1
|
Qiu D, Wang L, Wang L, Dong Y. Human platelet lysate: a potential therapeutic for intracerebral hemorrhage. Front Neurosci 2025; 18:1517601. [PMID: 39881806 PMCID: PMC11774881 DOI: 10.3389/fnins.2024.1517601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Intracerebral hemorrhage (ICH) is a major public health challenge worldwide, and is associated with elevated rates of mortality, disability, and morbidity, especially in low- and middle-income nations. However, our knowledge of the detailed molecular processes involved in ICH remains insufficient, particularly those involved in the secondary injury stage, resulting in a lack of effective treatments for ICH. Human platelet lysates (HPL) are abundant in bioactive factors, and numerous studies have demonstrated their beneficial effects on neurological diseases, including their anti-neuroinflammatory ability, anti-oxidant effects, maintenance of blood-brain barrier integrity, and promotion of neurogenesis. In this review, we thoroughly explore the potential of HPL for treating ICH from three critical perspectives: the rationale for selecting HPL as a treatment for ICH, the mechanisms through which HPL contributes to ICH management, and the additional measures necessary for HPL as a treatment for ICH. We elucidate the role of platelets in ICH pathophysiology and highlight the limitations of the current treatment options and advancements in preclinical research on the application of HPL in neurological disorders. Furthermore, historical developments and preparation methods of HPL in the field of biomedicine are discussed. Additionally, we summarize the bioactive molecules present in HPL and their potential therapeutic effects in ICH. Finally, we outline the issues that must be addressed regarding utilizing HPL as a treatment modality for ICH.
Collapse
Affiliation(s)
- Dachang Qiu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lin Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lanlan Wang
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongfei Dong
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Cappuccio G, Khalil SM, Osenberg S, Li F, Maletic-Savatic M. Mass spectrometry imaging as an emerging tool for studying metabolism in human brain organoids. Front Mol Biosci 2023; 10:1181965. [PMID: 37304070 PMCID: PMC10251497 DOI: 10.3389/fmolb.2023.1181965] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Human brain organoids are emerging models to study human brain development and pathology as they recapitulate the development and characteristics of major neural cell types, and enable manipulation through an in vitro system. Over the past decade, with the advent of spatial technologies, mass spectrometry imaging (MSI) has become a prominent tool for metabolic microscopy, providing label-free, non-targeted molecular and spatial distribution information of the metabolites within tissue, including lipids. This technology has never been used for studies of brain organoids and here, we set out to develop a standardized protocol for preparation and mass spectrometry imaging of human brain organoids. We present an optimized and validated sample preparation protocol, including sample fixation, optimal embedding solution, homogenous deposition of matrices, data acquisition and processing to maximize the molecular information derived from mass spectrometry imaging. We focus on lipids in organoids, as they play critical roles during cellular and brain development. Using high spatial and mass resolution in positive- and negative-ion modes, we detected 260 lipids in the organoids. Seven of them were uniquely localized within the neurogenic niches or rosettes as confirmed by histology, suggesting their importance for neuroprogenitor proliferation. We observed a particularly striking distribution of ceramide-phosphoethanolamine CerPE 36:1; O2 which was restricted within rosettes and of phosphatidyl-ethanolamine PE 38:3, which was distributed throughout the organoid tissue but not in rosettes. This suggests that ceramide in this particular lipid species might be important for neuroprogenitor biology, while its removal may be important for terminal differentiation of their progeny. Overall, our study establishes the first optimized experimental pipeline and data processing strategy for mass spectrometry imaging of human brain organoids, allowing direct comparison of lipid signal intensities and distributions in these tissues. Further, our data shed new light on the complex processes that govern brain development by identifying specific lipid signatures that may play a role in cell fate trajectories. Mass spectrometry imaging thus has great potential in advancing our understanding of early brain development as well as disease modeling and drug discovery.
Collapse
Affiliation(s)
- Gerarda Cappuccio
- Department of Pediatrics–Neurology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Saleh M. Khalil
- Department of Pediatrics–Neurology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Sivan Osenberg
- Department of Pediatrics–Neurology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Feng Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
| | - Mirjana Maletic-Savatic
- Department of Pediatrics–Neurology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
3
|
Zhang X, Xiao G, Johnson C, Cai Y, Horowitz ZK, Mennicke C, Coffey R, Haider M, Threadgill D, Eliscu R, Oldham MC, Greenbaum A, Ghashghaei HT. Bulk and mosaic deletions of Egfr reveal regionally defined gliogenesis in the developing mouse forebrain. iScience 2023; 26:106242. [PMID: 36915679 PMCID: PMC10006693 DOI: 10.1016/j.isci.2023.106242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/09/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a role in cell proliferation and differentiation during healthy development and tumor growth; however, its requirement for brain development remains unclear. Here we used a conditional mouse allele for Egfr to examine its contributions to perinatal forebrain development at the tissue level. Subtractive bulk ventral and dorsal forebrain deletions of Egfr uncovered significant and permanent decreases in oligodendrogenesis and myelination in the cortex and corpus callosum. Additionally, an increase in astrogenesis or reactive astrocytes in effected regions was evident in response to cortical scarring. Sparse deletion using mosaic analysis with double markers (MADM) surprisingly revealed a regional requirement for EGFR in rostrodorsal, but not ventrocaudal glial lineages including both astrocytes and oligodendrocytes. The EGFR-independent ventral glial progenitors may compensate for the missing EGFR-dependent dorsal glia in the bulk Egfr-deleted forebrain, potentially exposing a regenerative population of gliogenic progenitors in the mouse forebrain.
Collapse
Affiliation(s)
- Xuying Zhang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Guanxi Xiao
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Caroline Johnson
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Yuheng Cai
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - Zachary K. Horowitz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Christine Mennicke
- Department of Mathematics, North Carolina State University, Raleigh, NC, USA
| | - Robert Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mansoor Haider
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David Threadgill
- Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, USA
| | - Rebecca Eliscu
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Michael C. Oldham
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Alon Greenbaum
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - H. Troy Ghashghaei
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
4
|
McMillan N, Kirschen GW, Desai S, Xia E, Tsirka SE, Aguirre A. ADAM10 facilitates rapid neural stem cell cycling and proper positioning within the subventricular zone niche via JAMC/RAP1Gap signaling. Neural Regen Res 2022; 17:2472-2483. [PMID: 35535899 PMCID: PMC9120697 DOI: 10.4103/1673-5374.339007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/01/2021] [Accepted: 08/04/2021] [Indexed: 11/23/2022] Open
Abstract
The mechanisms that regulate neural stem cell (NSC) lineage progression and maintain NSCs within different domains of the adult neural stem cell niche, the subventricular zone are not well defined. Quiescent NSCs are arranged at the apical ventricular wall, while mitotically activated NSCs are found in the basal, vascular region of the subventricular zone. Here, we found that ADAM10 (a disintegrin and metalloproteinase 10) is essential in NSC association with the ventricular wall, and via this adhesion to the apical domain, ADAM10 regulates the switch from quiescent and undifferentiated NSC to an actively proliferative and differentiating cell state. Processing of JAMC (junctional adhesion molecule C) by ADAM10 increases Rap1GAP activity. This molecular machinery promotes NSC transit from the apical to the basal compartment and subsequent lineage progression. Understanding the molecular mechanisms responsible for regulating the proper positioning of NSCs within the subventricular zone niche and lineage progression of NSCs could provide new targets for drug development to enhance the regenerative properties of neural tissue.
Collapse
Affiliation(s)
- Nadia McMillan
- Program in Neuroscience and Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Department of Neurology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Gregory W. Kirschen
- Department of Gynecology and Obstetrics, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Sanket Desai
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Emma Xia
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Stella E. Tsirka
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Adan Aguirre
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
5
|
Scalabrino G. Epidermal Growth Factor in the CNS: A Beguiling Journey from Integrated Cell Biology to Multiple Sclerosis. An Extensive Translational Overview. Cell Mol Neurobiol 2022; 42:891-916. [PMID: 33151415 PMCID: PMC8942922 DOI: 10.1007/s10571-020-00989-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
This article reviews the wealth of papers dealing with the different effects of epidermal growth factor (EGF) on oligodendrocytes, astrocytes, neurons, and neural stem cells (NSCs). EGF induces the in vitro and in vivo proliferation of NSCs, their migration, and their differentiation towards the neuroglial cell line. It interacts with extracellular matrix components. NSCs are distributed in different CNS areas, serve as a reservoir of multipotent cells, and may be increased during CNS demyelinating diseases. EGF has pleiotropic differentiative and proliferative effects on the main CNS cell types, particularly oligodendrocytes and their precursors, and astrocytes. EGF mediates the in vivo myelinotrophic effect of cobalamin on the CNS, and modulates the synthesis and levels of CNS normal prions (PrPCs), both of which are indispensable for myelinogenesis and myelin maintenance. EGF levels are significantly lower in the cerebrospinal fluid and spinal cord of patients with multiple sclerosis (MS), which probably explains remyelination failure, also because of the EGF marginal role in immunology. When repeatedly administered, EGF protects mouse spinal cord from demyelination in various experimental models of autoimmune encephalomyelitis. It would be worth further investigating the role of EGF in the pathogenesis of MS because of its multifarious effects.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences, University of Milan, Via Mangiagalli 31, 20133, Milan, Italy.
| |
Collapse
|
6
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
7
|
Abstract
Intraventricular hemorrhage (IVH) remains a major complication of prematurity, worldwide. The severity of IVH is variable, ranging from a tiny germinal matrix bleed to a moderate-to-large ventricular hemorrhage or periventricular hemorrhagic infarction. Survivors with IVH often suffer from hydrocephalus and white matter injury. There is no tangible treatment to prevent post-hemorrhagic cerebral palsy, cognitive deficits, or hydrocephalus in these infants. White matter injury is attributed to blood-induced damage to axons and maturing oligodendrocyte precursors, resulting in reduced myelination and axonal loss. Hydrocephalus results from obstructed CSF circulation by blood clots, increased CSF production, and reduced CSF absorption by lymphatics and arachnoid villi. Several strategies to promote neurological recovery have shown promise in animal models, including the elimination of blood and blood products, alleviating cerebral inflammation and oxidative stress, as well as promoting survival and maturation of oligodendrocyte precursors. The present review integrates novel mechanisms of brain injury in IVH and the imminent therapies to alleviate post-hemorrhagic white matter injury and hydrocephalus in the survivors with IVH.
