also been implicated in developmental disorders, such as autism spectrum disorders. Although the development of the cerebellum, thalamus and cerebral cortex have been studied, there is no detailed description of the ontogeny of the mammalian CbT. Here we investigated the development of the CbT at embryonic stages using transgenic Ntsr1-Cre/Ai14 mice and in utero electroporation of wild type mice. Wide-field, confocal and 3D light-sheet microscopy of immunohistochemical stainings showed that CbT fibers arrive in the prethalamus between E14.5 and E15.5, but only invade the thalamus after E16.5. We quantified the spread of CbT fibers throughout the various thalamic nuclei and found that at E17.5 and E18.5 the ventrolateral, ventromedial and parafascicular nuclei, but also the mediodorsal and posterior complex, become increasingly innervated. Several CbT fiber varicosities express vesicular glutamate transporter type 2 at E18.5, indicating cerebello-thalamic synapses. Our results provide the first quantitative data on the developing murine CbT, which provides guidance for future investigations of the impact that cerebellum has on thalamo-cortical networks during development.
Collapse
|
11
|
Jahan MS, Tsuzuki T, Ito T, Bhuiyan MER, Takahashi I, Takamatsu H, Kumanogoh A, Negishi T, Yukawa K. PlexinA1-deficient mice exhibit decreased cell density and augmented oxidative stress in parvalbumin-expressing interneurons in the medial prefrontal cortex. IBRO Neurosci Rep 2022; 13:500-512. [DOI: 10.1016/j.ibneur.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/20/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022] Open
|
12
|
HGprt deficiency disrupts dopaminergic circuit development in a genetic mouse model of Lesch–Nyhan disease. Cell Mol Life Sci 2022; 79:341. [PMID: 35660973 PMCID: PMC9167210 DOI: 10.1007/s00018-022-04326-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 11/20/2022]
Abstract
In Lesch–Nyhan disease (LND), deficiency of the purine salvage enzyme hypoxanthine guanine phosphoribosyl transferase (HGprt) leads to a characteristic neurobehavioral phenotype dominated by dystonia, cognitive deficits and incapacitating self-injurious behavior. It has been known for decades that LND is associated with dysfunction of midbrain dopamine neurons, without overt structural brain abnormalities. Emerging post mortem and in vitro evidence supports the hypothesis that the dopaminergic dysfunction in LND is of developmental origin, but specific pathogenic mechanisms have not been revealed. In the current study, HGprt deficiency causes specific neurodevelopmental abnormalities in mice during embryogenesis, particularly affecting proliferation and migration of developing midbrain dopamine (mDA) neurons. In mutant embryos at E14.5, proliferation was increased, accompanied by a decrease in cell cycle exit and the distribution and orientation of dividing cells suggested a premature deviation from their migratory route. An abnormally structured radial glia-like scaffold supporting this mDA neuronal migration might lie at the basis of these abnormalities. Consequently, these abnormalities were associated with an increase in area occupied by TH+ cells and an abnormal mDA subpopulation organization at E18.5. Finally, dopaminergic innervation was disorganized in prefrontal and decreased in HGprt deficient primary motor and somatosensory cortices. These data provide direct in vivo evidence for a neurodevelopmental nature of the brain disorder in LND. Future studies should not only focus the specific molecular mechanisms underlying the reported neurodevelopmental abnormalities, but also on optimal timing of therapeutic interventions to rescue the DA neuron defects, which may also be relevant for other neurodevelopmental disorders.
Collapse
|
13
|
Stanwick M, Barkley C, Serra R, Kruggel A, Webb A, Zhao Y, Pietrzak M, Ashman C, Staats A, Shahid S, Peters SB. Tgfbr2 in Dental Pulp Cells Guides Neurite Outgrowth in Developing Teeth. Front Cell Dev Biol 2022; 10:834815. [PMID: 35265620 PMCID: PMC8901236 DOI: 10.3389/fcell.2022.834815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor β (TGFβ) plays an important role in tooth morphogenesis and mineralization. During postnatal development, the dental pulp (DP) mesenchyme secretes neurotrophic factors that guide trigeminal nerve fibers into and throughout the DP. This process is tightly linked with dentin formation and mineralization. Our laboratory established a mouse model in which Tgfbr2 was conditionally deleted in DP mesenchyme using an Osterix promoter-driven Cre recombinase (Tgfbr2 cko ). These mice survived postnatally with significant defects in bones and teeth, including reduced mineralization and short roots. Hematoxylin and eosin staining revealed reduced axon-like structures in the mutant mice. Reporter imaging demonstrated that Osterix-Cre activity within the tooth was active in the DP and derivatives, but not in neuronal afferents. Immunofluorescence staining for β3 tubulin (neuronal marker) was performed on serial cryosections from control and mutant molars on postnatal days 7 and 24 (P7, P24). Confocal imaging and pixel quantification demonstrated reduced innervation in Tgfbr2 cko first molars at both stages compared to controls, indicating that signals necessary to promote neurite outgrowth were disrupted by Tgfbr2 deletion. We performed mRNA-Sequence (RNA-Seq) and gene onotology analyses using RNA from the DP of P7 control and mutant mice to investigate the pathways involved in Tgfbr2-mediated tooth development. These analyses identified downregulation of several mineralization-related and neuronal genes in the Tgfbr2 cko DP compared to controls. Select gene expression patterns were confirmed by quantitative real-time PCR and immunofluorescence imaging. Lastly, trigeminal neurons were co-cultured atop Transwell filters overlying primary Tgfbr2 f/f DP cells. Tgfbr2 in the DP was deleted via Adenovirus-expressed Cre recombinase. Confocal imaging of axons through the filter pores showed increased axonal sprouting from neurons cultured with Tgfbr2-positive DP cells compared to neurons cultured alone. Axon sprouting was reduced when Tgfbr2 was knocked down in the DP cells. Immunofluorescence of dentin sialophosphoprotein in co-cultured DP cells confirmed reduced mineralization potential in cells with Tgfbr2 deletion. Both our proteomics and RNA-Seq analyses indicate that axonal guidance cues, particularly semaphorin signaling, were disrupted by Tgfbr2 deletion. Thus, Tgfbr2 in the DP mesenchyme appears to regulate differentiation and the cells' ability to guide neurite outgrowth during tooth mineralization and innervation.
Collapse
Affiliation(s)
- Monica Stanwick
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Courtney Barkley
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rosa Serra
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew Kruggel
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Yue Zhao
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Chandler Ashman
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Allie Staats
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Shifa Shahid
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Sarah B. Peters
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States,Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: Sarah B. Peters,
| |
Collapse
|
14
|
Abstract
During evolution, the cerebral cortex advances by increasing in surface and the introduction of new cytoarchitectonic areas among which the prefrontal cortex (PFC) is considered to be the substrate of highest cognitive functions. Although neurons of the PFC are generated before birth, the differentiation of its neurons and development of synaptic connections in humans extend to the 3rd decade of life. During this period, synapses as well as neurotransmitter systems including their receptors and transporters, are initially overproduced followed by selective elimination. Advanced methods applied to human and animal models, enable investigation of the cellular mechanisms and role of specific genes, non-coding regulatory elements and signaling molecules in control of prefrontal neuronal production and phenotypic fate, as well as neuronal migration to establish layering of the PFC. Likewise, various genetic approaches in combination with functional assays and immunohistochemical and imaging methods reveal roles of neurotransmitter systems during maturation of the PFC. Disruption, or even a slight slowing of the rate of neuronal production, migration and synaptogenesis by genetic or environmental factors, can induce gross as well as subtle changes that eventually can lead to cognitive impairment. An understanding of the development and evolution of the PFC provide insight into the pathogenesis and treatment of congenital neuropsychiatric diseases as well as idiopathic developmental disorders that cause intellectual disabilities.
Collapse
Affiliation(s)
- Sharon M Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands.
