1
|
Sudarsanam S, Guzman-Clavel LE, Dar N, Ziak J, Shahid N, Jin XO, Kolodkin AL. Mef2c Controls Postnatal Callosal Axon Targeting by Regulating Sensitivity to Ephrin Repulsion. J Neurosci 2025; 45:e0201252025. [PMID: 40228894 PMCID: PMC12096051 DOI: 10.1523/jneurosci.0201-25.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025] Open
Abstract
Intracortical circuits, including long-range callosal projections, are crucial for information processing. The development of neuronal connectivity in the cerebral cortex is contingent on ordered emergence of neuronal classes followed by the formation of class-specific axon projections. However, the genetic determinants of intracortical axon targeting are still unclear. We find that the transcription factor myocyte enhancer factor 2-c (Mef2c) directs the development of somatosensory cortical (S1) Layer 4 and 5 identity in murine postmitotic pyramidal neurons during embryogenesis. During postnatal development, Mef2c expression shifts to Layer 2/3 callosal projection neurons (L2/3 CPNs). At this later developmental stage, we identify a novel function for Mef2c in contralateral homotopic domain targeting by S1-L2/3 CPN axons. We employ functional manipulation of EphrinA-EphA signaling in Mef2c mutant CPNs and demonstrate that Mef2c represses EphA6 to desensitize S1-L2/3 CPN axons to EphrinA5 repulsion at their contralateral targets. Our work uncovers dual roles for Mef2c in cortical development: regulation of laminar subtype specification during embryogenesis and axon targeting in postnatal callosal neurons.
Collapse
Affiliation(s)
- Sriram Sudarsanam
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Luis E Guzman-Clavel
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Nyle Dar
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jakub Ziak
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Naseer Shahid
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Xinyu O Jin
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Alex L Kolodkin
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
2
|
Sudarsanam S, Guzman-Clavel L, Dar N, Ziak J, Shahid N, Jin XO, Kolodkin AL. Mef2c Controls Postnatal Callosal Axon Targeting by Regulating Sensitivity to Ephrin Repulsion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634300. [PMID: 39896513 PMCID: PMC11785193 DOI: 10.1101/2025.01.22.634300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Cortical connectivity is contingent on ordered emergence of neuron subtypes followed by the formation of subtype-specific axon projections. Intracortical circuits, including long-range callosal projections, are crucial for information processing, but mechanisms of intracortical axon targeting are still unclear. We find that the transcription factor Myocyte enhancer factor 2-c (Mef2c) directs the development of somatosensory cortical (S1) layer 4 and 5 pyramidal neurons during embryogenesis. During early postnatal development, Mef2c expression shifts to layer 2/3 callosal projection neurons (L2/3 CPNs), and we find a novel function for Mef2c in targeting homotopic contralateral cortical regions by S1-L2/3 CPNs. We demonstrate, using functional manipulation of EphA-EphrinA signaling in Mef2c-mutant CPNs, that Mef2c downregulates EphA6 to desensitize S1-L2/3 CPN axons to EphrinA5-repulsion at their contralateral targets. Our work uncovers dual roles for Mef2c in cortical development: regulation of laminar subtype specification during embryogenesis, and axon targeting in postnatal callosal neurons.
Collapse
Affiliation(s)
- Sriram Sudarsanam
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- These authors contributed equally
| | - Luis Guzman-Clavel
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- These authors contributed equally
| | - Nyle Dar
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jakub Ziak
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Naseer Shahid
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinyu O. Jin
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alex L. Kolodkin
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Senior author
- Lead contact
| |
Collapse
|
3
|
Deng X, Zhu S. Ephrin-mediated dendrite-dendrite repulsion regulates compartment-specific targeting of dendrites in the central nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620860. [PMID: 39554189 PMCID: PMC11565762 DOI: 10.1101/2024.10.29.620860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Neurons often forms synaptic contacts at specific subcellular domains to differentially regulate the activity of target neurons. However, how dendrites are targeted to specific subcellular domains of axons is rarely studied. Here we use Drosophila mushroom body out neurons (MBONs) and local dopaminergic neurons (DANs) as a model system to study how dendrites and axons are targeted to specific subcellular domains (compartments) of mushroom body axonal lobes to form synaptic contacts. We found that Ephrin-mediated dendrite-dendrite repulsion between neighboring compartments restricts the projection of MBON dendrites to their specific compartments and prevents the formation of ectopic synaptic connections with DAN axons in neighboring compartments. Meanwhile, DAN neurons in a subset of compartments may also depend on their partner MBONs for projecting their axons to a specific compartment and cover the same territory as their partner MBON dendrites. Our work reveals that compartment-specific targeting of MBON dendrites and DAN axons is regulated in part by a combination of dendrite-dendrite repulsion between neighboring compartments and dendrite-axon interactions within the same compartment.
Collapse
|
4
|
Martins-Costa C, Wiegers A, Pham VA, Sidhaye J, Doleschall B, Novatchkova M, Lendl T, Piber M, Peer A, Möseneder P, Stuempflen M, Chow SYA, Seidl R, Prayer D, Höftberger R, Kasprian G, Ikeuchi Y, Corsini NS, Knoblich JA. ARID1B controls transcriptional programs of axon projection in an organoid model of the human corpus callosum. Cell Stem Cell 2024; 31:866-885.e14. [PMID: 38718796 DOI: 10.1016/j.stem.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/13/2024] [Accepted: 04/17/2024] [Indexed: 06/09/2024]
Abstract
Mutations in ARID1B, a member of the mSWI/SNF complex, cause severe neurodevelopmental phenotypes with elusive mechanisms in humans. The most common structural abnormality in the brain of ARID1B patients is agenesis of the corpus callosum (ACC), characterized by the absence of an interhemispheric white matter tract that connects distant cortical regions. Here, we find that neurons expressing SATB2, a determinant of callosal projection neuron (CPN) identity, show impaired maturation in ARID1B+/- neural organoids. Molecularly, a reduction in chromatin accessibility of genomic regions targeted by TCF-like, NFI-like, and ARID-like transcription factors drives the differential expression of genes required for corpus callosum (CC) development. Through an in vitro model of the CC tract, we demonstrate that this transcriptional dysregulation impairs the formation of long-range axonal projections, causing structural underconnectivity. Our study uncovers new functions of the mSWI/SNF during human corticogenesis, identifying cell-autonomous axonogenesis defects in SATB2+ neurons as a cause of ACC in ARID1B patients.
Collapse
Affiliation(s)
- Catarina Martins-Costa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Andrea Wiegers
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Vincent A Pham
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Jaydeep Sidhaye
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Balint Doleschall
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Thomas Lendl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Marielle Piber
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Angela Peer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Paul Möseneder
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Marlene Stuempflen
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, 153-8505 Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, 113-0032 Tokyo, Japan
| | - Rainer Seidl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, 153-8505 Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, 113-0032 Tokyo, Japan
| | - Nina S Corsini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
5
|
Gavrish M, Kustova A, Celis Suescún JC, Bessa P, Mitina N, Tarabykin V. Molecular mechanisms of corpus callosum development: a four-step journey. Front Neuroanat 2024; 17:1276325. [PMID: 38298831 PMCID: PMC10827913 DOI: 10.3389/fnana.2023.1276325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024] Open
Abstract
The Corpus Callosum (CC) is a bundle of axons connecting the cerebral hemispheres. It is the most recent structure to have appeared during evolution of placental mammals. Its development is controlled by a very complex interplay of many molecules. In humans it contains almost 80% of all commissural axons in the brain. The formation of the CC can be divided into four main stages, each controlled by numerous intracellular and extracellular molecular factors. First, a newborn neuron has to specify an axon, leave proliferative compartments, the Ventricular Zone (VZ) and Subventricular Zone (SVZ), migrate through the Intermediate Zone (IZ), and then settle at the Cortical Plate (CP). During the second stage, callosal axons navigate toward the midline within a compact bundle. Next stage is the midline crossing into contralateral hemisphere. The last step is targeting a defined area and synapse formation. This review provides an insight into these four phases of callosal axons development, as well as a description of the main molecular players involved.
