1
|
Rajput N, Parikh K, Squires A, Fields KK, Wong M, Kanani D, Kenney JW. Whole-brain mapping in adult zebrafish and identification of the functional brain network underlying the novel tank test. eNeuro 2025; 12:ENEURO.0382-24.2025. [PMID: 40068875 PMCID: PMC11936448 DOI: 10.1523/eneuro.0382-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 03/19/2025] Open
Abstract
Zebrafish have gained prominence as a model organism in neuroscience over the past several decades, generating key insight into the development and functioning of the vertebrate brain. However, techniques for whole brain mapping in adult stage zebrafish are lacking. Here, we describe a pipeline built using open-source tools for whole-brain activity mapping in adult zebrafish. Our pipeline combines advances in histology, microscopy, and machine learning to capture cfos activity across the entirety of the brain. Following tissue clearing, whole brain images are captured using light-sheet microscopy and registered to the recently created adult zebrafish brain atlas (AZBA) for automated segmentation. By way of example, we used our pipeline to measure brain activity after zebrafish were subject to the novel tank test, one of the most widely used behaviors in adult zebrafish. Cfos levels peaked 15 minutes following behavior and several regions, including those containing serotoninergic and dopaminergic neurons, were active during exploration. Finally, we generated a novel tank test functional brain network. This revealed that several regions of the subpallium form a cohesive sub-network during exploration. Functional interconnections between the subpallium and other regions appear to be mediated primarily by ventral nucleus of the ventral telencephalon (Vv), the olfactory bulb, and the anterior part of the parvocellular preoptic nucleus (PPa). Taken together, our pipeline enables whole-brain activity mapping in adult zebrafish while providing insight into neural basis for the novel tank test.Significance statement Zebrafish have grown in popularity as a model organism over the past several decades due to their low cost, ease of genetic manipulation, and similarity to other vertebrates like humans and rodents. However, to date, tools for whole-brain mapping in adult stage animals has been lacking. Here, we present an open-source pipeline for whole-brain mapping in adult zebrafish. We demonstrate the use of our pipeline by generating a functional brain network for one of the most widely used behavioral assays in adult zebrafish, the novel tank test. We found that exploration of a novel tank engages the olfactory bulb and a network of subpallial regions that correspond to the mammalian subpallial amygdala and basal ganglia.
Collapse
Affiliation(s)
- Neha Rajput
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Kush Parikh
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Ada Squires
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Kailyn K. Fields
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Matheu Wong
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Dea Kanani
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Justin W. Kenney
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
2
|
Wang N, Cen LL, Tian Z, An MM, Gu Q, Zhou XH, Zhang YH, Liu L, Zhang J, Yang D, Huang YZ, Long XD, Yang Q. eEF2K as an important kinase associated with cancer survival and prognosis. Sci Rep 2024; 14:29284. [PMID: 39592671 PMCID: PMC11599947 DOI: 10.1038/s41598-024-78652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Eukaryotic Elongation Factor 2 Kinase (eEF2K), a member of the α-kinase family, services as a crucial negative regulator of protein synthesis, particularly under conditions of cellular stress. A pan-cancer analysis of eEF2K expression, genetic variants, and clinical relevance across multiple tumor types was performed using data from the Cancer Genome Atlas (TCGA) and GEO. Our findings suggest that eEF2K has dual roles in cancer progression, with its expression correlating with patient prognosis. Significant phosphorylation of eEF2 at T57, Y434, and T59 was observed, which may regulate protein synthesis during stress. The elevated T59 phosphorylation in COAD, despite the low eEF2K expression, indicates that this may be regulated by alternative kinases, such as AMPK or mTOR. This suggests that compensatory mechanisms may be involved. In addition to modulating eEF2 phosphorylation, eEF2K is involved in a number of other processes, including peptidyl-serine phosphorylation, the G2/M transition, and the MAPK cascade. The protein products of eEF2K are capable of localizing to the nucleus, cytoplasm, and cytosol, where they bind to a range of proteins, including ATP and calcium ions. These findings provide novel insights into the role of eEF2K in cancer biology and suggest that the targeting of eEF2K and eEF2 phosphorylation may offer promising therapeutic strategies.
Collapse
Affiliation(s)
- Nan Wang
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 30071, China
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Li-Lan Cen
- Key laboratory of molecular pathology in Tumors of Guangxi Higher Education Institutions, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, 533000, Guangxi Zhuang Autonomous Region, China
- Guangxi Academy of Medical Sciences, Department of Infectious Disease, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Zhe Tian
- Youjiang Medical University for Nationalities, Baise City, 533000, Guangxi Zhuang Autonomous Region, China
| | - Miao-Miao An
- Key laboratory of molecular pathology in Tumors of Guangxi Higher Education Institutions, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, 533000, Guangxi Zhuang Autonomous Region, China
| | - Qian Gu
- Key laboratory of molecular pathology in Tumors of Guangxi Higher Education Institutions, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, 533000, Guangxi Zhuang Autonomous Region, China
| | - Xin-Hong Zhou
- Key laboratory of molecular pathology in Tumors of Guangxi Higher Education Institutions, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, 533000, Guangxi Zhuang Autonomous Region, China
| | - Yi-He Zhang
- Key laboratory of molecular pathology in Tumors of Guangxi Higher Education Institutions, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, 533000, Guangxi Zhuang Autonomous Region, China
| | - Lucas Liu
- Atkins Academic & Technology High School, Winston-Salem, NC, 27101, USA
| | - Jun Zhang
- Department of Neurosurgery, Peking University International Hospital, Beijing, 102206, China
| | - Di Yang
- Key laboratory of molecular pathology in Tumors of Guangxi Higher Education Institutions, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, 533000, Guangxi Zhuang Autonomous Region, China
| | - Yong-Zhi Huang
- Key laboratory of molecular pathology in Tumors of Guangxi Higher Education Institutions, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, 533000, Guangxi Zhuang Autonomous Region, China
| | - Xi-Dai Long
- Key laboratory of molecular pathology in Tumors of Guangxi Higher Education Institutions, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, 533000, Guangxi Zhuang Autonomous Region, China.
| | - Qian Yang
- Key laboratory of molecular pathology in Tumors of Guangxi Higher Education Institutions, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, 533000, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
3
|
Rajput N, Parikh K, Squires A, Fields KK, Wong M, Kanani D, Kenney JW. Whole-brain mapping in adult zebrafish and identification of a novel tank test functional connectome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.607981. [PMID: 39229236 PMCID: PMC11370427 DOI: 10.1101/2024.08.16.607981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Identifying general principles of brain function requires the study of structure-function relationships in a variety of species. Zebrafish have recently gained prominence as a model organism in neuroscience, yielding important insights into vertebrate brain function. Although methods have been developed for mapping neural activity in larval animals, we lack similar techniques for adult zebrafish that have the advantage of a fully developed neuroanatomy and larger behavioral repertoire. Here, we describe a pipeline built around open-source tools for whole-brain activity mapping in freely swimming adult zebrafish. Our pipeline combines recent advances in histology, microscopy, and machine learning to capture cfos activity across the entirety of the adult brain. Images captured using light-sheet microscopy are registered to the recently created adult zebrafish brain atlas (AZBA) for automated segmentation using advanced normalization tools (ANTs). We used our pipeline to measure brain activity after zebrafish were subject to the novel tank test. We found that cfos levels peaked 15 minutes following behavior and that several regions containing serotoninergic, dopaminergic, noradrenergic, and cholinergic neurons were active during exploration. Finally, we generated a novel tank test functional connectome. Functional network analysis revealed that several regions of the medial ventral telencephalon form a cohesive sub-network during exploration. We also found that the anterior portion of the parvocellular preoptic nucleus (PPa) serves as a key connection between the ventral telencephalon and many other parts of the brain. Taken together, our work enables whole-brain activity mapping in adult zebrafish for the first time while providing insight into neural basis for the novel tank test.
