1
|
Wang ML, Song YL, Wu DY, Li H, Li ZM, Xiong XX, Hu NY, Hu J, Li JT, Wang YX, Li XW, Yang JM, Chen YH, Gao TM. Astrocytic connexin43 in the medial prefrontal cortex regulates depressive- and anxiety-like behaviors via ATP release. Pharmacol Res 2025:107798. [PMID: 40449814 DOI: 10.1016/j.phrs.2025.107798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/11/2025] [Accepted: 05/22/2025] [Indexed: 06/03/2025]
Abstract
Major depressive disorder (MDD) affects 17% of the global population and is highly comorbid with anxiety disorders. Emerging evidence indicates that dysregulation of astrocytic ATP contributes to the pathophysiology of depression. However, the molecular substrates underlying the stress-induced reduction in ATP release remain poorly understood, and the basis for the comorbidity of depression and anxiety disorders is still unknown. Here, we showed that Cx43 expression and extracellular ATP levels were significantly reduced in the medial prefrontal cortex (mPFC) of chronic social defeat stress (CSDS)-susceptible mice. Astrocyte-specific knockout or knockdown of Cx43 in the mPFC induced depressive-like behaviors--including anhedonia and despair-like behavio--and anxiety-like behaviors, alongside a reduction in ATP release, whereas neuronal knockout of Cx43 showed no effects on these behaviors. Notably, exogenous ATPγS administration reversed these behavioral deficits. Furthermore, overexpression of astrocytic Cx43 in the mPFC rescued both ATP levels and emotion-related behaviors in CSDS-susceptible mice. Taken together, our study provided the first evidence that astrocytic Cx43 reduction was sufficient to induce depressive- and anxiety-like behaviors and identified a novel ATP-mediated mechanism linking astrocytic Cx43 to both depression and anxiety pathogenesis. These findings open up promising therapeutic targets for treating these comorbid disorders.
Collapse
Affiliation(s)
- Meng-Ling Wang
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yun-Long Song
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ding-Yu Wu
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hao Li
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zi-Ming Li
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xing-Xing Xiong
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Neng-Yuan Hu
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian Hu
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing-Ting Li
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue-Xin Wang
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Wen Li
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian-Ming Yang
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yi-Hua Chen
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Tian-Ming Gao
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Key Laboratory of Mental Health of the Ministry of Education, The Great Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Ding W, Yao M, Liang X, Wong W, Yao W, Zhang JC. The serum levels of polyunsaturated fatty acids contribute to the antidepressant-like effects of 18β-Glycyrrhetinic acid in mice. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06813-y. [PMID: 40369170 DOI: 10.1007/s00213-025-06813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
RATIONALE 18β-Glycyrrhetinic acid (18β-GA) exhibits antidepressant-like effects in mice, but the underlying mechanisms remain unclear. OBJECTIVE This study aimed to explore the role of serum polyunsaturated fatty acids in the antidepressant-like effects of 18β-GA. RESULTS 18β-GA exerted antidepressant-like effects in mice susceptible to chronic social defeat stress (CSDS). These effects were associated with increased serum levels of docosahexaenoic acid (DHA), neuroprotectin D1 (NPD1), and N-docosahexaenoylethanolamide (DEA), alongside decreased levels of 14,15-dihydroxyeicosatrienoic acid (DHET). Additionally, 18β-GA restored the suppressed brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling pathway and reduced the elevated pro-inflammatory cytokine levels in CSDS-susceptible mice. CONCLUSIONS This study demonstrates that the antidepressant-like effects of 18β-GA in CSDS-susceptible mice are closely associated with DHA and its metabolites.
Collapse
Affiliation(s)
- Wanzhao Ding
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Maohua Yao
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaoling Liang
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Winghei Wong
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Wei Yao
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Ji-Chun Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
3
|
Illes P, Rubini P, Ulrich H, Yin H, Tang Y. Dysregulation of Astrocytic ATP/Adenosine Release in the Hippocampus Cause Cognitive and Affective Disorders: Molecular Mechanisms, Diagnosis, and Therapy. MedComm (Beijing) 2025; 6:e70177. [PMID: 40255917 PMCID: PMC12006733 DOI: 10.1002/mco2.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/22/2025] Open
Abstract
The gliotransmitter adenosine 5'-triphosphate (ATP) and its enzymatic degradation product adenosine play a major role in orchestrating in the hippocampus cognitive and affective functions via P2 purinoceptors (P2X, P2Y) and P1 adenosine receptors (A1, A2A). Although numerous reviews exist on purinoceptors that modulate these functions, there is an apparent gap relating to the involvement of astrocyte-derived extracellular ATP. Our review focuses on the following issues: An impeded release of ATP from hippocampal astrocytes through vesicular mechanisms or connexin hemichannels and pannexin channels interferes with spatial working memory in rodents. The pharmacological blockade of P2Y1 receptors (P2Y1Rs) reverses the deficits in learning/memory performance in mouse models of familial Alzheimer's disease (AD). Similarly, in mouse models of major depressive disorder (MDD), based on acute or chronic stress-induced development of depressive-like behavior, a reduced exocytotic/channel-mediated ATP release from hippocampal astrocytes results in the deterioration of these behavioral responses. However, on the opposite, the increased stimulation of the microglial/astrocytic P2X7R-channel by ATP causes neuroinflammation and in consequence depressive-like behavior. In conclusion, there is strong evidence for the assumption that gliotransmitter ATP is intimately involved in the pathophysiology of cognitive and affective neuron/astrocyte-based human illnesses opening new diagnostic and therapeutic vistas for AD and MDD.
Collapse
Affiliation(s)
- Peter Illes
- International Research Center on Purinergic SignalingSchool of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Rudolf Boehm Institute for Pharmacology and ToxicologyUniversity of Leipzig Germany
- Acupuncture and Chronobiology Key Laboratory of Sichuan ProvinceChengduChina
| | - Patrizia Rubini
- International Research Center on Purinergic SignalingSchool of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Acupuncture and Chronobiology Key Laboratory of Sichuan ProvinceChengduChina
| | - Henning Ulrich
- International Research Center on Purinergic SignalingSchool of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Department of BiochemistryInstitute of ChemistryUniversity of São PauloSão PauloBrazil
| | - Hai‐Yan Yin
- International Research Center on Purinergic SignalingSchool of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Acupuncture and Chronobiology Key Laboratory of Sichuan ProvinceChengduChina
| | - Yong Tang
- International Research Center on Purinergic SignalingSchool of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Acupuncture and Chronobiology Key Laboratory of Sichuan ProvinceChengduChina
- School of Health and RehabilitationChengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
4
|
Zheng S, Guo J, Zheng R, Ji Y, Zhong Q, Yin H. A Naturalistic Prospective Study of the Prognostic Impact of EPHX2 in Major Depressive Disorder: Impulsivity may be an Important Factor. Depress Anxiety 2025; 2025:8124403. [PMID: 40259894 PMCID: PMC12009677 DOI: 10.1155/da/8124403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 03/20/2025] [Indexed: 04/23/2025] Open
Abstract
Background: Major depressive disorder (MDD) is a leading cause of disability worldwide. The pathophysiology of MDD remains unclear, which limits the development of treatments for MDD. Recently, epoxide hydrolase 2 (EPHX2) has been found to be associated with MDD. Our previous study revealed an association between EPHX2 expression and suicide. However, the effect of EPHX2 on the prognosis of MDD and suicide remains unclear. Previous studies have found that impulsivity at baseline can be a significant predictor of clinical improvement in patients with MDD. Therefore, we inferred that EPHX2 could be associated with the treatment effect of MDD, and impulsivity could mediate the effect of EPHX2 on the treatment effect of MDD. Methods: This naturalistic prospective study included 117 participants with MDD, who were assessed, using clinical questionnaires, cognitive function, and treatment information, at baseline, 2 weeks, and 1, 2, and 3 months. A linear mixed-effects model was used to investigate longitudinal changes in the severity of symptoms, risk of suicide, and cognitive function. Results: The interactive effects of impulsivity and EPHX2 polymorphisms on the risk of suicide (measured by the Columbia-Suicide Severity Rating Scale) were significantly different for rs11288636, rs68012435, and rs11288636. The interactive effects between polymorphisms and time on depression severity (measured by the Hamilton Depression Scale-24) were significantly different and including after adjustment for the total impulsivity score. Conclusions: This study suggests that EPHX2 polymorphisms are associated with the prognosis of MDD, and impulsivity could be a critical factor for the change in suicide risk among different EPHX2 genotypes. Trial Registration: ClinicalTrials.gov identifier: NCT05575713.
Collapse
Affiliation(s)
- Shuqiong Zheng
- Department of Psychiatry, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jia Guo
- Department of Biostatistics, Columbia University, New York, New York, USA
| | - Rongxin Zheng
- Department of Psychiatry, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yujia Ji
- Department of Psychiatry, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Quan Zhong
- Department of Psychiatry, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Honglei Yin
- Department of Psychiatry, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Song D, Qi J, Zhang Y, Liu R, Wang M, Wang X, Wu Y, Li X, Zhang K, Liu S. Moderate UVB exposure ameliorate chronic stress-induced anxiety and social impairment by activating mPFC to basal lateral amygdala pathway. Brain Res Bull 2025; 222:111260. [PMID: 39954819 DOI: 10.1016/j.brainresbull.2025.111260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Ultraviolet radiation B (UVB), the most biologically active ultraviolet ray in sunlight, exert broad effects on physiological and behavioral functions, including circadian rhythm, mood, and cognition. However, its underlying mechanisms are still unknown. In this study, in order to verify effects of UVB on anxiety and social behaviors, C57BL/6 mice receiving 2 h UVB exposure after chronic restraint stress were used. UVB exposure improved anxiety-like behaviors and social activities in normal and restraint stressed mice. Meanwhile, UVB exposure increased the neural excitability in mPFC according to cFos staining and electrophysiology results. And benefits of UVB exposure could be blocked by chemogenetical inhibition of mPFC or inhibiting mPFC to basal lateral amygdala (BLA) pathway. In conclusion, we identify UVB exposure ameliorate chronic stress-induced anxiety and social impairment by activating mPFC to BLA pathway. The series of research may lead to the development of UVB as a novel therapeutic approach for treating anxiety and social avoidance in the future.
Collapse
Affiliation(s)
- Dake Song
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi'an 710054, China; Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Jingyu Qi
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi'an 710054, China; Department of Pharmacy, The Air Force Hospital of Eastern Theater Command, Nanjing 210002, China
| | - Yingying Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Ruixia Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi'an 710054, China; Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Min Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xinshang Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi'an 710054, China; Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yumei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xubo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Shuibing Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi'an 710054, China; Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
6
|
Li S, Zhang J, Li J, Hu Y, Zhang M, Wang H. Optogenetics and chemogenetics: key tools for modulating neural circuits in rodent models of depression. Front Neural Circuits 2025; 19:1516839. [PMID: 40070557 PMCID: PMC11893610 DOI: 10.3389/fncir.2025.1516839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Optogenetics and chemogenetics are emerging neuromodulation techniques that have attracted significant attention in recent years. These techniques enable the precise control of specific neuronal types and neural circuits, allowing researchers to investigate the cellular mechanisms underlying depression. The advancement in these techniques has significantly contributed to the understanding of the neural circuits involved in depression; when combined with other emerging technologies, they provide novel therapeutic targets and diagnostic tools for the clinical treatment of depression. Additionally, these techniques have provided theoretical support for the development of novel antidepressants. This review primarily focuses on the application of optogenetics and chemogenetics in several brain regions closely associated with depressive-like behaviors in rodent models, such as the ventral tegmental area, nucleus accumbens, prefrontal cortex, hippocampus, dorsal raphe nucleus, and lateral habenula and discusses the potential and challenges of optogenetics and chemogenetics in future research. Furthermore, this review discusses the potential and challenges these techniques pose for future research and describes the current state of research on sonogenetics and odourgenetics developed based on optogenetics and chemogenetics. Specifically, this study aimed to provide reliable insights and directions for future research on the role of optogenetics and chemogenetics in the neural circuits of depressive rodent models.