Collapse
Affiliation(s)
- Maria Gavrish
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Angelina Kustova
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Juan C. Celis Suescún
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Paraskevi Bessa
- Charité Hospital, Institute of Cell Biology and Neurobiology, Berlin, Germany
| | - Natalia Mitina
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Victor Tarabykin
- Charité Hospital, Institute of Cell Biology and Neurobiology, Berlin, Germany
| |
Collapse
|
6
|
Lynton Z, Suárez R, Fenlon LR. Brain plasticity following corpus callosum agenesis or loss: a review of the Probst bundles. Front Neuroanat 2023; 17:1296779. [PMID: 38020213 PMCID: PMC10657877 DOI: 10.3389/fnana.2023.1296779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
The corpus callosum is the largest axonal tract in the human brain, connecting the left and right cortical hemipheres. This structure is affected in myriad human neurodevelopmental disorders, and can be entirely absent as a result of congenital or surgical causes. The age when callosal loss occurs, for example via surgical section in cases of refractory epilepsy, correlates with resulting brain morphology and neuropsychological outcomes, whereby an earlier loss generally produces relatively improved interhemispheric connectivity compared to a loss in adulthood (known as the "Sperry's paradox"). However, the mechanisms behind these age-dependent differences remain unclear. Perhaps the best documented and most striking of the plastic changes that occur due to developmental, but not adult, callosal loss is the formation of large, bilateral, longitudinal ectopic tracts termed Probst bundles. Despite over 100 years of research into these ectopic tracts, which are the largest and best described stereotypical ectopic brain tracts in humans, much remains unclear about them. Here, we review the anatomy of the Probst bundles, along with evidence for their faciliatory or detrimental function, the required conditions for their formation, patterns of etiology, and mechanisms of development. We provide hypotheses for many of the remaining mysteries of the Probst bundles, including their possible relationship to preserved interhemispheric communication following corpus callosum absence. Future research into naturally occurring plastic tracts such as Probst bundles will help to inform the general rules governing axon plasticity and disorders of brain miswiring.
Collapse
Affiliation(s)
- Zorana Lynton
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Rodrigo Suárez
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Laura R. Fenlon
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
7
|
Strong TA, Esquivel J, Wang Q, Ledon PJ, Wang H, Gaidosh G, Tse D, Pelaez D. Activation of multiple Eph receptors on neuronal membranes correlates with the onset of optic neuropathy. EYE AND VISION (LONDON, ENGLAND) 2023; 10:42. [PMID: 37779186 PMCID: PMC10544557 DOI: 10.1186/s40662-023-00359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Optic neuropathy is a major cause of irreversible blindness, yet the molecular determinants that contribute to neuronal demise have not been fully elucidated. Several studies have identified 'ephrin signaling' as one of the most dysregulated pathways in the early pathophysiology of optic neuropathy with varied etiologies. Developmentally, gradients in ephrin signaling coordinate retinotopic mapping via repulsive modulation of cytoskeletal dynamics in neuronal membranes. Little is known about the role ephrin signaling plays in the post-natal visual system and its correlation with the onset of optic neuropathy. METHODS Postnatal mouse retinas were collected for mass spectrometry analysis for erythropoietin-producing human hepatocellular (Eph) receptors. Optic nerve crush (ONC) model was employed to induce optic neuropathy, and proteomic changes during the acute phase of neuropathic onset were analyzed. Confocal and super-resolution microscopy determined the cellular localization of activated Eph receptors after ONC injury. Eph receptor inhibitors assessed the neuroprotective effect of ephrin signaling modulation. RESULTS Mass spectrometry revealed expression of seven Eph receptors (EphA2, A4, A5, B1, B2, B3, and B6) in postnatal mouse retinal tissue. Immunoblotting analysis indicated a significant increase in phosphorylation of these Eph receptors 48 h after ONC. Confocal microscopy demonstrated the presence of both subclasses of Eph receptors within the retina. Stochastic optical reconstruction microscopy (STORM) super-resolution imaging combined with optimal transport colocalization analysis revealed a significant co-localization of activated Eph receptors with injured neuronal cells, compared to uninjured neuronal and/or injured glial cells, 48 h post-ONC. Eph receptor inhibitors displayed notable neuroprotective effects for retinal ganglion cells (RGCs) after six days of ONC injury. CONCLUSIONS Our findings demonstrate the functional presence of diverse Eph receptors in the postnatal mammalian retina, capable of modulating multiple biological processes. Pan-Eph receptor activation contributes to the onset of neuropathy in optic neuropathies, with preferential activation of Eph receptors on neuronal processes in the inner retina following optic nerve injury. Notably, Eph receptor activation precedes neuronal loss. We observed a neuroprotective effect on RGCs upon inhibiting Eph receptors. Our study highlights the importance of investigating this repulsive pathway in early optic neuropathies and provides a comprehensive characterization of the receptors present in the developed retina of mice, relevant to both homeostasis and disease processes.
Collapse
Affiliation(s)
- Thomas A Strong
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, USA
| | - Juan Esquivel
- Department of Physics, University of Florida College of Liberal Arts and Sciences, Gainesville, FL, USA
| | - Qikai Wang
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA
| | - Paul J Ledon
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hua Wang
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA
| | - Gabriel Gaidosh
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David Tse
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA
| | - Daniel Pelaez
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA.
- Department of Biomedical Engineering, University of Miami College of Engineering, University of Miami, Coral Gables, FL, USA.
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
8
|
Altounian M, Bellon A, Mann F. Neuronal miR-17-5p contributes to interhemispheric cortical connectivity defects induced by prenatal alcohol exposure. Cell Rep 2023; 42:113020. [PMID: 37610874 DOI: 10.1016/j.celrep.2023.113020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/30/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
Structural and functional deficits in brain connectivity are reported in patients with fetal alcohol spectrum disorders (FASDs), but whether and how prenatal alcohol exposure (PAE) affects axonal development of neurons and disrupts wiring between brain regions is unknown. Here, we develop a mouse model of moderate alcohol exposure during prenatal brain wiring to study the effects of PAE on corpus callosum (CC) development. PAE induces aberrant navigation of interhemispheric CC axons that persists even after exposure ends, leading to ectopic termination in the contralateral cortex. The neuronal miR-17-5p and its target ephrin type A receptor 4 (EphA4) mediate the effect of alcohol on the contralateral targeting of CC axons. Thus, altered microRNA-mediated regulation of axonal guidance may have implications for interhemispheric cortical connectivity and associated behaviors in FASD.
Collapse
Affiliation(s)
| | - Anaïs Bellon
- Aix Marseille University, INSERM, INMED, Marseille, France
| | - Fanny Mann
- Aix Marseille University, CNRS, IBDM, Marseille, France.
| |
Collapse
|
9
|
Strong TA, Esquivel J, Wang Q, Ledon PJ, Wang H, Gaidosh G, Tse D, Pelaez D. Activation of Multiple Eph Receptors on Neuronal Membranes Correlates with The Onset of Traumatic Optic Neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543735. [PMID: 37333178 PMCID: PMC10274644 DOI: 10.1101/2023.06.05.543735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Optic neuropathy (ON) is a major cause of irreversible blindness, yet the molecular determinants that contribute to neuronal demise have not been fully elucidated. Several studies have identified 'ephrin signaling' as one of the most dysregulated pathways in the early pathophysiology of ON with varied etiologies. Developmentally, gradients in ephrin signaling coordinate retinotopic mapping via repulsive modulation of cytoskeletal dynamics in neuronal membranes. Little is known about the role ephrin signaling played in the post-natal visual system and its correlation with the onset of optic neuropathy. Methods Postnatal mouse retinas were collected for mass spectrometry analysis for Eph receptors. Optic nerve crush (ONC) model was employed to induce optic neuropathy, and proteomic changes during the acute phase of neuropathic onset were analyzed. Confocal and super-resolution microscopy determined the cellular localization of activated Eph receptors after ONC injury. Eph receptor inhibitors assessed the neuroprotective effect of ephrin signaling modulation. Results Mass spectrometry revealed expression of seven Eph receptors (EphA2, A4, A5, B1, B2, B3, and B6) in postnatal mouse retinal tissue. Immunoblotting analysis indicated a significant increase in phosphorylation of these Eph receptors 48 hours after ONC. Confocal microscopy demonstrated the presence of both subclasses of Eph receptors in the inner retinal layers. STORM super-resolution imaging combined with optimal transport colocalization analysis revealed a significant co-localization of activated Eph receptors with injured neuronal processes, compared to uninjured neuronal and/or injured glial cells, 48 hours post-ONC. Eph receptor inhibitors displayed notable neuroprotective effects after 6 days of ONC injury. Conclusions Our findings demonstrate the functional presence of diverse Eph receptors in the postnatal mammalian retina, capable of modulating multiple biological processes. Pan-Eph receptor activation contributes to the onset of neuropathy in ONs, with preferential activation of Eph receptors on neuronal processes in the inner retina following optic nerve injury. Notably, Eph receptor activation precedes neuronal loss. We observed neuroprotective effects upon inhibiting Eph receptors. Our study highlights the importance of investigating this repulsive pathway in early optic neuropathies and provides a comprehensive characterization of the receptors present in the developed retina of mice, relevant to both homeostasis and disease processes.