Collapse
Affiliation(s)
- Neha Rajput
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Kush Parikh
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Ada Squires
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Kailyn K Fields
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Matheu Wong
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Dea Kanani
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Justin W Kenney
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| |
Collapse
|
4
|
Ramakrishna S, Radhakrishna BK, Kaladiyil AP, Shah NM, Basavaraju N, Freude KK, Kommaddi RP, Muddashetty RS. Distinct calcium sources regulate temporal profiles of NMDAR and mGluR-mediated protein synthesis. Life Sci Alliance 2024; 7:e202402594. [PMID: 38749544 PMCID: PMC11096670 DOI: 10.26508/lsa.202402594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Calcium signaling is integral for neuronal activity and synaptic plasticity. We demonstrate that the calcium response generated by different sources modulates neuronal activity-mediated protein synthesis, another process essential for synaptic plasticity. Stimulation of NMDARs generates a protein synthesis response involving three phases-increased translation inhibition, followed by a decrease in translation inhibition, and increased translation activation. We show that these phases are linked to NMDAR-mediated calcium response. Calcium influx through NMDARs elicits increased translation inhibition, which is necessary for the successive phases. Calcium through L-VGCCs acts as a switch from translation inhibition to the activation phase. NMDAR-mediated translation activation requires the contribution of L-VGCCs, RyRs, and SOCE. Furthermore, we show that IP3-mediated calcium release and SOCE are essential for mGluR-mediated translation up-regulation. Finally, we signify the relevance of our findings in the context of Alzheimer's disease. Using neurons derived from human fAD iPSCs and transgenic AD mice, we demonstrate the dysregulation of NMDAR-mediated calcium and translation response. Our study highlights the complex interplay between calcium signaling and protein synthesis, and its implications in neurodegeneration.
Collapse
Affiliation(s)
- Sarayu Ramakrishna
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Bindushree K Radhakrishna
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Ahamed P Kaladiyil
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Nisa Manzoor Shah
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Nimisha Basavaraju
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Kristine K Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Ravi S Muddashetty
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
5
|
Klupt KA, Jia Z. eEF2K Inhibitor Design: The Progression of Exemplary Structure-Based Drug Design. Molecules 2023; 28:molecules28031095. [PMID: 36770760 PMCID: PMC9921739 DOI: 10.3390/molecules28031095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The α-kinase, eEF2K, phosphorylates the threonine 56 residue of eEF2 to inhibit global peptide elongation (protein translation). As a master regulator of protein synthesis, in combination with its unique atypical kinase active site, investigations into the targeting of eEF2K represents a case of intense structure-based drug design that includes the use of modern computational techniques. The role of eEF2K is incredibly diverse and has been scrutinized in several different diseases including cancer and neurological disorders-with numerous studies inhibiting eEF2K as a potential treatment option, as described in this paper. Using available crystal structures of related α-kinases, particularly MHCKA, we report how homology modeling has been used to improve inhibitor design and efficacy. This review presents an overview of eEF2K related drug discovery efforts predating from the 1990's, to more recent in vivo studies in rat models. We also provide the reader with a basic introduction to several approaches and software programs used to undertake such drug discovery campaigns. With the recent exciting publication of an eEF2K crystal structure, we present our view regarding the future of eEF2K drug discovery.
Collapse
|
6
|
Bedrosian TA, Miller KE, Grischow OE, Schieffer KM, LaHaye S, Yoon H, Miller AR, Navarro J, Westfall J, Leraas K, Choi S, Williamson R, Fitch J, Kelly BJ, White P, Lee K, McGrath S, Cottrell CE, Magrini V, Leonard J, Pindrik J, Shaikhouni A, Boué DR, Thomas DL, Pierson CR, Wilson RK, Ostendorf AP, Mardis ER, Koboldt DC. Detection of brain somatic variation in epilepsy-associated developmental lesions. Epilepsia 2022; 63:1981-1997. [PMID: 35687047 DOI: 10.1111/epi.17323] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Epilepsy-associated developmental lesions, including malformations of cortical development and low-grade developmental tumors, represent a major cause of drug-resistant seizures requiring surgical intervention in children. Brain-restricted somatic mosaicism has been implicated in the genetic etiology of these lesions; however, many contributory genes remain unidentified. METHODS We enrolled 50 children who were undergoing epilepsy surgery into a translational research study. Resected tissue was divided for clinical neuropathologic evaluation and genomic analysis. We performed exome and RNA sequencing to identify somatic variation and we confirmed our findings using high-depth targeted DNA sequencing. RESULTS We uncovered candidate disease-causing somatic variation affecting 28 patients (56%), as well as candidate germline variants affecting 4 patients (8%). In agreement with previous studies, we identified somatic variation affecting solute carrier family 35 member A2 (SLC35A2) and mechanistic target of rapamycin kinase (MTOR) pathway genes in patients with focal cortical dysplasia. Somatic gains of chromosome 1q were detected in 30% (3 of 10) of patients with Type I focal cortical dysplasia (FCD)s. Somatic variation in mitogen-activated protein kinase (MAPK) pathway genes (i.e., fibroblast growth factor receptor 1 [FGFR1], FGFR2, B-raf proto-oncogene, serine/threonine kinase [BRAF], and KRAS proto-oncogene, GTPase [KRAS]) was associated with low-grade epilepsy-associated developmental tumors. RNA sequencing enabled the detection of somatic structural variation that would have otherwise been missed, and which accounted for more than one-half of epilepsy-associated tumor diagnoses. Sampling across multiple anatomic regions revealed that somatic variant allele fractions vary widely within epileptogenic tissue. Finally, we identified putative disease-causing variants in genes not yet associated with focal cortical dysplasia. SIGNIFICANCE These results further elucidate the genetic basis of structural brain abnormalities leading to focal epilepsy in children and point to new candidate disease genes.