| | - Pasko Rakic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
15
|
Islam KUS, Meli N, Blaess S. The Development of the Mesoprefrontal Dopaminergic System in Health and Disease. Front Neural Circuits 2021; 15:746582. [PMID: 34712123 PMCID: PMC8546303 DOI: 10.3389/fncir.2021.746582] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
Midbrain dopaminergic neurons located in the substantia nigra and the ventral tegmental area are the main source of dopamine in the brain. They send out projections to a variety of forebrain structures, including dorsal striatum, nucleus accumbens, and prefrontal cortex (PFC), establishing the nigrostriatal, mesolimbic, and mesoprefrontal pathways, respectively. The dopaminergic input to the PFC is essential for the performance of higher cognitive functions such as working memory, attention, planning, and decision making. The gradual maturation of these cognitive skills during postnatal development correlates with the maturation of PFC local circuits, which undergo a lengthy functional remodeling process during the neonatal and adolescence stage. During this period, the mesoprefrontal dopaminergic innervation also matures: the fibers are rather sparse at prenatal stages and slowly increase in density during postnatal development to finally reach a stable pattern in early adulthood. Despite the prominent role of dopamine in the regulation of PFC function, relatively little is known about how the dopaminergic innervation is established in the PFC, whether and how it influences the maturation of local circuits and how exactly it facilitates cognitive functions in the PFC. In this review, we provide an overview of the development of the mesoprefrontal dopaminergic system in rodents and primates and discuss the role of altered dopaminergic signaling in neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- K Ushna S Islam
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Norisa Meli
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, Bonn, Germany.,Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sandra Blaess
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
16
|
Reynolds LM, Flores C. Mesocorticolimbic Dopamine Pathways Across Adolescence: Diversity in Development. Front Neural Circuits 2021; 15:735625. [PMID: 34566584 PMCID: PMC8456011 DOI: 10.3389/fncir.2021.735625] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022] Open
Abstract
Mesocorticolimbic dopamine circuity undergoes a protracted maturation during adolescent life. Stable adult levels of behavioral functioning in reward, motivational, and cognitive domains are established as these pathways are refined, however, their extended developmental window also leaves them vulnerable to perturbation by environmental factors. In this review, we highlight recent advances in understanding the mechanisms underlying dopamine pathway development in the adolescent brain, and how the environment influences these processes to establish or disrupt neurocircuit diversity. We further integrate these recent studies into the larger historical framework of anatomical and neurochemical changes occurring during adolescence in the mesocorticolimbic dopamine system. While dopamine neuron heterogeneity is increasingly appreciated at molecular, physiological, and anatomical levels, we suggest that a developmental facet may play a key role in establishing vulnerability or resilience to environmental stimuli and experience in distinct dopamine circuits, shifting the balance between healthy brain development and susceptibility to psychiatric disease.
Collapse
Affiliation(s)
- Lauren M Reynolds
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France.,Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Cecilia Flores
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, QC, Canada
| |
Collapse
|
17
|
Tolve M, Ulusoy A, Patikas N, Islam KUS, Bodea GO, Öztürk E, Broske B, Mentani A, Wagener A, van Loo KMJ, Britsch S, Liu P, Khaled WT, Metzakopian E, Baader SL, Di Monte DA, Blaess S. The transcription factor BCL11A defines distinct subsets of midbrain dopaminergic neurons. Cell Rep 2021; 36:109697. [PMID: 34525371 DOI: 10.1016/j.celrep.2021.109697] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/08/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022] Open
Abstract
Midbrain dopaminergic (mDA) neurons are diverse in their projection targets, effect on behavior, and susceptibility to neurodegeneration. Little is known about the molecular mechanisms establishing this diversity during development. We show that the transcription factor BCL11A is expressed in a subset of mDA neurons in the developing and adult murine brain and in a subpopulation of pluripotent-stem-cell-derived human mDA neurons. By combining intersectional labeling and viral-mediated tracing, we demonstrate that Bcl11a-expressing mDA neurons form a highly specific subcircuit within the murine dopaminergic system. In the substantia nigra, the Bcl11a-expressing mDA subset is particularly vulnerable to neurodegeneration upon α-synuclein overexpression or oxidative stress. Inactivation of Bcl11a in murine mDA neurons increases this susceptibility further, alters the distribution of mDA neurons, and results in deficits in skilled motor behavior. In summary, BCL11A defines mDA subpopulations with highly distinctive characteristics and is required for establishing and maintaining their normal physiology.
Collapse
Affiliation(s)
- Marianna Tolve
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Ayse Ulusoy
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Nikolaos Patikas
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - K Ushna S Islam
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Gabriela O Bodea
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Ece Öztürk
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Bianca Broske
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Astrid Mentani
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Antonia Wagener
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Karen M J van Loo
- Section for Translational Epilepsy Research, Department of Neuropathology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, 89081 Ulm, Germany
| | - Pengtao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Walid T Khaled
- Department of Pharmacology, University of Cambridge, Cambridge, CB 21PD, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Stephan L Baader
- Institute of Anatomy, Anatomy and Cell Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Donato A Di Monte
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Sandra Blaess
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
18
|
Carulli D, de Winter F, Verhaagen J. Semaphorins in Adult Nervous System Plasticity and Disease. Front Synaptic Neurosci 2021; 13:672891. [PMID: 34045951 PMCID: PMC8148045 DOI: 10.3389/fnsyn.2021.672891] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Semaphorins, originally discovered as guidance cues for developing axons, are involved in many processes that shape the nervous system during development, from neuronal proliferation and migration to neuritogenesis and synapse formation. Interestingly, the expression of many Semaphorins persists after development. For instance, Semaphorin 3A is a component of perineuronal nets, the extracellular matrix structures enwrapping certain types of neurons in the adult CNS, which contribute to the closure of the critical period for plasticity. Semaphorin 3G and 4C play a crucial role in the control of adult hippocampal connectivity and memory processes, and Semaphorin 5A and 7A regulate adult neurogenesis. This evidence points to a role of Semaphorins in the regulation of adult neuronal plasticity. In this review, we address the distribution of Semaphorins in the adult nervous system and we discuss their function in physiological and pathological processes.
Collapse
Affiliation(s)
- Daniela Carulli
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
- Department of Neuroscience Rita Levi-Montalcini and Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Fred de Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
19
|
Novel vertebrate- and brain-specific driver of neuronal outgrowth. Prog Neurobiol 2021; 202:102069. [PMID: 33933532 DOI: 10.1016/j.pneurobio.2021.102069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/31/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022]
Abstract
During the process of neuronal outgrowth, developing neurons produce new projections, neurites, that are essential for brain wiring. Here, we discover a relatively late-evolved protein that we denote Ac45-related protein (Ac45RP) and that, surprisingly, drives neuronal outgrowth. Ac45RP is a paralog of the Ac45 protein that is a component of the vacuolar proton ATPase (V-ATPase), the main pH regulator in eukaryotic cells. Ac45RP mRNA expression is brain specific and coincides with the peak of neurogenesis and the onset of synaptogenesis. Furthermore, Ac45RP physically interacts with the V-ATPase V0-sector and colocalizes with V0 in unconventional, but not synaptic, secretory vesicles of extending neurites. Excess Ac45RP enhances the expression of V0-subunits, causes a more elaborate Golgi, and increases the number of cytoplasmic vesicular structures, plasma membrane formation and outgrowth of actin-containing neurites devoid of synaptic markers. CRISPR-cas9n-mediated Ac45RP knockdown reduces neurite outgrowth. We conclude that the novel vertebrate- and brain-specific Ac45RP is a V0-interacting constituent of unconventional vesicular structures that drives membrane expansion during neurite outgrowth and as such may furnish a tool for future neuroregenerative treatment strategies.
Collapse
|
20
|
Mesman S, Wever I, Smidt MP. Tcf4 Is Involved in Subset Specification of Mesodiencephalic Dopaminergic Neurons. Biomedicines 2021; 9:biomedicines9030317. [PMID: 33804772 PMCID: PMC8003918 DOI: 10.3390/biomedicines9030317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/04/2021] [Accepted: 03/17/2021] [Indexed: 02/03/2023] Open
Abstract
During development, mesodiencephalic dopaminergic (mdDA) neurons form into different molecular subsets. Knowledge of which factors contribute to the specification of these subsets is currently insufficient. In this study, we examined the role of Tcf4, a member of the E-box protein family, in mdDA neuronal development and subset specification. We show that Tcf4 is expressed throughout development, but is no longer detected in adult midbrain. Deletion of Tcf4 results in an initial increase in TH-expressing neurons at E11.5, but this normalizes at later embryonic stages. However, the caudal subset marker Nxph3 and rostral subset marker Ahd2 are affected at E14.5, indicating that Tcf4 is involved in correct differentiation of mdDA neuronal subsets. At P0, expression of these markers partially recovers, whereas expression of Th transcript and TH protein appears to be affected in lateral parts of the mdDA neuronal population. The initial increase in TH-expressing cells and delay in subset specification could be due to the increase in expression of the bHLH factor Ascl1, known for its role in mdDA neuronal differentiation, upon loss of Tcf4. Taken together, our data identified a minor role for Tcf4 in mdDA neuronal development and subset specification.
Collapse
|
21
|
Talaei A, Farkhondeh T, Forouzanfar F. Fibroblast Growth Factor: Promising Target for Schizophrenia. Curr Drug Targets 2020; 21:1344-1353. [PMID: 32598256 DOI: 10.2174/1389450121666200628114843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
Abstract
Schizophrenia is one of the most debilitating mental disorders around the world. It is characterized by neuroanatomical or biochemical changes. The role of the fibroblast growth factors (FGFs) system in schizophrenia has received considerable attention in recent years. Various changes in the gene expression and/or level of FGFs have been implicated in the etiology, symptoms and progression of schizophrenia. For example, studies have substantiated an interaction between FGFs and the signaling pathway of dopamine receptors. To understand the role of this system in schizophrenia, the databases of Open Access Journals, Web of Science, PubMed (NLM), LISTA (EBSCO), and Google Scholar with keywords including fibroblast growth factors, dopamine, schizophrenia, psychosis, along with neurotrophic were searched. In conclusion, the FGF family represent molecular candidates as new drug targets and treatment targets for schizophrenia.