Collapse
Affiliation(s)
- Thomas A. Strong
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Department of Cell Biology, University of Miami Miller School of Medicine
| | - Juan Esquivel
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Qikai Wang
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Paul J. Ledon
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Hua Wang
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Gabriel Gaidosh
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - David Tse
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Daniel Pelaez
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Department of Biomedical Engineering, University of Miami College of Engineering, University of Miami, Coral Gables, FL, United States of America
- Department of Cell Biology, University of Miami Miller School of Medicine
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| |
Collapse
|
10
|
Yan K, Bormuth I, Bormuth O, Tutukova S, Renner A, Bessa P, Schaub T, Rosário M, Tarabykin V. TrkB-dependent EphrinA reverse signaling regulates callosal axon fasciculate growth downstream of Neurod2/6. Cereb Cortex 2023; 33:1752-1767. [PMID: 35462405 DOI: 10.1093/cercor/bhac170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/14/2022] Open
Abstract
Abnormal development of corpus callosum is relatively common and causes a broad spectrum of cognitive impairments in humans. We use acallosal Neurod2/6-deficient mice to study callosal axon guidance within the ipsilateral cerebral cortex. Initial callosal tracts form but fail to traverse the ipsilateral cingulum and are not attracted towards the midline in the absence of Neurod2/6. We show that the restoration of Ephrin-A4 (EfnA4) expression in the embryonic neocortex of Neurod2/6-deficient embryos is sufficient to partially rescue targeted callosal axon growth towards the midline. EfnA4 cannot directly mediate reverse signaling within outgrowing axons, but it forms co-receptor complexes with TrkB (Ntrk2). The ability of EfnA4 to rescue the guided growth of a subset of callosal axons in Neurod2/6-deficient mice is abolished by the co-expression of dominant negative TrkBK571N (kinase-dead) or TrkBY515F (SHC-binding deficient) variants, but not by TrkBY816F (PLCγ1-binding deficient). Additionally, EphA4 is repulsive to EfnA4-positive medially projecting axons in organotypic brain slice culture. Collectively, we suggest that EfnA4-mediated reverse signaling acts via TrkB-SHC and is required for ipsilateral callosal axon growth accuracy towards the midline downstream of Neurod family factors.
Collapse
Affiliation(s)
- Kuo Yan
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, D-10117, Berlin, Germany
| | - Ingo Bormuth
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, D-10117, Berlin, Germany
| | - Olga Bormuth
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, D-10117, Berlin, Germany.,Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 603950, Nizhny Novgorod Oblast, Russia
| | - Svetlana Tutukova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 603950, Nizhny Novgorod Oblast, Russia.,Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009, Tomsk, Russia
| | - Ana Renner
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, D-10117, Berlin, Germany
| | - Paraskevi Bessa
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, D-10117, Berlin, Germany
| | - Theres Schaub
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, D-10117, Berlin, Germany
| | - Marta Rosário
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, D-10117, Berlin, Germany
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, D-10117, Berlin, Germany.,Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 603950, Nizhny Novgorod Oblast, Russia.,Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009, Tomsk, Russia
| |
Collapse
|
11
|
The Biological Behaviors of Neural Stem Cell Affected by Microenvironment from Host Organotypic Brain Slices under Different Conditions. Int J Mol Sci 2023; 24:ijms24044182. [PMID: 36835592 PMCID: PMC9964775 DOI: 10.3390/ijms24044182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Therapeutic strategies based on neural stem cells (NSCs) transplantation bring new hope for neural degenerative disorders, while the biological behaviors of NSCs after being grafted that were affected by the host tissue are still largely unknown. In this study, we engrafted NSCs that were isolated from a rat embryonic cerebral cortex onto organotypic brain slices to examine the interaction between grafts and the host tissue both in normal and pathological conditions, including oxygen-glucose deprivation (OGD) and traumatic injury. Our data showed that the survival and differentiation of NSCs were strongly influenced by the microenvironment of the host tissue. Enhanced neuronal differentiation was observed in normal conditions, while significantly more glial differentiation was observed in injured brain slices. The process growth of grafted NSCs was guided by the cytoarchitecture of host brain slices and showed the distinct difference between the cerebral cortex, corpus callosum and striatum. These findings provided a powerful resource for unraveling how the host environment determines the fate of grafted NSCs, and raise the prospect of NSCs transplantation therapy for neurological diseases.
Collapse
|
12
|
Yang KY, Zhao S, Feng H, Shen J, Chen Y, Wang ST, Wang SJ, Zhang YX, Wang Y, Guo C, Liu H, Tang TS. Ca 2+ homeostasis maintained by TMCO1 underlies corpus callosum development via ERK signaling. Cell Death Dis 2022; 13:674. [PMID: 35927240 PMCID: PMC9352667 DOI: 10.1038/s41419-022-05131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023]
Abstract
Transmembrane of coiled-coil domains 1 (TMCO1) plays an important role in maintaining homeostasis of calcium (Ca2+) stores in the endoplasmic reticulum (ER). TMCO1-defect syndrome shares multiple features with human cerebro-facio-thoracic (CFT) dysplasia, including abnormal corpus callosum (CC). Here, we report that TMCO1 is required for the normal development of CC through sustaining Ca2+ homeostasis. Tmco1-/- mice exhibit severe agenesis of CC with stalled white matter fiber bundles failing to pass across the midline. Mechanistically, the excessive Ca2+ signals caused by TMCO1 deficiency result in upregulation of FGFs and over-activation of ERK, leading to an excess of glial cell migration and overpopulated midline glia cells in the indusium griseum which secretes Slit2 to repulse extension of the neural fiber bundles before crossing the midline. Supportingly, using the clinical MEK inhibitors to attenuate the over-activated FGF/ERK signaling can significantly improve the CC formation in Tmco1-/- brains. Our findings not only unravel the underlying mechanism of abnormal CC in TMCO1 defect syndrome, but also offer an attractive prevention strategy to relieve the related agenesis of CC in patients.
Collapse
Affiliation(s)
- Ke-Yan Yang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Song Zhao
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Haiping Feng
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jiaqi Shen
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yuwei Chen
- grid.410726.60000 0004 1797 8419Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101 China
| | - Si-Tong Wang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Si-Jia Wang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yu-Xin Zhang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yun Wang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Caixia Guo
- grid.410726.60000 0004 1797 8419Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101 China
| | - Hongmei Liu
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China ,grid.9227.e0000000119573309Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Tie-Shan Tang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China ,grid.9227.e0000000119573309Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| |
Collapse
|
13
|
Sapir T, Kshirsagar A, Gorelik A, Olender T, Porat Z, Scheffer IE, Goldstein DB, Devinsky O, Reiner O. Heterogeneous nuclear ribonucleoprotein U (HNRNPU) safeguards the developing mouse cortex. Nat Commun 2022; 13:4209. [PMID: 35864088 PMCID: PMC9304408 DOI: 10.1038/s41467-022-31752-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
HNRNPU encodes the heterogeneous nuclear ribonucleoprotein U, which participates in RNA splicing and chromatin organization. Microdeletions in the 1q44 locus encompassing HNRNPU and other genes and point mutations in HNRNPU cause brain disorders, including early-onset seizures and severe intellectual disability. We aimed to understand HNRNPU’s roles in the developing brain. Our work revealed that HNRNPU loss of function leads to rapid cell death of both postmitotic neurons and neural progenitors, with an apparent higher sensitivity of the latter. Further, expression and alternative splicing of multiple genes involved in cell survival, cell motility, and synapse formation are affected following Hnrnpu’s conditional truncation. Finally, we identified pharmaceutical and genetic agents that can partially reverse the loss of cortical structures in Hnrnpu mutated embryonic brains, ameliorate radial neuronal migration defects and rescue cultured neural progenitors’ cell death. HNRNPU is an RNA splicing protein associated with brain disorders such as early onset seizures. Here they show that HNRNPU functions to maintain neural progenitors and their progeny by regulating splicing of key neuronal genes.