Collapse
Affiliation(s)
- Shaowei Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianying Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiehui Li
- Shengli Oilfield Central Hospital, Dongying Rehabilitation Hospital, Dongying, China
| | - Yajie Hu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingkuan Zhang
- College of Medical and Healthcare, Linyi Vocational College, Linyi, China
| | - Haijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Lu CL, Ren J, Cao X. An Astroglial Basis of Major Depressive Disorder: Molecular, Cellular, and Circuit Features. Biol Psychiatry 2025; 97:217-226. [PMID: 39084500 DOI: 10.1016/j.biopsych.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Major depressive disorder is a common psychiatric disorder and a leading cause of disability worldwide. Astrocytes play a role in the maintenance of the function of the central nervous system, both physiologically and pathologically. Accumulated evidence indicates that the astrocyte is an important contributor to the pathophysiology of major depressive disorder including blood-brain barrier integrity, gap junctions, gliotransmission, glutamate homeostasis, and energy metabolism. Here, we comprehensively summarize an astroglial basis for major depressive disorder based on molecular, cellular, and circuit properties, suggesting that astrocytes appear to be highly sensitive to stress and are likely to be uniquely positioned to integrate peripheral and central stress responses.
Collapse
Affiliation(s)
- Cheng-Lin Lu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Ren
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Chen YH, Lin S, Jin SY, Gao TM. Extracellular ATP Is a Homeostatic Messenger That Mediates Cell-Cell Communication in Physiological Processes and Psychiatric Diseases. Biol Psychiatry 2025; 97:41-53. [PMID: 38679359 DOI: 10.1016/j.biopsych.2024.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/14/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Neuronal activity is the basis of information encoding and processing in the brain. During neuronal activation, intracellular ATP (adenosine triphosphate) is generated to meet the high-energy demands. Simultaneously, ATP is secreted, increasing the extracellular ATP concentration and acting as a homeostatic messenger that mediates cell-cell communication to prevent aberrant hyperexcitability of the nervous system. In addition to the confined release and fast synaptic signaling of classic neurotransmitters within synaptic clefts, ATP can be released by all brain cells, diffuses widely, and targets different types of purinergic receptors on neurons and glial cells, making it possible to orchestrate brain neuronal activity and participate in various physiological processes, such as sleep and wakefulness, learning and memory, and feeding. Dysregulation of extracellular ATP leads to a destabilizing effect on the neural network, as found in the etiopathology of many psychiatric diseases, including depression, anxiety, schizophrenia, and autism spectrum disorder. In this review, we summarize advances in the understanding of the mechanisms by which extracellular ATP serves as an intercellular signaling molecule to regulate neural activity, with a focus on how it maintains the homeostasis of neural networks. In particular, we also focus on neural activity issues that result from dysregulation of extracellular ATP and propose that aberrant levels of extracellular ATP may play a role in the etiopathology of some psychiatric diseases, highlighting the potential therapeutic targets of ATP signaling in the treatment of these psychiatric diseases. Finally, we suggest potential avenues to further elucidate the role of extracellular ATP in intercellular communication and psychiatric diseases.
Collapse
Affiliation(s)
- Yi-Hua Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Song Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Shi-Yang Jin
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Han X, Fu X, Guo W, Liu Y, Sun J, Wang T, Yang W. Ghrelin Inhibits Inflammasomes Activation in Astrocytes, Alleviates Pyroptosis, and Prevents Lipopolysaccharide-induced Depression-like Behavior in Mice. Inflammation 2024:10.1007/s10753-024-02190-4. [PMID: 39702621 DOI: 10.1007/s10753-024-02190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
Depression is the leading cause of disability worldwide and places a significant burden on society. Neuroinflammation is closely associated with the pathophysiology of depression. Increasing evidence suggests that astrocytes, as the most abundant glial cells in the brain, are involved in the occurrence and development of depression due to morphological abnormalities and dysfunction. Astrocytes express the NOD-like receptor protein 2 (NLRP2) and NLRP3 inflammasomes, and the activation of inflammasomes induces pyroptosis. Ghrelin, a gastrointestinal peptide, plays vital role in regulating inflammation and alleviating stress. Therefore, we proposed a hypothesis that ghrelin inhibits the activation of inflammasomes on astrocytes, reduces pyroptosis, and consequently prevents depression. We used lipopolysaccharide (LPS)-induced mouse depression model and cultured primary astrocytes in vitro to explore the mechanism of the antidepressant effect of ghrelin. Our results showed that ghrelin effectively inhibited acute inflammatory responses and damage in the hippocampus and prefrontal cortex. The activation of NLRP2 and NLRP3 in astrocytes induced by LPS was significantly inhibited by ghrelin. Pretreatment with ghrelin effectively suppressed LPS-induced upregulation of pyroptosis-related proteins and mRNA. Ghrelin alleviated cell membrane pore formation and cell swelling, ultimately improved LPS-induced depression-like behavior. In vitro, ghrelin prevented the LPS-induced upregulation of pyroptosis-related proteins and mRNA expression in astrocytes, and inhibited the initiation and assembly of NLRP2 and NLRP3. Ghrelin exhibits antidepressant effects, inhibits inflammasomes activation in astrocytes, and prevents pyroptosis, suggesting a novel strategy for treating depression. This groundbreaking study reveals new avenues for targeting potential therapeutic interventions to alleviate depression.
Collapse
Affiliation(s)
- Xiaoou Han
- The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.
| | - Xiying Fu
- The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Wanxu Guo
- The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yaqi Liu
- The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jiangjin Sun
- The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Tian Wang
- The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Wei Yang
- The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
10
|
Mo J, Kong P, Ding L, Fan J, Ren J, Lu C, Guo F, Chen L, Mo R, Zhong Q, Wen Y, Gu T, Wang Q, Li S, Guo T, Gao T, Cao X. Lysosomal TFEB-TRPML1 Axis in Astrocytes Modulates Depressive-like Behaviors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403389. [PMID: 39264289 PMCID: PMC11538709 DOI: 10.1002/advs.202403389] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/09/2024] [Indexed: 09/13/2024]
Abstract
Lysosomes are important cellular structures for human health as centers for recycling, signaling, metabolism and stress adaptation. However, the potential role of lysosomes in stress-related emotions has long been overlooked. Here, it is found that lysosomal morphology in astrocytes is altered in the medial prefrontal cortex (mPFC) of susceptible mice after chronic social defeat stress. A screen of lysosome-related genes revealed that the expression of the mucolipin 1 gene (Mcoln1; protein: mucolipin TRP channel 1) is decreased in susceptible mice and depressed patients. Astrocyte-specific knockout of mucolipin TRP channel 1 (TRPML1) induced depressive-like behaviors by inhibiting lysosomal exocytosis-mediated adenosine 5'-triphosphate (ATP) release. Furthermore, this stress response of astrocytic lysosomes is mediated by the transcription factor EB (TFEB), and overexpression of TRPML1 rescued depressive-like behaviors induced by astrocyte-specific knockout of TFEB. Collectively, these findings reveal a lysosomal stress-sensing signaling pathway contributing to the development of depression and identify the lysosome as a potential target organelle for antidepressants.
Collapse
Affiliation(s)
- Jia‐Wen Mo
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Peng‐Li Kong
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Li Ding
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jun Fan
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jing Ren
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Cheng‐Lin Lu
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Microbiome Medicine CenterDepartment of Laboratory MedicineZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
| | - Fang Guo
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Liang‐Yu Chen
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Ran Mo
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Qiu‐Ling Zhong
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - You‐Lu Wen
- Department of Psychology and BehaviorGuangdong 999 Brain HospitalInstitute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510515China
| | - Ting‐Ting Gu
- Department of Psychology and BehaviorGuangdong 999 Brain HospitalInstitute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510515China
| | - Qian‐Wen Wang
- Department of BioinformaticsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Shu‐Ji Li
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Ting Guo
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Tian‐Ming Gao
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Microbiome Medicine CenterDepartment of Laboratory MedicineZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
- Department of OncologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
11
|
Rahimian R, Perlman K, Fakhfouri G, Mpai R, Richard VR, Hercher C, Penney L, Davoli MA, Nagy C, Zahedi RP, Borchers CH, Giros B, Turecki G, Mechawar N. Proteomic evidence of depression-associated astrocytic dysfunction in the human male olfactory bulb. Brain Behav Immun 2024; 122:110-121. [PMID: 39128570 DOI: 10.1016/j.bbi.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024] Open
Abstract
The olfactory bulb (OB), a major structure of the limbic system, has been understudied in human investigations of psychopathologies such as depression. To explore more directly the molecular features of the OB in depression, a global comparative proteome analysis was carried out with human post-mortem OB samples from 11 males having suffered from depression and 12 healthy controls. We identified 188 differentially abundant proteins (with adjusted p < 0.05) between depressed cases and controls. Gene ontology and gene enrichment analyses suggested that these proteins are involved in biological processes including the complement and coagulation cascades. Cell type enrichment analysis displayed a significant reduction in several canonical astrocytic proteins in OBs from depressed patients. Furthermore, using RNA-fluorescence in-situ hybridization, we observed a decrease in the percentage of ALDH1L1+ cells expressing canonical astrocytic markers including ALDOC, NFIA, GJA1 (connexin 43) and SLC1A3 (EAAT1). These results are consistent with previous reports of downregulated astrocytic marker expression in other brain regions in depressed patients. We also conducted a comparative phosphoproteomic analysis of OB samples and found a dysregulation of proteins involved in neuronal and astrocytic functions. To determine whether OB astrocytic abnormalities is specific to humans, we also performed proteomics on the OB of socially defeated male mice, a commonly used model of depression. Cell-type specific analysis revealed that in socially defeated animals, the most striking OB protein alterations were associated with oligodendrocyte-lineage cells rather than with astrocytes, highlighting an important species difference. Overall, this study further highlights cerebral astrocytic abnormalities as a consistent feature of depression in humans.
Collapse
Affiliation(s)
- Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Kelly Perlman
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Gohar Fakhfouri
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, QC, Canada
| | - Refilwe Mpai
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Vincent R Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Christa Hercher
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Lucy Penney
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, QC, Canada
| | - Maria Antonietta Davoli
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - René P Zahedi
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada; Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; CancerCare Manitoba Research Institute, Winnipeg, MB, Canada
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada; Department of Pathology, McGill University, Montréal, QC, Canada; Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Bruno Giros
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Sheng Z, Liu Q, Song Y, Ye B, Li Y, Song Y, Liu J, Zhang B, Guo F, Xu Z, Du W, Li S, Liu Z. Astrocyte atrophy induced by L-PGDS/PGD2/Src signaling dysfunction in the central amygdala mediates postpartum depression. J Affect Disord 2024; 359:241-252. [PMID: 38768820 DOI: 10.1016/j.jad.2024.05.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Postpartum depression (PPD) is a serious psychiatric disorder that has significantly adverse impacts on maternal health. Metabolic abnormalities in the brain are associated with numerous neurological disorders, yet the specific metabolic signaling pathways and brain regions involved in PPD remain unelucidated. METHODS We performed behavioral test in the virgin and postpartum mice. We used mass spectrometry imaging (MSI) and targeted metabolomics analyses to investigate the metabolic alternation in the brain of GABAAR Delta-subunit-deficient (Gabrd-/-) postpartum mice, a specific preclinical animal model of PPD. Next, we performed mechanism studies including qPCR, Western blot, immunofluorescence staining, electron microscopy and primary astrocyte culture. In the specific knockdown and rescue experiments, we injected the adeno-associated virus into the central amygdala (CeA) of female mice. RESULTS We identified that prostaglandin D2 (PGD2) downregulation in the CeA was the most outstanding alternation in PPD, and then validated that lipocalin-type prostaglandin D synthase (L-PGDS)/PGD2 downregulation plays a causal role in depressive behaviors derived from PPD in both wild-type and Gabrd-/- mice. Furthermore, we verified that L-PGDS/PGD2 signaling dysfunction-induced astrocytes atrophy is mediated by Src phosphorylation both in vitro and in vivo. LIMITATIONS L-PGDS/PGD2 signaling dysfunction may be only responsible for the depressive behavior rather than maternal behaviors in the PPD, and it remains to be seen whether this mechanism is applicable to all depression types. CONCLUSION Our study identified abnormalities in the L-PGDS/PGD2 signaling in the CeA, which inhibited Src phosphorylation and induced astrocyte atrophy, ultimately resulting in the development of PPD in mice.