Collapse
Affiliation(s)
- Ali Talaei
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Psychiatry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Brignani S, Raj DDA, Schmidt ERE, Düdükcü Ö, Adolfs Y, De Ruiter AA, Rybiczka-Tesulov M, Verhagen MG, van der Meer C, Broekhoven MH, Moreno-Bravo JA, Grossouw LM, Dumontier E, Cloutier JF, Chédotal A, Pasterkamp RJ. Remotely Produced and Axon-Derived Netrin-1 Instructs GABAergic Neuron Migration and Dopaminergic Substantia Nigra Development. Neuron 2020; 107:684-702.e9. [PMID: 32562661 DOI: 10.1016/j.neuron.2020.05.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/17/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022]
Abstract
The midbrain dopamine (mDA) system is composed of molecularly and functionally distinct neuron subtypes that mediate specific behaviors and show select disease vulnerability, including in Parkinson's disease. Despite progress in identifying mDA neuron subtypes, how these neuronal subsets develop and organize into functional brain structures remains poorly understood. Here we generate and use an intersectional genetic platform, Pitx3-ITC, to dissect the mechanisms of substantia nigra (SN) development and implicate the guidance molecule Netrin-1 in the migration and positioning of mDA neuron subtypes in the SN. Unexpectedly, we show that Netrin-1, produced in the forebrain and provided to the midbrain through axon projections, instructs the migration of GABAergic neurons into the ventral SN. This migration is required to confine mDA neurons to the dorsal SN. These data demonstrate that neuron migration can be controlled by remotely produced and axon-derived secreted guidance cues, a principle that is likely to apply more generally.
Collapse
Affiliation(s)
- Sara Brignani
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Divya D A Raj
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Ewoud R E Schmidt
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Özge Düdükcü
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Anna A De Ruiter
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Mateja Rybiczka-Tesulov
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Marieke G Verhagen
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Christiaan van der Meer
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Mark H Broekhoven
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Juan A Moreno-Bravo
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 17 Rue Moreau, 75012 Paris, France
| | - Laurens M Grossouw
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Emilie Dumontier
- Montreal Neurological Institute, 3801 University, Montréal, QC H3A 2B4, Canada
| | | | - Alain Chédotal
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 17 Rue Moreau, 75012 Paris, France
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
23
|
Ádám Á, Kemecsei R, Company V, Murcia-Ramón R, Juarez I, Gerecsei LI, Zachar G, Echevarría D, Puelles E, Martínez S, Csillag A. Gestational Exposure to Sodium Valproate Disrupts Fasciculation of the Mesotelencephalic Dopaminergic Tract, With a Selective Reduction of Dopaminergic Output From the Ventral Tegmental Area. Front Neuroanat 2020; 14:29. [PMID: 32581730 PMCID: PMC7290005 DOI: 10.3389/fnana.2020.00029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/11/2020] [Indexed: 01/14/2023] Open
Abstract
Gestational exposure to valproic acid (VPA) is known to cause behavioral deficits of sociability, matching similar alterations in human autism spectrum disorder (ASD). Available data are scarce on the neuromorphological changes in VPA-exposed animals. Here, we focused on alterations of the dopaminergic system, which is implicated in motivation and reward, with relevance to social cohesion. Whole brains from 7-day-old mice born to mothers given a single injection of VPA (400 mg/kg b.wt.) on E13.5 were immunostained against tyrosine hydroxylase (TH). They were scanned using the iDISCO method with a laser light-sheet microscope, and the reconstructed images were analyzed in 3D for quantitative morphometry. A marked reduction of mesotelencephalic (MT) axonal fascicles together with a widening of the MT tract were observed in VPA treated mice, while other major brain tracts appeared anatomically intact. We also found a reduction in the abundance of dopaminergic ventral tegmental (VTA) neurons, accompanied by diminished tissue level of DA in ventrobasal telencephalic regions (including the nucleus accumbens (NAc), olfactory tubercle, BST, substantia innominata). Such a reduction of DA was not observed in the non-limbic caudate-putamen. Conversely, the abundance of TH+ cells in the substantia nigra (SN) was increased, presumably due to a compensatory mechanism or to an altered distribution of TH+ neurons occupying the SN and the VTA. The findings suggest that defasciculation of the MT tract and neuronal loss in VTA, followed by diminished dopaminergic input to the ventrobasal telencephalon at a critical time point of embryonic development (E13-E14) may hinder the patterning of certain brain centers underlying decision making and sociability.
Collapse
Affiliation(s)
- Ágota Ádám
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Róbert Kemecsei
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Verónica Company
- Institute of Neuroscience (UMH-CSIC), University of Miguel Hernández, Alicante, Spain
| | - Raquel Murcia-Ramón
- Institute of Neuroscience (UMH-CSIC), University of Miguel Hernández, Alicante, Spain
| | - Iris Juarez
- Institute of Neuroscience (UMH-CSIC), University of Miguel Hernández, Alicante, Spain
| | - László I Gerecsei
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gergely Zachar
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Diego Echevarría
- Institute of Neuroscience (UMH-CSIC), University of Miguel Hernández, Alicante, Spain
| | - Eduardo Puelles
- Institute of Neuroscience (UMH-CSIC), University of Miguel Hernández, Alicante, Spain
| | - Salvador Martínez
- Institute of Neuroscience (UMH-CSIC), University of Miguel Hernández, Alicante, Spain
| | - András Csillag
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
24
|
Mesman S, Bakker R, Smidt MP. Tcf4 is required for correct brain development during embryogenesis. Mol Cell Neurosci 2020; 106:103502. [PMID: 32474139 DOI: 10.1016/j.mcn.2020.103502] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 01/02/2023] Open
Abstract
Tcf4 has been linked to autism, schizophrenia, and Pitt-Hopkins Syndrome (PTHS) in humans, suggesting a role for Tcf4 in brain development and importantly cortical development. However, the mechanisms behind its role in disease and brain development are still elusive. We provide evidence that Tcf4 has a critical function in the differentiation of cortical regions, corpus callosum and anterior commissure formation, and development of the hippocampus during murine embryonic development. In the present study, we show that Tcf4 is expressed throughout the developing brain at the peak of neurogenesis. Deletion of Tcf4 results in mis-specification of the cortical neurons, malformation of the corpus callosum and anterior commissure, and hypoplasia of the hippocampus. Furthermore, the Tcf4 mutant shows an absence of midline remodeling, underlined by the loss of GFAP-expressing midline glia in the indusium griseum and callosal wedge and midline zipper glia in the telencephalic midline. RNA-sequencing on E14.5 cortex material shows that Tcf4 functions as a transcriptional activator and loss of Tcf4 results in downregulation of genes linked to neurogenesis and neuronal maturation. Furthermore, many genes that are differentially expressed after Tcf4 ablation are linked to other neurodevelopmental disorders. Taken together, we show that correct brain development and neuronal differentiation are severely affected in Tcf4 mutants, phenocopying morphological brain defects detected in PTHS patients. The presented data identifies new leads to understand the mechanisms behind brain and specifically cortical development and can provide novel insights in developmental mechanisms underlying human brain defects.
Collapse
Affiliation(s)
- Simone Mesman
- Swammerdam Institute for Life Sciences, FNWI University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands
| | - Reinier Bakker
- Swammerdam Institute for Life Sciences, FNWI University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands
| | - Marten P Smidt
- Swammerdam Institute for Life Sciences, FNWI University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands.
| |
Collapse
|
25
|
Paul EJ, Tossell K, Ungless MA. Transcriptional profiling aligned with in situ expression image analysis reveals mosaically expressed molecular markers for GABA neuron sub-groups in the ventral tegmental area. Eur J Neurosci 2019; 50:3732-3749. [PMID: 31374129 PMCID: PMC6972656 DOI: 10.1111/ejn.14534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 12/17/2022]
Abstract
γ‐Aminobutyric acid (GABA) neurons in the ventral tegmental area (VTA) provide local inhibitory control of dopamine neuron activity and send long‐range projections to several target regions including the nucleus accumbens. They play diverse roles in reward and aversion, suggesting that they be comprised of several functionally distinct sub‐groups, but our understanding of this diversity has been limited by a lack of molecular markers that might provide genetic entry points for cell type‐specific investigations. To address this, we conducted transcriptional profiling of GABA neurons and dopamine neurons using immunoprecipitation of tagged polyribosomes (RiboTag) and RNAseq. First, we directly compared these two transcriptomes in order to obtain a list of genes enriched in GABA neurons compared with dopamine neurons. Next, we created a novel bioinformatic approach, that used the PANTHER (Protein ANalysis THrough Evolutionary Relationships) gene ontology database and VTA gene expression data from the Allen Mouse Brain Atlas, from which we obtained 6 candidate genes: Cbln4, Rxfp3, Rora, Gpr101, Trh and Nrp2. As a final step, we verified the selective expression of these candidate genes in sub‐groups of GABA neurons in the VTA (and neighbouring substantia nigra pars compacta) using immunolabelling. Taken together, our study provides a valuable toolbox for the future investigation of GABA neuron sub‐groups in the VTA.