Collapse
Affiliation(s)
- Tracy A Bedrosian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Olivia E Grischow
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kathleen M Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Stephanie LaHaye
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Hyojung Yoon
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Anthony R Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jason Navarro
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jesse Westfall
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kristen Leraas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Samantha Choi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Rachel Williamson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - James Fitch
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Benjamin J Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Sean McGrath
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Vincent Magrini
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jeffrey Leonard
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jonathan Pindrik
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Ammar Shaikhouni
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Daniel R Boué
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Division of Anatomy, Department of Biomedical Education & Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Diana L Thomas
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Christopher R Pierson
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Division of Anatomy, Department of Biomedical Education & Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Adam P Ostendorf
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Division of Pediatric Neurology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
7
|
Shrestha P, Klann E. Spatiotemporally resolved protein synthesis as a molecular framework for memory consolidation. Trends Neurosci 2022; 45:297-311. [PMID: 35184897 PMCID: PMC8930706 DOI: 10.1016/j.tins.2022.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 01/25/2023]
Abstract
De novo protein synthesis is required for long-term memory consolidation. Dynamic regulation of protein synthesis occurs via a complex interplay of translation factors and modulators. Many components of the protein synthesis machinery have been targeted either pharmacologically or genetically to establish its requirement for memory. The combination of ligand/light-gating and genetic strategies, that is, chemogenetics and optogenetics, has begun to reveal the spatiotemporal resolution of protein synthesis in specific cell types during memory consolidation. This review summarizes current knowledge of the macroscopic and microscopic neural substrates for protein synthesis in memory consolidation. In addition, we highlight future directions for determining the localization and timing of de novo protein synthesis for memory consolidation with tools that permit unprecedented spatiotemporal precision.
Collapse
Affiliation(s)
- Prerana Shrestha
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10012, USA; NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
8
|
Smith PR, Loerch S, Kunder N, Stanowick AD, Lou TF, Campbell ZT. Functionally distinct roles for eEF2K in the control of ribosome availability and p-body abundance. Nat Commun 2021; 12:6789. [PMID: 34815424 PMCID: PMC8611098 DOI: 10.1038/s41467-021-27160-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/07/2021] [Indexed: 11/09/2022] Open
Abstract
Processing bodies (p-bodies) are a prototypical phase-separated RNA-containing granule. Their abundance is highly dynamic and has been linked to translation. Yet, the molecular mechanisms responsible for coordinate control of the two processes are unclear. Here, we uncover key roles for eEF2 kinase (eEF2K) in the control of ribosome availability and p-body abundance. eEF2K acts on a sole known substrate, eEF2, to inhibit translation. We find that the eEF2K agonist nelfinavir abolishes p-bodies in sensory neurons and impairs translation. To probe the latter, we used cryo-electron microscopy. Nelfinavir stabilizes vacant 80S ribosomes. They contain SERBP1 in place of mRNA and eEF2 in the acceptor site. Phosphorylated eEF2 associates with inactive ribosomes that resist splitting in vitro. Collectively, the data suggest that eEF2K defines a population of inactive ribosomes resistant to recycling and protected from degradation. Thus, eEF2K activity is central to both p-body abundance and ribosome availability in sensory neurons.
Collapse
Affiliation(s)
- Patrick R. Smith
- grid.267323.10000 0001 2151 7939The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX USA
| | - Sarah Loerch
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA ,grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, Department of Chemistry and Biochemistry, Santa Cruz, CA USA
| | - Nikesh Kunder
- grid.267323.10000 0001 2151 7939The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX USA
| | - Alexander D. Stanowick
- grid.267323.10000 0001 2151 7939The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX USA
| | - Tzu-Fang Lou
- grid.267323.10000 0001 2151 7939The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX USA
| | - Zachary T. Campbell
- grid.267323.10000 0001 2151 7939The University of Texas at Dallas, Department of Biological Sciences, Richardson, TX USA ,grid.267323.10000 0001 2151 7939The Center for Advanced Pain Studies (CAPS), University of Texas at Dallas, Richardson, TX USA
| |
Collapse
|
9
|
Yoon SH, Song WS, Oh SP, Kim YS, Kim MH. The phosphorylation status of eukaryotic elongation factor-2 indicates neural activity in the brain. Mol Brain 2021; 14:142. [PMID: 34526091 PMCID: PMC8442277 DOI: 10.1186/s13041-021-00852-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022] Open
Abstract
Assessment of neural activity in the specific brain area is critical for understanding the circuit mechanisms underlying altered brain function and behaviors. A number of immediate early genes (IEGs) that are rapidly transcribed in neuronal cells in response to synaptic activity have been used as markers for neuronal activity. However, protein detection of IEGs requires translation, and the amount of newly synthesized gene product is usually insufficient to detect using western blotting, limiting their utility in western blot analysis of brain tissues for comparison of basal activity between control and genetically modified animals. Here, we show that the phosphorylation status of eukaryotic elongation factor-2 (eEF2) rapidly changes in response to synaptic and neural activities. Intraperitoneal injections of the GABA A receptor (GABAAR) antagonist picrotoxin and the glycine receptor antagonist brucine rapidly dephosphorylated eEF2. Conversely, potentiation of GABAARs or inhibition of AMPA receptors (AMPARs) induced rapid phosphorylation of eEF2 in both the hippocampus and forebrain of mice. Chemogenetic suppression of hippocampal principal neuron activity promoted eEF2 phosphorylation. Novel context exploration and acute restraint stress rapidly modified the phosphorylation status of hippocampal eEF2. Furthermore, the hippocampal eEF2 phosphorylation levels under basal conditions were reduced in mice exhibiting epilepsy and abnormally enhanced excitability in CA3 pyramidal neurons. Collectively, the results indicated that eEF2 phosphorylation status is sensitive to neural activity and the ratio of phosphorylated eEF2 to total eEF2 could be a molecular signature for estimating neural activity in a specific brain area.
Collapse
Affiliation(s)
- Sang Ho Yoon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea
| | - Woo Seok Song
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea
| | - Sung Pyo Oh
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Young Sook Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Myoung-Hwan Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea. .,Seoul National University Bundang Hospital, Seongnam, 13620, Gyeonggi, Korea.
| |
Collapse
|
10
|
Ballard DJ, Peng HY, Das JK, Kumar A, Wang L, Ren Y, Xiong X, Ren X, Yang JM, Song J. Insights Into the Pathologic Roles and Regulation of Eukaryotic Elongation Factor-2 Kinase. Front Mol Biosci 2021; 8:727863. [PMID: 34532346 PMCID: PMC8438118 DOI: 10.3389/fmolb.2021.727863] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic Elongation Factor-2 Kinase (eEF2K) acts as a negative regulator of protein synthesis, translation, and cell growth. As a structurally unique member of the alpha-kinase family, eEF2K is essential to cell survival under stressful conditions, as it contributes to both cell viability and proliferation. Known as the modulator of the global rate of protein translation, eEF2K inhibits eEF2 (eukaryotic Elongation Factor 2) and decreases translation elongation when active. eEF2K is regulated by various mechanisms, including phosphorylation through residues and autophosphorylation. Specifically, this protein kinase is downregulated through the phosphorylation of multiple sites via mTOR signaling and upregulated via the AMPK pathway. eEF2K plays important roles in numerous biological systems, including neurology, cardiology, myology, and immunology. This review provides further insights into the current roles of eEF2K and its potential to be explored as a therapeutic target for drug development.