Collapse
Affiliation(s)
| | - Praveen Ballabh
- Children's Hospital at Montefiore, Department of Pediatrics and Dominick P, Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
8
|
Scalabrino G. New Epidermal-Growth-Factor-Related Insights Into the Pathogenesis of Multiple Sclerosis: Is It Also Epistemology? Front Neurol 2021; 12:754270. [PMID: 34899572 PMCID: PMC8664554 DOI: 10.3389/fneur.2021.754270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
Recent findings showing that epidermal growth factor (EGF) is significantly decreased in the cerebrospinal fluid (CSF) and spinal cord (SC) of living or deceased multiple sclerosis (MS) patients, and that its repeated administration to rodents with chemically- or virally-induced demyelination of the central nervous system (CNS) or experimental allergic encephalomyelitis (EAE) prevents demyelination and inflammatory reactions in the CNS, have led to a critical reassessment of the MS pathogenesis, partly because EGF is considered to have little or no role in immunology. EGF is the only myelinotrophic factor that has been tested in the CSF and spinal cord of MS patients, and it has been shown there is a good correspondence between liquid and tissue levels. This review: (a) briefly summarises the positive EGF effects on neural stem cells, oligodendrocyte cell lineage, and astrocytes in order to explain, at least in part, the biological basis of the myelin loss and remyelination failure in MS; and (b) after a short analysis of the evolution of the principle of cause-effect in the history of Western philosophy, highlights the lack of any experimental immune-, toxin-, or virus-mediated model that precisely reproduces the histopathological features and “clinical” symptoms of MS, thus underlining the inapplicability of Claude Bernard's crucial sequence of “observation, hypothesis, and hypothesis testing.” This is followed by a discussion of most of the putative non-immunologically-linked points of MS pathogenesis (abnormalities in myelinotrophic factor CSF levels, oligodendrocytes (ODCs), astrocytes, extracellular matrix, and epigenetics) on the basis of Popper's falsification principle, and the suggestion that autoimmunity and phologosis reactions (surely the most devasting consequences of the disease) are probably the last links in a chain of events that trigger the reactions. As it is likely that there is a lack of other myelinotrophic growth factors because myelinogenesis is controlled by various CNS and extra-CNS growth factors and other molecules within and outside ODCs, further studies are needed to investigate the role of non-immunological molecules at the time of the onset of the disease. In the words of Galilei, the human mind should be prepared to understand what nature has created.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Vancamp P, Spirhanzlova P, Sébillot A, Butruille L, Gothié JD, Le Mével S, Leemans M, Wejaphikul K, Meima M, Mughal BB, Roques P, Remaud S, Fini JB, Demeneix BA. The pyriproxyfen metabolite, 4'-OH-PPF, disrupts thyroid hormone signaling in neural stem cells, modifying neurodevelopmental genes affected by ZIKA virus infection. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117654. [PMID: 34289950 DOI: 10.1016/j.envpol.2021.117654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
North-Eastern Brazil saw intensive application of the insecticide pyriproxyfen (PPF) during the microcephaly outbreak caused by the Zika virus (ZIKV). ZIKV requires the neural RNA-binding protein Musashi-1 to replicate. Thyroid hormone (TH) represses MSI1. PPF is a suspected TH disruptor. We hypothesized that co-exposure to the main metabolite of PPF, 4'-OH-PPF, could exacerbate ZIKV effects through increased MSI1 expression. Exposing an in vivo reporter model, Xenopus laevis, to 4'-OH-PPF decreased TH signaling and increased msi1 mRNA and protein, confirming TH-antagonistic properties. Next, we investigated the metabolite's effects on mouse subventricular zone-derived neural stem cells (NSCs). Exposure to 4'-OH-PPF dose-dependently reduced neuroprogenitor proliferation and dysregulated genes implicated in neurogliogenesis. The highest dose induced Msi1 mRNA and protein, increasing cell apoptosis and the ratio of neurons to glial cells. Given these effects of the metabolite alone, we considered if combined infection with ZIKV worsened neurogenic events. Only at the fourth and last day of incubation did co-exposure of 4'-OH-PPF and ZIKV decrease viral replication, but viral RNA copies stayed within the same order of magnitude. Intracellular RNA content of NSCs was decreased in the combined presence of 4'-OH-PPF and ZIKV, suggesting a synergistic block of transcriptional machinery. Seven out of 12 tested key genes in TH signaling and neuroglial commitment were dysregulated by co-exposure, of which four were unaltered when exposed to 4'-OH-PPF alone. We conclude that 4'-OH-PPF is an active TH-antagonist, altering NSC processes known to underlie correct cortical development. A combination of the TH-disrupting metabolite and ZIKV could aggravate the microcephaly phenotype.
Collapse
Affiliation(s)
- Pieter Vancamp
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Petra Spirhanzlova
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Anthony Sébillot
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Lucile Butruille
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Jean-David Gothié
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Sébastien Le Mével
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Michelle Leemans
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Karn Wejaphikul
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Marcel Meima
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bilal B Mughal
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Pierre Roques
- Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, 92265, Fontenay-aux-Roses, France
| | - Sylvie Remaud
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Jean-Baptiste Fini
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France
| | - Barbara A Demeneix
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, F-75005, Paris, France.
| |
Collapse
|
10
|
White matter injury in infants with intraventricular haemorrhage: mechanisms and therapies. Nat Rev Neurol 2021; 17:199-214. [PMID: 33504979 PMCID: PMC8880688 DOI: 10.1038/s41582-020-00447-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 01/31/2023]
Abstract
Intraventricular haemorrhage (IVH) continues to be a major complication of prematurity that can result in cerebral palsy and cognitive impairment in survivors. No optimal therapy exists to prevent IVH or to treat its consequences. IVH varies in severity and can present as a bleed confined to the germinal matrix, small-to-large IVH or periventricular haemorrhagic infarction. Moderate-to-severe haemorrhage dilates the ventricle and damages the periventricular white matter. This white matter injury results from a constellation of blood-induced pathological reactions, including oxidative stress, glutamate excitotoxicity, inflammation, perturbed signalling pathways and remodelling of the extracellular matrix. Potential therapies for IVH are currently undergoing investigation in preclinical models and evidence from clinical trials suggests that stem cell treatment and/or endoscopic removal of clots from the cerebral ventricles could transform the outcome of infants with IVH. This Review presents an integrated view of new insights into the mechanisms underlying white matter injury in premature infants with IVH and highlights the importance of early detection of disability and immediate intervention in optimizing the outcomes of IVH survivors.
Collapse
|
11
|
Clonal Analysis of Gliogenesis in the Cerebral Cortex Reveals Stochastic Expansion of Glia and Cell Autonomous Responses to Egfr Dosage. Cells 2020; 9:cells9122662. [PMID: 33322301 PMCID: PMC7764668 DOI: 10.3390/cells9122662] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Development of the nervous system undergoes important transitions, including one from neurogenesis to gliogenesis which occurs late during embryonic gestation. Here we report on clonal analysis of gliogenesis in mice using Mosaic Analysis with Double Markers (MADM) with quantitative and computational methods. Results reveal that developmental gliogenesis in the cerebral cortex occurs in a fraction of earlier neurogenic clones, accelerating around E16.5, and giving rise to both astrocytes and oligodendrocytes. Moreover, MADM-based genetic deletion of the epidermal growth factor receptor (Egfr) in gliogenic clones revealed that Egfr is cell autonomously required for gliogenesis in the mouse dorsolateral cortices. A broad range in the proliferation capacity, symmetry of clones, and competitive advantage of MADM cells was evident in clones that contained one cellular lineage with double dosage of Egfr relative to their environment, while their sibling Egfr-null cells failed to generate glia. Remarkably, the total numbers of glia in MADM clones balance out regardless of significant alterations in clonal symmetries. The variability in glial clones shows stochastic patterns that we define mathematically, which are different from the deterministic patterns in neuronal clones. This study sets a foundation for studying the biological significance of stochastic and deterministic clonal principles underlying tissue development, and identifying mechanisms that differentiate between neurogenesis and gliogenesis.
Collapse
|
12
|
de Almeida MMA, Pieropan F, de Mattos Oliveira L, Dos Santos Junior MC, David JM, David JP, da Silva VDA, Dos Santos Souza C, Costa SL, Butt AM. The flavonoid agathisflavone modulates the microglial neuroinflammatory response and enhances remyelination. Pharmacol Res 2020; 159:104997. [PMID: 32534098 PMCID: PMC7482432 DOI: 10.1016/j.phrs.2020.104997] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
Abstract
Myelin loss is the hallmark of the demyelinating disease multiple sclerosis (MS) and plays a significant role in multiple neurodegenerative diseases. A common factor in all neuropathologies is the central role of microglia, the intrinsic immune cells of the central nervous system (CNS). Microglia are activated in pathology and can have both pro- and anti-inflammatory functions. Here, we examined the effects of the flavonoid agathisflavone on microglia and remyelination in the cerebellar slice model following lysolecithin induced demyelination. Notably, agathisflavone enhances remyelination and alters microglial activation state, as determined by their morphology and cytokine profile. Furthermore, these effects of agathisflavone on remyelination and microglial activation were inhibited by blockade of estrogen receptor α. Thus, our results identify agathisflavone as a novel compound that may act via ER to regulate microglial activation and enhance remyelination and repair.
Collapse
Affiliation(s)
- Monique Marylin Alves de Almeida
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Brazil; School of Pharmacy and Biomedical Sciences, University of Portsmouth, United Kingdom
| | - Francesca Pieropan
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, United Kingdom
| | | | | | - Jorge Mauricio David
- Department of General and Inorganic Chemistry, Institute of Chemistry, Federal University of Bahia, Brazil
| | - Juceni Pereira David
- Department of Medication, Faculty of Pharmacy, Federal University of Bahia, Brazil
| | - Victor Diógenes A da Silva
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Brazil
| | - Cleide Dos Santos Souza
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Brazil; Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom
| | - Silvia Lima Costa
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Brazil.
| | - Arthur Morgan Butt
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, United Kingdom.
| |
Collapse
|
13
|
Abstract
Astrocytes, initially described as merely support cells, are now known as a heterogeneous population of cells actively involved in a variety of biological functions such as: neuronal migration and differentiation; regulation of cerebral blood flow; metabolic control of extracellular potassium concentration; and modulation of synapse formation and elimination; among others. Cerebellar glial cells have been shown to play a significant role in proliferation, differentiation, migration, and synaptogenesis. However, less evidence is available about the role of neuron-astrocyte interactions during cerebellar development and their impact on diseases of the cerebellum. In this review, we will focus on the mechanisms underlying cellular interactions, specifically neuron-astrocyte interactions, during cerebellar development, function, and disease. We will discuss how cerebellar glia, astrocytes, and Bergmann glia play a fundamental role in several steps of cerebellar development, such as granule cell migration, axonal growth, neuronal differentiation, and synapse formation, and in diseases associated with the cerebellum. We will focus on how astrocytes and thyroid hormones impact cerebellar development. Furthermore, we will provide evidence of how growth factors secreted by glial cells, such as epidermal growth factor and transforming growth factors, control cerebellar organogenesis. Finally, we will argue that glia are a key mediator of cerebellar development and that identification of molecules and pathways involved in neuron-glia interactions may contribute to a better understanding of cerebellar development and associated disorders.