Collapse
Affiliation(s)
- Eleanor J Paul
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Kyoko Tossell
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Mark A Ungless
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
26
|
Li Z, Jagadapillai R, Gozal E, Barnes G. Deletion of Semaphorin 3F in Interneurons Is Associated with Decreased GABAergic Neurons, Autism-like Behavior, and Increased Oxidative Stress Cascades. Mol Neurobiol 2019; 56:5520-5538. [PMID: 30635860 PMCID: PMC6614133 DOI: 10.1007/s12035-018-1450-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
Abstract
Autism and epilepsy are diseases which have complex genetic inheritance. Genome-wide association and other genetic studies have implicated at least 500+ genes associated with the occurrence of autism spectrum disorders (ASD) including the human semaphorin 3F (Sema 3F) and neuropilin 2 (NRP2) genes. However, the genetic basis of the comorbid occurrence of autism and epilepsy is unknown. The aberrant development of GABAergic circuitry is a possible risk factor in autism and epilepsy. Molecular biological approaches were used to test the hypothesis that cell-specific genetic variation in mouse homologs affects the formation and function of GABAergic circuitry. The empirical analysis with mice homozygous null for one of these genes, Sema 3F, in GABAergic neurons substantiated these predictions. Notably, deletion of Sema 3F in interneurons but not excitatory neurons during early development decreased the number of interneurons/neurites and mRNAs for cell-specific GABAergic markers and increased epileptogenesis and autistic behaviors. Studies of interneuron cell-specific knockout of Sema 3F signaling suggest that deficient Sema 3F signaling may lead to neuroinflammation and oxidative stress. Further studies of mouse KO models of ASD genes such as Sema 3F or NRP2 may be informative to clinical phenotypes contributing to the pathogenesis in autism and epilepsy patients.
Collapse
Affiliation(s)
- Zhu Li
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rekha Jagadapillai
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Evelyne Gozal
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Gregory Barnes
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, USA.
- Pediatric Research Institute, University of Louisville Autism Center, 1405 East Burnett Ave, Louisville, KY, 40217, USA.
| |
Collapse
|
27
|
Derazshamshir A, Aşır S, Göktürk I, Ektirici S, Yılmaz F, Denizli A. Polymethacryloyl-L-Phenylalanine [PMAPA]-Based Monolithic Column for Capillary Electrochromatography. J Chromatogr Sci 2019; 57:758-765. [DOI: 10.1093/chromsci/bmz047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/23/2019] [Indexed: 11/13/2022]
Abstract
Abstract
The ability to detect catecholamines (CAs) and their metabolites is vital to understand the mechanism behind the neuronal diseases. Neurochemistry aims to provide an improved pharmacological, molecular and physiological understanding of complex brain chemistries by analytical techniques. Capillary electrophoresis (CE) is one such analytical technique that enables the study of various chemical species ranging from amino acids and peptides to natural products and drugs. CE can easily adapt the changes in research focus and in recent years remains an applicable technique for investigating neuroscience and single cell neurobiology. The prepared phenylalanine-based hydrophobic monolithic column, Polymethacryloyl-L-phenylalanine [PMAPA], was used as a stationary phase in capillary electrochromatography to separate CAs that are similar in size and shape to each other including dopamine (DA) and norepinephrine (NE) via hydrophobic interactions. Separation carried out in a short period of 17 min was performed with the electrophoretic mobility of 5.54 × 10−6 m2 V−1 s−1 and 7.60 × 10−6 m2 V−1 s−1 for DA and NE, respectively, at pH 7.0, 65% acetonitrile ratio with 100 mbar applied pressure by the developed hydrophobic monolithic column without needing any extra process such as imprinting or spacer arms to immobilize ligands used in separation.
Collapse
Affiliation(s)
- Ali Derazshamshir
- Department of Chemistry, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Süleyman Aşır
- Department of Materials Science and Nanotechnology Engineering, Near East University, 99138, Nicosia, North Cyprus, Mersin 10, Turkey
| | - Ilgım Göktürk
- Department of Chemistry, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Sisem Ektirici
- Department of Chemistry, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Fatma Yılmaz
- Chemistry Technology Division, Abant Izzet Baysal University, 14900, Bolu, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| |
Collapse
|
28
|
Axonal Growth of Midbrain Dopamine Neurons is Modulated by the Cell Adhesion Molecule ALCAM Through Trans-Heterophilic Interactions with L1cam, Chl1, and Semaphorins. J Neurosci 2019; 39:6656-6667. [PMID: 31300520 DOI: 10.1523/jneurosci.0278-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/21/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022] Open
Abstract
The growth of axons corresponding to different neuronal subtypes is governed by unique expression profiles of molecules on the growth cone. These molecules respond to extracellular cues either locally though cell adhesion interactions or over long distances through diffusible gradients. Here, we report that that the cell adhesion molecule ALCAM (CD166) can act as an extracellular substrate to selectively promote the growth of murine midbrain dopamine (mDA) neuron axons through a trans-heterophilic interaction with mDA-bound adhesion molecules. In mixed-sex primary midbrain cultures, the growth-promoting effect of ALCAM was abolished by neutralizing antibodies for components of the Semaphorin receptor complex Nrp1, Chl1, or L1cam. The ALCAM substrate was also found to modulate the response of mDA neurites to soluble semaphorins in a context-specific manner by abolishing the growth-promoting effect of Sema3A but inducing a branching response in the presence of Sema3C. These findings identify a previously unrecognized guidance mechanism whereby cell adhesion molecules act in trans to modulate the response of axonal growth cones to soluble gradients to selectively orchestrate the growth and guidance of mDA neurons.SIGNIFICANCE STATEMENT The mechanisms governing the axonal connectivity of midbrain dopamine (mDA) neurons during neural development have remained rather poorly understood relative to other model systems for axonal growth and guidance. Here, we report a series of novel interactions between proteins previously not identified in the context of mDA neuronal growth. Significantly, the results suggest a previously unrecognized mechanism involving the convergence in signaling between local, adhesion and long-distance, soluble cues. A better understanding of the molecules and mechanisms involved in establishment of the mDA system is important as a part of ongoing efforts to understand the consequence of conditions that may result from aberrant connectivity and also for cell replacement strategies for Parkinson's disease.
Collapse
|
29
|
Kroeze Y, Oti M, van Beusekom E, Cooijmans RHM, van Bokhoven H, Kolk SM, Homberg JR, Zhou H. Transcriptome Analysis Identifies Multifaceted Regulatory Mechanisms Dictating a Genetic Switch from Neuronal Network Establishment to Maintenance During Postnatal Prefrontal Cortex Development. Cereb Cortex 2019; 28:833-851. [PMID: 28108491 DOI: 10.1093/cercor/bhw407] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 12/20/2022] Open
Abstract
The prefrontal cortex (PFC) is one of the latest brain regions to mature, which allows the acquisition of complex cognitive abilities through experience. To unravel the underlying gene expression changes during postnatal development, we performed RNA-sequencing (RNA-seq) in the rat medial PFC (mPFC) at five developmental time points from infancy to adulthood, and analyzed the differential expression of protein-coding genes, long intergenic noncoding RNAs (lincRNAs), and alternative exons. We showed that most expression changes occur in infancy, and that the number of differentially expressed genes reduces toward adulthood. We observed 137 differentially expressed lincRNAs and 796 genes showing alternative exon usage during postnatal development. Importantly, we detected a genetic switch from neuronal network establishment in infancy to maintenance of neural networks in adulthood based on gene expression dynamics, involving changes in protein-coding and lincRNA gene expression as well as alternative exon usage. Our gene expression datasets provide insights into the multifaceted transcriptional regulation of the developing PFC. They can be used to study the basic developmental processes of the mPFC and to understand the mechanisms of neurodevelopmental and neuropsychiatric disorders. Our study provides an important contribution to the ongoing efforts to complete the "brain map", and to the understanding of PFC development.
Collapse
Affiliation(s)
- Yvet Kroeze
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 EZ Nijmegen, The Netherlands.,Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Martin Oti
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands.,Carlos Chagas Filho Biophysics Institute (IBCCF), Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, Brazil
| | - Ellen van Beusekom
- Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Roel H M Cooijmans
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Sharon M Kolk
- Department of Molecular Animal Physiology, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 EZ Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.,Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
30
|
Yuan H, Yang M, Han X, Ni X. The Therapeutic Effect of the Chinese Herbal Medicine, Rehmanniae Radix Preparata, in Attention Deficit Hyperactivity Disorder via Reversal of Structural Abnormalities in the Cortex. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:3052058. [PMID: 30405737 PMCID: PMC6204205 DOI: 10.1155/2018/3052058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/02/2018] [Accepted: 09/10/2018] [Indexed: 12/27/2022]
Abstract
Rehmanniae radix preparata is extracted from wine-steaming the Rehmannia root, a scrophulariaceae plant. It has been used for thousands of years with effects of nourishing kidney-yin, benefiting essence and filling marrow based on traditional Chinese medicine (TCM) theory. Rehmanniae radix preparata has antioxidant, antisenescence, anti-inflammatory, and neuroprotective properties. It is the most popular Traditional Chinese medicinal compound (TCMC) used in attention deficit hyperactivity disorder (ADHD) therapy. However, few studies have been conducted exploring the effects and potential mechanisms of Rehmanniae radix preparata alone on ADHD. Recent studies have shown that Rehmanniae radix preparata inhibits spontaneous activity in mice, improves learning and memory in rats following thalamic arcuate nucleus injury, and exhibits antidepressant effects. Catalpol, an active component of Rehmanniae radix preparata, elevates brain-derived neurotrophic factor (BDNF), and attenuates neuronal apoptosis and energy metabolism failure. ADHD is characterized by hyperactivity-impulsivity and impairments in learning and memory. Its pathomechanism is closely related to structural abnormalities in the cortex that is mediated by dysfunction in neuronal development, apoptosis, and energy metabolism. We hypothesize that Rehmanniae radix preparata may be effective at treating ADHD by alleviating neurodevelopmental abnormalities, neuronal apoptosis, and energy metabolism failure.