Collapse
Affiliation(s)
- Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aditya Kshirsagar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Gorelik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ingrid E Scheffer
- The University of Melbourne, Austin Health and Royal Children's Hospital, Florey and Murdoch Children's Research Institutes, Melbourne, VIC, Australia
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | | | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Abstract
The EPH receptor tyrosine kinases and their signaling partners, the EPHRINS, comprise a large class of cell signaling molecules that plays diverse roles in development. As cell membrane-anchored signaling molecules, they regulate cellular organization by modulating the strength of cellular contacts, usually by impacting the actin cytoskeleton or cell adhesion programs. Through these cellular functions, EPH/EPHRIN signaling often regulates tissue shape. Indeed, recent evidence indicates that this signaling family is ancient and associated with the origin of multicellularity. Though extensively studied, our understanding of the signaling mechanisms employed by this large family of signaling proteins remains patchwork, and a truly "canonical" EPH/EPHRIN signal transduction pathway is not known and may not exist. Instead, several foundational evolutionarily conserved mechanisms are overlaid by a myriad of tissue -specific functions, though common themes emerge from these as well. Here, I review recent advances and the related contexts that have provided new understanding of the conserved and varied molecular and cellular mechanisms employed by EPH/EPHRIN signaling during development.
Collapse
Affiliation(s)
- Jeffrey O Bush
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, United States; Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, United States; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, United States; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
15
|
Rayêe D, Iack PM, Christoff RR, Lourenço MR, Bonifácio C, Boltz J, Lent R, Garcez PP. The Dynamics of Axon Bifurcation Development in the Cerebral Cortex of Typical and Acallosal Mice. Neuroscience 2021; 477:14-24. [PMID: 34601063 DOI: 10.1016/j.neuroscience.2021.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 11/30/2022]
Abstract
The corpus callosum (CC) is a major interhemispheric commissure of placental mammals. Early steps of CC formation rely on guidance strategies, such as axonal branching and collateralization. Here we analyze the time-course dynamics of axonal bifurcation during typical cortical development or in a CC dysgenesis mouse model. We use Swiss mice as a typical CC mouse model and find that axonal bifurcation rates rise in the cerebral cortex from embryonic day (E)17 and are reduced by postnatal day (P)9. Since callosal neurons populate deep and superficial cortical layers, we compare the axon bifurcation ratio between those neurons by electroporating ex vivo brains at E13 and E15, using eGFP reporter to label the newborn neurons on organotypic slices. Our results suggest that deep layer neurons bifurcate 32% more than superficial ones. To investigate axonal bifurcation in CC dysgenesis, we use BALB/c mice as a spontaneous CC dysgenesis model. BALB/c mice present a typical layer distribution of SATB2 callosal cells, despite the occurrence of callosal anomalies. However, using anterograde DiI tracing, we find that BALB/c mice display increased rates of axonal bifurcations during early and late cortical development in the medial frontal cortex. Midline guidepost cells adjacent to the medial frontal cortex are significant reduced in the CC dysgenesis mouse model. Altogether these data suggest that callosal collateral axonal exuberance is maintained in the absence of midline guidepost signaling and might facilitate aberrant connections in the CC dysgenesis mouse model.
Collapse
Affiliation(s)
- Danielle Rayêe
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Institute of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Pamela Meneses Iack
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Raissa R Christoff
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Michele R Lourenço
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro - IFRJ, Brazil
| | | | - Jürgen Boltz
- Institute of General Zoology and Animal Physiology, University of Jena, 07743 Jena, Germany
| | - Roberto Lent
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Institute D'Or for Research and Education, Rio de Janeiro, Brazil
| | - Patricia P Garcez
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Morcom L, Gobius I, Marsh APL, Suárez R, Lim JWC, Bridges C, Ye Y, Fenlon LR, Zagar Y, Douglass AM, Donahoo ALS, Fothergill T, Shaikh S, Kozulin P, Edwards TJ, Cooper HM, IRC5 Consortium, Sherr EH, Chédotal A, Leventer RJ, Lockhart PJ, Richards LJ. DCC regulates astroglial development essential for telencephalic morphogenesis and corpus callosum formation. eLife 2021; 10:e61769. [PMID: 33871356 PMCID: PMC8116049 DOI: 10.7554/elife.61769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 04/18/2021] [Indexed: 02/04/2023] Open
Abstract
The forebrain hemispheres are predominantly separated during embryogenesis by the interhemispheric fissure (IHF). Radial astroglia remodel the IHF to form a continuous substrate between the hemispheres for midline crossing of the corpus callosum (CC) and hippocampal commissure (HC). Deleted in colorectal carcinoma (DCC) and netrin 1 (NTN1) are molecules that have an evolutionarily conserved function in commissural axon guidance. The CC and HC are absent in Dcc and Ntn1 knockout mice, while other commissures are only partially affected, suggesting an additional aetiology in forebrain commissure formation. Here, we find that these molecules play a critical role in regulating astroglial development and IHF remodelling during CC and HC formation. Human subjects with DCC mutations display disrupted IHF remodelling associated with CC and HC malformations. Thus, axon guidance molecules such as DCC and NTN1 first regulate the formation of a midline substrate for dorsal commissures prior to their role in regulating axonal growth and guidance across it.
Collapse
Affiliation(s)
- Laura Morcom
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Ilan Gobius
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Ashley PL Marsh
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Royal Children’s HospitalParkvilleAustralia
- Department of Paediatrics, University of MelbourneParkvilleAustralia
| | - Rodrigo Suárez
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Jonathan WC Lim
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Caitlin Bridges
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Yunan Ye
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Laura R Fenlon
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Yvrick Zagar
- Sorbonne Université, INSERM, CNRS, Institut de la VisionParisFrance
| | - Amelia M Douglass
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | | | - Thomas Fothergill
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Samreen Shaikh
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Peter Kozulin
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Timothy J Edwards
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
- The University of Queensland, Faculty of MedicineBrisbaneAustralia
| | - Helen M Cooper
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - IRC5 Consortium
- Members and Affiliates of the International Research Consortium for the Corpus Callosum and Cerebral Connectivity (IRC5)Los AngelesUnited States
| | - Elliott H Sherr
- Departments of Neurology and Pediatrics, Institute of Human Genetics and Weill Institute of Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la VisionParisFrance
| | - Richard J Leventer
- Department of Paediatrics, University of MelbourneParkvilleAustralia
- Neuroscience Research Group, Murdoch Children’s Research InstituteParkvilleAustralia
- Department of Neurology, University of Melbourne, Royal Children’s HospitalParkvilleAustralia
| | - Paul J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Royal Children’s HospitalParkvilleAustralia
- Department of Paediatrics, University of MelbourneParkvilleAustralia
| | - Linda J Richards
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
- The University of Queensland, School of Biomedical SciencesBrisbaneAustralia
| |
Collapse
|
17
|
De León Reyes NS, Bragg-Gonzalo L, Nieto M. Development and plasticity of the corpus callosum. Development 2020; 147:147/18/dev189738. [PMID: 32988974 DOI: 10.1242/dev.189738] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The corpus callosum (CC) connects the cerebral hemispheres and is the major mammalian commissural tract. It facilitates bilateral sensory integration and higher cognitive functions, and is often affected in neurodevelopmental diseases. Here, we review the mechanisms that contribute to the development of CC circuits in animal models and humans. These species comparisons reveal several commonalities. First, there is an early period of massive axonal projection. Second, there is a postnatal temporal window, varying between species, in which early callosal projections are selectively refined. Third, sensory-derived activity influences axonal refinement. We also discuss how defects in CC formation can lead to mild or severe CC congenital malformations.