Collapse
Affiliation(s)
- Darby J. Ballard
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Hao-Yun Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Jugal Kishore Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Anil Kumar
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Liqing Wang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Yijie Ren
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Xingcong Ren
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| |
Collapse
|
11
|
York A, Everhart A, Vitek MP, Gottschalk KW, Colton CA. Metabolism-Based Gene Differences in Neurons Expressing Hyperphosphorylated AT8- Positive (AT8+) Tau in Alzheimer's Disease. ASN Neuro 2021; 13:17590914211019443. [PMID: 34121475 PMCID: PMC8207264 DOI: 10.1177/17590914211019443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Metabolic adaptations in the brain are critical to the establishment and maintenance of normal cellular functions and to the pathological responses to disease processes. Here, we have focused on specific metabolic pathways that are involved in immune-mediated neuronal processes in brain using isolated neurons derived from human autopsy brain sections of normal individuals and individuals diagnosed as Alzheimer's disease (AD). Laser capture microscopy was used to select specific cell types in immune-stained thin brain sections followed by NanoString technology to identify and quantify differences in mRNA levels between age-matched control and AD neuronal samples. Comparisons were also made between neurons isolated from AD brain sections expressing pathogenic hyperphosphorylated AT8- positive (AT8+) tau and non-AT8+ AD neurons using double labeling techniques. The mRNA expression data showed unique patterns of metabolic pathway expression between the subtypes of captured neurons that involved membrane based solute transporters, redox factors, and arginine and methionine metabolic pathways. We also identified the expression levels of a novel metabolic gene, Radical-S-Adenosyl Domain1 (RSAD1) and its corresponding protein, Rsad1, that impact methionine usage and radical based reactions. Immunohistochemistry was used to identify specific protein expression levels and their cellular location in NeuN+ and AT8+ neurons. APOE4 vs APOE3 genotype-specific and sex-specific gene expression differences in these metabolic pathways were also observed when comparing neurons from individuals with AD to age-matched individuals.
Collapse
Affiliation(s)
- Audra York
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States
| | - Angela Everhart
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States
| | - Michael P Vitek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States
| | - Kirby W Gottschalk
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States
| | - Carol A Colton
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
12
|
Ju Y, Ben-David Y, Rotin D, Zacksenhaus E. Inhibition of eEF2K synergizes with glutaminase inhibitors or 4EBP1 depletion to suppress growth of triple-negative breast cancer cells. Sci Rep 2021; 11:9181. [PMID: 33911160 PMCID: PMC8080725 DOI: 10.1038/s41598-021-88816-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
The eukaryotic elongation factor-2 kinase, eEF2K, which restricts protein translation elongation, has been identified as a potential therapeutic target for diverse types of malignancies including triple negative breast cancer (TNBC). However, the contexts in which eEF2K inhibition is essential in TNBC and its consequences on the proteome are largely unknown. Here we show that genetic or pharmacological inhibition of eEF2K cooperated with glutamine (Gln) starvation, and synergized with glutaminase (GLS1) inhibitors to suppress growth of diverse TNBC cell lines. eEF2K inhibition also synergized with depletion of eukaryotic translation initiation factor 4E-binding protein 1 (eIF4EBP1; 4EBP1), a suppressor of eukaryotic protein translation initiation factor 4E (eIF4E), to induce c-MYC and Cyclin D1 expression, yet attenuate growth of TNBC cells. Proteomic analysis revealed that whereas eEF2K depletion alone uniquely induced Cyclin Dependent Kinase 1 (CDK1) and 6 (CDK6), combined depletion of eEF2K and 4EBP1 resulted in overlapping effects on the proteome, with the highest impact on the 'Collagen containing extracellular matrix' pathway (e.g. COL1A1), as well as the amino-acid transporter, SLC7A5/LAT1, suggesting a regulatory loop via mTORC1. In addition, combined depletion of eEF2K and 4EBP1 indirectly reduced the levels of IFN-dependent innate immune response-related factors. Thus, eEF2K inhibition triggers cell cycle arrest/death under unfavourable metabolic conditions such as Gln-starvation/GLS1 inhibition or 4EBP1 depletion, uncovering new therapeutic avenues for TNBC and underscoring a pressing need for clinically relevant eEF2K inhibitors.
Collapse
Affiliation(s)
- YoungJun Ju
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, 101 College Street, Suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Yaacov Ben-David
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academic of Sciences, Guiyang, 550014, Guizhou, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
| | - Daniela Rotin
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eldad Zacksenhaus
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, 101 College Street, Suite 5R406, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
13
|
Finding new edges: systems approaches to MTOR signaling. Biochem Soc Trans 2021; 49:41-54. [PMID: 33544134 PMCID: PMC7924996 DOI: 10.1042/bst20190730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 11/17/2022]
Abstract
Cells have evolved highly intertwined kinase networks to finely tune cellular homeostasis to the environment. The network converging on the mechanistic target of rapamycin (MTOR) kinase constitutes a central hub that integrates metabolic signals and adapts cellular metabolism and functions to nutritional changes and stress. Feedforward and feedback loops, crosstalks and a plethora of modulators finely balance MTOR-driven anabolic and catabolic processes. This complexity renders it difficult — if not impossible — to intuitively decipher signaling dynamics and network topology. Over the last two decades, systems approaches have emerged as powerful tools to simulate signaling network dynamics and responses. In this review, we discuss the contribution of systems studies to the discovery of novel edges and modulators in the MTOR network in healthy cells and in disease.
Collapse
|
14
|
Touré V, Dräger A, Luna A, Dogrusoz U, Rougny A. The Systems Biology Graphical Notation: Current Status and Applications in Systems Medicine. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11515-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Gladulich LFH, Peixoto-Rodrigues MC, Campello-Costa P, Paes-de-Carvalho R, Cossenza M. NMDA-induced nitric oxide generation and CREB activation in central nervous system is dependent on eukaryotic elongation factor 2 kinase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118783. [DOI: 10.1016/j.bbamcr.2020.118783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 01/28/2023]
|
16
|
Gladulich LFH, Xie J, Jensen KB, Kamei M, Paes-de-Carvalho R, Cossenza M, Proud CG. Bicuculline regulated protein synthesis is dependent on Homer1 and promotes its interaction with eEF2K through mTORC1-dependent phosphorylation. J Neurochem 2020; 157:1086-1101. [PMID: 32892352 DOI: 10.1111/jnc.15178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
The regulation of protein synthesis is a vital and finely tuned process in cellular physiology. In neurons, this process is very precisely regulated, as which mRNAs undergo translation is highly dependent on context. One of the most prominent regulators of protein synthesis is the enzyme eukaryotic elongation factor kinase 2 (eEF2K) that regulates the elongation stage of protein synthesis. This kinase and its substrate, eukaryotic elongation factor 2 (eEF2) are important in processes such as neuronal development and synaptic plasticity. eEF2K is regulated by multiple mechanisms including Ca2+ -ions and the mTORC1 signaling pathway, both of which play key roles in neurological processes such as learning and memory. In such settings, the localized control of protein synthesis is of crucial importance. In this work, we sought to investigate how the localization of eEF2K is controlled and the impact of this on protein synthesis in neuronal cells. In this study, we used both SH-SY5Y neuroblastoma cells and mouse cortical neurons, and pharmacologically and/or genetic approaches to modify eEF2K function. We show that eEF2K activity and localization can be regulated by its binding partner Homer1b/c, a scaffolding protein known for its participation in calcium-regulated signaling pathways. Furthermore, our results indicate that this interaction is regulated by the mTORC1 pathway, through a known phosphorylation site in eEF2K (S396), and that it affects rates of localized protein synthesis at synapses depending on the presence or absence of this scaffolding protein.