Collapse
Affiliation(s)
- Haixia Yuan
- Nanjing University of Chinese Medicine, First Clinical Medical College, Institute of Pediatrics of traditional Chinese Medicine, Qixia District, Nanjing, 210029, Jiangsu Province, China
| | - Meng Yang
- Nanjing University of Chinese Medicine, Institute of Chinese medicine literature, Qixia District, Nanjing, 210029, Jiangsu Province, China
| | - Xinmin Han
- Nanjing University of Chinese Medicine, First Clinical Medical College, Institute of Pediatrics of traditional Chinese Medicine, Qixia District, Nanjing, 210029, Jiangsu Province, China
| | - Xinqiang Ni
- Shenzhen traditional Chinese Medicine Hospital, Pediatrics of traditional Chinese Medicine, Shenzhen, 518038, Guangdong Province, China
- Institute of Geriatrics, Shenzhen, 518035, Guangdong Province, China
| |
Collapse
|
31
|
Georgieff MK, Tran PV, Carlson ES. Atypical fetal development: Fetal alcohol syndrome, nutritional deprivation, teratogens, and risk for neurodevelopmental disorders and psychopathology. Dev Psychopathol 2018; 30:1063-1086. [PMID: 30068419 PMCID: PMC6074054 DOI: 10.1017/s0954579418000500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that the fetal environment plays an important role in brain development and sets the brain on a trajectory across the life span. An abnormal fetal environment results when factors that should be present during a critical period of development are absent or when factors that should not be in the developing brain are present. While these factors may acutely disrupt brain function, the real cost to society resides in the long-term effects, which include important mental health issues. We review the effects of three factors, fetal alcohol exposure, teratogen exposure, and nutrient deficiencies, on the developing brain and the consequent risk for developmental psychopathology. Each is reviewed with respect to the evidence found in epidemiological and clinical studies in humans as well as preclinical molecular and cellular studies that explicate mechanisms of action.
Collapse
Affiliation(s)
| | - Phu V Tran
- University of Minnesota School of Medicine
| | | |
Collapse
|
32
|
Garcia LP, Witteveen JS, Middelman A, van Hulten JA, Martens GJM, Homberg JR, Kolk SM. Perturbed Developmental Serotonin Signaling Affects Prefrontal Catecholaminergic Innervation and Cortical Integrity. Mol Neurobiol 2018; 56:1405-1420. [PMID: 29948943 PMCID: PMC6400880 DOI: 10.1007/s12035-018-1105-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/03/2018] [Indexed: 11/26/2022]
Abstract
Proper development of the medial prefrontal cortex (mPFC), crucial for correct cognitive functioning, requires projections from, among others, the serotonergic (5-HT) and catecholaminergic systems, but it is unclear how these systems influence each other during development. Here, we describe the parallel development of the 5-HT and catecholaminergic prefrontal projection systems in rat and demonstrate a close engagement of both systems in the proximity of Cajal-Retzius cells. We further show that in the absence of the 5-HT transporter (5-HTT), not only the developing 5-HT but also the catecholaminergic system, including their projections towards the mPFC, are affected. In addition, the layer identity of the mPFC neurons and reelin-positive interneuron number and integration are altered in the absence of the 5-HTT. Together, our data demonstrate a functional interplay between the developing mPFC 5-HT and catecholaminergic systems, and call for a holistic approach in studying neurotransmitter systems-specific developmental consequences for adult behavior, to eventually allow the design of better treatment strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Lidiane P Garcia
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Molecular Animal Physiology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Josefine S Witteveen
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Molecular Animal Physiology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Anthonieke Middelman
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Josephus A van Hulten
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Molecular Animal Physiology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Gerard J M Martens
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Molecular Animal Physiology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Judith R Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Sharon M Kolk
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Molecular Animal Physiology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
33
|
Reynolds LM, Pokinko M, Torres Berrío A, Cuesta S, Lambert LC, Del Cid Pellitero E, Wodzinski M, Manitt C, Krimpenfort P, Kolb B, Flores C. DCC Receptors Drive Prefrontal Cortex Maturation by Determining Dopamine Axon Targeting in Adolescence. Biol Psychiatry 2018; 83:181-192. [PMID: 28720317 PMCID: PMC5723533 DOI: 10.1016/j.biopsych.2017.06.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/12/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Dopaminergic input to the prefrontal cortex (PFC) increases throughout adolescence and, by establishing precisely localized synapses, calibrates cognitive function. However, why and how mesocortical dopamine axon density increases across adolescence remains unknown. METHODS We used a developmental application of axon-initiated recombination to label and track the growth of dopamine axons across adolescence in mice. We then paired this recombination with cell-specific knockdown of the netrin-1 receptor DCC to determine its role in adolescent dopamine axon growth. We then assessed how altering adolescent PFC dopamine axon growth changes the structural and functional development of the PFC by quantifying pyramidal neuron morphology and cognitive performance. RESULTS We show, for the first time, that dopamine axons continue to grow from the striatum to the PFC during adolescence. Importantly, we discover that DCC, a guidance cue receptor, controls the extent of this protracted growth by determining where and when dopamine axons recognize their final target. When DCC-dependent adolescent targeting events are disrupted, dopamine axons continue to grow ectopically from the nucleus accumbens to the PFC and profoundly change PFC structural and functional development. This leads to alterations in cognitive processes known to be impaired across psychiatric conditions. CONCLUSIONS The prolonged growth of dopamine axons represents an extraordinary period for experience to influence their adolescent trajectory and predispose to or protect against psychopathology. DCC receptor signaling in dopamine neurons is a molecular link where genetic and environmental factors may interact in adolescence to influence the development and function of the prefrontal cortex.
Collapse
Affiliation(s)
- Lauren M. Reynolds
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada,Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, Québec, Canada H4H 1R3
| | - Matthew Pokinko
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada,Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, Québec, Canada H4H 1R3
| | - Angélica Torres Berrío
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada,Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, Québec, Canada H4H 1R3
| | - Santiago Cuesta
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, Québec, Canada H4H 1R3
| | - Laura C. Lambert
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, Québec, Canada H4H 1R3
| | - Esther Del Cid Pellitero
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, Québec, Canada H4H 1R3
| | - Michael Wodzinski
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, Québec, Canada H4H 1R3
| | - Colleen Manitt
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, Québec, Canada H4H 1R3
| | - Paul Krimpenfort
- Division of Molecular Genetics, Centre for Biomedical Genetics, Cancer Genomics Centre, The Netherlands Cancer Institute, Amsterdam, The Netherlands 1066 CX
| | - Bryan Kolb
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Cecilia Flores
- Departments of Psychiatry and Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, Québec, Canada.
| |
Collapse
|
34
|
Alamri A, Soussi Gounni A, Kung SKP. View Point: Semaphorin-3E: An Emerging Modulator of Natural Killer Cell Functions? Int J Mol Sci 2017; 18:E2337. [PMID: 29113093 PMCID: PMC5713306 DOI: 10.3390/ijms18112337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/21/2017] [Accepted: 11/01/2017] [Indexed: 12/29/2022] Open
Abstract
Semaphorin-3E (Sema-3E) is a member of a large family of proteins originally identified as axon guidance cues in neural development. It is expressed in different cell types, such as immune cells, cancer cells, neural cells, and epithelial cells. Subsequently, dys-regulation of Sema-3E expression has been reported in various biological processes that range from cancers to autoimmune and allergic diseases. Recent work in our laboratories revealed a critical immunoregulatory role of Sema-3E in experimental allergic asthma. We further speculate possible immune modulatory function(s) of Sema-3E on natural killer (NK) cells.
Collapse
Affiliation(s)
- Abdulaziz Alamri
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Abdelilah Soussi Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Sam K P Kung
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| |
Collapse
|
35
|
Mesman S, Smidt MP. Tcf12 Is Involved in Early Cell-Fate Determination and Subset Specification of Midbrain Dopamine Neurons. Front Mol Neurosci 2017; 10:353. [PMID: 29163030 PMCID: PMC5671939 DOI: 10.3389/fnmol.2017.00353] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/17/2017] [Indexed: 11/23/2022] Open
Abstract
The basic helix-loop-helix (bHLH) protein family has previously been shown to be involved in the development of mesodiencephalic dopaminergic (mdDA) neurons in the murine midbrain. Specifically, Ngn2 and Mash1 are known to have a role in the specification of neural progenitors in the ventricular zone (VZ) of the midbrain towards an mdDA neuronal cell-fate. Furthermore, other members of the bHLH protein family, the E-box factors, are expressed in the developing midbrain and are thought to have a role in neuronal differentiation. Here we show that the E-box factor Tcf12 is implicated in early and late development of mdDA neurons. Tcf12 is expressed in the midbrain and in young TH-expressing mdDA neurons throughout development. Tcf12lox/lox;En1cre/+ embryos, that lose Tcf12 at ~embryonic day (E)9 throughout the En1 expression domain, have a changed spatial expression of Lmx1a and Nurr1 and a consistent loss of rostral TH expression. Expression of the subset marker Ahd2 is initially delayed, but recovers during development, eventually showing an ~10% increase in AHD2-expressing cells at postnatal day (P)30. Tcf12lox/lox;Pitx3cre/+ embryos, that lose Tcf12 at ~E12 in post-mitotic mdDA neurons, show no effect on the amount of TH-expressing neurons in the developing midbrain. However, similar as to Tcf12lox/lox;En1cre/+ embryos, subset specification is delayed during development. Taken together, we have identified Tcf12 as a novel factor in mdDA neuronal development. It serves a dual function; one in early cell-fate commitment of neural progenitors and one late in subset specification.