Collapse
Affiliation(s)
- Noelia S De León Reyes
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, (CNB-CSIC) Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Lorena Bragg-Gonzalo
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, (CNB-CSIC) Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| | - Marta Nieto
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, (CNB-CSIC) Campus de Cantoblanco, Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
18
|
Culjat M, Milošević NJ. Callosal septa express guidance cues and are paramedian guideposts for human corpus callosum development. J Anat 2019; 235:670-686. [PMID: 31070791 PMCID: PMC6704273 DOI: 10.1111/joa.13011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
The early development and growth of the corpus callosum are supported by several midline transient structures in mammals that include callosal septa (CS), which are present only in the second half of gestation in humans. Here we provide new data that support the guidance role of CS in corpus callosum development, derived from the analysis of 46 postmortem fetal brains, ranging in age from 16 to 40 post conception weeks (PCW). Using immunohistochemical methods, we show the expression pattern of guidance cues ephrinA4 and neogenin, extracellular protein fibronectin, as well as non-activated microglia in the CS. We found that the dynamic changes in expression of guidance cues, cellular and extracellular matrix constituents in the CS correlate well with the growth course of the corpus callosum at midsagittal level. The CS reach and maintain their developmental maximum between 20 and 26 PCW and can be visualized as hypointense structures in the ventral callosal portion with ex vivo (in vitro) T2-weighted 3T magnetic resonance imaging (MRI). The maximum of septal development overlaps with an increase in the callosal midsagittal area, whereas the slow, gradual resolution of CS coincides with a plateau of midsagittal callosal growth. The recognition of CS existence in human fetal brain and the ability to visualize them by ex vivoMRI attributes a potential diagnostic value to these transient structures, as advancement in imaging technologies will likely also enable in vivoMRI visualization of the CS in the near future.
Collapse
Affiliation(s)
- Marko Culjat
- MedStar Georgetown University HospitalWashingtonDCUSA
| | | |
Collapse
|
19
|
Hossain MM, Tsuzuki T, Sakakibara K, Imaizumi F, Ikegaya A, Inagaki M, Takahashi I, Ito T, Takamatsu H, Kumanogoh A, Negishi T, Yukawa K. PlexinA1 is crucial for the midline crossing of callosal axons during corpus callosum development in BALB/cAJ mice. PLoS One 2019; 14:e0221440. [PMID: 31430342 PMCID: PMC6701775 DOI: 10.1371/journal.pone.0221440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/06/2019] [Indexed: 12/04/2022] Open
Abstract
The corpus callosum (CC) is the biggest commissure that links cerebral hemispheres. Guidepost structures develop in the cortical midline during CC development and express axon guidance molecules that instruct neurons regarding the proper direction of axonal elongation toward and across the cortical midline. Neuropilin-1 (Npn1), a high affinity receptor for class 3 semaphorins (Sema3s) localized on cingulate pioneering axons, plays a crucial role in axon guidance to the midline through interactions with Sema3s. However, it remains unclear which type of Plexin is a component of Sema3 holoreceptors with Npn1 during the guidance of cingulate pioneering axons. To address the role of PlexinA1 in CC development, we examined with immunohistochemistry the localization of PlexinA1, Npn1, and Sema3s using embryonic brains from wild-type (WT) and PlexinA1-deficient (PlexinA1 knock-out (KO)) mice with a BALB/cAJ background. The immunohistochemistry confirmed the expression of PlexinA1 in callosal axons derived from the cingulate and neocortex of the WT mice on embryonic day 17.5 (E17.5) but not in the PlexinA1 KO mice. To examine the role of PlexinA1 in the navigation of callosal axons, the extension of callosal axons toward and across the midline was traced in brains of WT and PlexinA1 KO mice at E17.5. As a result, callosal axons in the PlexinA1 KO brains had a significantly lower incidence of midline crossing at E17.5 compared with the WT brains. To further examine the role of PlexinA1 in CC development, the CC phenotype was examined in PlexinA1 KO mice at postnatal day 0.5 (P0.5). Most of the PlexinA1 KO mice at P0.5 showed agenesis of the CC. These results indicate the crucial involvement of PlexinA1 in the midline crossing of callosal axons during CC development in BALB/cAJ mice.
Collapse
Affiliation(s)
| | - Takamasa Tsuzuki
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Kazuki Sakakibara
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Fumitaka Imaizumi
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Akihiro Ikegaya
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Mami Inagaki
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Ikuko Takahashi
- Radioisotope Center, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Takuji Ito
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Hyota Takamatsu
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Atsushi Kumanogoh
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Takayuki Negishi
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Kazunori Yukawa
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
20
|
Niethamer TK, Bush JO. Getting direction(s): The Eph/ephrin signaling system in cell positioning. Dev Biol 2019; 447:42-57. [PMID: 29360434 PMCID: PMC6066467 DOI: 10.1016/j.ydbio.2018.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/21/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022]
Abstract
In vertebrates, the Eph/ephrin family of signaling molecules is a large group of membrane-bound proteins that signal through a myriad of mechanisms and effectors to play diverse roles in almost every tissue and organ system. Though Eph/ephrin signaling has functions in diverse biological processes, one core developmental function is in the regulation of cell position and tissue morphology by regulating cell migration and guidance, cell segregation, and boundary formation. Often, the role of Eph/ephrin signaling is to translate patterning information into physical movement of cells and changes in morphology that define tissue and organ systems. In this review, we focus on recent advances in the regulation of these processes, and our evolving understanding of the in vivo signaling mechanisms utilized in distinct developmental contexts.
Collapse
Affiliation(s)
- Terren K Niethamer
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
21
|
Transcriptional control of long-range cortical projections. Curr Opin Neurobiol 2018; 53:57-65. [DOI: 10.1016/j.conb.2018.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
|
22
|
Mire E, Hocine M, Bazellières E, Jungas T, Davy A, Chauvet S, Mann F. Developmental Upregulation of Ephrin-B1 Silences Sema3C/Neuropilin-1 Signaling during Post-crossing Navigation of Corpus Callosum Axons. Curr Biol 2018; 28:1768-1782.e4. [PMID: 29779877 DOI: 10.1016/j.cub.2018.04.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/23/2018] [Accepted: 04/06/2018] [Indexed: 01/09/2023]
Abstract
The corpus callosum is the largest commissure in the brain, whose main function is to ensure communication between homotopic regions of the cerebral cortex. During fetal development, corpus callosum axons (CCAs) grow toward and across the brain midline and then away on the contralateral hemisphere to their targets. A particular feature of this circuit, which raises a key developmental question, is that the outgoing trajectory of post-crossing CCAs is mirror-symmetric with the incoming trajectory of pre-crossing axons. Here, we show that post-crossing CCAs switch off their response to axon guidance cues, among which the secreted Semaphorin-3C (Sema3C), that act as attractants for pre-crossing axons on their way to the midline. This change is concomitant with an upregulation of the surface protein Ephrin-B1, which acts in CCAs to inhibit Sema3C signaling via interaction with the Neuropilin-1 (Nrp1) receptor. This silencing activity is independent of Eph receptors and involves a N-glycosylation site (N-139) in the extracellular domain of Ephrin-B1. Together, our results reveal a molecular mechanism, involving interaction between the two unrelated guidance receptors Ephrin-B1 and Nrp1, that is used to control the navigation of post-crossing axons in the corpus callosum.
Collapse
Affiliation(s)
- Erik Mire
- Aix Marseille Univ, CNRS, IBDM, 13288 Marseille, France.
| | | | | | - Thomas Jungas
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France
| | - Alice Davy
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France
| | | | - Fanny Mann
- Aix Marseille Univ, CNRS, IBDM, 13288 Marseille, France.
| |
Collapse
|
23
|
Gobius I, Morcom L, Suárez R, Bunt J, Bukshpun P, Reardon W, Dobyns WB, Rubenstein JLR, Barkovich AJ, Sherr EH, Richards LJ. Astroglial-Mediated Remodeling of the Interhemispheric Midline Is Required for the Formation of the Corpus Callosum. Cell Rep 2017; 17:735-747. [PMID: 27732850 DOI: 10.1016/j.celrep.2016.09.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/18/2016] [Accepted: 09/12/2016] [Indexed: 11/29/2022] Open
Abstract
The corpus callosum is the major axon tract that connects and integrates neural activity between the two cerebral hemispheres. Although ∼1:4,000 children are born with developmental absence of the corpus callosum, the primary etiology of this condition remains unknown. Here, we demonstrate that midline crossing of callosal axons is dependent upon the prior remodeling and degradation of the intervening interhemispheric fissure. This remodeling event is initiated by astroglia on either side of the interhemispheric fissure, which intercalate with one another and degrade the intervening leptomeninges. Callosal axons then preferentially extend over these specialized astroglial cells to cross the midline. A key regulatory step in interhemispheric remodeling is the differentiation of these astroglia from radial glia, which is initiated by Fgf8 signaling to downstream Nfi transcription factors. Crucially, our findings from human neuroimaging studies reveal that developmental defects in interhemispheric remodeling are likely to be a primary etiology underlying human callosal agenesis.