Collapse
|
14
|
|
15
|
Finch-Edmondson M, Morgan C, Hunt RW, Novak I. Emergent Prophylactic, Reparative and Restorative Brain Interventions for Infants Born Preterm With Cerebral Palsy. Front Physiol 2019; 10:15. [PMID: 30745876 PMCID: PMC6360173 DOI: 10.3389/fphys.2019.00015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/08/2019] [Indexed: 12/13/2022] Open
Abstract
Worldwide, an estimated 15 million babies are born preterm (<37 weeks' gestation) every year. Despite significant improvements in survival rates, preterm infants often face a lifetime of neurodevelopmental disability including cognitive, behavioral, and motor impairments. Indeed, prematurity remains the largest risk factor for the development of cerebral palsy. The developing brain of the preterm infant is particularly fragile; preterm babies exhibit varying severities of cerebral palsy arising from reductions in both cerebral white and gray matter volumes, as well as altered brain microstructure and connectivity. Current intensive care therapies aim to optimize cardiovascular and respiratory function to protect the brain from injury by preserving oxygenation and blood flow. If a brain injury does occur, definitive diagnosis of cerebral palsy in the first few hours and weeks of life is difficult, especially when the lesions are subtle and not apparent on cranial ultrasound. However, early diagnosis of mildly affected infants is critical, because these are the patients most likely to respond to emergent treatments inducing neuroplasticity via high-intensity motor training programs and regenerative therapies involving stem cells. A current controversy is whether to test universal treatment in all infants at risk of brain injury, accepting that some patients never required treatment, because the perceived potential benefits outweigh the risk of harm. Versus, waiting for a diagnosis before commencing targeted treatment for infants with a brain injury, and potentially missing the therapeutic window. In this review, we discuss the emerging prophylactic, reparative, and restorative brain interventions for infants born preterm, who are at high risk of developing cerebral palsy. We examine the current evidence, considering the timing of the intervention with relation to the proposed mechanism/s of action. Finally, we consider the development of novel markers of preterm brain injury, which will undoubtedly lead to improved diagnostic and prognostic capability, and more accurate instruments to assess the efficacy of emerging interventions for this most vulnerable group of infants.
Collapse
Affiliation(s)
- Megan Finch-Edmondson
- The Discipline of Child and Adolescent Health, The Children's Hospital at Westmead Clinical School, The University of Sydney Medical School, Sydney, NSW, Australia
- Cerebral Palsy Alliance Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Catherine Morgan
- The Discipline of Child and Adolescent Health, The Children's Hospital at Westmead Clinical School, The University of Sydney Medical School, Sydney, NSW, Australia
- Cerebral Palsy Alliance Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Rod W. Hunt
- Department of Neonatal Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Neonatal Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Iona Novak
- The Discipline of Child and Adolescent Health, The Children's Hospital at Westmead Clinical School, The University of Sydney Medical School, Sydney, NSW, Australia
- Cerebral Palsy Alliance Research Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Robson JP, Wagner B, Glitzner E, Heppner FL, Steinkellner T, Khan D, Petritsch C, Pollak DD, Sitte HH, Sibilia M. Impaired neural stem cell expansion and hypersensitivity to epileptic seizures in mice lacking the EGFR in the brain. FEBS J 2018; 285:3175-3196. [PMID: 30028091 PMCID: PMC6174950 DOI: 10.1111/febs.14603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/18/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022]
Abstract
Mice lacking the epidermal growth factor receptor (EGFR) develop an early postnatal degeneration of the frontal cortex and olfactory bulbs and show increased cortical astrocyte apoptosis. The poor health and early lethality of EGFR−/− mice prevented the analysis of mechanisms responsible for the neurodegeneration and function of the EGFR in the adult brain. Here, we show that postnatal EGFR‐deficient neural stem cells are impaired in their self‐renewal potential and lack clonal expansion capacity in vitro. Mice lacking the EGFR in the brain (EGFRΔbrain) show low penetrance of cortical degeneration compared to EGFR−/− mice despite genetic recombination of the conditional allele. Adult EGFRΔ mice establish a proper blood–brain barrier and perform reactive astrogliosis in response to mechanical and infectious brain injury, but are more sensitive to Kainic acid‐induced epileptic seizures. EGFR‐deficient cortical astrocytes, but not midbrain astrocytes, have reduced expression of glutamate transporters Glt1 and Glast, and show reduced glutamate uptake in vitro, illustrating an excitotoxic mechanism to explain the hypersensitivity to Kainic acid and region‐specific neurodegeneration observed in EGFR‐deficient brains.
Collapse
Affiliation(s)
- Jonathan P Robson
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Bettina Wagner
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Elisabeth Glitzner
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Frank L Heppner
- Department of Neuropathology, Cluster of Excellence, NeuroCure, Charité - Universitätsmedizin Berlin, Germany
| | - Thomas Steinkellner
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Austria
| | - Deeba Khan
- Centre for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Claudia Petritsch
- Department of Neurological Surgery, UCSF Broad Institute of Regeneration Medicine, University of California San Francisco, CA, USA
| | - Daniela D Pollak
- Centre for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Harald H Sitte
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria
| |
Collapse
|
17
|
Chavali M, Klingener M, Kokkosis AG, Garkun Y, Felong S, Maffei A, Aguirre A. Non-canonical Wnt signaling regulates neural stem cell quiescence during homeostasis and after demyelination. Nat Commun 2018; 9:36. [PMID: 29296000 PMCID: PMC5750230 DOI: 10.1038/s41467-017-02440-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/29/2017] [Indexed: 12/11/2022] Open
Abstract
Adult neural stem cells (NSCs) reside in a specialized microenvironment, the subventricular zone (SVZ), which provides them with unique signaling cues to control their basic properties and prevent their exhaustion. While the signaling mechanisms that regulate NSC lineage progression are well characterized, the molecular mechanisms that trigger the activation of quiescent NSCs during homeostasis and tissue repair are still unclear. Here, we uncovered that the NSC quiescent state is maintained by Rho-GTPase Cdc42, a downstream target of non-canonical Wnt signaling. Mechanistically, activation of Cdc42 induces expression of molecules involved in stem cell identity and anchorage to the niche. Strikingly, during a demyelination injury, downregulation of non-canonical Wnt-dependent Cdc42 activity is necessary to promote activation and lineage progression of quiescent NSCs, thereby initiating the process of tissue repair.
Collapse
Affiliation(s)
- Manideep Chavali
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
- Materials Science and Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
- Eli & Edythe Broad Center of Regeneration Medicine & Stem Cell Research, University of California-San Francisco, San Francisco, CA, 94143, USA
| | - Michael Klingener
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Alexandros G Kokkosis
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yury Garkun
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Sylwia Felong
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Arianna Maffei
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Adan Aguirre
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
18
|
Leonetti C, Macrez R, Pruvost M, Hommet Y, Bronsard J, Fournier A, Perrigault M, Machin I, Vivien D, Clemente D, De Castro F, Maubert E, Docagne F. Tissue-type plasminogen activator exerts EGF-like chemokinetic effects on oligodendrocytes in white matter (re)myelination. Mol Neurodegener 2017; 12:20. [PMID: 28231842 PMCID: PMC5322587 DOI: 10.1186/s13024-017-0160-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/10/2017] [Indexed: 01/12/2023] Open
Abstract
Background The ability of oligodendrocyte progenitor cells (OPCs) to give raise to myelin forming cells during developmental myelination, normal adult physiology and post-lesion remyelination in white matter depends on factors which govern their proliferation, migration and differentiation. Tissue plasminogen activator (tPA) is a serine protease expressed in the central nervous system (CNS), where it regulates cell fate. In particular, tPA has been reported to protect oligodendrocytes from apoptosis and to facilitate the migration of neurons. Here, we investigated whether tPA can also participate in the migration of OPCs during CNS development and during remyelination after focal white matter lesion. Methods OPC migration was estimated by immunohistological analysis in spinal cord and corpus callosum during development in mice embryos (E13 to P0) and after white matter lesion induced by the stereotactic injection of lysolecithin in adult mice (1 to 21 days post injection). Migration was compared in these conditions between wild type and tPA knock-out animals. The action of tPA was further investigated in an in vitro chemokinesis assay. Results OPC migration along vessels is delayed in tPA knock-out mice during development and during remyelination. tPA enhances OPC migration via an effect dependent on the activation of epidermal growth factor receptor. Conclusion Endogenous tPA facilitates the migration of OPCs during development and during remyelination after white matter lesion by the virtue of its epidermal growth factor-like domain. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0160-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camille Leonetti
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Richard Macrez
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Mathilde Pruvost
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Yannick Hommet
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Jérémie Bronsard
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Antoine Fournier
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Maxime Perrigault
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Isabel Machin
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain.,Grupo de Neuroinmuno-reparación, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Diego Clemente
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain.,Grupo de Neuroinmuno-reparación, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Fernando De Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain.,Grupo de Neurobiología del Desarrollo (GNDe), Instituto Cajal, CSIC, Madrid, Spain
| | - Eric Maubert
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France
| | - Fabian Docagne
- Normandie Univ, UNICAEN, INSERM U1237, Physiology and imaging of neurological disorders (PhIND), Cyceron, Caen, 14000, France. .,Inserm, Centre Cyceron, Bvd Becquerel, BP5229, Caen Cedex, 14074, France.
| |
Collapse
|
19
|
Chiu HY, Lin CH, Hsu CY, Yu J, Hsieh CH, Shyu WC. IGF1R + Dental Pulp Stem Cells Enhanced Neuroplasticity in Hypoxia-Ischemia Model. Mol Neurobiol 2016; 54:8225-8241. [PMID: 27914008 DOI: 10.1007/s12035-016-0210-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/11/2016] [Indexed: 12/27/2022]
Abstract
Until now, the surface markers of multipotent mesenchymal stem cells (MSCs) had not been fully identified. Here, we found that the IGF1 receptor (IGF1R), regarded as a pluripotent marker of embryonic stem cells (ESCs), was also expressed in human dental pulp derived-mesenchymal stem cells (hDSCs), which displayed a potential for both self-renewal and multipotency. hDSC-secreted IGF1 interacted with IGF1R through an autocrine signaling pathway to maintain this self-renewal and proliferation potential. Stereotaxic implantation of immunosorted IGF1R+ hDSCs in rats with neonatal hypoxia-ischemia (NHI) promoted neuroplasticity, improving the neurological outcome by increasing expression of the anti-apoptotic protein Bcl-2, which enhanced both neurogenesis and angiogenesis. In addition, treatment with IGF1R+ hDSCs significantly modulated neurite regeneration and anti-inflammation in vivo in NHI rats and in vitro in primary cortical cultures under oxygen/glucose deprivation. Autocrine regulatory expression of IGF1R contributed to maintaining the self-renewal capacity of hDSCs. Furthermore, implantation of IGF1R+ hDSCs increased neuroplasticity with neurite regeneration and immunomodulation in and the NHI rat model.