Collapse
Affiliation(s)
- Zhihao Sheng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Qidong Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yujie Song
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Binglu Ye
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China; Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Yujie Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Yingcai Song
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Jinqi Liu
- University of Rochester, Rochester, NY 14627, USA
| | - Bing Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Fei Guo
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China; Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhendong Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Weijia Du
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China.
| | - Siguang Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; Stem Cell Translational Research Center, Tongji Hospital, Tongji University, School of Medicine, Shanghai 200065, China.
| | - Zhiqiang Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China.
| |
Collapse
|
13
|
Deng J, Tong X, Huang Y, Du Z, Sun R, Zheng Y, Ma R, Ding W, Zhang Y, Li J, Sun Y, Chen C, Zhang JC, Song L, Liu B, Lin S. Prophylactic nicotinamide mononucleotide (NMN) mitigates CSDS-induced depressive-like behaviors in mice via preserving of ATP level in the mPFC. Biomed Pharmacother 2024; 176:116850. [PMID: 38834006 DOI: 10.1016/j.biopha.2024.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
Depression is a prevalent psychiatric disorder with accumulating evidence implicating dysregulation of extracellular adenosine triphosphate (ATP) levels in the medial prefrontal cortex (mPFC). It remains unclear whether facilitating endogenous ATP production and subsequently increasing extracellular ATP level in the mPFC can exert a prophylactic effect against chronic social defeat stress (CSDS)-induced depressive-like behaviors and enhance stress resilience. Here, we found that nicotinamide mononucleotide (NMN) treatment effectively elevated nicotinamide adenine dinucleotide (NAD+) biosynthesis and extracellular ATP levels in the mPFC. Moreover, both the 2-week intraperitoneal (i.p.) injection and 3-week oral gavage of NMN prior to exposure to CSDS effectively prevented the development of depressive-like behavior in mice. These protective effects were accompanied with the preservation of both NAD+ biosynthesis and extracellular ATP level in the mPFC. Furthermore, catalyzing ATP hydrolysis by mPFC injection of the ATPase apyrase negated the prophylactic effects of NMN on CSDS-induced depressive-like behaviors. Prophylactic NMN treatment also prevented the reduction in GABAergic inhibition and the increase in excitability in mPFC neurons projecting to the lateral habenula (LHb). Collectively, these findings demonstrate that the prophylactic effects of NMN on depressive-like behaviors are mediated by preventing extracellular ATP loss in the mPFC, which highlights the potential of NMN supplementation as a novel approach for protecting and preventing stress-induced depression in susceptible individuals.
Collapse
Affiliation(s)
- Jialin Deng
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiaohan Tong
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yanhua Huang
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zean Du
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ruizhe Sun
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yantao Zheng
- Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Ruijia Ma
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wanzhao Ding
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Zhang
- Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Junfeng Li
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Sun
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chunxiao Chen
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ji-Chun Zhang
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Li Song
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Bin Liu
- Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Song Lin
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Jingya L, Song L, Lu L, Zhang Q, Zhang W. Effect of Shenqi Jieyu formula on inflammatory response pathway in hippocampus of postpartum depression rats. Heliyon 2024; 10:e29978. [PMID: 38726147 PMCID: PMC11078882 DOI: 10.1016/j.heliyon.2024.e29978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Aim To investigate whether SJF functions in similar manner as the key substance in the inflammatory process, soluble epoxide hydrolase (sEH) inhibitor, to inhibit the arachidonic acid metabolic pathway and nuclear factor kappa-B(NF-κB) signal path in the hippocampi of postpartum depression rats. Methods The rats were subcutaneous injected estradiol benzoate and progesterone to build PPD rat model. SJF, paroxetine hydrochloride and sEH inhibitor (AUDA) were used to treat PPD rats for 3 weeks. Then the morphological changes of hippocampi and various proteins were observed after that behavioral test were conducted in all 36 SD rats in six group: SJF, paroxetine, AUDA, PPD, sham and normal group. Results Weight, results of sucrose preference, upright times, total and center squares crossing decreased significantly (P < 0.01), whereas immobility time increased (P < 0.01). Results above were reversed in animals that in the SJF, paroxetine and AUDA groups. Hippocampal neurons in PPD rats partially degenerated with narrowed nuclei, increased autophagy and mitochondria bound to lysosomes were visible while the autophagy of hippocampal neurons in the paroxetine and AUDA group decreased, with a small amount of lysosomes. sEH, COX-2, 5-LOX, TNF-α, IL-1, IL-6, NF-κB p65, and Cor increased in hippocampi of PPD rats while EETs and 5-HT decreased. Protein expressions of Ibal, GFAP, p-IκBα, p65, and p-p65(S536)increased in PPD animals. Those changes were reversed by SJF, paroxetine and AUDA. Gene expressions of TNF-α, IL-1β, IL-6, 5-LOX, COX-2 and p65 increased in PPD rats and the changes of expression in these genes were reversed by paroxetine and AUDA. SJF reversed the gene expression changes of COX-2, TNF-α, and IL-1β. Conclusion SJF may have an analogous effect as sEH inhibitor to relieve depressive symptoms by suppressing inflammatory signaling pathways in hippocampi of PPD rats, which involves AA metabolic pathway and NF-κB signal pathway.
Collapse
Affiliation(s)
- Li Jingya
- The First Affiliated Hospital of Zhejiang Chinese Medical University(Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang, 310000, PR China
| | - Linhong Song
- Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, Shandong, PR China
| | - Lu Lu
- Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, Shandong, PR China
| | - Qing Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University(Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang, 310000, PR China
| | - Weijun Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University(Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang, 310000, PR China
| |
Collapse
|
15
|
Zheng S, Zeng W, Wu Q, Li W, He Z, Li E, Tang C, Xue X, Qin G, Zhang B, Yin H. Predictive Models for Suicide Attempts in Major Depressive Disorder and the Contribution of EPHX2: A Pilot Integrative Machine Learning Study. Depress Anxiety 2024; 2024:5538257. [PMID: 40226652 PMCID: PMC11918959 DOI: 10.1155/2024/5538257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/20/2024] [Indexed: 04/15/2025] Open
Abstract
Suicide is a major public health problem caused by a complex interaction of various factors. Major depressive disorder (MDD) is the most prevalent psychiatric disorder associated with suicide; therefore, it is essential to prioritize suicide prediction and prevention within this population. Integrated information from different dimensions, including personality, cognitive function, and social and genetic factors, is necessary to improve the performance of predictive models. Besides, recent studies have indicated the critical roles for EPHX2/P2X2 in the pathophysiology of MDD. Our previous studies found an association of EPHX2 and P2X2 with suicide in MDD. This study is aimed at (1) establishing predictive models with integrated information to distinguish MDD from healthy volunteers, (2) estimating the suicide risk of MDD, and (3) determining the contribution of EPHX2/P2X2. This cross-sectional study was conducted on 472 prospectively collected participants. The machine learning (ML) technique using Extreme Gradient Boosting (XGBoost) classifier was employed to evaluate the performance and relative importance of the extracted characteristics in recognising patients with MDD and depressed suicide attempters (DSA). In independent validation set, the model with clinical and cognitive information could recognise MDD with an area under the receiver operating characteristic curve (AUC) of 0.938 (95% confidence interval (CI), 0.898-0.977), and genetic information did not improve classification performance. The model with clinical, cognitive, and genetic information resulted in a significantly higher AUC of 0.801 (95% CI, 0.719-0.884) for identifying DSA than the model with only clinical information, in which the three single nucleotide polymorphisms of EPHX2 showed important roles. This study successfully established step-by-step predictive ML models to estimate the risk of suicide attempts in MDD. We found that EPHX2 can help improve the performance of suicidal predictive models. This trial is registered with NCT05575713.
Collapse
Affiliation(s)
- Shuqiong Zheng
- Department of Psychiatry, Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Weixiong Zeng
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qianyun Wu
- Department of Psychiatry, Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Weimin Li
- Department of Psychiatry, Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Zilong He
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Enze Li
- Department of Psychiatry, Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Chong Tang
- Department of Psychiatry, Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Xiang Xue
- Department of Psychiatry, Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Genggeng Qin
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Zhang
- Department of Psychiatry, Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Honglei Yin
- Department of Psychiatry, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Wang K, Huang S, Fu D, Yang X, Ma L, Zhang T, Zhao W, Deng D, Ding Y, Zhang Y, Huang L, Chen X. The neurobiological mechanisms and therapeutic prospect of extracellular ATP in depression. CNS Neurosci Ther 2024; 30:e14536. [PMID: 38375982 PMCID: PMC10877668 DOI: 10.1111/cns.14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Depression is a prevalent psychiatric disorder with high long-term morbidities, recurrences, and mortalities. Despite extensive research efforts spanning decades, the cellular and molecular mechanisms of depression remain largely unknown. What's more, about one third of patients do not have effective anti-depressant therapies, so there is an urgent need to uncover more mechanisms to guide the development of novel therapeutic strategies. Adenosine triphosphate (ATP) plays an important role in maintaining ion gradients essential for neuronal activities, as well as in the transport and release of neurotransmitters. Additionally, ATP could also participate in signaling pathways following the activation of postsynaptic receptors. By searching the website PubMed for articles about "ATP and depression" especially focusing on the role of extracellular ATP (eATP) in depression in the last 5 years, we found that numerous studies have implied that the insufficient ATP release from astrocytes could lead to depression and exogenous supply of eATP or endogenously stimulating the release of ATP from astrocytes could alleviate depression, highlighting the potential therapeutic role of eATP in alleviating depression. AIM Currently, there are few reviews discussing the relationship between eATP and depression. Therefore, the aim of our review is to conclude the role of eATP in depression, especially focusing on the evidence and mechanisms of eATP in alleviating depression. CONCLUSION We will provide insights into the prospects of leveraging eATP as a novel avenue for the treatment of depression.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Xinxin Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Yanyan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Li Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| |
Collapse
|
17
|
Zhang Y, Pan YD, Zheng WY, Li HY, Zhu MZ, Ou Yang WJ, Qian Y, Turecki G, Mechawar N, Zhu XH. Enhancing HIF-1α-P2X2 signaling in dorsal raphe serotonergic neurons promotes psychological resilience. Redox Biol 2024; 69:103005. [PMID: 38150991 PMCID: PMC10788260 DOI: 10.1016/j.redox.2023.103005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023] Open
Abstract
Major depressive disorder (MDD) is a devastating condition. Although progress has been made in the past seven decades, patients with MDD continue to receive an inadequate treatment, primarily due to the late onset of first-line antidepressant drugs and to their acute withdrawal symptoms. Resilience is the ability to rebound from adversity in a healthy manner and many people have psychological resilience. Revealing the mechanisms and identifying methods promoting resilience will hopefully lead to more effective prevention strategies and treatments for depression. In this study, we found that intermittent hypobaric hypoxia training (IHHT), a method for training pilots and mountaineers, enhanced psychological resilience in adult mice. IHHT produced a sustained antidepressant-like effect in mouse models of depression by inducing long-term (up to 3 months after this treatment) overexpression of hypoxia-inducible factor (HIF)-1α in the dorsal raphe nucleus (DRN) of adult mice. Moreover, DRN-infusion of cobalt chloride, which mimics hypoxia increasing HIF-1α expression, triggered a rapid and long-lasting antidepressant-like effect. Down-regulation of HIF-1α in the DRN serotonergic (DRN5-HT) neurons attenuated the effects of IHHT. HIF-1α translationally regulated the expression of P2X2, and conditionally knocking out P2rx2 (encodes P2X2 receptors) in DRN5-HT neurons, in turn, attenuated the sustained antidepressant-like effect of IHHT, but not its acute effect. In line with these results, a single sub-anesthetic dose of ketamine enhanced HIF-1α-P2X2 signaling, which is essential for its rapid and long-lasting antidepressant-like effect. Notably, we found that P2X2 protein levels were significantly lower in the DRN of patients with MDD than that of control subjects. Together, these findings elucidate the molecular mechanism underlying IHHT promoting psychological resilience and highlight enhancing HIF-1α-P2X2 signaling in DRN5-HT neurons as a potential avenue for screening novel therapeutic treatments for MDD.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Psychology, Shenzhen University, Shenzhen, China; Research Center for Brain Health, Pazhou Lab, Guangzhou, China
| | - Yi-da Pan
- Research Center for Brain Health, Pazhou Lab, Guangzhou, China
| | - Wen-Ying Zheng
- School of Psychology, Shenzhen University, Shenzhen, China; Research Center for Brain Health, Pazhou Lab, Guangzhou, China
| | - Huan-Yu Li
- Research Center for Brain Health, Pazhou Lab, Guangzhou, China
| | - Min-Zhen Zhu
- Research Center for Brain Health, Pazhou Lab, Guangzhou, China
| | - Wen-Jie Ou Yang
- School of Psychology, Shenzhen University, Shenzhen, China; Research Center for Brain Health, Pazhou Lab, Guangzhou, China
| | - Yu Qian
- Research Center for Brain Health, Pazhou Lab, Guangzhou, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Gustavo Turecki
- Department of Psychiatry, McGill University, McGill Group for Suicide Studies, Douglas Mental Health University Institute, 6875 LaSalle Blvd, Verdun, (Québec), Canada
| | - Naguib Mechawar
- Department of Psychiatry, McGill University, McGill Group for Suicide Studies, Douglas Mental Health University Institute, 6875 LaSalle Blvd, Verdun, (Québec), Canada
| | - Xin-Hong Zhu
- School of Psychology, Shenzhen University, Shenzhen, China; Research Center for Brain Health, Pazhou Lab, Guangzhou, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
18
|
Nishioka Y, Hayashi K, Morito K, Takayama K, Nagasawa K. Altered Expression of Astrocytic ATP Channels and Ectonucleotidases in the Cerebral Cortex and Hippocampus of Chronic Social Defeat Stress-Susceptible BALB/c Mice. Biol Pharm Bull 2024; 47:1172-1178. [PMID: 38880625 DOI: 10.1248/bpb.b24-00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The increasing number of patients with depressive disorder is a serious socioeconomic problem worldwide. Although several therapeutic agents have been developed and used clinically, their effectiveness is insufficient and thus discovery of novel therapeutic targets is desired. Here, focusing on dysregulation of neuronal purinergic signaling in depressive-like behavior, we examined the expression profiles of ATP channels and ectonucleotidases in astrocytes of cerebral cortex and hippocampus of chronic social defeat stress (CSDS)-susceptible BALB/c mice. Mice were exposed to 10-d CSDS, and their astrocytes were obtained using a commercially available kit based on magnetic activated cell sorting technology. In astrocytes derived from cerebral cortex of CSDS-susceptible mice, the expression levels of mRNAs for connexin 43, P2X7 receptors and maxi anion channels were increased, those for connexin 43 and P2X7 receptors being inversely correlated with mouse sociability, and the expression of mRNAs for ecto-nucleoside triphosphate diphosphohydrase 2 and ecto-5'nucleotidase was decreased and increased, respectively. On the other hand, the alteration profiles of ATP channels and ectonucleotidases in hippocampal astrocytes of CSDS-susceptible mice were different from in the case of cortical astrocytes, and there was no significant correlation between expression levels of their mRNAs and mouse sociability. These findings imply that increased expression of ATP channels in cerebral cortex might be involved in the development of reduced sociability in CSDS-subjected BALB/c mice. Together with recent findings, it is suggested that ATP channels expressed by cortical astrocytes might be potential therapeutic targets for depressive disorder.