Collapse
Affiliation(s)
- Luis F H Gladulich
- Program of Neurosciences, Fluminense Federal University, Niterói, Brazil.,Lifelong Health, South Australia Health & Medical Research Institute (SAHMRI) Adelaide, SA, Australia
| | - Jianling Xie
- Lifelong Health, South Australia Health & Medical Research Institute (SAHMRI) Adelaide, SA, Australia
| | - Kirk B Jensen
- Lifelong Health, South Australia Health & Medical Research Institute (SAHMRI) Adelaide, SA, Australia
| | - Makoto Kamei
- Lifelong Health, South Australia Health & Medical Research Institute (SAHMRI) Adelaide, SA, Australia.,Center for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Roberto Paes-de-Carvalho
- Program of Neurosciences, Fluminense Federal University, Niterói, Brazil.,Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Marcelo Cossenza
- Program of Neurosciences, Fluminense Federal University, Niterói, Brazil.,Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, Brazil
| | - Christopher G Proud
- Lifelong Health, South Australia Health & Medical Research Institute (SAHMRI) Adelaide, SA, Australia
| |
Collapse
|
17
|
Bouquier N, Moutin E, Tintignac LA, Reverbel A, Jublanc E, Sinnreich M, Chastagnier Y, Averous J, Fafournoux P, Verpelli C, Boeckers T, Carnac G, Perroy J, Ollendorff V. AIMTOR, a BRET biosensor for live imaging, reveals subcellular mTOR signaling and dysfunctions. BMC Biol 2020; 18:81. [PMID: 32620110 PMCID: PMC7334845 DOI: 10.1186/s12915-020-00790-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/06/2020] [Indexed: 11/24/2022] Open
Abstract
Background mTOR signaling is an essential nutrient and energetic sensing pathway. Here we describe AIMTOR, a sensitive genetically encoded BRET (Bioluminescent Resonance Energy Transfer) biosensor to study mTOR activity in living cells. Results As a proof of principle, we show in both cell lines and primary cell cultures that AIMTOR BRET intensities are modified by mTOR activity changes induced by specific inhibitors and activators of mTORC1 including amino acids and insulin. We further engineered several versions of AIMTOR enabling subcellular-specific assessment of mTOR activities. We then used AIMTOR to decipher mTOR signaling in physio-pathological conditions. First, we show that mTORC1 activity increases during muscle cell differentiation and in response to leucine stimulation in different subcellular compartments such as the cytosol and at the surface of the lysosome, the nucleus, and near the mitochondria. Second, in hippocampal neurons, we found that the enhancement of neuronal activity increases mTOR signaling. AIMTOR further reveals mTOR-signaling dysfunctions in neurons from mouse models of autism spectrum disorder. Conclusions Altogether, our results demonstrate that AIMTOR is a sensitive and specific tool to investigate mTOR-signaling dynamics in living cells and phenotype mTORopathies.
Collapse
Affiliation(s)
| | - Enora Moutin
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Lionel A Tintignac
- University Hospital Basel, Department of Biomedecine, Basel, Switzerland
| | | | - Elodie Jublanc
- DMEM, University of Montpellier, INRAE, Montpellier, France
| | - Michael Sinnreich
- University Hospital Basel, Department of Biomedecine, Basel, Switzerland
| | - Yan Chastagnier
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julien Averous
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France
| | - Pierre Fafournoux
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine, UMR1019, Clermont-Ferrand, France
| | - Chiara Verpelli
- Cnr Institute of Neuroscience, Via Vanvitelli, 3220129, Milan, Italy
| | - Tobias Boeckers
- Anatomie und Zellbiologie Universität Ulm, Albert-Einstein Allee 11, Raumnummer 4105, M24, 89081, Ulm, Germany
| | - Gilles Carnac
- Phymedexp, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie Perroy
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | | |
Collapse
|
18
|
David O, Barrera I, Gould N, Gal-Ben-Ari S, Rosenblum K. D1 Dopamine Receptor Activation Induces Neuronal eEF2 Pathway-Dependent Protein Synthesis. Front Mol Neurosci 2020; 13:67. [PMID: 32499677 PMCID: PMC7242790 DOI: 10.3389/fnmol.2020.00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022] Open
Abstract
Dopamine, alongside other neuromodulators, defines brain and neuronal states, inter alia through regulation of global and local mRNA translation. Yet, the signaling pathways underlying the effects of dopamine on mRNA translation and psychiatric disorders are not clear. In order to examine the molecular pathways downstream of dopamine receptors, we used genetic, pharmacologic, biochemical, and imaging methods, and found that activation of dopamine receptor D1 but not D2 leads to rapid dephosphorylation of eEF2 at Thr56 but not eIF2α in cortical primary neuronal culture in a time-dependent manner. NMDA receptor, mTOR, and ERK pathways are upstream of the D1 receptor-dependent eEF2 dephosphorylation and essential for it. Furthermore, D1 receptor activation resulted in a major reduction in dendritic eEF2 phosphorylation levels. D1-dependent eEF2 dephosphorylation results in an increase of BDNF and synapsin2b expression which was followed by a small yet significant increase in general protein synthesis. These results reveal the role of dopamine D1 receptor in the regulation of eEF2 pathway translation in neurons and present eEF2 as a promising therapeutic target for addiction and depression as well as other psychiatric disorders.