Collapse
Affiliation(s)
- Hsiao-Yu Chiu
- Children's Hospital, China Medical University and Hospital, Taichung, Taiwan.,Translational Medicine Doctoral Degree Program, China Medical University, Taichung, Taiwan
| | - Chen-Huan Lin
- Translational Research Center, and Department of Neurology, China Medical University Hospital, Taichung, Taiwan, 40440
| | - Chung Y Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| | - Chia-Hung Hsieh
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| | - Woei-Cherng Shyu
- Translational Research Center, and Department of Neurology, China Medical University Hospital, Taichung, Taiwan, 40440. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
20
|
Vinukonda G, Hu F, Mehdizadeh R, Dohare P, Kidwai A, Juneja A, Naran V, Kierstead M, Chawla R, Kayton R, Ballabh P. Epidermal growth factor preserves myelin and promotes astrogliosis after intraventricular hemorrhage. Glia 2016; 64:1987-2004. [PMID: 27472419 DOI: 10.1002/glia.23037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 12/21/2022]
Abstract
Intraventricular hemorrhage (IVH) leads to reduced myelination and astrogliosis of the white matter in premature infants. No therapeutic strategy exists to minimize white matter injury in survivors with IVH. Epidermal growth factor (EGF) enhances myelination, astrogliosis, and neurologic recovery in animal models of white matter injury. Here, we hypothesized that recombinant human (rh) EGF treatment would enhance oligodendrocyte precursor cell (OPC) maturation, myelination, and neurological recovery in preterm rabbits with IVH. In addition, rhEGF would promote astrogliosis by inducing astroglial progenitor proliferation and GFAP transcription. We tested these hypotheses in a preterm rabbit model of IVH and evaluated autopsy samples from human preterm infants. We found that EGF and EGFR expression were more abundant in the ganglionic eminence relative to the cortical plate and white matter of human infants and that the development of IVH reduced EGF levels, but not EGFR expression. Accordingly, rhEGF treatment promoted proliferation and maturation of OPCs, preserved myelin in the white matter, and enhanced neurological recovery in rabbits with IVH. rhEGF treatment inhibited Notch signaling, which conceivably contributed to OPC maturation. rhEGF treatment contributed to astrogliosis by increasing astroglial proliferation and upregulating GFAP as well as Sox9 expression. Hence, IVH results in a decline in EGF expression; and rhEGF treatment preserves myelin, restores neurological recovery, and exacerbates astrogliosis by inducing proliferation of astrocytes and enhancing transcription of GFAP and Sox9 in pups with IVH. rhEGF treatment might improve the neurological outcome of premature infants with IVH. GLIA 2016;64:1987-2004.
Collapse
Affiliation(s)
- Govindaiah Vinukonda
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Furong Hu
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Rana Mehdizadeh
- Department of Cell Biology and Anatomy, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Preeti Dohare
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Ali Kidwai
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Ankit Juneja
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Vineet Naran
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Maria Kierstead
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Rachit Chawla
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Robert Kayton
- Department of Anatomical Pathology, Oregon Health and Science University, Portland, Oregon
| | - Praveen Ballabh
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York. .,Department of Cell Biology and Anatomy, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York.
| |
Collapse
|
21
|
Zhang J, Zhang ZG, Li Y, Lu M, Zhang Y, Elias SB, Chopp M. Thymosin beta4 promotes oligodendrogenesis in the demyelinating central nervous system. Neurobiol Dis 2016; 88:85-95. [DOI: 10.1016/j.nbd.2016.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/19/2015] [Accepted: 01/09/2016] [Indexed: 02/01/2023] Open
|
22
|
Santra M, Chopp M, Santra S, Nallani A, Vyas S, Zhang ZG, Morris DC. Thymosin beta 4 up-regulates miR-200a expression and induces differentiation and survival of rat brain progenitor cells. J Neurochem 2015; 136:118-32. [PMID: 26466330 DOI: 10.1111/jnc.13394] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/27/2015] [Accepted: 10/05/2015] [Indexed: 12/24/2022]
Abstract
Thymosin beta 4 (Tβ4), a secreted 43 amino acid peptide, promotes oligodendrogenesis, and improves neurological outcome in rat models of neurologic injury. We demonstrated that exogenous Tβ4 treatment up-regulated the expression of the miR-200a in vitro in rat brain progenitor cells and in vivo in the peri-infarct area of rats subjected to middle cerebral artery occlusion (MCAO). The up-regulation of miR-200a down-regulated the expression of the following targets in vitro and in vivo models: (i) growth factor receptor-bound protein 2 (Grb2), an adaptor protein involved in epidermal growth factor receptor (EGFR)/Grb2/Ras/MEK/ERK1/c-Jun signaling pathway, which negatively regulates the expression of myelin basic protein (MBP), a marker of mature oligodendrocyte; (ii) ERRFI-1/Mig-6, an endogenous potent kinase inhibitor of EGFR, which resulted in activation/phosphorylation of EGFR; (iii) friend of GATA 2, and phosphatase and tensin homolog deleted in chromosome 10 (PTEN), which are potent inhibitors of the phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway, and resulted in marked activation of AKT; and (iv) transcription factor, p53, which induces pro-apoptotic genes, and possibly reduced apoptosis of the progenitor cells subjected to oxygen glucose deprivation (OGD). Anti-miR-200a transfection reversed all the effects of Tβ4 treatment in vitro. Thus, Tβ4 up-regulated MBP synthesis, and inhibited OGD-induced apoptosis in a novel miR-200a dependent EGFR signaling pathway. Our findings of miR-200a-mediated protection of progenitor cells may provide a new therapeutic importance for the treatment of neurologic injury. Tβ4-induced micro-RNA-200a (miR-200a) regulates EGFR signaling pathways for MBP synthesis and apoptosis: up-regulation of miR-200a after Tβ4 treatment, increases MBP synthesis after targeting Grb2 and thereby inactivating c-Jun from inhibition of MBP synthesis; and also inhibits OGD-mediated apoptosis after targeting EGFR inhibitor (Mig-6), PI3K inhibitors (FOG2 and Pten) and an inducer (p53) of pro-apoptotic genes, for AKT activation and down-regulation of p53. These findings may contribute the therapeutic benefits for stroke and other neuronal diseases associated with demyelination disorders.
Collapse
Affiliation(s)
- Manoranjan Santra
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA.,Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Sutapa Santra
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Ankita Nallani
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Shivam Vyas
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Daniel C Morris
- Department of Emergency Medicine, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
23
|
Galvez-Contreras AY, Gonzalez-Castaneda RE, Campos-Ordonez T, Luquin S, Gonzalez-Perez O. Phenytoin enhances the phosphorylation of epidermal growth factor receptor and fibroblast growth factor receptor in the subventricular zone and promotes the proliferation of neural precursor cells and oligodendrocyte differentiation. Eur J Neurosci 2015; 43:139-47. [PMID: 26370587 DOI: 10.1111/ejn.13079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/07/2015] [Indexed: 11/30/2022]
Abstract
Phenytoin is a widely used antiepileptic drug that induces cell proliferation in several tissues, such as heart, bone, skin, oral mucosa and neural precursors. Some of these effects are mediated via fibroblast growth factor receptor (FGFR) and epidermal growth factor receptor (EGFR). These receptors are strongly expressed in the adult ventricular-subventricular zone (V-SVZ), the main neurogenic niche in the adult brain. The aim of this study was to determine the cell lineage and cell fate of V-SVZ neural progenitors expanded by phenytoin, as well as the effects of this drug on EGFR/FGFR phosphorylation. Male BALB/C mice received 10 mg/kg phenytoin by oral cannula for 30 days. We analysed the proliferation of V-SVZ neural progenitors by immunohistochemistry and western blot. Our findings indicate that phenytoin enhanced twofold the phosphorylation of EGFR and FGFR in the V-SVZ, increased the number of bromodeoxyuridine (BrdU)+/Sox2+ and BrdU+/doublecortin+ cells in the V-SVZ, and expanded the population of Olig2-expressing cells around the lateral ventricles. After phenytoin removal, a large number of BrdU+/Receptor interacting protein (RIP)+ cells were observed in the olfactory bulb. In conclusion, phenytoin enhanced the phosphorylation of FGFR and EGFR, and promoted the expression of neural precursor markers in the V-SVZ. In parallel, the number of oligodendrocytes increased significantly after phenytoin removal.
Collapse
Affiliation(s)
- Alma Y Galvez-Contreras
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, Mexico
| | - Rocio E Gonzalez-Castaneda
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, Mexico
| | - Tania Campos-Ordonez
- Laboratory of Neuroscience, Facultad de Psicologia, Universidad de Colima, Av. Universidad 333, Colima, COL, 28040, Mexico
| | - Sonia Luquin
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, Mexico
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, Facultad de Psicologia, Universidad de Colima, Av. Universidad 333, Colima, COL, 28040, Mexico
| |
Collapse
|
24
|
Fukushima S, Nishikawa K, Furube E, Muneoka S, Ono K, Takebayashi H, Miyata S. Oligodendrogenesis in the fornix of adult mouse brain; the effect of LPS-induced inflammatory stimulation. Brain Res 2015; 1627:52-69. [PMID: 26385416 DOI: 10.1016/j.brainres.2015.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 08/11/2015] [Accepted: 09/08/2015] [Indexed: 01/27/2023]
Abstract
Evidence have been accumulated that continuous oligodendrogenesis occurs in the adult mammalian brain. The fornix, projection and commissure pathway of hippocampal neurons, carries signals from the hippocampus to other parts of the brain and has critical role in memory and learning. However, basic characterization of adult oligodendrogenesis in this brain region is not well understood. In the present study, therefore, we aimed to examine the proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) and the effect of acute inflammatory stimulation on oligodendrogenesis in the fornix of adult mouse. We demonstrated the proliferation of OPCs and a new generation of mature oligodendrocytes by using bromodeoxyuridine and Ki67 immunohistochemistry. Oligodendrogenesis of adult fornix was also demonstrated by using oligodendrocyte transcription factor 2 transgenic mouse. A single systemic administration of lipopolysaccharide (LPS) attenuated proliferation of OPCs in the fornix together with reduced proliferation of hippocampal neural stem/progenitor cells. Time course analysis showed that a single administration of LPS attenuated the proliferation of OPCs during 24-48 h. On the other hand, consecutive administration of LPS did not suppress proliferation of OPCs. The treatment of LPS did not affect differentiation of OPCs into mature oligodendrocytes. Treatment of a microglia inhibitor minocycline significantly attenuated basal proliferation of OPCs under normal condition. In conclusion, the present study indicates that continuous oligodendrogenesis occurs and a single administration of LPS transiently attenuates proliferation of OPCs without changing differentiation in the fornix of the adult mouse brains.
Collapse
Affiliation(s)
- Shohei Fukushima
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kazunori Nishikawa
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Eriko Furube
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shiori Muneoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Katsuhiko Ono
- Department of Biology, Kyoto Prefectural University of Medicine, Shimogamohangicho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
25
|
Abstract
Neonatal hypoxia-ischemia (H-I) is the leading cause of brain damage resulting from birth complications. Studies in neonatal rats have shown that H-I acutely expands the numbers of neural precursors (NPs) within the subventricular zone (SVZ). The aim of these studies was to establish which NPs expand after H-I and to determine how leukemia inhibitory factor (LIF) insufficiency affects their response. During recovery from H-I, the number of Ki67(+) cells in the medial SVZ of the injured hemisphere increased. Similarly, the number and size of primary neurospheres produced from the injured SVZ increased approximately twofold versus controls, and, upon differentiation, more than twice as many neurospheres from the damaged brain were tripotential, suggesting an increase in neural stem cells (NSCs). However, multimarker flow cytometry for CD133/LeX/NG2/CD140a combined with EdU incorporation revealed that NSC frequency diminished after H-I, whereas that of two multipotential progenitors and three unique glial-restricted precursors expanded, attributable to changes in their proliferation. By quantitative PCR, interleukin-6, LIF, and CNTF mRNA increased but with significantly different time courses, with LIF expression correlating best with NP expansion. Therefore, we evaluated the NP response to H-I in LIF-haplodeficient mice. Flow cytometry revealed that one subset of multipotential and bipotential intermediate progenitors did not increase after H-I, whereas another subset was amplified. Altogether, our studies demonstrate that neonatal H-I alters the composition of the SVZ and that LIF is a key regulator for a subset of intermediate progenitors that expand during acute recovery from neonatal H-I.