Collapse
Affiliation(s)
- Ilan Gobius
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Laura Morcom
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Rodrigo Suárez
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jens Bunt
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Polina Bukshpun
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - William Reardon
- National Centre for Medical Genetics, Our Lady's Hospital for Sick Children, Crumlin, Dublin 12, Ireland
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington, Seattle, WA 98101, USA; Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98101, USA
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program and Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - A James Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143-0628, USA
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia; The School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
24
|
Pohlkamp T, Xiao L, Sultana R, Bepari A, Bock HH, Henkemeyer M, Herz J. Ephrin Bs and canonical Reelin signalling. Nature 2016; 539:E4-E6. [PMID: 27882975 DOI: 10.1038/nature20129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 09/20/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Theresa Pohlkamp
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lei Xiao
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Rukhsana Sultana
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Asim Bepari
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hans H Bock
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Mark Henkemeyer
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Düsseldorf 40225, Germany
| |
Collapse
|
25
|
Domyan ET, Shapiro MD. Pigeonetics takes flight: Evolution, development, and genetics of intraspecific variation. Dev Biol 2016; 427:241-250. [PMID: 27847323 DOI: 10.1016/j.ydbio.2016.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/28/2016] [Accepted: 11/10/2016] [Indexed: 11/26/2022]
Abstract
Intensive artificial selection over thousands of years has produced hundreds of varieties of domestic pigeon. As Charles Darwin observed, the morphological differences among breeds can rise to the magnitude of variation typically observed among different species. Nevertheless, different pigeon varieties are interfertile, thereby enabling forward genetic and genomic approaches to identify genes that underlie derived traits. Building on classical genetic studies of pigeon variation, recent molecular investigations find a spectrum of coding and regulatory alleles controlling derived traits, including plumage color, feather growth polarity, and limb identity. Developmental and genetic analyses of pigeons are revealing the molecular basis of variation in a classic example of extreme intraspecific diversity, and have the potential to nominate genes that control variation among other birds and vertebrates in general.
Collapse
Affiliation(s)
- Eric T Domyan
- Department of Biology, Utah Valley University, Orem, UT, United States.
| | - Michael D Shapiro
- Department of Biology, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
26
|
Abstract
Ephrins and Eph receptors enable contact-mediated interactions between cells at every stage of nervous system development. In spite of their broad binding affinities, Eph proteins facilitate specificity in neuronal migration and axon targeting. This review focuses on recent studies that demonstrate how these proteins interact with each other, and with other signaling pathways, to guide specificity in a diverse set of developmental processes.
Collapse
Affiliation(s)
- Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Ilona J Miko
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
27
|
Nikolakopoulou AM, Koeppen J, Garcia M, Leish J, Obenaus A, Ethell IM. Astrocytic Ephrin-B1 Regulates Synapse Remodeling Following Traumatic Brain Injury. ASN Neuro 2016; 8:1-18. [PMID: 26928051 PMCID: PMC4774052 DOI: 10.1177/1759091416630220] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/31/2015] [Indexed: 01/06/2023] Open
Abstract
Traumatic brain injury (TBI) can result in tissue alterations distant from the site of the initial injury, which can trigger pathological changes within hippocampal circuits and are thought to contribute to long-term cognitive and neuropsychological impairments. However, our understanding of secondary injury mechanisms is limited. Astrocytes play an important role in brain repair after injury and astrocyte-mediated mechanisms that are implicated in synapse development are likely important in injury-induced synapse remodeling. Our studies suggest a new role of ephrin-B1, which is known to regulate synapse development in neurons, in astrocyte-mediated synapse remodeling following TBI. Indeed, we observed a transient upregulation of ephrin-B1 immunoreactivity in hippocampal astrocytes following moderate controlled cortical impact model of TBI. The upregulation of ephrin-B1 levels in hippocampal astrocytes coincided with a decline in the number of vGlut1-positive glutamatergic input to CA1 neurons at 3 days post injury even in the absence of hippocampal neuron loss. In contrast, tamoxifen-induced ablation of ephrin-B1 from adult astrocytes in ephrin-B1loxP/yERT2-CreGFAP mice accelerated the recovery of vGlut1-positive glutamatergic input to CA1 neurons after TBI. Finally, our studies suggest that astrocytic ephrin-B1 may play an active role in injury-induced synapse remodeling through the activation of STAT3-mediated signaling in astrocytes. TBI-induced upregulation of STAT3 phosphorylation within the hippocampus was suppressed by astrocyte-specific ablation of ephrin-B1 in vivo, whereas the activation of ephrin-B1 in astrocytes triggered an increase in STAT3 phosphorylation in vitro. Thus, regulation of ephrin-B1 signaling in astrocytes may provide new therapeutic opportunities to aid functional recovery after TBI.
Collapse
Affiliation(s)
| | - Jordan Koeppen
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA Cell, Molecular, and Developmental Biology graduate program, University of California Riverside, CA, USA
| | - Michael Garcia
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA
| | - Joshua Leish
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, Loma Linda University, CA, USA
| | - Iryna M Ethell
- Biomedical Sciences Division, School of Medicine, University of California Riverside, CA, USA Cell, Molecular, and Developmental Biology graduate program, University of California Riverside, CA, USA
| |
Collapse
|
28
|
Tsenkina Y, Ricard J, Runko E, Quiala- Acosta MM, Mier J, Liebl DJ. EphB3 receptors function as dependence receptors to mediate oligodendrocyte cell death following contusive spinal cord injury. Cell Death Dis 2015; 6:e1922. [PMID: 26469970 PMCID: PMC4632292 DOI: 10.1038/cddis.2015.262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/12/2015] [Accepted: 08/15/2015] [Indexed: 11/29/2022]
Abstract
We demonstrate that EphB3 receptors mediate oligodendrocyte (OL) cell death in the injured spinal cord through dependence receptor mechanism. OLs in the adult spinal cord express EphB3 as well as other members of the Eph receptor family. Spinal cord injury (SCI) is associated with tissue damage, cellular loss and disturbances in EphB3-ephrinB3 protein balance acutely (days) after the initial impact creating an environment for a dependence receptor-mediated cell death to occur. Genetic ablation of EphB3 promotes OL survival associated with increased expression of myelin basic protein and improved locomotor function in mice after SCI. Moreover, administration of its ephrinB3 ligand to the spinal cord after injury also promotes OL survival. Our in vivo findings are supported by in vitro studies showing that ephrinB3 administration promotes the survival of both oligodendroglial progenitor cells and mature OLs cultured under pro-apoptotic conditions. In conclusion, the present study demonstrates a novel dependence receptor role of EphB3 in OL cell death after SCI, and supports further development of ephrinB3-based therapies to promote recovery.
Collapse
Affiliation(s)
- Y Tsenkina
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - J Ricard
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - E Runko
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - M M Quiala- Acosta
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - J Mier
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| | - D J Liebl
- The Miami Project to Cure Paralysis, The Department of Neurosurgery, Miller School of Medicine, The University of Miami, Miami, FL, USA
| |
Collapse
|
29
|
Squarzoni P, Thion MS, Garel S. Neuronal and microglial regulators of cortical wiring: usual and novel guideposts. Front Neurosci 2015; 9:248. [PMID: 26236185 PMCID: PMC4505395 DOI: 10.3389/fnins.2015.00248] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/30/2015] [Indexed: 12/17/2022] Open
Abstract
Neocortex functioning relies on the formation of complex networks that begin to be assembled during embryogenesis by highly stereotyped processes of cell migration and axonal navigation. The guidance of cells and axons is driven by extracellular cues, released along by final targets or intermediate targets located along specific pathways. In particular, guidepost cells, originally described in the grasshopper, are considered discrete, specialized cell populations located at crucial decision points along axonal trajectories that regulate tract formation. These cells are usually early-born, transient and act at short-range or via cell-cell contact. The vast majority of guidepost cells initially identified were glial cells, which play a role in the formation of important axonal tracts in the forebrain, such as the corpus callosum, anterior, and post-optic commissures as well as optic chiasm. In the last decades, tangential migrating neurons have also been found to participate in the guidance of principal axonal tracts in the forebrain. This is the case for several examples such as guideposts for the lateral olfactory tract (LOT), corridor cells, which open an internal path for thalamo-cortical axons and Cajal-Retzius cells that have been involved in the formation of the entorhino-hippocampal connections. More recently, microglia, the resident macrophages of the brain, were specifically observed at the crossroads of important neuronal migratory routes and axonal tract pathways during forebrain development. We furthermore found that microglia participate to the shaping of prenatal forebrain circuits, thereby opening novel perspectives on forebrain development and wiring. Here we will review the last findings on already known guidepost cell populations and will discuss the role of microglia as a potentially new class of atypical guidepost cells.