Collapse
Affiliation(s)
- Orit David
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Iliana Barrera
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Nathaniel Gould
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | | | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
19
|
Duarte RR, Bachtel ND, Côtel MC, Lee SH, Selvackadunco S, Watson IA, Hovsepian GA, Troakes C, Breen GD, Nixon DF, Murray RM, Bray NJ, Eleftherianos I, Vernon AC, Powell TR, Srivastava DP. The Psychiatric Risk Gene NT5C2 Regulates Adenosine Monophosphate-Activated Protein Kinase Signaling and Protein Translation in Human Neural Progenitor Cells. Biol Psychiatry 2019; 86:120-130. [PMID: 31097295 PMCID: PMC6614717 DOI: 10.1016/j.biopsych.2019.03.977] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/12/2019] [Accepted: 03/11/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND The 5'-nucleotidase, cytosolic II gene (NT5C2, cN-II) is associated with disorders characterized by psychiatric and psychomotor disturbances. Common psychiatric risk alleles at the NT5C2 locus reduce expression of this gene in the fetal and adult brain, but downstream biological risk mechanisms remain elusive. METHODS Distribution of the NT5C2 protein in the human dorsolateral prefrontal cortex and cortical human neural progenitor cells (hNPCs) was determined using immunostaining, publicly available expression data, and reverse transcriptase quantitative polymerase chain reaction. Phosphorylation quantification of adenosine monophosphate-activated protein kinase (AMPK) alpha (Thr172) and ribosomal protein S6 (Ser235/Ser236) was performed using Western blotting to infer the degree of activation of AMPK signaling and the rate of protein translation. Knockdowns were induced in hNPCs and Drosophila melanogaster using RNA interference. Transcriptomic profiling of hNPCs was performed using microarrays, and motility behavior was assessed in flies using the climbing assay. RESULTS Expression of NT5C2 was higher during neurodevelopment and was neuronally enriched in the adult human cortex. Knockdown in hNPCs affected AMPK signaling, a major nutrient-sensing mechanism involved in energy homeostasis, and protein translation. Transcriptional changes implicated in protein translation were observed in knockdown hNPCs, and expression changes to genes related to AMPK signaling and protein translation were confirmed using reverse transcriptase quantitative polymerase chain reaction. The knockdown in Drosophila was associated with drastic climbing impairment. CONCLUSIONS We provide an extensive neurobiological characterization of the psychiatric risk gene NT5C2, describing its previously unknown role in the regulation of AMPK signaling and protein translation in neural stem cells and its association with Drosophila melanogaster motility behavior.
Collapse
Affiliation(s)
- Rodrigo R.R. Duarte
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Nathaniel D. Bachtel
- Department of Biological Sciences, Columbian College of Arts and Sciences, George Washington University, Washington, DC
| | - Marie-Caroline Côtel
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Sang H. Lee
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Sashika Selvackadunco
- Medical Research Council London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Iain A. Watson
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Gary A. Hovsepian
- Department of Biological Sciences, Columbian College of Arts and Sciences, George Washington University, Washington, DC
| | - Claire Troakes
- Medical Research Council London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Gerome D. Breen
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Douglas F. Nixon
- Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, New York
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Nicholas J. Bray
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Ioannis Eleftherianos
- Department of Biological Sciences, Columbian College of Arts and Sciences, George Washington University, Washington, DC
| | - Anthony C. Vernon
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Timothy R. Powell
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom,Address correspondence to Deepak P. Srivastava, Ph.D., Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 5 Cutcombe Road, London SE5 9RX, United Kingdom.
| |
Collapse
|
20
|
Delaidelli A, Jan A, Herms J, Sorensen PH. Translational control in brain pathologies: biological significance and therapeutic opportunities. Acta Neuropathol 2019; 137:535-555. [PMID: 30739199 DOI: 10.1007/s00401-019-01971-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
Messenger RNA (mRNA) translation is the terminal step in protein synthesis, providing a crucial regulatory checkpoint for this process. Translational control allows specific cell types to respond to rapid changes in the microenvironment or to serve specific functions. For example, neurons use mRNA transport to achieve local protein synthesis at significant distances from the nucleus, the site of RNA transcription. Altered expression or functions of the various components of the translational machinery have been linked to several pathologies in the central nervous system. In this review, we provide a brief overview of the basic principles of mRNA translation, and discuss alterations of this process relevant to CNS disease conditions, with a focus on brain tumors and chronic neurological conditions. Finally, synthesizing this knowledge, we discuss the opportunities to exploit the biology of altered mRNA translation for novel therapies in brain disorders, as well as how studying these alterations can shed new light on disease mechanisms.
Collapse
Affiliation(s)
- Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Asad Jan
- Department of Biomedicine, Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, 8000, Aarhus C, Denmark
| | - Jochen Herms
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, Schillerstraße 44, 80336, Munich, Germany
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
21
|
Finley J. Cellular stress and AMPK links metformin and diverse compounds with accelerated emergence from anesthesia and potential recovery from disorders of consciousness. Med Hypotheses 2019; 124:42-52. [PMID: 30798915 DOI: 10.1016/j.mehy.2019.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/19/2019] [Indexed: 01/23/2023]
Abstract
The neural correlates of consciousness and the mechanisms by which general anesthesia (GA) modulate such correlates to induce loss of consciousness (LOC) has been described as one of the biggest mysteries of modern medicine. Several cellular targets and neural circuits have been identified that play a critical role in LOC induced by GA, including the GABAA receptor and ascending arousal nuclei located in the basal forebrain, hypothalamus, and brain stem. General anesthetics (GAs) including propofol and inhalational agents induce LOC in part by potentiating chloride influx through the GABAA receptor, leading to neural inhibition and LOC. Interestingly, nearly all GAs used clinically may also induce paradoxical excitation, a phenomenon in which GAs promote neuronal excitation at low doses before inducing unconsciousness. Additionally, emergence from GA, a passive process that occurs after anesthetic removal, is associated with lower anesthetic concentrations in the brain compared to doses associated with induction of GA. AMPK, an evolutionarily conserved kinase activated by cellular stress (e.g. increases in calcium [Ca2+] and/or reactive oxygen species [ROS], etc.) increases lifespan and healthspan in several model organisms. AMPK is located throughout the mammalian brain, including in neurons of the thalamus, hypothalamus, and striatum as well as in pyramidal neurons in the hippocampus and cortex. Increases in ROS and Ca2+ play critical roles in neuronal excitation and glutamate, the primary excitatory neurotransmitter in the human brain, activates AMPK in cortical neurons. Nearly every neurotransmitter released from ascending arousal circuits that promote wakefulness, arousal, and consciousness activates AMPK, including acetylcholine, histamine, orexin-A, dopamine, and norepinephrine. Several GAs that are commonly used to induce LOC in human patients also activate AMPK (e.g. propofol, sevoflurane, isoflurane, dexmedetomidine, ketamine, midazolam). Various compounds that accelerate emergence from anesthesia, thus mitigating problematic effects associated with delayed emergence such as delirium, also activate AMPK (e.g. nicotine, caffeine, forskolin, carbachol). GAs and neurotransmitters also act as preconditioning agents and the GABAA receptor inhibitor bicuculline, which reverses propofol anesthesia, also activates AMPK in cortical neurons. We propose the novel hypothesis that cellular stress-induced AMPK activation links wakefulness, arousal, and consciousness with paradoxical excitation and accelerated emergence from anesthesia. Because AMPK activators including metformin and nicotine promote proliferation and differentiation of neural stem cells located in the subventricular zone and the dentate gyrus, AMPK activation may also enhance brain repair and promote potential recovery from disorders of consciousness (i.e. minimally conscious state, vegetative state, coma).