Collapse
|
26
|
Merino JJ, Bellver-Landete V, Oset-Gasque MJ, Cubelos B. CXCR4/CXCR7 Molecular Involvement in Neuronal and Neural Progenitor Migration: Focus in CNS Repair. J Cell Physiol 2014; 230:27-42. [DOI: 10.1002/jcp.24695] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 06/03/2014] [Indexed: 12/13/2022]
Affiliation(s)
- José Joaquín Merino
- Biochemistry and Molecular Biology Dept II; Universidad Complutense de Madrid (UCM); Madrid Spain
- Instituto de Investigación; Neuroquímica (IUIN), UCM; Madrid Spain
| | - Victor Bellver-Landete
- Biochemistry and Molecular Biology Dept II; Universidad Complutense de Madrid (UCM); Madrid Spain
| | - María Jesús Oset-Gasque
- Biochemistry and Molecular Biology Dept II; Universidad Complutense de Madrid (UCM); Madrid Spain
- Instituto de Investigación; Neuroquímica (IUIN), UCM; Madrid Spain
| | - Beatriz Cubelos
- Departamento de Biología Molecular; Centro de Biología Molecular Severo Ochoa (CBMSO); Universidad Autónoma de Madrid; Madrid Spain
| |
Collapse
|
27
|
Palazuelos J, Crawford HC, Klingener M, Sun B, Karelis J, Raines EW, Aguirre A. TACE/ADAM17 is essential for oligodendrocyte development and CNS myelination. J Neurosci 2014; 34:11884-96. [PMID: 25186737 PMCID: PMC4152601 DOI: 10.1523/jneurosci.1220-14.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/18/2014] [Accepted: 07/03/2014] [Indexed: 11/21/2022] Open
Abstract
Several studies have elucidated the significance of a disintegrin and metalloproteinase proteins (ADAMs) in PNS myelination, but there is no evidence if they also play a role in oligodendrogenesis and CNS myelination. Our study identifies ADAM17, also called tumor necrosis factor-α converting enzyme (TACE), as a novel key modulator of oligodendrocyte (OL) development and CNS myelination. Genetic deletion of TACE in oligodendrocyte progenitor cells (OPs) induces premature cell cycle exit and reduces OL cell survival during postnatal myelination of the subcortical white matter (SCWM). These cellular and molecular changes lead to deficits in SCWM myelination and motor behavior. Mechanistically, TACE regulates oligodendrogenesis by modulating the shedding of EGFR ligands TGFα and HB-EGF and, consequently, EGFR signaling activation in OL lineage cells. Constitutive TACE depletion in OPs in vivo leads to similar alterations in CNS myelination and motor behavior as to what is observed in the EGFR hypofunctional mouse line EgfrWa2. EGFR overexpression in TACE-deficient OPs restores OL survival and development. Our study reveals an essential function of TACE in oligodendrogenesis, and demonstrates how this molecule modulates EGFR signaling activation to regulate postnatal CNS myelination.
Collapse
Affiliation(s)
- Javier Palazuelos
- Department of Pharmacological Sciences, Centers for Molecular Medicine, Stony Brook University, SUNY, New York 11794
| | | | - Michael Klingener
- Department of Pharmacological Sciences, Centers for Molecular Medicine, Stony Brook University, SUNY, New York 11794
| | - Bingru Sun
- Department of Pharmacological Sciences, Centers for Molecular Medicine, Stony Brook University, SUNY, New York 11794
| | - Jason Karelis
- Department of Pharmacological Sciences, Centers for Molecular Medicine, Stony Brook University, SUNY, New York 11794
| | - Elaine W Raines
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | - Adan Aguirre
- Department of Pharmacological Sciences, Centers for Molecular Medicine, Stony Brook University, SUNY, New York 11794,
| |
Collapse
|
28
|
Klingener M, Chavali M, Singh J, McMillan N, Coomes A, Dempsey PJ, Chen EI, Aguirre A. N-cadherin promotes recruitment and migration of neural progenitor cells from the SVZ neural stem cell niche into demyelinated lesions. J Neurosci 2014; 34:9590-606. [PMID: 25031401 PMCID: PMC4099541 DOI: 10.1523/jneurosci.3699-13.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 06/04/2014] [Accepted: 06/06/2014] [Indexed: 01/01/2023] Open
Abstract
Discrete cellular microenvironments regulate stem cell pools and their development, as well as function in maintaining tissue homeostasis. Although the signaling elements modulating neural progenitor cells (NPCs) of the adult subventricular zone (SVZ) niche are fairly well understood, the pathways activated following injury and the resulting outcomes, are less clear. In the present study, we used mouse models of demyelination and proteomics analysis to identify molecular cues present in the adult SVZ niche during injury, and analyzed their role on NPCs in the context of promoting myelin repair. Proteomic analysis of SVZ tissue from mice with experimental demyelination identified several proteins that are known to play roles in NPC proliferation, adhesion, and migration. Among the proteins found to be upregulated were members of the N-cadherin signaling pathway. During the onset of demyelination in the subcortical white matter (SCWM), activation of epidermal growth factor receptor (EGFR) signaling in SVZ NPCs stimulates the interaction between N-cadherin and ADAM10. Upon cleavage and activation of N-cadherin signaling by ADAM10, NPCs undergo cytoskeletal rearrangement and polarization, leading to enhanced migration out of the SVZ into demyelinated lesions of the SCWM. Genetically disrupting either EGFR signaling or ADAM10 inhibits this pathway, preventing N-cadherin regulated NPC polarization and migration. Additionally, in vivo experiments using N-cadherin gain- and loss-of-function approaches demonstrated that N-cadherin enhances the recruitment of SVZ NPCs into demyelinated lesions. Our data revealed that EGFR-dependent N-cadherin signaling physically initiated by ADAM10 cleavage is the response of the SVZ niche to promote repair of the injured brain.
Collapse
Affiliation(s)
- Michael Klingener
- State University of New York at Stony Brook University, Departments of Pharmacological Science and
| | - Manideep Chavali
- State University of New York at Stony Brook University, Departments of Pharmacological Science and Materials Science and Engineering, Stony Brook, New York 11794
| | - Jagdeep Singh
- State University of New York at Stony Brook University, Departments of Pharmacological Science and
| | - Nadia McMillan
- State University of New York at Stony Brook University, Departments of Pharmacological Science and
| | - Alexandra Coomes
- State University of New York at Stony Brook University, Departments of Pharmacological Science and Stony Brook University Proteomics Center, School of Medicine, Stony Brook, New York 11794
| | - Peter J Dempsey
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Emily I Chen
- State University of New York at Stony Brook University, Departments of Pharmacological Science and Stony Brook University Proteomics Center, School of Medicine, Stony Brook, New York 11794
| | - Adan Aguirre
- State University of New York at Stony Brook University, Departments of Pharmacological Science and
| |
Collapse
|
29
|
El Waly B, Macchi M, Cayre M, Durbec P. Oligodendrogenesis in the normal and pathological central nervous system. Front Neurosci 2014; 8:145. [PMID: 24971048 PMCID: PMC4054666 DOI: 10.3389/fnins.2014.00145] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/23/2014] [Indexed: 12/26/2022] Open
Abstract
Oligodendrocytes (OLGs) are generated late in development and myelination is thus a tardive event in the brain developmental process. It is however maintained whole life long at lower rate, and myelin sheath is crucial for proper signal transmission and neuronal survival. Unfortunately, OLGs present a high susceptibility to oxidative stress, thus demyelination often takes place secondary to diverse brain lesions or pathologies. OLGs can also be the target of immune attacks, leading to primary demyelination lesions. Following oligodendrocytic death, spontaneous remyelination may occur to a certain extent. In this review, we will mainly focus on the adult brain and on the two main sources of progenitor cells that contribute to oligodendrogenesis: parenchymal oligodendrocyte precursor cells (OPCs) and subventricular zone (SVZ)-derived progenitors. We will shortly come back on the main steps of oligodendrogenesis in the postnatal and adult brain, and summarize the key factors involved in the determination of oligodendrocytic fate. We will then shed light on the main causes of demyelination in the adult brain and present the animal models that have been developed to get insight on the demyelination/remyelination process. Finally, we will synthetize the results of studies searching for factors able to modulate spontaneous myelin repair.
Collapse
Affiliation(s)
- Bilal El Waly
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Magali Macchi
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Myriam Cayre
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Pascale Durbec
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| |
Collapse
|
30
|
Carrillo-García C, Prochnow S, Simeonova IK, Strelau J, Hölzl-Wenig G, Mandl C, Unsicker K, von Bohlen Und Halbach O, Ciccolini F. Growth/differentiation factor 15 promotes EGFR signalling, and regulates proliferation and migration in the hippocampus of neonatal and young adult mice. Development 2014; 141:773-83. [PMID: 24496615 PMCID: PMC3930467 DOI: 10.1242/dev.096131] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The activation of epidermal growth factor receptor (EGFR) affects multiple aspects of neural precursor behaviour, including proliferation and migration. Telencephalic precursors acquire EGF responsiveness and upregulate EGFR expression at late stages of development. The events regulating this process and its significance are still unclear. We here show that in the developing and postnatal hippocampus (HP), growth/differentiation factor (GDF) 15 and EGFR are co-expressed in primitive precursors as well as in more differentiated cells. We also provide evidence that GDF15 promotes responsiveness to EGF and EGFR expression in hippocampal precursors through a mechanism that requires active CXC chemokine receptor (CXCR) 4. Besides EGFR expression, GDF15 ablation also leads to decreased proliferation and migration. In particular, lack of GDF15 impairs both processes in the cornu ammonis (CA) 1 and only proliferation in the dentate gyrus (DG). Importantly, migration and proliferation in the mutant HP were altered only perinatally, when EGFR expression was also affected. These data suggest that GDF15 regulates migration and proliferation by promoting EGFR signalling in the perinatal HP and represent a first description of a functional role for GDF15 in the developing telencephalon.
Collapse
Affiliation(s)
- Carmen Carrillo-García
- Department of Neurobiology, Interdisciplinary Centre for Neuroscience (IZN), Ruprecht-Karls University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Scafidi J, Hammond TR, Scafidi S, Ritter J, Jablonska B, Roncal M, Szigeti-Buck K, Coman D, Huang Y, McCarter RJ, Hyder F, Horvath TL, Gallo V. Intranasal epidermal growth factor treatment rescues neonatal brain injury. Nature 2014; 506:230-4. [PMID: 24390343 PMCID: PMC4106485 DOI: 10.1038/nature12880] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 11/13/2013] [Indexed: 12/19/2022]
Abstract
There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.