Collapse
Affiliation(s)
- Paola Squarzoni
- Centre National de la Recherche Scientifique UMR8197, Ecole Normale Supérieure, Institut de Biologie, Institut National de la Santé et de la Recherche Médicale U1024 Paris, France
| | - Morgane S Thion
- Centre National de la Recherche Scientifique UMR8197, Ecole Normale Supérieure, Institut de Biologie, Institut National de la Santé et de la Recherche Médicale U1024 Paris, France
| | - Sonia Garel
- Centre National de la Recherche Scientifique UMR8197, Ecole Normale Supérieure, Institut de Biologie, Institut National de la Santé et de la Recherche Médicale U1024 Paris, France
| |
Collapse
|
30
|
Robichaux MA, Chenaux G, Ho HYH, Soskis MJ, Greenberg ME, Henkemeyer M, Cowan CW. EphB1 and EphB2 intracellular domains regulate the formation of the corpus callosum and anterior commissure. Dev Neurobiol 2015; 76:405-20. [PMID: 26148571 DOI: 10.1002/dneu.22323] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/28/2015] [Accepted: 06/30/2015] [Indexed: 12/24/2022]
Abstract
The two cortical hemispheres of the mammalian forebrain are interconnected by major white matter tracts, including the corpus callosum (CC) and the posterior branch of the anterior commissure (ACp), that bridge the telencephalic midline. We show here that the intracellular signaling domains of the EphB1 and EphB2 receptors are critical for formation of both the ACp and CC. We observe partial and complete agenesis of the corpus callosum, as well as highly penetrant ACp misprojection phenotypes in truncated EphB1/2 mice that lack intracellular signaling domains. Consistent with the roles for these receptors in formation of the CC and ACp, we detect expression of these receptors in multiple brain regions associated with the formation of these forebrain structures. Taken together, our findings suggest that a combination of forward and reverse EphB1/2 receptor-mediated signaling contribute to ACp and CC axon guidance.
Collapse
Affiliation(s)
- Michael A Robichaux
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, 02478.,Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - George Chenaux
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390.,Developmental Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Hsin-Yi Henry Ho
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, 02115
| | - Michael J Soskis
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, 02115
| | - Michael E Greenberg
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, 02115
| | - Mark Henkemeyer
- Developmental Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Christopher W Cowan
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, 02478.,Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
31
|
Functional synergy between cholecystokinin receptors CCKAR and CCKBR in mammalian brain development. PLoS One 2015; 10:e0124295. [PMID: 25875176 PMCID: PMC4398320 DOI: 10.1371/journal.pone.0124295] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/11/2015] [Indexed: 12/11/2022] Open
Abstract
Cholecystokinin (CCK), a peptide hormone and one of the most abundant neuropeptides in vertebrate brain, mediates its actions via two G-protein coupled receptors, CCKAR and CCKBR, respectively active in peripheral organs and the central nervous system. Here, we demonstrate that the CCK receptors have a dynamic and largely reciprocal expression in embryonic and postnatal brain. Using compound homozygous mutant mice lacking the activity of both CCK receptors, we uncover their additive, functionally synergistic effects in brain development and demonstrate that CCK receptor loss leads to abnormalities of cortical development, including defects in the formation of the midline and corpus callosum, and cortical interneuron migration. Using comparative transcriptome analysis of embryonic neocortex, we define the molecular mechanisms underlying these defects. Thus we demonstrate a developmental, hitherto unappreciated, role of the two CCK receptors in mammalian neocortical development.
Collapse
|
32
|
CCN3 overexpression inhibits growth of callosal projections via upregulation of RAB25. Biochem Biophys Res Commun 2015; 461:456-62. [PMID: 25871796 DOI: 10.1016/j.bbrc.2015.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/03/2015] [Indexed: 12/28/2022]
Abstract
The cysteine-rich 61/connective tissue growth factor 3 (CCN3) is a member of the CCN family of secreted multifunctional proteins involved in a variety of cellular processes including migration, adhesion, and differentiation. Previous studies have shown that CCN3 is expressed in the developing rat central nervous system, and enhanced CCN3 expression is highly correlated with tumorigenesis. However, the expression pattern and influence of abnormal CCN3 expression during mouse cortical development remains to be elucidated. Here, we show that CCN3 expression in mice is first detectable at embryonic day 15 and increases until postnatal day 21. We overexpressed CCN3 in mouse cortical neurons using uni- and bilateral electroporation. Our in vivo overexpression experiments showed that elevated CCN3 expression inhibited the axonal outgrowth of callosal projection neurons. Moreover, we identified the small GTPase RAB25 as a downstream effector molecule of CCN3 using transcriptomic analysis with CCN3 overexpressed in cortical tissue. In vivo ectopic expression of RAB25 or the dominant-negative RAB25-T26N also revealed that the GTPase activity of RAB25 is involved in the CCN3-mediated regulation of neuronal outgrowth. Taken together, our results suggest that tight regulation of CCN3 expression is necessary for normal cortical neuronal connectivity during development, and RAB25 negatively regulates neuronal differentiation as a downstream effector of CCN3.
Collapse
|
33
|
Wu KY, He M, Hou QQ, Sheng AL, Yuan L, Liu F, Liu WW, Li G, Jiang XY, Luo ZG. Semaphorin 3A activates the guanosine triphosphatase Rab5 to promote growth cone collapse and organize callosal axon projections. Sci Signal 2014; 7:ra81. [PMID: 25161316 DOI: 10.1126/scisignal.2005334] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Axon guidance (pathfinding) wires the brain during development and is regulated by various attractive and repulsive cues. Semaphorin 3A (Sema3A) is a repulsive cue, inducing the collapse of axon growth cones. In the mammalian forebrain, the corpus callosum is the major commissure that transmits information flow between the two hemispheres, and contralateral axons assemble into well-defined tracts. We found that the patterning of callosal axon projections in rodent layer II and III (L2/3) cortical neurons in response to Sema3A was mediated by the activation of Rab5, a small guanosine triphosphatase (GTPase) that mediates endocytosis, through the membrane fusion protein Rabaptin-5 and the Rab5 guanine nucleotide exchange factor (GEF) Rabex-5. Rabaptin-5 bound directly to Plexin-A1 in the Sema3A receptor complex [an obligate heterodimer formed by Plexin-A1 and neuropilin 1 (NP1)]; Sema3A enhanced this interaction in cultured neurons. Rabaptin-5 bridged the interaction between Rab5 and Plexin-A1. Sema3A stimulated endocytosis from the cell surface of callosal axon growth cones. In utero electroporation to reduce Rab5 or Rabaptin-5 impaired axon fasciculation or caused mistargeting of L2/3 callosal projections in rats. Overexpression of Rabaptin-5 or Rab5 rescued the defective callosal axon fasciculation or mistargeting of callosal axons caused by the loss of Sema3A-Plexin-A1 signaling in rats expressing dominant-negative Plexin-A1 or in NP1-deficient mice. Thus, our findings suggest that Rab5, its effector Rabaptin-5, and its regulator Rabex-5 mediate Sema3A-induced axon guidance during brain development.