Collapse
Affiliation(s)
- Simone Mesman
- Swammerdam Institute for Life Sciences, FNWI University of Amsterdam, Amsterdam, Netherlands
| | - Marten P Smidt
- Swammerdam Institute for Life Sciences, FNWI University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
36
|
Wianny F, Vezoli J. Transplantation in the nonhuman primate MPTP model of Parkinson's disease: update and perspectives. Primate Biol 2017; 4:185-213. [PMID: 32110706 PMCID: PMC7041537 DOI: 10.5194/pb-4-185-2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/31/2017] [Indexed: 12/22/2022] Open
Abstract
In order to calibrate stem cell exploitation for cellular therapy in neurodegenerative diseases, fundamental and preclinical research in NHP (nonhuman primate) models is crucial. Indeed, it is consensually recognized that it is not possible to directly extrapolate results obtained in rodent models to human patients. A large diversity of neurological pathologies should benefit from cellular therapy based on neural differentiation of stem cells. In the context of this special issue of Primate Biology on NHP stem cells, we describe past and recent advances on cell replacement in the NHP model of Parkinson's disease (PD). From the different grafting procedures to the various cell types transplanted, we review here diverse approaches for cell-replacement therapy and their related therapeutic potential on behavior and function in the NHP model of PD.
Collapse
Affiliation(s)
- Florence Wianny
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Julien Vezoli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| |
Collapse
|
37
|
Francardo V, Schmitz Y, Sulzer D, Cenci MA. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease. Exp Neurol 2017; 298:137-147. [PMID: 28988910 DOI: 10.1016/j.expneurol.2017.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022]
Abstract
Disease-modifying treatments remain an unmet medical need in Parkinson's disease (PD). Such treatments can be operationally defined as interventions that slow down the clinical evolution to advanced disease milestones. A treatment may achieve this outcome by either inhibiting primary neurodegenerative events ("neuroprotection") or boosting compensatory and regenerative mechanisms in the brain ("neurorestoration"). Here we review experimental paradigms that are currently used to assess the neuroprotective and neurorestorative potential of candidate treatments in animal models of PD. We review some key molecular mediators of neuroprotection and neurorestoration in the nigrostriatal dopamine pathway that are likely to exert beneficial effects on multiple neural systems affected in PD. We further review past and current strategies to therapeutically stimulate these mediators, and discuss the preclinical evidence that exercise training can have neuroprotective and neurorestorative effects. A future translational task will be to combine behavioral and pharmacological interventions to exploit endogenous mechanisms of neuroprotection and neurorestoration for therapeutic purposes. This type of approach is likely to provide benefit to many PD patients, despite the clinical, etiological, and genetic heterogeneity of the disease.
Collapse
Affiliation(s)
- Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Yvonne Schmitz
- Departments Neurology, Psychiatry, Pharmacology, Columbia University Medical Center: Division of Molecular Therapeutics, New York State Psychiatric Institute, New York 10032, NY, USA
| | - David Sulzer
- Departments Neurology, Psychiatry, Pharmacology, Columbia University Medical Center: Division of Molecular Therapeutics, New York State Psychiatric Institute, New York 10032, NY, USA
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
38
|
Brignani S, Pasterkamp RJ. Neuronal Subset-Specific Migration and Axonal Wiring Mechanisms in the Developing Midbrain Dopamine System. Front Neuroanat 2017; 11:55. [PMID: 28740464 PMCID: PMC5502286 DOI: 10.3389/fnana.2017.00055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/20/2017] [Indexed: 01/01/2023] Open
Abstract
The midbrain dopamine (mDA) system is involved in the control of cognitive and motor behaviors, and is associated with several psychiatric and neurodegenerative diseases. mDA neurons receive diverse afferent inputs and establish efferent connections with many brain areas. Recent studies have unveiled a high level of molecular and cellular heterogeneity within the mDA system with specific subsets of mDA neurons displaying select molecular profiles and connectivity patterns. During mDA neuron development, molecular differences between mDA neuron subsets allow the establishment of subset-specific afferent and efferent connections and functional roles. In this review, we summarize and discuss recent work defining novel mDA neuron subsets based on specific molecular signatures. Then, molecular cues are highlighted that control mDA neuron migration during embryonic development and that facilitate the formation of selective patterns of efferent connections. The review focuses largely on studies that show differences in these mechanisms between different subsets of mDA neurons and for which in vivo data is available, and is concluded by a section that discusses open questions and provides directions for further research.
Collapse
Affiliation(s)
- Sara Brignani
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, Netherlands
| | - R J Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, Netherlands
| |
Collapse
|
39
|
PLXNA3 Variant rs5945430 is Associated with Severe Clinical Course in Male Multiple Sclerosis Patients. Neuromolecular Med 2017; 19:286-292. [PMID: 28536997 DOI: 10.1007/s12017-017-8443-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/18/2017] [Indexed: 10/19/2022]
Abstract
Multiple sclerosis (MS) exhibits sex bias in disease clinical course as male MS patients develop severe, progressive clinical course with accumulating disability. So far, no factors have been found associating with this sex bias in MS severity. We set out to determine the genetic factor contributing to MS male-specific progressive disease. This is an MS cross-sectional study involving 213 Kuwaiti MS patients recruited at Dasman Diabetes Institute. Exome sequencing was performed on 18 females and 8 male MS patients' genomic DNA. rs5945430 genotyping was performed using Taqman genotyping assay. Estradiol levels were determined by enzyme-linked immunosorbent assay. Exome analysis revealed a missense variant (rs5945430) in Plexin A3 (PLXNA3) gene (Xq28) associated with male-specific MS severity. Genotyping of 187 MS patients for rs5945430 confirmed the association of rs5945430G with increased disease severity in MS males (p = 0.013; OR 3.8; 95% CI 1.24-11.7) and disability (p = 0.024). Estradiol levels shown to effect PLXNA3 expression were lower in MS males compared to MS females, and they were lower than control rs5945430G males (p = 0.057), whereas MS females had similar estradiol levels to healthy females reducing the level of expressed PLXNA3 GG in MS females. PLXNA3 rs5945430G is associated with increased disease severity in MS male patients. Estradiol is a possible protective factor against the expression of rs5945430G in MS females.
Collapse
|
40
|
Kos A, de Mooij-Malsen AJ, van Bokhoven H, Kaplan BB, Martens GJ, Kolk SM, Aschrafi A. MicroRNA-338 modulates cortical neuronal placement and polarity. RNA Biol 2017; 14:905-913. [PMID: 28494198 DOI: 10.1080/15476286.2017.1325067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The precise spatial and temporal regulation of gene expression orchestrates the many intricate processes during brain development. In the present study we examined the role of the brain-enriched microRNA-338 (miR-338) during mouse cortical development. Reduction of miR-338 levels in the developing mouse cortex, using a sequence-specific miR-sponge, resulted in a loss of neuronal polarity in the cortical plate and significantly reduced the number of neurons within this cortical layer. Conversely, miR-338 overexpression in developing mouse cortex increased the number of neurons, which exhibited a multipolar morphology. All together, our results raise the possibility for a direct role for this non-coding RNA, which was recently associated with schizophrenia, in the regulation of cortical neuronal polarity and layer placement.