Collapse
Affiliation(s)
- Yuka Nishioka
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | - Kana Hayashi
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | - Katsuya Morito
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | - Kentaro Takayama
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| | - Kazuki Nagasawa
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University
| |
Collapse
|
19
|
Duan L, Song L, Qiu C, Li J. Effect of the sEH inhibitor AUDA on arachidonic acid metabolism and NF-κB signaling of rats with postpartum depression-like behavior. J Neuroimmunol 2023; 385:578250. [PMID: 38029646 DOI: 10.1016/j.jneuroim.2023.578250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE To investigate whether sEH inhibitor AUDA can mitigate postpartum depression (PPD)-like symptoms in the rat model and regulate the AA/NF-κB pathway to suppress the inflammatory response in the prefrontal lobes of PPD rats. METHODS Five groups of Sprague Dawley rats were used: normal, sham operated, PPD model, AUDA, and paroxetine hydrochloride. During the 21-day treatment period, animals in all groups underwent assessments (open field test, forced swimming test, and sucrose consumption) for depression-like behavior. At the conclusion of the treatment period, animals in all study groups were euthanized and various proteins in the prefrontal lobes were measured. RESULTS Depression-like behavior in rats was attenuated by AUDA. In the prefrontal lobes of PPD rats, levels of 5-LOX, COX-2, sEH, IL-1β, IL- 6, p65, p-p65, P-IκBα, NF-κB p65, and GFAP were increased while levels of epoxyeicosatrienoic acids and 5-HT were decreased. AUDA reversed these changes, thus having a similar effect as the classic antidepressant paroxetine hydrochloride. CONCLUSION AUDA may constrain AA/NF-κB in the prefrontal cortex of PPD rats, thus inhibiting the inflammatory response and ultimately attenuating postpartum depression-like behavior.
Collapse
Affiliation(s)
- Liqin Duan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang Province, PR China
| | - Linhong Song
- Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, Shandong Province, PR China
| | - Chao Qiu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang Province, PR China
| | - Jingya Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
20
|
Pan J, Lu Y, Wang S, Ma T, Xue X, Zhang Z, Mao Q, Guo D, Ma K. Synergistic neuroprotective effects of two natural medicinal plants against CORT-induced nerve cell injury by correcting neurotransmitter deficits and inflammation imbalance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155102. [PMID: 37748389 DOI: 10.1016/j.phymed.2023.155102] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Lilium henryi Baker (Liliaceae) and Rehmannia glutinosa (Gaertn.) DC. (Plantaginaceae) were the traditional natural medicinal plants for the treatment of depression, but the antidepression mechanism of two plants co-decoction (Also known as Lily bulb and Rehmannia decoction (LBRD) drug-containing serum (LBRDDS) has not been elucidated in the in vitro model of depression. MATERIAL AND METHODS Here, UHPLC-Q-TOF/MS was used to identify the active components of LBRDDS and the potential effector substance was identified by bioinformatics analysis. CORT-induced nerve cells cytotoxicity was used to investigate the neuroprotection effect of LBRDDS and the underlying pharmacological mechanisms were explored by multiple experimental methods such as molecular docking, immunofluorescence, gain- or loss-of function experiments. RESULTS Bioactive compounds in LBRDDS absorbed from intestinal tract were transformed or metabolized by the gut microbiota including palmitic acid, adrenic acid, linoleic acid, arachidonic acid and docosapentaenoic acid. Network pharmacology analysis and molecular docking of showed fatty acid metabolism, neurotransmitter synthesis and neuroinflammation may be potential therapeutic targets of LBRDDS. LBRDDS can improve the activity of model cells, reduce cytotoxicity of lactate dehydrogenase, recover neurotransmitter imbalance, relieve inflammatory damage, down-regulate the expression of miRNA-144-3p, increase the mRNAs and protein expression level of Gad-67 and VGAT, and promote the synthesis and transport of GABA. CONCLUSION Therefore, LBRDDS exerts neuroprotective effects by correcting neurotransmitter deficits and inflammation imbalance in the CORT-induced nerve cell injury model.
Collapse
Affiliation(s)
- Jin Pan
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yanting Lu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Sijia Wang
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Ting Ma
- College of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Xiaoyan Xue
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhe Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Qiancheng Mao
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Dongjing Guo
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Ke Ma
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
21
|
Shirkavand A, Akhavan Tavakoli M, Ebrahimpour Z. A Brief Review of Low-Level Light Therapy in Depression Disorder. J Lasers Med Sci 2023; 14:e55. [PMID: 38028864 PMCID: PMC10658118 DOI: 10.34172/jlms.2023.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023]
Abstract
Introduction: Low-level laser therapy (LLLT), also called Photobiomodulation, has gained widespread acceptance as a mainstream modality, particularly in the form of photobiostimulation (PBM). Here in our review, we aim to present the application of LLLT to help with depression, explore potential action mechanisms and pathways, discuss existing limitations, and address the challenges associated with its clinical implementation. Methods: In biological systems, the visible light with a wavelength range of 400-700 nm activates photoreceptors involved in vision and circadian rhythm regulation. The near-infrared (NIR) light with a wavelength range of 800-1100 nm exhibits superior tissue penetration capabilities compared to the visible light, which enables the non-invasive application of LLLT to various tissues. Results: By enhancing adenosine triphosphate (ATP) production using the respiratory chain, LLLT is able to enhance blood flow, reduce inflammation, support repair and healing, and enhance stem cell growth and proliferation. Preclinical studies using animal models have shown promising neuroprotective effects of the LLLT method on central nervous system (CNS) diseases, suggesting potential improvements in brain function for patients suffering from Alzheimer's disease. In addition, it helps Parkinson's patients with their movement problems and ameliorates mental disorders in individuals with depression. Conclusion: patients' quality of life can be significantly enhanced. A comprehensive understanding of the protective effects and underlying mechanisms of LLLT will facilitate its therapeutic application in the future.
Collapse
Affiliation(s)
- Afshan Shirkavand
- Department of Photodynamic Therapy, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | | | - Zeinab Ebrahimpour
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
22
|
Wu Y, Dong JH, Dai YF, Zhu MZ, Wang MY, Zhang Y, Pan YD, Yuan XR, Guo ZX, Wang CX, Li YQ, Zhu XH. Hepatic soluble epoxide hydrolase activity regulates cerebral Aβ metabolism and the pathogenesis of Alzheimer's disease in mice. Neuron 2023; 111:2847-2862.e10. [PMID: 37402372 DOI: 10.1016/j.neuron.2023.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/10/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023]
Abstract
Alzheimer's disease (AD) is caused by a complex interaction between genetic and environmental factors. However, how the role of peripheral organ changes in response to environmental stimuli during aging in AD pathogenesis remains unknown. Hepatic soluble epoxide hydrolase (sEH) activity increases with age. Hepatic sEH manipulation bidirectionally attenuates brain amyloid-β (Aβ) burden, tauopathy, and cognitive deficits in AD mouse models. Moreover, hepatic sEH manipulation bidirectionally regulates the plasma level of 14,15-epoxyeicosatrienoic acid (-EET), which rapidly crosses the blood-brain barrier and modulates brain Aβ metabolism through multiple pathways. A balance between the brain levels of 14,15-EET and Aβ is essential for preventing Aβ deposition. In AD models, 14,15-EET infusion mimicked the neuroprotective effects of hepatic sEH ablation at biological and behavioral levels. These results highlight the liver's key role in AD pathology, and targeting the liver-brain axis in response to environmental stimuli may constitute a promising therapeutic approach for AD prevention.
Collapse
Affiliation(s)
- Yu Wu
- School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Jing-Hua Dong
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Yong-Feng Dai
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Min-Zhen Zhu
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China; School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Meng-Yao Wang
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Yuan Zhang
- School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Yi-Da Pan
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xin-Rui Yuan
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Zhi-Xin Guo
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Chen-Xi Wang
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China; School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuan-Qing Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Center for Brain-Computer Interface, Pazhou Lab, Guangzhou 510330, China
| | - Xin-Hong Zhu
- School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
23
|
Glaser ST, Jayanetti K, Oubraim S, Hillowe A, Frank E, Jong J, Wang L, Wang H, Ojima I, Haj-Dahmane S, Kaczocha M. Fatty acid binding proteins are novel modulators of synaptic epoxyeicosatrienoic acid signaling in the brain. Sci Rep 2023; 13:15234. [PMID: 37709856 PMCID: PMC10502087 DOI: 10.1038/s41598-023-42504-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Fatty acid binding proteins (FABPs) govern intracellular lipid transport to cytosolic organelles and nuclear receptors. More recently, FABP5 has emerged as a key regulator of synaptic endocannabinoid signaling, suggesting that FABPs may broadly regulate the signaling of neuroactive lipids in the brain. Herein, we demonstrate that brain-expressed FABPs (FABP3, FABP5, and FABP7) interact with epoxyeicosatrienoic acids (EETs) and the peroxisome proliferator-activated receptor gamma agonist 15-deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2). Among these lipids, EETs displayed highest affinities for FABP3 and FABP5, and 11,12-EET was identified as the preferred FABP ligand. Similarly, 15d-PGJ2 interacted with FABP3 and FABP5 while binding to FABP7 was markedly lower. Molecular modeling revealed unique binding interactions of the ligands within the FABP binding pockets and highlighted major contributions of van der Waals clashes and acyl chain solvent exposure in dictating FABP affinity and specificity. Functional studies demonstrated that endogenous EETs gate the strength of CA1 hippocampal glutamate synapses and that this function was impaired following FABP inhibition. As such, the present study reveals that FABPs control EET-mediated synaptic gating, thereby expanding the functional roles of this protein family in regulating neuronal lipid signaling.
Collapse
Affiliation(s)
- Sherrye T Glaser
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Biological Sciences, Kingsborough Community College, Brooklyn, NY, USA
| | - Kalani Jayanetti
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Saida Oubraim
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Andrew Hillowe
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Elena Frank
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jason Jong
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Liqun Wang
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Hehe Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA.
- Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
24
|
Zhang YM, Qi YB, Gao YN, Chen WG, Zhou T, Zang Y, Li J. Astrocyte metabolism and signaling pathways in the CNS. Front Neurosci 2023; 17:1217451. [PMID: 37732313 PMCID: PMC10507181 DOI: 10.3389/fnins.2023.1217451] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Astrocytes comprise half of the cells in the central nervous system and play a critical role in maintaining metabolic homeostasis. Metabolic dysfunction in astrocytes has been indicated as the primary cause of neurological diseases, such as depression, Alzheimer's disease, and epilepsy. Although the metabolic functionalities of astrocytes are well known, their relationship to neurological disorders is poorly understood. The ways in which astrocytes regulate the metabolism of glucose, amino acids, and lipids have all been implicated in neurological diseases. Metabolism in astrocytes has also exhibited a significant influence on neuron functionality and the brain's neuro-network. In this review, we focused on metabolic processes present in astrocytes, most notably the glucose metabolic pathway, the fatty acid metabolic pathway, and the amino-acid metabolic pathway. For glucose metabolism, we focused on the glycolysis pathway, pentose-phosphate pathway, and oxidative phosphorylation pathway. In fatty acid metabolism, we followed fatty acid oxidation, ketone body metabolism, and sphingolipid metabolism. For amino acid metabolism, we summarized neurotransmitter metabolism and the serine and kynurenine metabolic pathways. This review will provide an overview of functional changes in astrocyte metabolism and provide an overall perspective of current treatment and therapy for neurological disorders.
Collapse
Affiliation(s)
- Yong-mei Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying-bei Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ya-nan Gao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wen-gang Chen
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ting Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Dai Y, Dong J, Wu Y, Zhu M, Xiong W, Li H, Zhao Y, Hammock BD, Zhu X. Enhancement of the liver's neuroprotective role ameliorates traumatic brain injury pathology. Proc Natl Acad Sci U S A 2023; 120:e2301360120. [PMID: 37339206 PMCID: PMC10293829 DOI: 10.1073/pnas.2301360120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023] Open
Abstract
Traumatic brain injury (TBI) is a pervasive problem worldwide for which no effective treatment is currently available. Although most studies have focused on the pathology of the injured brain, we have noted that the liver plays an important role in TBI. Using two mouse models of TBI, we found that the enzymatic activity of hepatic soluble epoxide hydrolase (sEH) was rapidly decreased and then returned to normal levels following TBI, whereas such changes were not observed in the kidney, heart, spleen, or lung. Interestingly, genetic downregulation of hepatic Ephx2 (which encodes sEH) ameliorates TBI-induced neurological deficits and promotes neurological function recovery, whereas overexpression of hepatic sEH exacerbates TBI-associated neurological impairments. Furthermore, hepatic sEH ablation was found to promote the generation of A2 phenotype astrocytes and facilitate the production of various neuroprotective factors associated with astrocytes following TBI. We also observed an inverted V-shaped alteration in the plasma levels of four EET (epoxyeicosatrienoic acid) isoforms (5,6-, 8,9-,11,12-, and 14,15-EET) following TBI which were negatively correlated with hepatic sEH activity. However, hepatic sEH manipulation bidirectionally regulates the plasma levels of 14,15-EET, which rapidly crosses the blood-brain barrier. Additionally, we found that the application of 14,15-EET mimicked the neuroprotective effect of hepatic sEH ablation, while 14,15-epoxyeicosa-5(Z)-enoic acid blocked this effect, indicating that the increased plasma levels of 14,15-EET mediated the neuroprotective effect observed after hepatic sEH ablation. These results highlight the neuroprotective role of the liver in TBI and suggest that targeting hepatic EET signaling could represent a promising therapeutic strategy for treating TBI.
Collapse
Affiliation(s)
- Yongfeng Dai
- School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
- Research Center for Brain Health, Pazhou Lab, Guangzhou510330, China
| | - Jinghua Dong
- School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
- Research Center for Brain Health, Pazhou Lab, Guangzhou510330, China
| | - Yu Wu
- Research Center for Brain Health, Pazhou Lab, Guangzhou510330, China
- School of Psychology, Shenzhen University, Shenzhen518060, China
| | - Minzhen Zhu
- Research Center for Brain Health, Pazhou Lab, Guangzhou510330, China
| | - Wenchao Xiong
- School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Huanyu Li
- Research Center for Brain Health, Pazhou Lab, Guangzhou510330, China
| | - Yulu Zhao
- School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
- Research Center for Brain Health, Pazhou Lab, Guangzhou510330, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology, University of California, Davis, CA95616
- University of California Davis Comprehensive Cancer Center, University of California, Davis, CA95616
| | - Xinhong Zhu
- School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
- Research Center for Brain Health, Pazhou Lab, Guangzhou510330, China
- School of Psychology, Shenzhen University, Shenzhen518060, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, China
| |
Collapse
|
26
|
Ren WJ, Zhao YF, Li J, Rubini P, Yuan ZQ, Tang Y, Illes P. P2X7 receptor-mediated depression-like reactions arising in the mouse medial prefrontal cortex. Cereb Cortex 2023:7161772. [PMID: 37183178 DOI: 10.1093/cercor/bhad166] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Major depressive disorder is a frequent and debilitating psychiatric disease. We have shown in some of the acute animal models of major depressive disorder (tail suspension test and forced swim test) that depression-like behavior can be aggravated in mice by the microinjection into the medial prefrontal cortex of the P2X7R agonistic adenosine 5'-triphosphate or its structural analog dibenzoyl-ATP, and these effects can be reversed by the P2X7R antagonistic JNJ-47965567. When measuring tail suspension test, the prolongation of immobility time by the P2YR agonist adenosine 5'-[β-thio]diphosphate and the reduction of the adenosine 5'-(γ-thio)triphosphate effect by P2Y1R (MRS 2179) or P2Y12R (PSB 0739) antagonists, but not by JNJ-47965567, all suggest the involvement of P2YRs. In order to elucidate the localization of the modulatory P2X7Rs in the brain, we recorded current responses to dibenzoyl-ATP in layer V astrocytes and pyramidal neurons of medial prefrontal cortex brain slices by the whole-cell patch-clamp procedure; the current amplitudes were not altered in preparations taken from tail suspension test or foot shock-treated mice. The release of adenosine 5'-triphosphate was decreased by foot shock, although not by tail suspension test both in the hippocampus and PFC. In conclusion, we suggest, that in the medial prefrontal cortex, acute stressful stimuli cause supersensitivity of P2X7Rs facilitating the learned helplessness reaction.
Collapse
Affiliation(s)
- Wen-Jing Ren
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
| | - Ya-Fei Zhao
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
| | - Jie Li
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
| | - Patrizia Rubini
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
| | - Zeng-Qiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
- School of Medicine, University of South China, Hengyang 421000, Hunan, China
| | - Yong Tang
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
| | - Peter Illes
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig 04107, Germany
| |
Collapse
|
27
|
Li HY, Zhu MZ, Yuan XR, Guo ZX, Pan YD, Li YQ, Zhu XH. A thalamic-primary auditory cortex circuit mediates resilience to stress. Cell 2023; 186:1352-1368.e18. [PMID: 37001500 DOI: 10.1016/j.cell.2023.02.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/09/2023] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
Resilience enables mental elasticity in individuals when rebounding from adversity. In this study, we identified a microcircuit and relevant molecular adaptations that play a role in natural resilience. We found that activation of parvalbumin (PV) interneurons in the primary auditory cortex (A1) by thalamic inputs from the ipsilateral medial geniculate body (MG) is essential for resilience in mice exposed to chronic social defeat stress. Early attacks during chronic social defeat stress induced short-term hyperpolarizations of MG neurons projecting to the A1 (MGA1 neurons) in resilient mice. In addition, this temporal neural plasticity of MGA1 neurons initiated synaptogenesis onto thalamic PV neurons via presynaptic BDNF-TrkB signaling in subsequent stress responses. Moreover, optogenetic mimicking of the short-term hyperpolarization of MGA1 neurons, rather than merely activating MGA1 neurons, elicited innate resilience mechanisms in response to stress and achieved sustained antidepressant-like effects in multiple animal models, representing a new strategy for targeted neuromodulation.
Collapse
Affiliation(s)
- Huan-Yu Li
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Min-Zhen Zhu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Xin-Rui Yuan
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Zhi-Xin Guo
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Yi-Da Pan
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Yuan-Qing Li
- Research Center for Brain-Computer Interface, Pazhou Lab, Guangzhou 510330, China; School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xin-Hong Zhu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China; School of Psychology, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
28
|
Zheng S, Guo J, Xin Q, Galfalvy H, Ye Y, Yan N, Qian R, Mann JJ, Li E, Xue X, Yin H. Association of adenosine triphosphate-related genes to major depression and suicidal behavior: Cognition as a potential mediator. J Affect Disord 2023; 323:131-139. [PMID: 36442653 DOI: 10.1016/j.jad.2022.11.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Soluble epoxide hydrolase (sEH, encoded by EPHX2) and P2X2 (a subtype of ATP receptors) may mediate the antidepressant-like effects of ATP. We sought to determine whether polymorphisms and mRNA expression of EPHX2 and P2X2 are associated with depression and suicidal behavior and how cognition may mediate such associations. METHOD We examined 83 single nucleotide polymorphisms (SNPs) of EPHX2 and P2X2. Subjects were MDD suicide attempters (N = 143), MDD non-suicide attempters (N = 248), and healthy volunteers (HV, N = 110). Data on demographics, depression severity, and suicide attempts were collected. Participants completed a set of cognitive tasks. Polymorphisms were genotyped using MALDI-TOF MS within the MassARRAY system. The expression of mRNA was measured using real-time polymerase chain reaction (RT-PCR). RESULTS Cognitive function was a significant mediator (p = 0.006) of the genetic effect on depression. Allele C of rs202059124 was associated with depression risk (OR = 11.57, 95%CI: 2.33-209.87, p = 0.0181). A significant relationship was found between P2X2 mRNA expression and depression (OR = 0.68, 95%CI: 0.49-0.94, p = 0.0199). One haploblock (rs9331942 and rs2279590) was associated with suicide attempts: subjects with haplotype GC (frequency = 19.8 %, p = 0.017) and AT (frequency = 35.2 %, p < 0.001) had a lower rate of suicide attempts. CONCLUSIONS Our results confirmed that cognitive impairment plays a role in the effect of rs9331949 on depression. Moreover, we confirmed a relationship between P2X2, EPHX2, and MDD in humans and presented preliminary haplotype-based evidence that implicates EPHX2 in suicide. LIMITATIONS The main limitation of this study is the limited sample size. More comprehensive and multi-domain cognition tasks and different assessment measures are required in further study.
Collapse
Affiliation(s)
- Shuqiong Zheng
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - Jia Guo
- Department of Biostatistics, Columbia University, New York, NY, United States
| | - Qianqian Xin
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - Hanga Galfalvy
- Department of Biostatistics, Columbia University, New York, NY, United States
| | - Youran Ye
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - Na Yan
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - Rongrong Qian
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY, United States; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, United States
| | - Enze Li
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - Xiang Xue
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - Honglei Yin
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China.
| |
Collapse
|
29
|
Di Virgilio F, Vultaggio-Poma V, Falzoni S, Giuliani AL. Extracellular ATP: A powerful inflammatory mediator in the central nervous system. Neuropharmacology 2023; 224:109333. [PMID: 36400278 DOI: 10.1016/j.neuropharm.2022.109333] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Nucleotides play a crucial role in extracellular signaling across species boundaries. All the three kingdoms of life (Bacteria, Archea and Eukariota) are responsive to extracellular ATP (eATP) and many release this and other nucleotides. Thus, eATP fulfills different functions, many related to danger-sensing or avoidance reactions. Basically all living organisms have evolved sensors for eATP and other nucleotides with very different affinity and selectivity, thus conferring a remarkable plasticity to this signaling system. Likewise, different intracellular transduction systems were associated during evolution to different receptors for eATP. In mammalian evolution, control of intracellular ATP (iATP) and eATP homeostasis has been closely intertwined with that of Ca2+, whether in the extracellular milieu or in the cytoplasm, establishing an inverse reciprocal relationship, i.e. high extracellular Ca2+ levels are associated to negligible eATP, while low intracellular Ca2+ levels are associated to high eATP concentrations. This inverse relationship is crucial for the messenger functions of both molecules. Extracellular ATP is sensed by specific plasma membrane receptors of widely different affinity named P2 receptors (P2Rs) of which 17 subtypes are known. This confers a remarkable plasticity to P2R signaling. The central nervous system (CNS) is a privileged site for purinergic signaling as all brain cell types express P2Rs. Accruing evidence suggests that eATP, in addition to participating in synaptic transmission, also plays a crucial homeostatic role by fine tuning microglia, astroglia and oligodendroglia responses. Drugs modulating the eATP concentration in the CNS are likely to be the new frontier in the therapy of neuroinflammation. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Medical Sciences, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy.
| | | | - Simonetta Falzoni
- Department of Medical Sciences, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy
| | - Anna Lisa Giuliani
- Department of Medical Sciences, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
30
|
Shigetomi E, Koizumi S. The role of astrocytes in behaviors related to emotion and motivation. Neurosci Res 2023; 187:21-39. [PMID: 36181908 DOI: 10.1016/j.neures.2022.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 10/14/2022]
Abstract
Astrocytes are present throughout the brain and intimately interact with neurons and blood vessels. Three decades of research have shown that astrocytes reciprocally communicate with neurons and other non-neuronal cells in the brain and dynamically regulate cell function. Astrocytes express numerous receptors for neurotransmitters, neuromodulators, and cytokines and receive information from neurons, other astrocytes, and other non-neuronal cells. Among those receptors, the main focus has been G-protein coupled receptors. Activation of G-protein coupled receptors leads to dramatic changes in intracellular signaling (Ca2+ and cAMP), which is considered a form of astrocyte activity. Methodological improvements in measurement and manipulation of astrocytes have advanced our understanding of the role of astrocytes in circuits and have begun to reveal unexpected functions of astrocytes in behavior. Recent studies have suggested that astrocytic activity regulates behavior flexibility, such as coping strategies for stress exposure, and plays an important role in behaviors related to emotion and motivation. Preclinical evidence suggests that impairment of astrocytic function contributes to psychiatric diseases, especially major depression. Here, we review recent progress on the role of astrocytes in behaviors related to emotion and motivation.