Collapse
Affiliation(s)
- Joseph Scafidi
- Center for Neuroscience Research, Children’s National Medical Center, Washington, District of Columbia, 20010 USA
- Department of Neurology, Children’s National Medical Center, Washington, District of Columbia, 20010 USA
| | - Timothy R. Hammond
- Center for Neuroscience Research, Children’s National Medical Center, Washington, District of Columbia, 20010 USA
- Institute for Biomedical Sciences, The George Washington University, Washington, District of Columbia, 20052 USA
| | - Susanna Scafidi
- Department of Anesthesiology & Critical Care Medicine, John’s Hopkins University School of Medicine, Baltimore, Maryland, 21287 USA
| | - Jonathan Ritter
- Center for Neuroscience Research, Children’s National Medical Center, Washington, District of Columbia, 20010 USA
| | - Beata Jablonska
- Center for Neuroscience Research, Children’s National Medical Center, Washington, District of Columbia, 20010 USA
| | - Maria Roncal
- Center for Neuroscience Research, Children’s National Medical Center, Washington, District of Columbia, 20010 USA
| | - Klara Szigeti-Buck
- Dept of Neurobiology, Yale University, New Haven, Connecticut, 06520 USA
| | - Daniel Coman
- MRRC, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut, 06520, USA
| | - Yuegao Huang
- MRRC, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut, 06520, USA
| | - Robert J. McCarter
- Center for Translational Science, Children’s National Medical Center, Washington, District of Columbia, 20010 USA
| | - Fahmeed Hyder
- MRRC, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut, 06520, USA
| | - Tamas L. Horvath
- Dept of Neurobiology, Yale University, New Haven, Connecticut, 06520 USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children’s National Medical Center, Washington, District of Columbia, 20010 USA
| |
Collapse
|
32
|
Unachukwu UJ, Sauane M, Vazquez M, Redenti S. Microfluidic generated EGF-gradients induce chemokinesis of transplantable retinal progenitor cells via the JAK/STAT and PI3kinase signaling pathways. PLoS One 2013; 8:e83906. [PMID: 24376770 PMCID: PMC3871684 DOI: 10.1371/journal.pone.0083906] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/10/2013] [Indexed: 11/18/2022] Open
Abstract
A growing number of studies are evaluating retinal progenitor cell (RPC) transplantation as an approach to repair retinal degeneration and restore visual function. To advance cell-replacement strategies for a practical retinal therapy, it is important to define the molecular and biochemical mechanisms guiding RPC motility. We have analyzed RPC expression of the epidermal growth factor receptor (EGFR) and evaluated whether exposure to epidermal growth factor (EGF) can coordinate motogenic activity in vitro. Using Boyden chamber analysis as an initial high-throughput screen, we determined that RPC motility was optimally stimulated by EGF concentrations in the range of 20-400 ng/ml, with decreased stimulation at higher concentrations, suggesting concentration-dependence of EGF-induced motility. Using bioinformatics analysis of the EGF ligand in a retina-specific gene network pathway, we predicted a chemotactic function for EGF involving the MAPK and JAK-STAT intracellular signaling pathways. Based on targeted inhibition studies, we show that ligand binding, phosphorylation of EGFR and activation of the intracellular STAT3 and PI3kinase signaling pathways are necessary to drive RPC motility. Using engineered microfluidic devices to generate quantifiable steady-state gradients of EGF coupled with live-cell tracking, we analyzed the dynamics of individual RPC motility. Microfluidic analysis, including center of mass and maximum accumulated distance, revealed that EGF induced motility is chemokinetic with optimal activity observed in response to low concentration gradients. Our combined results show that EGFR expressing RPCs exhibit enhanced chemokinetic motility in the presence of low nanomole levels of EGF. These findings may serve to inform further studies evaluating the extent to which EGFR activity, in response to endogenous ligand, drives motility and migration of RPCs in retinal transplantation paradigms.
Collapse
Affiliation(s)
- Uchenna J. Unachukwu
- Biochemistry Doctoral Program, The Graduate School and University Center, City University of New York, New York, New York, United States of America
| | - Moira Sauane
- Department of Biological Sciences, Herbert Lehman College, City University of New York, Bronx, New York, United States of America
| | - Maribel Vazquez
- Department of Biomedical Engineering, City College of New York, City University of New York, New York, New York, United States of America
| | - Stephen Redenti
- Biochemistry Doctoral Program, The Graduate School and University Center, City University of New York, Department of Biological Sciences, Herbert Lehman College, City University of New York, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
33
|
Sciaccaluga M, D’Alessandro G, Pagani F, Ferrara G, Lopez N, Warr T, Gorello P, Porzia A, Mainiero F, Santoro A, Esposito V, Cantore G, Castigli E, Limatola C. Functional cross talk between CXCR4 and PDGFR on glioblastoma cells is essential for migration. PLoS One 2013; 8:e73426. [PMID: 24023874 PMCID: PMC3759384 DOI: 10.1371/journal.pone.0073426] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/19/2013] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive form of brain tumor, characterized by high migratory behavior and infiltration in brain parenchyma which render classic therapeutic approach ineffective. The migratory behaviour of GBM cells could be conditioned by a number of tissue- and glioma-derived cytokines and growth factors. Although the pro-migratory action of CXCL12 on GBM cells in vitro and in vivo is recognized, the molecular mechanisms involved are not clearly identified. In fact the signaling pathways involved in the pro-migratory action of CXCL12 may differ in individual glioblastoma and integrate with those resulting from abnormal expression and activation of growth factor receptors. In this study we investigated whether some of the receptor tyrosine kinases commonly expressed in GBM cells could cooperate with CXCL12/CXCR4 in their migratory behavior. Our results show a functional cross-talk between CXCR4 and PDGFR which appears to be essential for GBM chemotaxis.
Collapse
Affiliation(s)
| | - Giuseppina D’Alessandro
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Fisiologia e Farmacologia Sapienza University of Rome, Rome, Italy
| | - Francesca Pagani
- Centre for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Giuseppina Ferrara
- Department of Cellular and Environmental Biology, University of Perugia, Perugia, Italy
| | - Nadia Lopez
- Department of Cellular and Environmental Biology, University of Perugia, Perugia, Italy
| | - Tracy Warr
- Department of Cellular and Environmental Biology, University of Perugia, Perugia, Italy
| | | | - Alessandra Porzia
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Mainiero
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Santoro
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | | | | | - Emilia Castigli
- Department of Cellular and Environmental Biology, University of Perugia, Perugia, Italy
| | - Cristina Limatola
- IRCCS Neuromed, Venafro, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Fisiologia e Farmacologia Sapienza University of Rome, Rome, Italy
- * E-mail:
| |
Collapse
|
34
|
Annenkov A. Receptor tyrosine kinase (RTK) signalling in the control of neural stem and progenitor cell (NSPC) development. Mol Neurobiol 2013; 49:440-71. [PMID: 23982746 DOI: 10.1007/s12035-013-8532-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/09/2013] [Indexed: 01/04/2023]
Abstract
Important developmental responses are elicited in neural stem and progenitor cells (NSPC) by activation of the receptor tyrosine kinases (RTK), including the fibroblast growth factor receptors, epidermal growth factor receptor, platelet-derived growth factor receptors and insulin-like growth factor receptor (IGF1R). Signalling through these RTK is necessary and sufficient for driving a number of developmental processes in the central nervous system. Within each of the four RTK families discussed here, receptors are activated by sets of ligands that do not cross-activate receptors of the other three families, and therefore, their activation can be independently regulated by ligand availability. These RTK pathways converge on a conserved core of signalling molecules, but differences between the receptors in utilisation of signalling molecules and molecular adaptors for intracellular signal propagation become increasingly apparent. Intracellular inhibitors of RTK signalling are widely involved in the regulation of developmental signalling in NSPC and often determine developmental outcomes of RTK activation. In addition, cellular responses of NSPC to the activation of a given RTK may be significantly modulated by signal strength. Cellular propensity to respond also plays a role in developmental outcomes of RTK signalling. In combination, these mechanisms regulate the balance between NSPC maintenance and differentiation during development and in adulthood. Attribution of particular developmental responses of NSPC to specific pathways of RTK signalling becomes increasingly elucidated. Co-activation of several RTK in developing NSPC is common, and analysis of co-operation between their signalling pathways may advance knowledge of RTK role in NSPC development.
Collapse
Affiliation(s)
- Alexander Annenkov
- Bone and Joint Research Unit, William Harvey Research Institute, Bart's and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK,
| |
Collapse
|
35
|
Garcia-Gonzalez D, Murcia-Belmonte V, Clemente D, De Castro F. Olfactory system and demyelination. Anat Rec (Hoboken) 2013; 296:1424-34. [PMID: 23904351 DOI: 10.1002/ar.22736] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 09/18/2012] [Accepted: 11/29/2012] [Indexed: 01/04/2023]
Abstract
Within the central nervous system, the olfactory system represents one of the most exciting scenarios since it presents relevant examples of long-life sustained neurogenesis and continuous axonal outgrowth from the olfactory epithelium with the subsequent plasticity phenomena in the olfactory bulb. The olfactory nerve is composed of nonmyelinated axons with interesting ontogenetic interpretations. However, the centripetal projections from the olfactory bulb are myelinated axons which project to more caudal areas along the lateral olfactory tract. In consequence, demyelination has not been considered as a possible cause of the olfactory symptoms in those diseases in which this sense is impaired. One prototypical example of an olfactory disease is Kallmann syndrome, in which different mutations give rise to combined anosmia and hypogonadotropic hypogonadism, together with different satellite symptoms. Anosmin-1 is the extracellular matrix glycoprotein altered in the X-linked form of this disease, which participates in cell adhesion and migration, and axonal outgrowth in the olfactory system and in other regions of the central nervous system. Recently, we have described a new patho-physiological role of this protein in the absence of spontaneous remyelination in multiple sclerosis. In the present review, we hypothesize about how both main and satellite neurological symptoms of Kallmann syndrome may be explained by alterations in the myelination. We revisit the relationship between the olfactory system and myelin highlighting that minor histological changes should not be forgotten as putative causes of olfactory malfunction.
Collapse
Affiliation(s)
- D Garcia-Gonzalez
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain
| | | | | | | |
Collapse
|
36
|
Atkins RJ, Stylli SS, Luwor RB, Kaye AH, Hovens CM. Glycogen synthase kinase-3β (GSK-3β) and its dysregulation in glioblastoma multiforme. J Clin Neurosci 2013; 20:1185-92. [PMID: 23768967 DOI: 10.1016/j.jocn.2013.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 02/09/2013] [Indexed: 01/10/2023]
Abstract
Glioblastoma multiforme (GBM) is the most frequently occurring and devastating human brain malignancy, retaining almost universal mortality and a median survival of only 14 months, even with recent advances in multimodal treatments. Gliomas are characterised as being both highly resistant to chemo- and radiotherapy and highly invasive, rendering conventional interventions palliative. The continual dismal prognosis for GBM patients identifies an urgent need for the evolutionary development of new treatment modalities. This includes molecular targeted therapies as many signaling molecules and associated pathways have been implicated in the development and survival of malignant gliomas including the protein kinase, glycogen synthase kinase 3 beta (GSK-3β). Here we review the activity and function of GSK-3β in a number of signaling pathways and its role in gliomagenesis.