Collapse
Affiliation(s)
- Aron Kos
- a Department of Cognitive Neuroscience , Radboud University Medical Center , Nijmegen , The Netherlands.,d Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience , Nijmegen , The Netherlands
| | - Annetrude J de Mooij-Malsen
- b Department of Molecular Animal Physiology , Radboud University , Nijmegen , The Netherlands.,d Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience , Nijmegen , The Netherlands.,f Institute of Physiology, CAU Kiel University , Germany
| | - Hans van Bokhoven
- a Department of Cognitive Neuroscience , Radboud University Medical Center , Nijmegen , The Netherlands.,c Department of Human Genetics , Radboud University Medical Center , Nijmegen , The Netherlands.,d Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience , Nijmegen , The Netherlands
| | - Barry B Kaplan
- e Laboratory of Molecular Biology, National Institute of Mental Health , National Institutes of Health , Bethesda , MD , USA
| | - Gerard J Martens
- b Department of Molecular Animal Physiology , Radboud University , Nijmegen , The Netherlands.,d Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience , Nijmegen , The Netherlands
| | - Sharon M Kolk
- b Department of Molecular Animal Physiology , Radboud University , Nijmegen , The Netherlands.,d Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience , Nijmegen , The Netherlands
| | - Armaz Aschrafi
- e Laboratory of Molecular Biology, National Institute of Mental Health , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
41
|
Lindholm T, Risling M, Carlstedt T, Hammarberg H, Wallquist W, Cullheim S, Sköld MK. Expression of Semaphorins, Neuropilins, VEGF, and Tenascins in Rat and Human Primary Sensory Neurons after a Dorsal Root Injury. Front Neurol 2017; 8:49. [PMID: 28270793 PMCID: PMC5318460 DOI: 10.3389/fneur.2017.00049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/02/2017] [Indexed: 01/13/2023] Open
Abstract
Dorsal root injury is a situation not expected to be followed by a strong regenerative growth, or growth of the injured axon into the central nervous system of the spinal cord, if the central axon of the dorsal root is injured but of strong regeneration if subjected to injury to the peripherally projecting axons. The clinical consequence of axonal injury is loss of sensation and may also lead to neuropathic pain. In this study, we have used in situ hybridization to examine the distribution of mRNAs for the neural guidance molecules semaphorin 3A (SEMA3A), semaphorin 3F (SEMA3F), and semaphorin 4F (SEMA4F), their receptors neuropilin 1 (NP1) and neuropilin 2 (NP2) but also for the neuropilin ligand vascular endothelial growth factor (VEGF) and Tenascin J1, an extracellular matrix molecule involved in axonal guidance, in rat dorsal root ganglia (DRG) after a unilateral dorsal rhizotomy (DRT) or sciatic nerve transcetion (SNT). The studied survival times were 1–365 days. The different forms of mRNAs were unevenly distributed between the different size classes of sensory nerve cells. The results show that mRNA for SEMA3A was diminished after trauma to the sensory nerve roots in rats. The SEMA3A receptor NP1, and SEMA3F receptor NP2, was significantly upregulated in the DRG neurons after DRT and SNT. SEMA4F was upregulated after a SNT. The expression of mRNA for VEGF in DRG neurons after DRT showed a significant upregulation that was high even a year after the injuries. These data suggest a role for the semaphorins, neuropilins, VEGF, and J1 in the reactions after dorsal root lesions.
Collapse
Affiliation(s)
- Tomas Lindholm
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Helsa Företagshälsovård Östermalm, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Thomas Carlstedt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Hammersmith Hospital, University College London and Imperial College, London, UK; Department of Hand Surgery, Södersjukhuset, Stockholm, Sweden; Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Henrik Hammarberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Hand Surgery, Södersjukhuset, Stockholm, Sweden; Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Wilhelm Wallquist
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Anesthesiology and Intensive Care, Västerås General Hospital, Västerås, Sweden
| | - Staffan Cullheim
- Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Mattias K Sköld
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
42
|
Mesman S, van Hooft JA, Smidt MP. Mest/Peg1 Is Essential for the Development and Maintenance of a SNc Neuronal Subset. Front Mol Neurosci 2017; 9:166. [PMID: 28133444 PMCID: PMC5233686 DOI: 10.3389/fnmol.2016.00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/21/2016] [Indexed: 11/23/2022] Open
Abstract
Mesodiencephalic dopaminergic (mdDA) neurons originate at the floor plate and floor plate-basal plate boundary of the midbrain ventricular zone. During development mdDA neurons are specified by a unique set of transcription factors and signaling cascades, to form the different molecular subsets of the mdDA neuronal population. In a time series micro-array study performed previously, mesoderm specific transcript (Mest) was found to be one of the most upregulated genes during early mdDA neuronal development. Here, we show that Mest transcript is expressed in the midbrain throughout development and becomes restricted to the substantia nigra (SNc) at late stages. In Mest KO animals mdDA neurons are progressively lost in the adult, mostly affecting the SNc, reflected by a 50% decrease of TH protein and DA release in the striatum and a reduction of climbing behavior. Analysis of Lrp6 KO embryos suggest a subtle opposite phenotype to the Mest KO, hinting toward the possibility that specific loss of mdDA neurons in Mest ablated animals could be due to affected WNT-signaling. Interestingly, the mdDA neuronal region affected by the loss of Mest remains relatively unaffected in Pitx3 mutants, suggesting that both genes are essential for the development and/or maintenance of different mdDA neuronal subsets within the SNc. Overall, the neuroanatomical and phenotypical consequences detected upon the loss of Mest, resemble the loss of SNc neurons and loss of movement control as seen in Parkinson’s Disease (PD), suggesting that the Mest mouse model may be used as a model-system for PD.
Collapse
Affiliation(s)
- Simone Mesman
- Swammerdam Institute for Life Sciences, FNWI University of Amsterdam Amsterdam, Netherlands
| | - Johannes A van Hooft
- Swammerdam Institute for Life Sciences, FNWI University of Amsterdam Amsterdam, Netherlands
| | - Marten P Smidt
- Swammerdam Institute for Life Sciences, FNWI University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
43
|
Meyer LAT, Fritz J, Pierdant-Mancera M, Bagnard D. Current drug design to target the Semaphorin/Neuropilin/Plexin complexes. Cell Adh Migr 2016; 10:700-708. [PMID: 27906605 PMCID: PMC5160035 DOI: 10.1080/19336918.2016.1261785] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
The Semaphorin/Neuropilin/Plexin (SNP) complexes control a wide range of biological processes. Consistently, activity deregulation of these complexes is associated with many diseases. The increasing knowledge on SNP had in turn validated these molecular complexes as novel therapeutic targets. Targeting SNP activities by small molecules, antibodies and peptides or by soluble semaphorins have been proposed as new therapeutic approach. This review is focusing on the latest demonstration of this potential and discusses some of the key questions that need to be addressed before translating SNP targeting into clinically relevant approaches.
Collapse
Affiliation(s)
- Lionel A. T. Meyer
- INSERM U1109 – MN3T Lab, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, France
| | - Justine Fritz
- INSERM U1109 – MN3T Lab, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, France
| | - Marie Pierdant-Mancera
- INSERM U1109 – MN3T Lab, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, France
| | - Dominique Bagnard
- INSERM U1109 – MN3T Lab, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, France
| |
Collapse
|
44
|
Witteveen JS, Willemsen MH, Dombroski TCD, van Bakel NHM, Nillesen WM, van Hulten JA, Jansen EJR, Verkaik D, Veenstra-Knol HE, van Ravenswaaij-Arts CMA, Wassink-Ruiter JSK, Vincent M, David A, Le Caignec C, Schieving J, Gilissen C, Foulds N, Rump P, Strom T, Cremer K, Zink AM, Engels H, de Munnik SA, Visser JE, Brunner HG, Martens GJM, Pfundt R, Kleefstra T, Kolk SM. Haploinsufficiency of MeCP2-interacting transcriptional co-repressor SIN3A causes mild intellectual disability by affecting the development of cortical integrity. Nat Genet 2016; 48:877-87. [PMID: 27399968 DOI: 10.1038/ng.3619] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 06/15/2016] [Indexed: 12/13/2022]
Abstract
Numerous genes are associated with neurodevelopmental disorders such as intellectual disability and autism spectrum disorder (ASD), but their dysfunction is often poorly characterized. Here we identified dominant mutations in the gene encoding the transcriptional repressor and MeCP2 interactor switch-insensitive 3 family member A (SIN3A; chromosome 15q24.2) in individuals who, in addition to mild intellectual disability and ASD, share striking features, including facial dysmorphisms, microcephaly and short stature. This phenotype is highly related to that of individuals with atypical 15q24 microdeletions, linking SIN3A to this microdeletion syndrome. Brain magnetic resonance imaging showed subtle abnormalities, including corpus callosum hypoplasia and ventriculomegaly. Intriguingly, in vivo functional knockdown of Sin3a led to reduced cortical neurogenesis, altered neuronal identity and aberrant corticocortical projections in the developing mouse brain. Together, our data establish that haploinsufficiency of SIN3A is associated with mild syndromic intellectual disability and that SIN3A can be considered to be a key transcriptional regulator of cortical brain development.