Collapse
|
22
|
From membrane receptors to protein synthesis and actin cytoskeleton: Mechanisms underlying long lasting forms of synaptic plasticity. Semin Cell Dev Biol 2019; 95:120-129. [PMID: 30634048 DOI: 10.1016/j.semcdb.2019.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
Abstract
Synaptic plasticity, the activity dependent change in synaptic strength, forms the molecular foundation of learning and memory. Synaptic plasticity includes structural changes, with spines changing their size to accomodate insertion and removal of postynaptic receptors, which are correlated with functional changes. Of particular relevance for memory storage are the long lasting forms of synaptic plasticity which are protein synthesis dependent. Due to the importance of spine structural plasticity and protein synthesis, this review focuses on the signaling pathways that connect synaptic stimulation with regulation of protein synthesis and remodeling of the actin cytoskeleton. We also review computational models that implement novel aspects of molecular signaling in synaptic plasticity, such as the role of neuromodulators and spatial microdomains, as well as highlight the need for computational models that connect activation of memory kinases with spine actin dynamics.
Collapse
|
23
|
Jan A, Jansonius B, Delaidelli A, Bhanshali F, An YA, Ferreira N, Smits LM, Negri GL, Schwamborn JC, Jensen PH, Mackenzie IR, Taubert S, Sorensen PH. Activity of translation regulator eukaryotic elongation factor-2 kinase is increased in Parkinson disease brain and its inhibition reduces alpha synuclein toxicity. Acta Neuropathol Commun 2018; 6:54. [PMID: 29961428 PMCID: PMC6027557 DOI: 10.1186/s40478-018-0554-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 06/10/2018] [Indexed: 01/05/2023] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disorder and the leading neurodegenerative cause of motor disability. Pathologic accumulation of aggregated alpha synuclein (AS) protein in brain, and imbalance in the nigrostriatal system due to the loss of dopaminergic neurons in the substantia nigra- pars compacta, are hallmark features in PD. AS aggregation and propagation are considered to trigger neurotoxic mechanisms in PD, including mitochondrial deficits and oxidative stress. The eukaryotic elongation factor-2 kinase (eEF2K) mediates critical regulation of dendritic mRNA translation and is a crucial molecule in diverse forms of synaptic plasticity. Here we show that eEF2K activity, assessed by immuonohistochemical detection of eEF2 phosphorylation on serine residue 56, is increased in postmortem PD midbrain and hippocampus. Induction of aggressive, AS-related motor phenotypes in a transgenic PD M83 mouse model also increased brain eEF2K expression and activity. In cultures of dopaminergic N2A cells, overexpression of wild-type human AS or the A53T mutant increased eEF2K activity. eEF2K inhibition prevented the cytotoxicity associated with AS overexpression in N2A cells by improving mitochondrial function and reduced oxidative stress. Furthermore, genetic deletion of the eEF2K ortholog efk-1 in C. elegans attenuated human A53T AS induced defects in behavioural assays reliant on dopaminergic neuron function. These data suggest a role for eEF2K activity in AS toxicity, and support eEF2K inhibition as a potential target in reducing AS-induced oxidative stress in PD.
Collapse
|
24
|
Liu DC, Seimetz J, Lee KY, Kalsotra A, Chung HJ, Lu H, Tsai NP. Mdm2 mediates FMRP- and Gp1 mGluR-dependent protein translation and neural network activity. Hum Mol Genet 2018; 26:3895-3908. [PMID: 29016848 DOI: 10.1093/hmg/ddx276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/11/2017] [Indexed: 01/08/2023] Open
Abstract
Activating Group 1 (Gp1) metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, elicits translation-dependent neural plasticity mechanisms that are crucial to animal behavior and circuit development. Dysregulated Gp1 mGluR signaling has been observed in numerous neurological and psychiatric disorders. However, the molecular pathways underlying Gp1 mGluR-dependent plasticity mechanisms are complex and have been elusive. In this study, we identified a novel mechanism through which Gp1 mGluR mediates protein translation and neural plasticity. Using a multi-electrode array (MEA) recording system, we showed that activating Gp1 mGluR elevates neural network activity, as demonstrated by increased spontaneous spike frequency and burst activity. Importantly, we validated that elevating neural network activity requires protein translation and is dependent on fragile X mental retardation protein (FMRP), the protein that is deficient in the most common inherited form of mental retardation and autism, fragile X syndrome (FXS). In an effort to determine the mechanism by which FMRP mediates protein translation and neural network activity, we demonstrated that a ubiquitin E3 ligase, murine double minute-2 (Mdm2), is required for Gp1 mGluR-induced translation and neural network activity. Our data showed that Mdm2 acts as a translation suppressor, and FMRP is required for its ubiquitination and down-regulation upon Gp1 mGluR activation. These data revealed a novel mechanism by which Gp1 mGluR and FMRP mediate protein translation and neural network activity, potentially through de-repressing Mdm2. Our results also introduce an alternative way for understanding altered protein translation and brain circuit excitability associated with Gp1 mGluR in neurological diseases such as FXS.
Collapse
Affiliation(s)
- Dai-Chi Liu
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology.,Neuroscience Program
| | - Joseph Seimetz
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology
| | - Auinash Kalsotra
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R.Woese Institute of Genomic Biology, University of Illinois, Champaign, IL 61801, USA
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology.,Neuroscience Program.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology.,Neuroscience Program.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
25
|
Cao M, Fang J, Wang X, Wang Y, Duan K, Ye F, Ouyang W, Tong J. Activation of AMP-activated protein kinase (AMPK) aggravated postoperative cognitive dysfunction and pathogenesis in aged rats. Brain Res 2018; 1684:21-29. [PMID: 29408499 DOI: 10.1016/j.brainres.2018.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 11/17/2022]
Abstract
The upstream signal molecule modulating neuro-inflammation and synaptic changes during the pathogenesis of postoperative cognitive dysfunction (POCD) is still elusive. Here, we examined the effects and mechanisms of energy sensor AMP-activated protein kinase (AMPK) in the pathogenesis of POCD. Our data showed that surgery significantly increased the expression of p-AMPK in aged rats (p < 0.05), but not in adult rats (p > 0.05). Moreover, inhibiting AMPK activation via compound C during operation significantly improved surgery-induced impairment of the learning and memory of aged rats in water maze (p < 0.05). Further mechanism studies showed that corresponding to the impairment of learning and memory after surgery, surgery significantly increased the activation of microglia, decreased the expressions of NR2B and p-NR2B, and increased the expressions of Tau and p-Tau, which also were obviously restored by inhibiting AMPK during operation. In contrast, Inhibiting AMPK activation during operation didn't change ATP level in the hippocampus of aged rats after surgery. These data suggest that surgery induced activation of AMPK in hippocampus in an age-dependent manner. AMPK plays important roles in POCD of aged rats via multiple mechanisms, and is a possible molecular target for the prevention and treatment of POCD.