Collapse
Affiliation(s)
- R J Atkins
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3050, Australia.
| | | | | | | | | |
Collapse
|
37
|
Iwakura Y, Nawa H. ErbB1-4-dependent EGF/neuregulin signals and their cross talk in the central nervous system: pathological implications in schizophrenia and Parkinson's disease. Front Cell Neurosci 2013; 7:4. [PMID: 23408472 PMCID: PMC3570895 DOI: 10.3389/fncel.2013.00004] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/08/2013] [Indexed: 12/15/2022] Open
Abstract
Ligands for ErbB1-4 receptor tyrosine kinases, such as epidermal growth factor (EGF) and neuregulins, regulate brain development and function. Thus, abnormalities in their signaling are implicated in the etiology or pathology of schizophrenia and Parkinson's disease. Among the ErbB receptors, ErbB1, and ErbB4 are expressed in dopamine and GABA neurons, while ErbB1, 2, and/or 3 are mainly present in oligodendrocytes, astrocytes, and their precursors. Thus, deficits in ErbB signaling might contribute to the neurological and psychiatric diseases stemming from these cell types. By incorporating the latest cancer molecular biology as well as our recent progress, we discuss signal cross talk between the ErbB1-4 subunits and their neurobiological functions in each cell type. The potential contribution of virus-derived cytokines (virokines) that mimic EGF and neuregulin-1 in brain diseases are also discussed.
Collapse
Affiliation(s)
- Yuriko Iwakura
- Division of Molecular Neurobiology, Brain Research Institute, Niigata University Niigata, Japan
| | | |
Collapse
|
38
|
Christie KJ, Turnley AM. Regulation of endogenous neural stem/progenitor cells for neural repair-factors that promote neurogenesis and gliogenesis in the normal and damaged brain. Front Cell Neurosci 2013; 6:70. [PMID: 23346046 PMCID: PMC3548228 DOI: 10.3389/fncel.2012.00070] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/30/2012] [Indexed: 01/17/2023] Open
Abstract
Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb (OB) and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream (RMS) to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioral outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem/precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation.
Collapse
Affiliation(s)
- Kimberly J Christie
- Neural Regeneration Laboratory, Department of Anatomy and Neuroscience, Centre for Neuroscience Research, The University of Melbourne Parkville, VIC, Australia
| | | |
Collapse
|
39
|
Oliveira SLB, Pillat MM, Cheffer A, Lameu C, Schwindt TT, Ulrich H. Functions of neurotrophins and growth factors in neurogenesis and brain repair. Cytometry A 2012; 83:76-89. [PMID: 23044513 DOI: 10.1002/cyto.a.22161] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 07/23/2012] [Accepted: 07/31/2012] [Indexed: 12/21/2022]
Abstract
The identification and isolation of multipotent neural stem and progenitor cells in the brain, giving rise to neurons, astrocytes, and oligodendrocytes initiated many studies in order to understand basic mechanisms of endogenous neurogenesis and repair mechanisms of the nervous system and to develop novel therapeutic strategies for cellular regeneration therapies in brain disease. A previous review (Trujillo et al., Cytometry A 2009;75:38-53) focused on the importance of extrinsic factors, especially neurotransmitters, for directing migration and neurogenesis in the developing and adult brain. Here, we extend our review discussing the effects of the principal growth and neurotrophic factors as well as their intracellular signal transduction on neurogenesis, fate determination and neuroprotective mechanisms. Many of these mechanisms have been elucidated by in vitro studies for which neural stem cells were isolated, grown as neurospheres, induced to neural differentiation under desired experimental conditions, and analyzed for embryonic, progenitor, and neural marker expression by flow and imaging cytometry techniques. The better understanding of neural stem cells proliferation and differentiation is crucial for any therapeutic intervention aiming at neural stem cell transplantation and recruitment of endogenous repair mechanisms.
Collapse
Affiliation(s)
- Sophia L B Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
40
|
Zhu L, Xiang P, Guo K, Wang A, Lu J, Tay SSW, Jiang H, He BP. Microglia/monocytes with NG2 expression have no phagocytic function in the cortex after LPS focal injection into the rat brain. Glia 2012; 60:1417-26. [PMID: 22648602 DOI: 10.1002/glia.22362] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 05/03/2012] [Indexed: 11/06/2022]
Abstract
While OX42(+) microglia/macrophages have been considered as a scavenger in the brain, NG2(+) cells are generally considered as oligodendrocyte progenitor cells or function-unknown glial cells. Recent evidence showed that under some pathological conditions, certain cells have become positive for both anti-NG2 and anti-OX42 antibodies. Our results suggested that some OX42(+) microglia or macrophages were induced to express NG2 proteins 3 and 5 days later after focal injection of lipopolysaccharide into the brain cortex of Sprague-Dawley rats. In consideration of the induction of NG2 expression may associate with gaining or losing functions of microglia/macrophages, we further showed that, while OX42(+) or ED1(+) microglia/macrophages presented active phagocytic function, NG2(+) /OX42(+) cells failed to engulf latex beads. The induced expression of NG2 protein may possibly indicate the functional diversity of activated microglia/macrophages in the brain.
Collapse
Affiliation(s)
- Lie Zhu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Feng JF, Liu J, Zhang XZ, Zhang L, Jiang JY, Nolta J, Zhao M. Guided migration of neural stem cells derived from human embryonic stem cells by an electric field. Stem Cells 2012; 30:349-55. [PMID: 22076946 DOI: 10.1002/stem.779] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small direct current (DC) electric fields (EFs) guide neurite growth and migration of rodent neural stem cells (NSCs). However, this could be species dependent. Therefore, it is critical to investigate how human NSCs (hNSCs) respond to EF before any possible clinical attempt. Aiming to characterize the EF-stimulated and guided migration of hNSCs, we derived hNSCs from a well-established human embryonic stem cell line H9. Small applied DC EFs, as low as 16 mV/mm, induced significant directional migration toward the cathode. Reversal of the field polarity reversed migration of hNSCs. The galvanotactic/electrotactic response was both time and voltage dependent. The migration directedness and distance to the cathode increased with the increase of field strength. (Rho-kinase) inhibitor Y27632 is used to enhance viability of stem cells and has previously been reported to inhibit EF-guided directional migration in induced pluripotent stem cells and neurons. However, its presence did not significantly affect the directionality of hNSC migration in an EF. Cytokine receptor [C-X-C chemokine receptor type 4 (CXCR4)] is important for chemotaxis of NSCs in the brain. The blockage of CXCR4 did not affect the electrotaxis of hNSCs. We conclude that hNSCs respond to a small EF by directional migration. Applied EFs could potentially be further exploited to guide hNSCs to injured sites in the central nervous system to improve the outcome of various diseases.
Collapse
Affiliation(s)
- Jun-Feng Feng
- Institute for Regenerative Cures, University of California Davis School of Medicine, California 95817, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Garzon-Muvdi T, Schiapparelli P, ap Rhys C, Guerrero-Cazares H, Smith C, Kim DH, Kone L, Farber H, Lee DY, An SS, Levchenko A, Quiñones-Hinojosa A. Regulation of brain tumor dispersal by NKCC1 through a novel role in focal adhesion regulation. PLoS Biol 2012; 10:e1001320. [PMID: 22570591 PMCID: PMC3341330 DOI: 10.1371/journal.pbio.1001320] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 03/21/2012] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GB) is a highly invasive and lethal brain tumor due to its universal recurrence. Although it has been suggested that the electroneutral Na(+)-K(+)-Cl(-) cotransporter 1 (NKCC1) can play a role in glioma cell migration, the precise mechanism by which this ion transporter contributes to GB aggressiveness remains poorly understood. Here, we focused on the role of NKCC1 in the invasion of human primary glioma cells in vitro and in vivo. NKCC1 expression levels were significantly higher in GB and anaplastic astrocytoma tissues than in grade II glioma and normal cortex. Pharmacological inhibition and shRNA-mediated knockdown of NKCC1 expression led to decreased cell migration and invasion in vitro and in vivo. Surprisingly, knockdown of NKCC1 in glioma cells resulted in the formation of significantly larger focal adhesions and cell traction forces that were approximately 40% lower than control cells. Epidermal growth factor (EGF), which promotes migration of glioma cells, increased the phosphorylation of NKCC1 through a PI3K-dependant mechanism. This finding is potentially related to WNK kinases. Taken together, our findings suggest that NKCC1 modulates migration of glioma cells by two distinct mechanisms: (1) through the regulation of focal adhesion dynamics and cell contractility and (2) through regulation of cell volume through ion transport. Due to the ubiquitous expression of NKCC1 in mammalian tissues, its regulation by WNK kinases may serve as new therapeutic targets for GB aggressiveness and can be exploited by other highly invasive neoplasms.
Collapse
Affiliation(s)
- Tomas Garzon-Muvdi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Paula Schiapparelli
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Colette ap Rhys
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Hugo Guerrero-Cazares
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christopher Smith
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Deok-Ho Kim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Lyonell Kone
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Harrison Farber
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Danielle Y. Lee
- Department of Environmental Health Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Steven S. An
- Department of Environmental Health Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Physical Sciences in Oncology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Andre Levchenko
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
43
|
Bye N, Turnley AM, Morganti-Kossmann MC. Inflammatory regulators of redirected neural migration in the injured brain. Neurosignals 2012; 20:132-46. [PMID: 22456466 DOI: 10.1159/000336542] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 01/16/2012] [Indexed: 01/19/2023] Open
Abstract
Brain injury following stroke or trauma induces the migration of neuroblasts derived from subventricular zone neural precursor cells (NPCs) towards the damaged tissue, where they then have the potential to contribute to repair. Enhancing the recruitment of new cells thus presents an enticing prospect for the development of new therapeutic approaches to treat brain injury; to this end, an understanding of the factors regulating this process is required. During the neuroinflammatory response to ischemic and traumatic brain injuries, a plethora of pro- and anti-inflammatory cytokines, chemokines and growth factors are released in the damaged tissue, and recent work indicates that a variety of these are able to influence injury-induced migration. In this review, we will discuss the contribution of specific chemokines and growth factors towards stimulating NPC migration in the injured brain.
Collapse
Affiliation(s)
- Nicole Bye
- National Trauma Research Institute, Alfred Hospital, Department of Surgery, Monash University, Melbourne, Vic, Australia.
| | | | | |
Collapse
|
44
|
Zhang J, Calafiore M, Zeng Q, Zhang X, Huang Y, Li RA, Deng W, Zhao M. Electrically guiding migration of human induced pluripotent stem cells. Stem Cell Rev Rep 2012; 7:987-96. [PMID: 21373881 PMCID: PMC3226697 DOI: 10.1007/s12015-011-9247-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A major road-block in stem cell therapy is the poor homing and integration of transplanted stem cells with the targeted host tissue. Human induced pluripotent stem (hiPS) cells are considered an excellent alternative to embryonic stem (ES) cells and we tested the feasibility of using small, physiological electric fields (EFs) to guide hiPS cells to their target. Applied EFs stimulated and guided migration of cultured hiPS cells toward the anode, with a stimulation threshold of <30 mV/mm; in three-dimensional (3D) culture hiPS cells remained stationary, whereas in an applied EF they migrated directionally. This is of significance as the therapeutic use of hiPS cells occurs in a 3D environment. EF exposure did not alter expression of the pluripotency markers SSEA-4 and Oct-4 in hiPS cells. We compared EF-directed migration (galvanotaxis) of hiPS cells and hES cells and found that hiPS cells showed greater sensitivity and directedness than those of hES cells in an EF, while hES cells migrated toward cathode. Rho-kinase (ROCK) inhibition, a method to aid expansion and survival of stem cells, significantly increased the motility, but reduced directionality of iPS cells in an EF by 70–80%. Thus, our study has revealed that physiological EF is an effective guidance cue for the migration of hiPS cells in either 2D or 3D environments and that will occur in a ROCK-dependent manner. Our current finding may lead to techniques for applying EFs in vivo to guide migration of transplanted stem cells.