Collapse
Affiliation(s)
- Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan; Yamanashi GLIA Center, Graduate School of Medical Science, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan.
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan; Yamanashi GLIA Center, Graduate School of Medical Science, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan.
| |
Collapse
|
31
|
Davis CM, Ibrahim AH, Alkayed NJ. Cytochrome P450-derived eicosanoids in brain: From basic discovery to clinical translation. ADVANCES IN PHARMACOLOGY 2023; 97:283-326. [DOI: 10.1016/bs.apha.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Ji N, Lei M, Chen Y, Tian S, Li C, Zhang B. How Oxidative Stress Induces Depression? ASN Neuro 2023; 15:17590914231181037. [PMID: 37331994 DOI: 10.1177/17590914231181037] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Depression increasingly affects a wide range and a large number of people worldwide, both physically and psychologically, which makes it a social problem requiring prompt attention and management. Accumulating clinical and animal studies have provided us with substantial insights of disease pathogenesis, especially central monoamine deficiency, which considerably promotes antidepressant research and clinical treatment. The first-line antidepressants mainly target the monoamine system, whose drawbacks mainly include slow action and treatment resistant. The novel antidepressant esketamine, targeting on central glutamatergic system, rapidly and robustly alleviates depression (including treatment-resistant depression), whose efficiency is shadowed by potential addictive and psychotomimetic side effects. Thus, exploring novel depression pathogenesis is necessary, for seeking more safe and effective therapeutic methods. Emerging evidence has revealed vital involvement of oxidative stress (OS) in depression, which inspires us to pursue antioxidant pathway for depression prevention and treatment. Fully uncovering the underlying mechanisms of OS-induced depression is the first step towards the avenue, thus we summarize and expound possible downstream pathways of OS, including mitochondrial impairment and related ATP deficiency, neuroinflammation, central glutamate excitotoxicity, brain-derived neurotrophic factor/tyrosine receptor kinase B dysfunction and serotonin deficiency, the microbiota-gut-brain axis disturbance and hypothalamic-pituitary-adrenocortical axis dysregulation. We also elaborate on the intricate interactions between the multiple aspects, and molecular mechanisms mediating the interplay. Through reviewing the related research progress in the field, we hope to depict an integral overview of how OS induces depression, in order to provide fresh ideas and novel targets for the final goal of efficient treatment of the disease.
Collapse
Affiliation(s)
- Na Ji
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Mengzhu Lei
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Yating Chen
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Shaowen Tian
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Chuanyu Li
- The School of Public Health, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin Guangxi, China
| | - Bo Zhang
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| |
Collapse
|
33
|
Nguyen N, Morisseau C, Li D, Yang J, Lam E, Woodside DB, Hammock BD, Shih PAB. Soluble Epoxide Hydrolase Is Associated with Postprandial Anxiety Decrease in Healthy Adult Women. Int J Mol Sci 2022; 23:11798. [PMID: 36233100 PMCID: PMC9569757 DOI: 10.3390/ijms231911798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
The metabolism of bioactive oxylipins by soluble epoxide hydrolase (sEH) plays an important role in inflammation, and sEH may be a risk modifier in various human diseases and disorders. The relationships that sEH has with the risk factors of these diseases remain elusive. Herein, sEH protein expression and activity in white blood cells were characterized before and after a high-fat meal in healthy women (HW) and women with anorexia nervosa (AN). sEH expression and sEH activity were significantly correlated and increased in both groups two hours after consumption of the study meal. Fasting sEH expression and activity were positively associated with body mass index (BMI) in both groups, while an inverse association with age was found in AN only (p value < 0.05). sEH was not associated with anxiety or depression in either group at the fasting timepoint. While the anxiety score decreased after eating in both groups, a higher fasting sEH was associated with a lower postprandial anxiety decrease in HW (p value < 0.05). sEH characterization using direct measurements verified the relationship between the protein expression and in vivo activity of this important oxylipin modulator, while a well-controlled food challenge study design using HW and a clinical control group of women with disordered eating elucidated sEH’s role in the health of adult women.
Collapse
Affiliation(s)
- Nhien Nguyen
- Department of Psychiatry, University of California San Diego, San Diego, CA 92037, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Dongyang Li
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Eileen Lam
- Centre for Mental Health, University Health Network, Toronto, ON M5G 2C4, Canada
| | - D. Blake Woodside
- Centre for Mental Health, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Bruce D. Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Pei-an Betty Shih
- Department of Psychiatry, University of California San Diego, San Diego, CA 92037, USA
| |
Collapse
|
34
|
Glucocorticoid Receptor-Dependent Astrocytes Mediate Stress Vulnerability. Biol Psychiatry 2022; 92:204-215. [PMID: 35151464 DOI: 10.1016/j.biopsych.2021.11.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/04/2021] [Accepted: 11/28/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Major depressive disorder is a devastating psychiatric illness that affects approximately 17% of the population worldwide. Astrocyte dysfunction has been implicated in its pathophysiology. Traumatic experiences and stress contribute to the onset of major depressive disorder, but how astrocytes respond to stress is poorly understood. METHODS Using Western blotting analysis, we identified that stress vulnerability was associated with reduced astrocytic glucocorticoid receptor (GR) expression in mouse models of depression. We further investigated the functions of astrocytic GRs in regulating depression and the underlying mechanisms by using a combination of behavioral studies, fiber photometry, biochemical experiments, and RNA sequencing methods. RESULTS GRs in astrocytes were more sensitive to stress than those in neurons. GR absence in astrocytes induced depressive-like behaviors, whereas restoring astrocytic GR expression in the medial prefrontal cortex prevented the depressive-like phenotype. Furthermore, we found that GRs in the medial prefrontal cortex affected astrocytic Ca2+ activity and dynamic ATP (adenosine 5'-triphosphate) release in response to stress. RNA sequencing of astrocytes isolated from GR deletion mice identified the PI3K-Akt (phosphoinositide 3-kinase-Akt) signaling pathway, which was required for astrocytic GR-mediated ATP release. CONCLUSIONS These findings reveal that astrocytic GRs play an important role in stress response and that reduced astrocytic GR expression in the stressed subject decreases ATP release to mediate stress vulnerability.
Collapse
|
35
|
Lin S, Huang L, Luo ZC, Li X, Jin SY, Du ZJ, Wu DY, Xiong WC, Huang L, Luo ZY, Song YL, Wang Q, Liu XW, Ma RJ, Wang ML, Ren CR, Yang JM, Gao TM. The ATP Level in the Medial Prefrontal Cortex Regulates Depressive-like Behavior via the Medial Prefrontal Cortex-Lateral Habenula Pathway. Biol Psychiatry 2022; 92:179-192. [PMID: 35489874 DOI: 10.1016/j.biopsych.2022.02.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Depression is the most common mental illness. Mounting evidence suggests that dysregulation of extracellular ATP (adenosine triphosphate) is involved in the pathophysiology of depression. However, the cellular and neural circuit mechanisms through which ATP modulates depressive-like behavior remain elusive. METHODS By use of ex vivo slice electrophysiology, chemogenetic manipulations, RNA interference, gene knockout, behavioral testing, and two depression mouse models, one induced by chronic social defeat stress and one caused by a IP3R2-null mutation, we systematically investigated the cellular and neural circuit mechanisms underlying ATP deficiency-induced depressive-like behavior. RESULTS Deficiency of extracellular ATP in both defeated susceptible mice and IP3R2-null mutation mice led to reduced GABAergic (gamma-aminobutyric acidergic) inhibition and elevated excitability in lateral habenula-projecting, but not dorsal raphe-projecting, medial prefrontal cortex (mPFC) neurons. Furthermore, the P2X2 receptor in GABAergic interneurons mediated ATP modulation of lateral habenula-projecting mPFC neurons and depressive-like behavior. Remarkably, chemogenetic activation of the mPFC-lateral habenula pathway induced depressive-like behavior in C57BL/6J mice, while inhibition of this pathway was sufficient to alleviate the behavioral impairment in both defeated susceptible and IP3R2-null mutant mice. CONCLUSIONS Overall, our study provides compelling evidence that ATP level in the mPFC is critically involved in regulating depressive-like behavior in a pathway-specific manner. These results shed new light on the mechanisms underlying depression and the antidepressant effect of ATP.
Collapse
Affiliation(s)
- Song Lin
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Physiology Department and Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Lang Huang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhou-Cai Luo
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xin Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shi-Yang Jin
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhuo-Jun Du
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ding-Yu Wu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wen-Chao Xiong
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lu Huang
- Physiology Department and Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Zheng-Yi Luo
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yun-Long Song
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qian Wang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xian-Wei Liu
- Physiology Department and Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Rui-Jia Ma
- Physiology Department and Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Meng-Ling Wang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chao-Ran Ren
- Physiology Department and Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
36
|
Tang Y, Wang H, Nie K, Gao Y, Su H, Wang Z, Lu F, Huang W, Dong H. Traditional herbal formula Jiao-tai-wan improves chronic restrain stress-induced depression-like behaviors in mice. Biomed Pharmacother 2022; 153:113284. [PMID: 35717786 DOI: 10.1016/j.biopha.2022.113284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Jiao-tai-wan (JTW) has been often used to treat insomnia and diabetes mellitus. Recent studies found its antidepressant activity, but the related mechanism is not clear. This study is to evaluate the therapeutic effects of JTW on chronic restraint stress (CRS)-induced depression mice and explore the potential mechanisms. METHODS CRS was used to set up a depression model. Mice in different groups were treated with 0.9 % saline, JTW and fluoxetine. After the last day of CRS, the behavioral tests were conducted. The levels of neurotransmitters, inflammatory cytokines and HPA axis index were detected and the protein expressions of NLRP3 inflammasome complex were determined. H&E, NISSL, TUNEL and immunofluorescence staining were used to observe histopathological changes and the activation of microglia and astrocytes. The potential mechanisms were explored via network pharmacology and verified by Western blot. RESULTS The assessment of liver and kidney function showed that JTW was non-toxic. Behavioral tests proved that JTW can effectively ameliorate depression-like symptoms in CRS mice, which may be related to the inhibition of NLRP3 inflammasome activation. JTW can also improve the inflammatory state and HPA axis hyperactivity in mice, and has a protective effect on CRS-induced hippocampal neurons damage. The network pharmacology analysis and the results of Western blot suggested that the antidepressant effects of JTW may be related to the MAPK signaling pathway. CONCLUSION Our findings indicated that JTW may exert antidepressant effects in CRS-induced mice by inhibiting NLRP3 inflammasome activation and improving inflammatory state, and MAPK signaling pathway may also be involved.
Collapse
Affiliation(s)
- Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhi Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wenya Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
37
|
Shan J, Hashimoto K. Soluble Epoxide Hydrolase as a Therapeutic Target for Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094951. [PMID: 35563342 PMCID: PMC9099663 DOI: 10.3390/ijms23094951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
It has been found that soluble epoxide hydrolase (sEH; encoded by the EPHX2 gene) in the metabolism of polyunsaturated fatty acids (PUFAs) plays a key role in inflammation, which, in turn, plays a part in the pathogenesis of neuropsychiatric disorders. Meanwhile, epoxy fatty acids such as epoxyeicosatrienoic acids (EETs), epoxyeicosatetraenoic acids (EEQs), and epoxyeicosapentaenoic acids (EDPs) have been found to exert neuroprotective effects in animal models of neuropsychiatric disorders through potent anti-inflammatory actions. Soluble expoxide hydrolase, an enzyme present in all living organisms, metabolizes epoxy fatty acids into the corresponding dihydroxy fatty acids, which are less active than the precursors. In this regard, preclinical findings using sEH inhibitors or Ephx2 knock-out (KO) mice have indicated that the inhibition or deficiency of sEH can have beneficial effects in several models of neuropsychiatric disorders. Thus, this review discusses the current findings of the role of sEH in neuropsychiatric disorders, including depression, autism spectrum disorder (ASD), schizophrenia, Parkinson’s disease (PD), and stroke, as well as the potential mechanisms underlying the therapeutic effects of sEH inhibitors.