Collapse
Affiliation(s)
- Josefine S Witteveen
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Thaís C D Dombroski
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| | - Nick H M van Bakel
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| | - Willy M Nillesen
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Josephus A van Hulten
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| | - Eric J R Jansen
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| | - Dave Verkaik
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Hermine E Veenstra-Knol
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | | | - Marie Vincent
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, Nantes, France
| | - Albert David
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, Nantes, France
| | - Cedric Le Caignec
- Centre Hospitalier Universitaire de Nantes, Service de Génétique Médicale, Nantes, France.,Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Faculté de Médecine, INSERM UMRS 957, Nantes, France
| | - Jolanda Schieving
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Nicola Foulds
- Wessex Clinical Genetics Services, University Hospital Southampton National Health Service Foundation Trust, Princess Anne Hospital, Southampton, UK.,Department of Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Patrick Rump
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tim Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Kirsten Cremer
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | | | - Hartmut Engels
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Sonja A de Munnik
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Jasper E Visser
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Neurology, Amphia Hospital Breda, Berda, the Netherlands
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Sharon M Kolk
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
45
|
Hernandez-Enriquez B, Wu Z, Martinez E, Olsen O, Kaprielian Z, Maness PF, Yoshida Y, Tessier-Lavigne M, Tran TS. Floor plate-derived neuropilin-2 functions as a secreted semaphorin sink to facilitate commissural axon midline crossing. Genes Dev 2016; 29:2617-32. [PMID: 26680304 PMCID: PMC4699389 DOI: 10.1101/gad.268086.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Commissural axon guidance depends on a myriad of cues expressed by intermediate targets. Secreted semaphorins signal through neuropilin-2/plexin-A1 receptor complexes on post-crossing commissural axons to mediate floor plate repulsion in the mouse spinal cord. Here, we show that neuropilin-2/plexin-A1 are also coexpressed on commissural axons prior to midline crossing and can mediate precrossing semaphorin-induced repulsion in vitro. How premature semaphorin-induced repulsion of precrossing axons is suppressed in vivo is not known. We discovered that a novel source of floor plate-derived, but not axon-derived, neuropilin-2 is required for precrossing axon pathfinding. Floor plate-specific deletion of neuropilin-2 significantly reduces the presence of precrossing axons in the ventral spinal cord, which can be rescued by inhibiting plexin-A1 signaling in vivo. Our results show that floor plate-derived neuropilin-2 is developmentally regulated, functioning as a molecular sink to sequester semaphorins, preventing premature repulsion of precrossing axons prior to subsequent down-regulation, and allowing for semaphorin-mediated repulsion of post-crossing axons.
Collapse
Affiliation(s)
| | - Zhuhao Wu
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, New York 10065, USA
| | - Edward Martinez
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
| | - Olav Olsen
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, New York 10065, USA
| | | | - Patricia F Maness
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Yutaka Yoshida
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, New York 10065, USA
| | - Tracy S Tran
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
| |
Collapse
|
46
|
Increased innervation of forebrain targets by midbrain dopaminergic neurons in the absence of FGF-2. Neuroscience 2016; 314:134-44. [DOI: 10.1016/j.neuroscience.2015.11.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 11/21/2022]
|
47
|
Frizzled3 Controls Axonal Polarity and Intermediate Target Entry during Striatal Pathway Development. J Neurosci 2016; 35:14205-19. [PMID: 26490861 DOI: 10.1523/jneurosci.1840-15.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED The striatum is a large brain nucleus with an important role in the control of movement and emotions. Medium spiny neurons (MSNs) are striatal output neurons forming prominent descending axon tracts that target different brain nuclei. However, how MSN axon tracts in the forebrain develop remains poorly understood. Here, we implicate the Wnt binding receptor Frizzled3 in several uncharacterized aspects of MSN pathway formation [i.e., anterior-posterior guidance of MSN axons in the striatum and their subsequent growth into the globus pallidus (GP), an important (intermediate) target]. In Frizzled3 knock-out mice, MSN axons fail to extend along the anterior-posterior axis of the striatum, and many do not reach the GP. Wnt5a acts as an attractant for MSN axons in vitro, is expressed in a posterior high, anterior low gradient in the striatum, and Wnt5a knock-out mice phenocopy striatal anterior-posterior defects observed in Frizzled3 mutants. This suggests that Wnt5a controls anterior-posterior guidance of MSN axons through Frizzled3. Axons that reach the GP in Frizzled3 knock-out mice fail to enter this structure. Surprisingly, entry of MSN axons into the GP non-cell-autonomously requires Frizzled3, and our data suggest that GP entry may be contingent on the correct positioning of "corridor" guidepost cells for thalamocortical axons by Frizzled3. Together, these data dissect MSN pathway development and reveal (non)cell-autonomous roles for Frizzled3 in MSN axon guidance. Further, they are the first to identify a gene that provides anterior-posterior axon guidance in a large brain nucleus and link Frizzled3 to corridor cell development. SIGNIFICANCE STATEMENT Striatal axon pathways mediate complex physiological functions and are an important therapeutic target, underscoring the need to define how these connections are established. Remarkably, the molecular programs regulating striatal pathway development remain poorly characterized. Here, we determine the embryonic ontogeny of the two main striatal pathways (striatonigral and striatopallidal) and identify novel (non)cell-autonomous roles for the axon guidance receptor Frizzled3 in uncharacterized aspects of striatal pathway formation (i.e., anterior-posterior axon guidance in the striatum and axon entry into the globus pallidus). Further, our results link Frizzled3 to corridor guidepost cell development and suggest that an abnormal distribution of these cells has unexpected, widespread effects on the development of different axon tracts (i.e., striatal and thalamocortical axons).
Collapse
|
48
|
Bodea GO, Blaess S. Establishing diversity in the dopaminergic system. FEBS Lett 2015; 589:3773-85. [PMID: 26431946 DOI: 10.1016/j.febslet.2015.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/13/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022]
Abstract
Midbrain dopaminergic neurons (MbDNs) modulate cognitive processes, regulate voluntary movement, and encode reward prediction errors and aversive stimuli. While the degeneration of MbDNs underlies the motor defects in Parkinson's disease, imbalances in dopamine levels are associated with neuropsychiatric disorders such as depression, schizophrenia and substance abuse. In recent years, progress has been made in understanding how MbDNs, which constitute a relatively small neuronal population in the brain, can contribute to such diverse functions and dysfunctions. In particular, important insights have been gained regarding the distinct molecular, neurochemical and network properties of MbDNs. How this diversity of MbDNs is established during brain development is only starting to be unraveled. In this review, we summarize the current knowledge on the diversity in MbDN progenitors and differentiated MbDNs in the developing rodent brain. We discuss the signaling pathways, transcription factors and transmembrane receptors that contribute to setting up these diverse MbDN subpopulations. A better insight into the processes that establish diversity in MbDNs will ultimately improve the understanding of the architecture and function of the dopaminergic system in the adult brain.
Collapse
Affiliation(s)
- Gabriela O Bodea
- Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Sandra Blaess
- Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn, Bonn, Germany.
| |
Collapse
|
49
|
Niederkofler V, Asher TE, Dymecki SM. Functional Interplay between Dopaminergic and Serotonergic Neuronal Systems during Development and Adulthood. ACS Chem Neurosci 2015; 6:1055-1070. [PMID: 25747116 DOI: 10.1021/acschemneuro.5b00021] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The complex integration of neurotransmitter signals in the nervous system contributes to the shaping of behavioral and emotional constitutions throughout development. Imbalance among these signals may result in pathological behaviors and psychiatric illnesses. Therefore, a better understanding of the interplay between neurotransmitter systems holds potential to facilitate therapeutic development. Of particular clinical interest are the dopaminergic and serotonergic systems, as both modulate a broad array of behaviors and emotions and have been implicated in a wide range of affective disorders. Here we review evidence speaking to an interaction between the dopaminergic and serotonergic neuronal systems across development. We highlight data stemming from developmental, functional, and clinical studies, reflecting the importance of this transmonoaminergic interplay.
Collapse
Affiliation(s)
- Vera Niederkofler
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Tedi E. Asher
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Susan M. Dymecki
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
50
|
Koppers M, Blokhuis AM, Westeneng HJ, Terpstra ML, Zundel CAC, Vieira de Sá R, Schellevis RD, Waite AJ, Blake DJ, Veldink JH, van den Berg LH, Pasterkamp RJ. C9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits. Ann Neurol 2015; 78:426-38. [PMID: 26044557 PMCID: PMC4744979 DOI: 10.1002/ana.24453] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/18/2015] [Accepted: 05/31/2015] [Indexed: 12/14/2022]
Abstract
Objective How hexanucleotide (GGGGCC) repeat expansions in C9ORF72 cause amyotrophic lateral sclerosis (ALS) remains poorly understood. Both gain‐ and loss‐of‐function mechanisms have been proposed. Evidence supporting these mechanisms in vivo is, however, incomplete. Here we determined the effect of C9orf72 loss‐of‐function in mice. Methods We generated and analyzed a conditional C9orf72 knockout mouse model. C9orf72fl/fl mice were crossed with Nestin‐Cre mice to selectively remove C9orf72 from neurons and glial cells. Immunohistochemistry was performed to study motor neurons and neuromuscular integrity, as well as several pathological hallmarks of ALS, such as gliosis and TDP‐43 mislocalization. In addition, motor function and survival were assessed. Results Neural‐specific ablation of C9orf72 in conditional C9orf72 knockout mice resulted in significantly reduced body weight but did not induce motor neuron degeneration, defects in motor function, or altered survival. Interpretation Our data suggest that C9orf72 loss‐of‐function, by itself, is insufficient to cause motor neuron disease. These results may have important implications for the development of therapeutic strategies for C9orf72‐associated ALS. Ann Neurol 2015;78:426–438
Collapse
Affiliation(s)
- Max Koppers
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Anna M Blokhuis
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Henk-Jan Westeneng
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Margo L Terpstra
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Caroline A C Zundel
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Renata Vieira de Sá
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Raymond D Schellevis
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Adrian J Waite
- Institute of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Derek J Blake
- Institute of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|