Collapse
Affiliation(s)
- Jiaping Zhang
- Department of Dermatology and Department of Ophthalmology, Institute for Regenerative Cures, UC Davis School of Medicine, Davis, CA 95817, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang Q, Liu G, Wu Y, Sha H, Zhang P, Jia J. BDNF promotes EGF-induced proliferation and migration of human fetal neural stem/progenitor cells via the PI3K/Akt pathway. Molecules 2011; 16:10146-56. [PMID: 22146375 PMCID: PMC6264301 DOI: 10.3390/molecules161210146] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/22/2011] [Accepted: 12/01/2011] [Indexed: 01/23/2023] Open
Abstract
Neurogenesis is a complex process, which contributes to the ability of the adult brain to function normally and adapt to diseases. Epidermal growth factor (EGF) is known to play an important role in neurogenesis; however, the underlying mechanism is still unclear. Here, we hypothesized that brain-derived neurotrophic factor (BDNF) can enhance the effect of EGF on neurogenesis. Using in vitro cell culture of aborted human fetal brain tissues, we investigated proliferation and migration of neural stem/progenitor cells (NSPCs) after treatment with EGF and different concentrations of BDNF. EGF stimulated proliferation and migration of NSPCs, and this effect was significantly enhanced by co-incubation with BDNF. In the NSPCs treated with 50 ng/mL BDNF, BrdU incorporation was significantly increased (from 7.91% to 17.07%), as compared with that in the control. Moreover, the number of migrating cells was at least 2-fold higher than that in the control. Furthermore, phosphorylation of Akt-1 was increased by BDNF treatment, as well. By contrast, the enhancing effect of BDNF on EGF-induced proliferation and migration of NSPCs were abolished by an inhibitor of PI3K, LY294002. These findings suggest that BDNF promotes EGF-induced proliferation and migration of NSPC through the PI3K/Akt pathway, providing significant insights into not only the mechanism underlying EGF-induced neurogenesis but also potential neuronal replacement strategies to treat brain damage.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; (Q.Z.)
- Department of Sports Medicine and Rehabilitation, Medical College of Fudan University, Shanghai 200032, China
| | - Gang Liu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; (Q.Z.)
- Department of Sports Medicine and Rehabilitation, Medical College of Fudan University, Shanghai 200032, China
| | - Yi Wu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; (Q.Z.)
- Department of Sports Medicine and Rehabilitation, Medical College of Fudan University, Shanghai 200032, China
- The Yonghe Branch of Huashan Hospital, Fudan University, Shanghai 200436, China
- Author to whom correspondence should be addressed; ; Tel./Fax: +86-21-528-878-20
| | - Hongying Sha
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Pengyue Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; (Q.Z.)
- Department of Sports Medicine and Rehabilitation, Medical College of Fudan University, Shanghai 200032, China
| | - Jie Jia
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, China; (Q.Z.)
- Department of Sports Medicine and Rehabilitation, Medical College of Fudan University, Shanghai 200032, China
| |
Collapse
|
46
|
Regulation of adult neural precursor cell migration. Neurochem Int 2011; 59:382-93. [DOI: 10.1016/j.neuint.2010.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 12/02/2010] [Accepted: 12/22/2010] [Indexed: 01/18/2023]
|
47
|
Lindberg OR, Brederlau A, Jansson A, Nannmark U, Cooper-Kuhn C, Kuhn HG. Characterization of epidermal growth factor-induced dysplasia in the adult rat subventricular zone. Stem Cells Dev 2011; 21:1356-66. [PMID: 21740235 DOI: 10.1089/scd.2011.0275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Epidermal growth factor (EGF) is a mitogen widely used when culturing adult neural stem cells in vitro. Although proliferative effects can also be observed in vivo, intracerebroventricular infusion of EGF has been found to counteract neuronal determination and promote glial differentiation instead. However, EGF receptor activation has different effects on the subventricular zone (SVZ) in mice and rats, possibly because of species differences in SVZ cell composition. Specifically in the rat, EGF stimulation of the SVZ induces the formation of hyperplastic polyps. The present study aims at molecular and morphological characterization of these subventricular polyps. Using immunohistochemistry, electron microscopy, and gene expression analysis, we demonstrate in hyperplastic EGF-induced polyps an upregulation in protein expression of Sox2, Olig2, GFAP, nestin, and vimentin. We found polyp-specific dysplastic changes in the form of coexpression of Sox2 and Olig2. This highly proliferative, Sox2/Olig2 coexpressing dysplastic cell type is >10-fold enriched in the hyperplastic polyps compared with control SVZ and most likely causes the polyp formation. Unique ultrastructural features of the polyps include a lack of ependymal cell lining as well as a large number of cells with large, light, ovoid nuclei and a cytoplasm with abundant ribosomes, whereas other polyp cells contain invaginated nuclei but fewer ribosomes. EGF also induced changes in the expression of Id genes Id1, Id2, and Id4 in the SVZ. Taken together, we here demonstrate dysplastic, structural, and phenotypical changes in the rat SVZ following EGF stimulation, which are specific to hyperplastic polyps.
Collapse
Affiliation(s)
- Olle R Lindberg
- Center for Brain Repair and Rehabilitation, Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
48
|
Comte I, Kim Y, Young CC, van der Harg JM, Hockberger P, Bolam PJ, Poirier F, Szele FG. Galectin-3 maintains cell motility from the subventricular zone to the olfactory bulb. J Cell Sci 2011; 124:2438-47. [PMID: 21693585 PMCID: PMC3124373 DOI: 10.1242/jcs.079954] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2011] [Indexed: 01/01/2023] Open
Abstract
The adult brain subventricular zone (SVZ) produces neuroblasts that migrate through the rostral migratory stream (RMS) to the olfactory bulb (OB) in a specialized niche. Galectin-3 (Gal-3) regulates proliferation and migration in cancer and is expressed by activated macrophages after brain injury. The function of Gal-3 in the normal brain is unknown, but we serendipitously found that it was expressed by ependymal cells and SVZ astrocytes in uninjured mice. Ependymal cilia establish chemotactic gradients and astrocytes form glial tubes, which combine to aid neuroblast migration. Whole-mount preparations and electron microscopy revealed that both ependymal cilia and SVZ astrocytes were disrupted in Gal3(-/-) mice. Interestingly, far fewer new BrdU(+) neurons were found in the OB of Gal3(-/-) mice, than in wild-type mice 2 weeks after labeling. However, SVZ proliferation and cell death, as well as OB differentiation rates were unaltered. This suggested that decreased migration in vivo was sufficient to decrease the number of new OB neurons. Two-photon time-lapse microscopy in forebrain slices confirmed decreased migration; cells were slower and more exploratory in Gal3(-/-) mice. Gal-3 blocking antibodies decreased migration and dissociated neuroblast cell-cell contacts, whereas recombinant Gal-3 increased migration from explants. Finally, we showed that expression of phosphorylated epidermal growth factor receptor (EGFR) was increased in Gal3(-/-) mice. These results suggest that Gal-3 is important in SVZ neuroblast migration, possibly through an EGFR-based mechanism, and reveals a role for this lectin in the uninjured brain.
Collapse
Affiliation(s)
- Isabelle Comte
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Yongsoo Kim
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA
| | - Christopher C. Young
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Judith M. van der Harg
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Hockberger
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Paul J. Bolam
- MRC Anatomical Neuropharmacology Unit, Mansfield Road, Oxford OX1 3TH, UK
| | - Françoise Poirier
- Institut Jacques Monod, UMR CNRS 7592, Université Paris Diderot, 75205 Paris Cedex 13, France
| | - Francis G. Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
49
|
Gonzalez-Perez O, Alvarez-Buylla A. Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. BRAIN RESEARCH REVIEWS 2011; 67:147-56. [PMID: 21236296 PMCID: PMC3109119 DOI: 10.1016/j.brainresrev.2011.01.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 01/18/2023]
Abstract
Demyelinating diseases are characterized by an extensive loss of oligodendrocytes and myelin sheaths from axolemma. These neurological disorders are a common cause of disability in young adults, but so far, there is no effective treatment against them. It has been suggested that neural stem cells (NSCs) may play an important role in brain repair therapies. NSCs in the adult subventricular zone (SVZ), also known as Type-B cells, are multipotential cells that can self-renew and give rise to neurons and glia. Recent findings have shown that cells derived from SVZ Type-B cells actively respond to epidermal-growth-factor (EGF) stimulation becoming highly migratory and proliferative. Interestingly, a subpopulation of these EGF-activated cells expresses markers of oligodendrocyte precursor cells (OPCs). When EGF administration is removed, SVZ-derived OPCs differentiate into myelinating and pre-myelinating oligodendrocytes in the white matter tracts of corpus callosum, fimbria fornix and striatum. In the presence of a demyelinating lesion, OPCs derived from EGF-stimulated SVZ progenitors contribute to myelin repair. Given their high migratory potential and their ability to differentiate into myelin-forming cells, SVZ NSCs represent an important endogenous source of OPCs for preserving the oligodendrocyte population in the white matter and for the repair of demyelinating injuries.
Collapse
Affiliation(s)
- Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Colima 28040, Mexico.
| | | |
Collapse
|
50
|
Ihrie RA, Alvarez-Buylla A. Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain. Neuron 2011; 70:674-86. [PMID: 21609824 PMCID: PMC3346178 DOI: 10.1016/j.neuron.2011.05.004] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
Abstract
New neurons and glial cells are generated in an extensive germinal niche adjacent to the walls of the lateral ventricles in the adult brain. The primary progenitors (B1 cells) have astroglial characteristics but retain important neuroepithelial properties. Recent work shows how B1 cells contact all major compartments of this niche. They share the "shoreline" on the ventricles with ependymal cells, forming a unique adult ventricular zone (VZ). In the subventricular zone (SVZ), B1 cells contact transit amplifying (type C) cells, chains of young neurons (A cells), and blood vessels. How signals from these compartments influence the behavior of B1 or C cells remains largely unknown, but recent work highlights growth factors, neurotransmitters, morphogens, and the extracellular matrix as key regulators of this niche. The integration of emerging molecular and anatomical clues forecasts an exciting new understanding of how the germ of youth is actively maintained in the adult brain.
Collapse
Affiliation(s)
- Rebecca A Ihrie
- Department of Neurosurgery and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, USA
| | | |
Collapse
|