Collapse
|
38
|
Zhu X, Li K, Gao Y. Adeno-associated virus-mediated in vivo suppression of expression of EPHX2 gene modulates the activity of paraventricular nucleus neurons in spontaneously hypertensive rats. Biochem Biophys Res Commun 2022; 606:121-127. [PMID: 35344709 DOI: 10.1016/j.bbrc.2022.03.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hypertension can be attributed to increased sympathetic activities. Presympathetic neurons in the paraventricular nucleus (PVN) of the hypothalamus are capable of modulating sympathetic outflow, thus contributing to the pathogenesis of neurogenic hypertension. Epoxyeicosatrienoic acids (EETs) were reported to have anti-hypertensive effects, which could be degraded by soluble epoxide hydrolase (sEH), encoded by EPHX2. However, the potential effect of EETs on PVN neuron activity and the underlying molecular mechanism are largely unknown. METHODS Knockdown of EPHX2 in spontaneously hypertensive rats (SHRs) was achieved by tail-intravenous injection of AAV plasmid containing shRNA targeting EPHX2. Whole-cell patch clamp was used to record action potentials of PVN neurons. An LC-MS/MS System was employed to determine 14,15-EET levels in rat cerebrospinal fluid. qPCR and western blotting were applied to examine the expression level of EPHX2 in various tissues. ELISA and immunofluorescence staining were applied to examine the levels of ATP, D-serine and glial fibrillary acidic protein (GFAP) in isolated astrocytes. RESULTS The expression level of EPHX2 was higher, while the level of 14,15-EET was lower in SHRs than normotensive Wistar-Kyoto rats (WKY) rats. The spike firing frequency of PNV neurons in SHRs was higher than in WKY rats at a given stimulus current, which could be reduced by either EPHX2 downregulation or 14,15-EET administration. In isolated hypothalamic astrocytes, the elevated intracellular ATP or D-serine induced by Angiotensin II (Ang II) treatment could be rescued by 14,15-EET addition or 14,15-EET combing serine racemase (SR) downregulation by siRNA, respectively. Furthermore, 14,15-EET treatment reduced the Ang II-induced elevation of GFAP immunofluorescence. CONCLUSIONS The elevation of EET levels by EPHX2 downregulation reduced presympathetic neuronal activity in the PVN of SHRs, leading to a reduced sympathetic outflow in hypertension rats. The ATP/SR/D-serine pathway of astrocytes is involved in EET-mediated neuroprotection.
Collapse
Affiliation(s)
- Xiaoming Zhu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Kuibao Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Yuanfeng Gao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
39
|
Yi GL, Zhu MZ, Cui HC, Yuan XR, Liu P, Tang J, Li YQ, Zhu XH. A hippocampus dependent neural circuit loop underlying the generation of auditory mismatch negativity. Neuropharmacology 2022; 206:108947. [PMID: 35026286 DOI: 10.1016/j.neuropharm.2022.108947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/11/2021] [Accepted: 01/06/2022] [Indexed: 11/16/2022]
Abstract
Extracting relevant information and transforming it into appropriate behavior, is a fundamental brain function, and requires the coordination between the sensory and cognitive systems, however, the underlying mechanisms of interplay between sensory and cognition systems remain largely unknown. Here, we developed a mouse model for mimicking human auditory mismatch negativity (MMN), a well-characterized translational biomarker for schizophrenia, and an index of early auditory information processing. We found that a subanesthetic dose of ketamine decreased the amplitude of MMN in adult mice. Using pharmacological and chemogenetic approaches, we identified an auditory cortex-entorhinal cortex-hippocampus neural circuit loop that is required for the generation of MMN. In addition, we found that inhibition of dCA1→MEC circuit impaired the auditory related fear discrimination. Moreover, we found that ketamine induced MMN deficiency by inhibition of long-range GABAergic projection from the CA1 region of the dorsal hippocampus to the medial entorhinal cortex. These results provided circuit insights for ketamine effects and early auditory information processing. As the entorhinal cortex is the interface between the neocortex and hippocampus, and the hippocampus is critical for the formation, consolidation, and retrieval of episodic memories and other cognition, our results provide a neural mechanism for the interplay between the sensory and cognition systems.
Collapse
Affiliation(s)
- Guo-Liang Yi
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Min-Zhen Zhu
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - He-Chen Cui
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin-Rui Yuan
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Liu
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jie Tang
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuan-Qing Li
- Research Center for Brain-Computer Interface, Pazhou Lab, Guangzhou, 510330, China
| | - Xin-Hong Zhu
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Research Center for Brain Health, Pazhou Lab, Guangzhou, 510330, China; School of Psychology, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
40
|
Li S, Sun Y, Song M, Song Y, Fang Y, Zhang Q, Li X, Song N, Ding J, Lu M, Hu G. NLRP3/caspase-1/GSDMD-mediated pyroptosis exerts a crucial role in astrocyte pathological injury in mouse model of depression. JCI Insight 2021; 6:146852. [PMID: 34877938 PMCID: PMC8675200 DOI: 10.1172/jci.insight.146852] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence suggests that astrocyte loss is one of the most important pathological features in the hippocampus of patients with major depressive disorder (MDD) and depressive mice. Pyroptosis is a recently discovered form of programmed cell death depending on Caspase-gasdermin D (Casp-GSDMD), which is involved in multiple neuropsychiatric diseases. However, the involvement of pyroptosis in the onset of MDD and glial pathological injury remains obscure. Here, we observed that depressive mice showed astrocytic pyroptosis, which was responsible for astrocyte loss, and selective serotonin reuptake inhibitor (SSRI) treatment could attenuate the pyroptosis induced by the chronic mild stress (CMS) model. Genetic KO of GSDMD, Casp-1, and astrocytic NOD-like receptor protein 3 (NLRP3) inflammasome in mice alleviated depression-like behaviors and inhibited the pyroptosis-associated protein expression. In contrast, overexpression of astrocytic GSDMD-N-terminal domain (GSDMD-N) in the hippocampus could abolish the improvement of behavioral alterations in GSDMD-deficient mice. This work illustrates that targeting the NLRP3/Casp-1/GSDMD-mediated pyroptosis may provide potential therapeutic benefits to stress-related astrocyte loss in the pathogenesis of depression.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yiming Sun
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengmeng Song
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuting Song
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yinquan Fang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, and
| | - Qingyu Zhang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xueting Li
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Nanshan Song
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, and
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, and
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, and.,Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Gang Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, and
| |
Collapse
|
41
|
Ben Haim L, Escartin C. Astrocytes and neuropsychiatric symptoms in neurodegenerative diseases: Exploring the missing links. Curr Opin Neurobiol 2021; 72:63-71. [PMID: 34628361 DOI: 10.1016/j.conb.2021.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 11/28/2022]
Abstract
Neurodegenerative diseases (NDs) are characterized by primary symptoms, such as cognitive or motor deficits. In addition, the presence of neuropsychiatric symptoms (NPS) in patients with ND is being increasingly acknowledged as an important disease feature. Yet, their neurobiological basis remains unclear and mostly centered on neurons while overlooking astrocytes, which are crucial regulators of neuronal function underlying complex behaviors. In this opinion article, we briefly review evidence for NPS in ND and discuss their experimental assessment in preclinical models. We then present recent studies showing that astrocyte-specific dysfunctions can lead to NPS. Because many astrocyte alterations are also observed in ND, we suggest that they might underlie ND-associated NPS. We argue that there is a need for dedicated preclinical studies assessing astrocyte-based therapeutic strategies targeting NPS in the context of ND.
Collapse
Affiliation(s)
- Lucile Ben Haim
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France.
| | - Carole Escartin
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France.
| |
Collapse
|
42
|
APOE4 genotype exacerbates the depression-like behavior of mice during aging through ATP decline. Transl Psychiatry 2021; 11:507. [PMID: 34611141 PMCID: PMC8492798 DOI: 10.1038/s41398-021-01631-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/04/2021] [Accepted: 09/16/2021] [Indexed: 12/27/2022] Open
Abstract
Population-based studies reveal that apolipoprotein E (APOE) ε4 gene allele is closely associated with late-life depression (LLD). However, its exact role and underlying mechanism remain obscure. The current study found that aged apoE4-targeted replacement (TR) mice displayed obvious depression-like behavior when compared with age-matched apoE3-TR mice. Furthermore, apoE4 increased stress-induced depression-like behaviors, accompanied by declines in the hippocampal 5-HT (1A) radioligand [18F] MPPF uptake evidenced by positron emission tomography (PET). In [18F]-fluorodeoxyglucose PET ([18F]-FDG PET) analyses, the FDG uptake in the prefrontal cortex, temporal cortex and hippocampus of apoE4-TR mice significantly declined when compared with that of apoE3-TR mice after acute stress. Further biochemical analysis revealed that ATP levels in the prefrontal cortex of apoE4-TR mice decreased during aging or stress process and ATP supplementation effectively rescued the depression-like behaviors of elderly apoE4-TR mice. In primary cultured astrocytes from the cortex of apoE-TR mice, apoE4, when compared with apoE3, obviously decreased the mitochondrial membrane potential, mitochondrial respiration, and glycolysis in a culture time-dependent manner. Our findings highlight that apoE4 is a potential risk factor of depression in elderly population by impairing the glucose metabolism, reducing ATP level, and damaging mitochondrial functions in astrocytes, which indicates that in clinical settings ATP supplementation may be effective for elderly depression patients with apoE4 carrier.
Collapse
|
43
|
Wang Q, Kong Y, Lin S, Wu DY, Hu J, Huang L, Zang WS, Li XW, Yang JM, Gao TM. The ATP Level in the mPFC Mediates the Antidepressant Effect of Calorie Restriction. Neurosci Bull 2021; 37:1303-1313. [PMID: 34089507 PMCID: PMC8423953 DOI: 10.1007/s12264-021-00726-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/31/2021] [Indexed: 11/25/2022] Open
Abstract
Food deprivation can rescue obesity and overweight-induced mood disorders, and promote mood performance in normal subjects. Animal studies and clinical research have revealed the antidepressant-like effect of calorie restriction, but little is known about the mechanism of calorie restriction-induced mood modification. Previous studies have found that astrocytes modulate depressive-like behaviors. Inositol 1,4,5-trisphosphate receptor type 2 (IP3R2) is the predominant isoform in mediating astrocyte Ca2+ signals and its genetic knockout mice are widely used to study astrocyte function in vivo. In this study, we showed that deletion of IP3R2 blocked the antidepressant-like effect induced by calorie restriction. In vivo microdialysis experiments demonstrated that calorie restriction induced an increase in ATP level in the medial prefrontal cortex (mPFC) in naïve mice but this effect disappeared in IP3R2-knockout mice, suggesting a role of astrocytic ATP in the calorie restriction-induced antidepressant effect. Further experiments showed that systemic administration and local infusion of ATP into the mPFC induced an antidepressant effect, whereas decreasing ATP by Apyrase in the mPFC blocked calorie restriction-induced antidepressant regulation. Together, these findings support a role for astrocytic ATP in the antidepressant-like effect caused by calorie restriction.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brian Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying Kong
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brian Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Song Lin
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brian Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ding-Yu Wu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brian Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian Hu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brian Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lang Huang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brian Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Si Zang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brian Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Wen Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brian Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brian Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brian Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
44
|
Huang Q, Zahid KR, Chen J, Pang X, Zhong M, Huang H, Pan W, Yin J, Raza U, Zeng J, Zhu X, Zeng T. KIN17 promotes tumor metastasis by activating EMT signaling in luminal-A breast cancer. Thorac Cancer 2021; 12:2013-2023. [PMID: 34008927 PMCID: PMC8258367 DOI: 10.1111/1759-7714.14004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Background Breast cancer (BC), the most common cause of cancer death in women, overtook lung cancer as the leading cause of cancer worldwide in 2020. Although many studies have proposed KIN17 as a biomarker of tumorigenesis in different cancer types, its role in tumor metastasis, particularly in BC metastasis, has been underexplored. This study aimed to explore the role of KIN17 in BC metastasis. Methods Survival analyses was performed to identify the association between KIN17 expression and BC patient survival in silico. Using lentivirus constructs, we developed bidirectional KIN17 expression (KD, knockdown; OE, overexpression) cellular models of luminal‐A (Lum‐A) breast cancer MCF‐7 cells. We performed in vitro wound healing, transwell with and without Matrigel assays, and in vivo tail‐vein metastasis assay to evaluate the migration and invasion abilities of MCF‐7 with stable KIN17 knockdown or overexpression. Western blotting was performed to compare the changes in protein expression. Results We found that KIN17 expression was associated with poor overall survival (OS), relapse‐free survival (RFS), distant metastasis‐free survival (DMFS) and post‐progression survival (PPS), particularly in Lum‐A breast cancer patients. Later, we found that KIN17 knockdown inhibited migration and invasion of MCF‐7 cells via regulating EMT‐associated signaling pathways in vitro and decreases metastatic spread of the disease in vivo. In contrast, KIN17 overexpression promoted migration and invasion of MCF‐7 cells in vitro and increased the metastatic spread of the disease in vivo. Conclusions Overall, our findings provide preliminary data which suggests KIN17 of importance to target in metastatic Lum‐A patients.