Collapse
Affiliation(s)
- Mengya Cao
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jiakai Fang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xueqin Wang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yi Wang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Kaiming Duan
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Feng Ye
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Wen Ouyang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jianbin Tong
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
26
|
Heise C, Taha E, Murru L, Ponzoni L, Cattaneo A, Guarnieri FC, Montani C, Mossa A, Vezzoli E, Ippolito G, Zapata J, Barrera I, Ryazanov AG, Cook J, Poe M, Stephen MR, Kopanitsa M, Benfante R, Rusconi F, Braida D, Francolini M, Proud CG, Valtorta F, Passafaro M, Sala M, Bachi A, Verpelli C, Rosenblum K, Sala C. eEF2K/eEF2 Pathway Controls the Excitation/Inhibition Balance and Susceptibility to Epileptic Seizures. Cereb Cortex 2017; 27:2226-2248. [PMID: 27005990 PMCID: PMC5963824 DOI: 10.1093/cercor/bhw075] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alterations in the balance of inhibitory and excitatory synaptic transmission have been implicated in the pathogenesis of neurological disorders such as epilepsy. Eukaryotic elongation factor 2 kinase (eEF2K) is a highly regulated, ubiquitous kinase involved in the control of protein translation. Here, we show that eEF2K activity negatively regulates GABAergic synaptic transmission. Indeed, loss of eEF2K increases GABAergic synaptic transmission by upregulating the presynaptic protein Synapsin 2b and α5-containing GABAA receptors and thus interferes with the excitation/inhibition balance. This cellular phenotype is accompanied by an increased resistance to epilepsy and an impairment of only a specific hippocampal-dependent fear conditioning. From a clinical perspective, our results identify eEF2K as a potential novel target for antiepileptic drugs, since pharmacological and genetic inhibition of eEF2K can revert the epileptic phenotype in a mouse model of human epilepsy.
Collapse
Affiliation(s)
| | - Elham Taha
- Sagol Department of Neurobiology and
- Center for Gene Manipulation in the Brain, Natural Science Faculty, University of Haifa, Haifa, Israel
| | - Luca Murru
- CNR Neuroscience Institute, Milan, Italy
| | - Luisa Ponzoni
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | | | - Fabrizia C. Guarnieri
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | | | | | - Elena Vezzoli
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | | | | | - Iliana Barrera
- Sagol Department of Neurobiology and
- Center for Gene Manipulation in the Brain, Natural Science Faculty, University of Haifa, Haifa, Israel
| | - Alexey G. Ryazanov
- The Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - James Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Michael Poe
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Michael Rajesh Stephen
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Maksym Kopanitsa
- Synome, Babraham Research Campus, Cambridge CB22 3AT, UK
- Charles River Discovery Research Services, 70210 Kuopio, Finland
| | - Roberta Benfante
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Francesco Rusconi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Daniela Braida
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Maura Francolini
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Christopher G. Proud
- University of Southampton, Centre for Biological Sciences, Southampton SO17 1BJ, UK
- South Australian Health and Medical Research Institute and University of Adelaide, Adelaide, Australia
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Maria Passafaro
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Mariaelvina Sala
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Chiara Verpelli
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Kobi Rosenblum
- Sagol Department of Neurobiology and
- Center for Gene Manipulation in the Brain, Natural Science Faculty, University of Haifa, Haifa, Israel
| | - Carlo Sala
- CNR Neuroscience Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
27
|
Eukaryotic elongation factor 2 kinase as a drug target in cancer, and in cardiovascular and neurodegenerative diseases. Acta Pharmacol Sin 2016; 37:285-94. [PMID: 26806303 DOI: 10.1038/aps.2015.123] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/26/2015] [Indexed: 01/06/2023]
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) is an unusual protein kinase that regulates the elongation stage of protein synthesis by phosphorylating and inhibiting its only known substrate, eEF2. Elongation is a highly energy-consuming process, and eEF2K activity is tightly regulated by several signaling pathways. Regulating translation elongation can modulate the cellular energy demand and may also control the expression of specific proteins. Growing evidence links eEF2K to a range of human diseases, including cardiovascular conditions (atherosclerosis, via macrophage survival) and pulmonary arterial hypertension, as well as solid tumors, where eEF2K appears to play contrasting roles depending on tumor type and stage. eEF2K is also involved in neurological disorders and may be a valuable target in treating depression and certain neurodegenerative diseases. Because eEF2K is not required for mammalian development or cell viability, inhibiting its function may not elicit serious side effects, while the fact that it is an atypical kinase and quite distinct from the vast majority of other mammalian kinases suggests the possibility to develop it into compounds that inhibit eEF2K without affecting other important protein kinases. Further research is needed to explore these possibilities and there is an urgent need to identify and characterize potent and specific small-molecule inhibitors of eEF2K. In this article we review the recent evidence concerning the role of eEF2K in human diseases as well as the progress in developing small-molecule inhibitors of this enzyme.
Collapse
|
28
|
Kenney JW, Genheden M, Moon KM, Wang X, Foster LJ, Proud CG. Eukaryotic elongation factor 2 kinase regulates the synthesis of microtubule-related proteins in neurons. J Neurochem 2015; 136:276-84. [PMID: 26485687 PMCID: PMC4843953 DOI: 10.1111/jnc.13407] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/10/2015] [Accepted: 10/14/2015] [Indexed: 12/11/2022]
Abstract
Modulation of the elongation phase of protein synthesis is important for numerous physiological processes in both neurons and other cell types. Elongation is primarily regulated via eukaryotic elongation factor 2 kinase (eEF2K). However, the consequence of altering eEF2K activity on the synthesis of specific proteins is largely unknown. Using both pharmacological and genetic manipulations of eEF2K combined with two protein‐labeling techniques, stable isotope labeling of amino acids in cell culture and bio‐orthogonal non‐canonical amino acid tagging, we identified a subset of proteins whose synthesis is sensitive to inhibition of eEF2K in murine primary cortical neurons. Gene ontology (GO) analyses indicated that processes related to microtubules are particularly sensitive to eEF2K inhibition. Our findings suggest that eEF2K likely contributes to neuronal function by regulating the synthesis of microtubule‐related proteins.
Modulation of the elongation phase of protein synthesis is important for numerous physiological processes in neurons. Here, using labeling of new proteins coupled with proteomic techniques in primary cortical neurons, we find that the synthesis of microtubule‐related proteins is up‐regulated by inhibition of elongation. This suggests that translation elongation is a key regulator of cytoskeletal dynamics in neurons.
Collapse
Affiliation(s)
- Justin W Kenney
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Maja Genheden
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Kyung-Mee Moon
- Centre for High-throughput Biology and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Xuemin Wang
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Leonard J Foster
- Centre for High-throughput Biology and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|