Collapse
Affiliation(s)
- Qiyuan Huang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Kashif Rafiq Zahid
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jinsi Chen
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiangxiong Pang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meifeng Zhong
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Hongling Huang
- Department of Basic Medicine, Medical College of Jiaying University, Meizhou, China
| | - Weifeng Pan
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jingxin Yin
- School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Umar Raza
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Jiamin Zeng
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinhong Zhu
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tao Zeng
- Laboratory Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
45
|
Serum soluble epoxide hydrolase related oxylipins and major depression in patients with type 2 diabetes. Psychoneuroendocrinology 2021; 126:105149. [PMID: 33503568 DOI: 10.1016/j.psyneuen.2021.105149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND People with type 2 diabetes mellitus (T2DM) are at increased risk for depression. Both conditions are associated with disturbances in polyunsaturated fatty acids. Omega-3 and omega-6 fatty acids can be converted into bioactive epoxides by cytochrome P450s (CYP450), which play pro-resolving roles in the inflammatory response; however, soluble epoxide hydrolase (sEH) metabolizes epoxides into diols, which lack pro-resolving functions and can be cytotoxic. Here, we survey serum CYP450- and sEH-derived metabolite concentrations in people with T2DM with and without a major depressive episode. METHODS Sunnybrook Type 2 Diabetes Study (NCT04455867) participants experiencing a major depressive episode (research version of the Structured Clinical Interview for DSM-5 criteria) were matched 1:1 for gender, glycosylated hemoglobin A1c and body mass index to participants without a current depressive episode. Depression severity was assessed using the Beck Depression Inventory 2nd Edition (BDI-II). From fasting morning blood, unesterified serum oxylipins were quantified by ultra-high-performance liquid chromatography tandem mass spectrometry following solid phase extraction, and interleukin-6 (IL-6) by enzyme-linked immunosorbent assay. RESULTS Between 20 depressed and 20 non-depressed participants (mean age 58.9 ± 8.5 years, 65% women) with T2DM, several sEH-derived fatty acid diols, but not IL-6, were higher among those with a depressive episode (effect sizes up to d = 0.796 for 17,18-DiHETE, a metabolite of eicosapentaenoic acid [EPA]; t = 2.516, p = 0.016). Among people with a depressive episode, two epoxides were correlated with lower BDI-II scores: 12(13)-EpOME (ρ = -0.541, p = 0.014) and 10(11)-EpDPE (ρ = -0.444, p = 0.049), metabolites of linoleic acid and docosahexaenoic acid (DHA), respectively, while the ratio of 12,13-DiHOME/12(13)-EpOME was correlated with higher BDI-II scores (ρ = 0.513, p = 0.021). CONCLUSIONS In people with T2DM, major depressive episodes and depressive symptom severity were associated with an oxylipin profile consistent with elimination of pro-resolving lipid mediators by sEH.
Collapse
|
46
|
Zhang Y, Zhu MZ, Qin XH, Zeng YN, Zhu XH. The Ghrelin/Growth Hormone Secretagogue Receptor System Is Involved in the Rapid and Sustained Antidepressant-Like Effect of Paeoniflorin. Front Neurosci 2021; 15:631424. [PMID: 33664648 PMCID: PMC7920966 DOI: 10.3389/fnins.2021.631424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/26/2021] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating mental illness affecting people worldwide. Although significant progress has been made in the development of therapeutic agents to treat this condition, fewer than half of all patients respond to currently available antidepressants, highlighting the urgent need for the development of new classes of antidepressant drugs. Here, we found that paeoniflorin (PF) produced rapid and sustained antidepressant-like effects in multiple mouse models of depression, including the forced swimming test and exposure to chronic mild stress (CMS). Moreover, PF decreased the bodyweight of mice without affecting food intake and glucose homeostasis, and also reduced the plasma levels of total ghrelin and the expression of ghrelin O-acyltransferase in the stomach; however, the plasma levels of ghrelin and the ghrelin/total ghrelin ratio were unaffected. Furthermore, PF significantly increased the expression of growth hormone secretagogue receptor 1 alpha (GHSR1α, encoded by the Ghsr gene) in the intestine, whereas the levels of GHSR1α in the brain were only marginally downregulated following subchronic PF treatment. Finally, the genetic deletion of Ghsr attenuated the antidepressant-like effects of PF in mice exposed to CMS. These results suggested that increased GHSR1α expression in the intestine mediates the antidepressant-like effects of PF. Understanding peripheral ghrelin/GHSR signaling may provide new insights for the screening of antidepressant drugs that produce fast-acting and sustained effects.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Mental Health, School of Basic Medical Science, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education & Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| | - Min-Zhen Zhu
- Institute of Mental Health, School of Basic Medical Science, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education & Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| | - Xi-He Qin
- Eusyn Medical Technology Company, Guangzhou, China
| | - Yuan-Ning Zeng
- Institute of Mental Health, School of Basic Medical Science, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education & Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| | - Xin-Hong Zhu
- Institute of Mental Health, School of Basic Medical Science, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education & Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,School of Psychology, Shenzhen University, Shenzhen, China
| |
Collapse
|
47
|
Hwang SN, Lee JS, Seo K, Lee H. Astrocytic Regulation of Neural Circuits Underlying Behaviors. Cells 2021; 10:cells10020296. [PMID: 33535587 PMCID: PMC7912785 DOI: 10.3390/cells10020296] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Astrocytes, characterized by a satellite-like morphology, are the most abundant type of glia in the central nervous system. Their main functions have been thought to be limited to providing homeostatic support for neurons, but recent studies have revealed that astrocytes actually actively interact with local neural circuits and play a crucial role in information processing and generating physiological and behavioral responses. Here, we review the emerging roles of astrocytes in many brain regions, particularly by focusing on intracellular changes in astrocytes and their interactions with neurons at the molecular and neural circuit levels.
Collapse
Affiliation(s)
- Sun-Nyoung Hwang
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
| | - Jae Seung Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea; (J.S.L.); (K.S.)
| | - Kain Seo
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea; (J.S.L.); (K.S.)
| | - Hyosang Lee
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea; (J.S.L.); (K.S.)
- Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Correspondence: ; Tel.: +82-53-785-6147
| |
Collapse
|
48
|
Pathogenic mechanisms of lipid mediator lysophosphatidic acid in chronic pain. Prog Lipid Res 2020; 81:101079. [PMID: 33259854 DOI: 10.1016/j.plipres.2020.101079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
A number of membrane lipid-derived mediators play pivotal roles in the initiation, maintenance, and regulation of various types of acute and chronic pain. Acute pain, comprising nociceptive and inflammatory pain warns us about the presence of damage or harmful stimuli. However, it can be efficiently reversed by opioid analgesics and anti-inflammatory drugs. Prostaglandin E2 and I2, the representative lipid mediators, are well-known causes of acute pain. However, some lipid mediators such as lipoxins, resolvins or endocannabinoids suppress acute pain. Various types of peripheral and central neuropathic pain (NeuP) as well as fibromyalgia (FM) are representatives of chronic pain and refractory owing to abnormal pain processing distinct from acute pain. Accumulating evidence demonstrated that lipid mediators represented by lysophosphatidic acid (LPA) are involved in the initiation and maintenance of both NeuP and FM in experimental animal models. The LPAR1-mediated peripheral mechanisms including dorsal root demyelination, Cavα2δ1 expression in dorsal root ganglion, and LPAR3-mediated amplification of central LPA production via glial cells are involved in the series of molecular mechanisms underlying NeuP. This review also discusses the involvement of lipid mediators in emerging research directives, including itch-sensing, sexual dimorphism, and the peripheral immune system.
Collapse
|
49
|
Augusto-Oliveira M, Arrifano GP, Takeda PY, Lopes-Araújo A, Santos-Sacramento L, Anthony DC, Verkhratsky A, Crespo-Lopez ME. Astroglia-specific contributions to the regulation of synapses, cognition and behaviour. Neurosci Biobehav Rev 2020; 118:331-357. [DOI: 10.1016/j.neubiorev.2020.07.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
|
50
|
Chen W, Wang M, Zhu M, Xiong W, Qin X, Zhu X. 14,15-Epoxyeicosatrienoic Acid Alleviates Pathology in a Mouse Model of Alzheimer's Disease. J Neurosci 2020; 40:8188-8203. [PMID: 32973044 PMCID: PMC7574654 DOI: 10.1523/jneurosci.1246-20.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of late-onset dementia, and there exists an unmet medical need for effective treatments for AD. The accumulation of neurotoxic amyloid-β (Aβ) plaques contributes to the pathophysiology of AD. EPHX2 encoding soluble epoxide hydrolase (sEH)-a key enzyme for epoxyeicosatrienoic acid (EET) signaling that is mainly expressed in lysosomes of astrocytes in the adult brain-is cosited at a locus associated with AD, but it is unclear whether and how it contributes to the pathophysiology of AD. In this report, we show that the pharmacologic inhibition of sEH with 1-trifluoromethoxyphenyl- 3-(1-propionylpiperidin-4-yl) urea (TPPU) or the genetic deletion of Ephx2 reduces Aβ deposition in the brains of both male and female familial Alzheimer's disease (5×FAD) model mice. The inhibition of sEH with TPPU or the genetic deletion of Ephx2 alleviated cognitive deficits and prevented astrocyte reactivation in the brains of 6-month-old male 5×FAD mice. 14,15-EET levels in the brains of these mice were also increased by sEH inhibition. In cultured adult astrocytes treated with TPPU or 14,15-EET, astrocyte Aβ clearance was increased through enhanced lysosomal biogenesis. Infusion of 14,15-EET into the hippocampus of 5×FAD mice prevented the aggregation of Aβ. Notably, a higher concentration of 14,15-EET (200 ng/ml) infusion into the hippocampus reversed Aβ deposition in the brains of 6-month-old male 5×FAD mice. These results indicate that EET signaling, especially 14,15-EET, plays a key role in the pathophysiology of AD, and that targeting this pathway is a potential therapeutic strategy for the treatment of AD.SIGNIFICANCE STATEMENT There are limited treatment options for Alzheimer's disease (AD). EPHX2 encoding soluble epoxide hydrolase (sEH) is located at a locus that is linked to late-onset AD, but its contribution to the pathophysiology of AD is unclear. Here, we demonstrate that sEH inhibition or Ephx2 deletion alleviates pathology in familial Alzheimer's disease (5×FAD) mice. Inhibiting sEH or increasing 14,15-epoxyeicosatrienoic acid (EET) enhanced lysosomal biogenesis and amyloid-β (Aβ) clearance in cultured adult astrocytes. Moreover, the infusion of 14,15-EET into the hippocampus of 5×FAD mice not only prevented the aggregation of Aβ, but also reversed the deposition of Aβ. Thus, 14,15-EET plays a key role in the pathophysiology of AD and therapeutic strategies that target this pathway may be an effective treatment.
Collapse
Affiliation(s)
- Wenjun Chen
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education and Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou 510515, People's Republic of China
| | - Mengyao Wang
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education and Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou 510515, People's Republic of China
| | - Minzhen Zhu
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education and Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou 510515, People's Republic of China
| | - Wenchao Xiong
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education and Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou 510515, People's Republic of China
| | - Xihe Qin
- Eusyn Medical Technology Company, Guangzhou 510663, People's Republic of China
| | - Xinhong Zhu
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education and Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou 510515, People's Republic of China
- School of Psychology, Shenzhen University, Shenzhen 518060, People's Republic of China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, People's Republic of China
| |
Collapse
|