Collapse
Affiliation(s)
- Kong-Yan Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Miao He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qiong-Qiong Hou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Ai-Li Sheng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Lei Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Fei Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Wen-Wen Liu
- Chinese Academy of Sciences Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 11 Beiyitiao, Zhong Guan Cun, Beijing 100190, China
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xing-Yu Jiang
- Chinese Academy of Sciences Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 11 Beiyitiao, Zhong Guan Cun, Beijing 100190, China
| | - Zhen-Ge Luo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
| |
Collapse
|
34
|
Mita S, de Monasterio-Schrader P, Fünfschilling U, Kawasaki T, Mizuno H, Iwasato T, Nave KA, Werner HB, Hirata T. Transcallosal Projections Require Glycoprotein M6-Dependent Neurite Growth and Guidance. Cereb Cortex 2014; 25:4111-25. [PMID: 24917275 DOI: 10.1093/cercor/bhu129] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The function of mature neurons critically relies on the developmental outgrowth and projection of their cellular processes. It has long been postulated that the neuronal glycoproteins M6a and M6b are involved in axon growth because these four-transmembrane domain-proteins of the proteolipid protein family are highly enriched on growth cones, but in vivo evidence has been lacking. Here, we report that the function of M6 proteins is required for normal axonal extension and guidance in vivo. In mice lacking both M6a and M6b, a severe hypoplasia of axon tracts was manifested. Most strikingly, the corpus callosum was reduced in thickness despite normal densities of cortical projection neurons. In single neuron tracing, many axons appeared shorter and disorganized in the double-mutant cortex, and some of them were even misdirected laterally toward the subcortex. Probst bundles were not observed. Upon culturing, double-mutant cortical and cerebellar neurons displayed impaired neurite outgrowth, indicating a cell-intrinsic function of M6 proteins. A rescue experiment showed that the intracellular loop of M6a is essential for the support of neurite extension. We propose that M6 proteins are required for proper extension and guidance of callosal axons that follow one of the most complex trajectories in the mammalian nervous system.
Collapse
Affiliation(s)
- Sakura Mita
- Division of Brain Function, National Institute of Genetics, Graduate University for Advanced Studies (Sokendai), Mishima 411-8540, Japan
| | | | - Ursula Fünfschilling
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Goettingen, Germany
| | - Takahiko Kawasaki
- Division of Brain Function, National Institute of Genetics, Graduate University for Advanced Studies (Sokendai), Mishima 411-8540, Japan
| | - Hidenobu Mizuno
- Division of Neurogenetics, National Institute of Genetics, Graduate University for Advanced Studies (Sokendai), Mishima 411-8540, Japan
| | - Takuji Iwasato
- Division of Neurogenetics, National Institute of Genetics, Graduate University for Advanced Studies (Sokendai), Mishima 411-8540, Japan
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Goettingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Goettingen, Germany
| | - Tatsumi Hirata
- Division of Brain Function, National Institute of Genetics, Graduate University for Advanced Studies (Sokendai), Mishima 411-8540, Japan
| |
Collapse
|
35
|
Theus MH, Ricard J, Glass SJ, Travieso LG, Liebl DJ. EphrinB3 blocks EphB3 dependence receptor functions to prevent cell death following traumatic brain injury. Cell Death Dis 2014; 5:e1207. [PMID: 24810043 PMCID: PMC4047907 DOI: 10.1038/cddis.2014.165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/28/2014] [Accepted: 03/17/2014] [Indexed: 01/22/2023]
Abstract
Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins, have a variety of roles in the developing and adult central nervous system that require direct cell-cell interactions; including regulating axon path finding, cell proliferation, migration and synaptic plasticity. Recently, we identified a novel pro-survival role for ephrins in the adult subventricular zone, where ephrinB3 blocks Eph-mediated cell death during adult neurogenesis. Here, we examined whether EphB3 mediates cell death in the adult forebrain following traumatic brain injury and whether ephrinB3 infusion could limit this effect. We show that EphB3 co-labels with microtubule-associated protein 2-positive neurons in the adult cortex and is closely associated with ephrinB3 ligand, which is reduced following controlled cortical impact (CCI) injury. In the complete absence of EphB3 (EphB3(-/-)), we observed reduced terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL), and functional improvements in motor deficits after CCI injury as compared with wild-type and ephrinB3(-/-) mice. We also demonstrated that EphB3 exhibits dependence receptor characteristics as it is cleaved by caspases and induces cell death, which is not observed in the presence of ephrinB3. Following trauma, infusion of pre-clustered ephrinB3-Fc molecules (eB3-Fc) into the contralateral ventricle reduced cortical infarct volume and TUNEL staining in the cortex, dentate gyrus and CA3 hippocampus of wild-type and ephrinB3(-/-) mice, but not EphB3(-/-) mice. Similarly, application of eB3-Fc improved motor functions after CCI injury. We conclude that EphB3 mediates cell death in the adult cortex through a novel dependence receptor-mediated cell death mechanism in the injured adult cortex and is attenuated following ephrinB3 stimulation.
Collapse
Affiliation(s)
- M H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, 215 Duck Pond Drive, Blacksburg, VA 24061, USA
| | - J Ricard
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, R-48, Miami, FL 33136, USA
| | - S J Glass
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, R-48, Miami, FL 33136, USA
| | - L G Travieso
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, R-48, Miami, FL 33136, USA
| | - D J Liebl
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, R-48, Miami, FL 33136, USA
| |
Collapse
|
36
|
Mizuno S, Tra DTH, Mizobuchi A, Iseki H, Mizuno-Iijima S, Kim JD, Ishida J, Matsuda Y, Kunita S, Fukamizu A, Sugiyama F, Yagami KI. Truncated Cables1 causes agenesis of the corpus callosum in mice. J Transl Med 2014; 94:321-30. [PMID: 24336072 DOI: 10.1038/labinvest.2013.146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 12/16/2022] Open
Abstract
Agenesis of the corpus callosum (ACC) is a congenital abnormality of the brain structure. More than 60 genes are known to be involved in corpus callosum development. However, the molecular mechanisms underlying ACC are not fully understood. Previously, we produced a novel transgenic mouse strain, TAS, carrying genes of the tetracycline-inducible expression system that are not involved in brain development, and inherited ACC was observed in the brains of all homozygous TAS mice. Although ACC was probably induced by transgene insertion mutation, the causative gene and the molecular mechanism of its pathogenesis remain unclear. Here, we first performed interphase three-color fluorescence in situ hybridization (FISH) analysis to determine the genomic insertion site. Transgenes were inserted into chromosome 18 ∼12.0 Mb from the centromere. Gene expression analysis and genomic PCR walking showed that the genomic region containing exon 4 of Cables1 was deleted by transgene insertion and the other exons of Cables1 were intact. The mutant allele was designated as Cables1(TAS). Interestingly, Cables1(TAS) mRNA consisted of exons 1-3 of Cables1 and part of the transgene that encoded a novel truncated Cables1 protein. Homozygous TAS mice exhibited mRNA expression of Cables1(TAS) in the fetal cerebrum, but not that of wild-type Cables1. To investigate whether a dominant negative effect of Cables1(TAS) or complete loss of function of Cables1 gives rise to ACC, we produced Cables1-null mutant mice. ACC was not observed in Cables1-null mutant mice, suggesting that a dominant negative effect of Cables1(TAS) impairs callosal formation. Moreover, ACC frequency in Cables1(+/TAS) mice was significantly lower than that in Cables1(-/TAS) mice, indicating that wild-type Cables1 interfered with the dominant negative effect of Cables1(TAS). This study indicated that truncated Cables1 causes ACC and wild-type Cables1 contributes to callosal formation.
Collapse
Affiliation(s)
- Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan
| | - Dinh T H Tra
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan
| | - Atsushi Mizobuchi
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan
| | - Hiroyoshi Iseki
- 1] Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan [2] Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | | | - Jun-Dal Kim
- Life Science Center, Tsukuba Advanced Research Alliance, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Junji Ishida
- Life Science Center, Tsukuba Advanced Research Alliance, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoichi Matsuda
- Laboratory of Animal Genetics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Satoshi Kunita
- Center for Experimental Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Akiyoshi Fukamizu
- Life Science Center, Tsukuba Advanced Research Alliance, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan
| | - Ken-ichi Yagami
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
37
|
Edwards TJ, Sherr EH, Barkovich AJ, Richards LJ. Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. ACTA ACUST UNITED AC 2014; 137:1579-613. [PMID: 24477430 DOI: 10.1093/brain/awt358] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The corpus callosum is the largest fibre tract in the brain, connecting the two cerebral hemispheres, and thereby facilitating the integration of motor and sensory information from the two sides of the body as well as influencing higher cognition associated with executive function, social interaction and language. Agenesis of the corpus callosum is a common brain malformation that can occur either in isolation or in association with congenital syndromes. Understanding the causes of this condition will help improve our knowledge of the critical brain developmental mechanisms required for wiring the brain and provide potential avenues for therapies for callosal agenesis or related neurodevelopmental disorders. Improved genetic studies combined with mouse models and neuroimaging have rapidly expanded the diverse collection of copy number variations and single gene mutations associated with callosal agenesis. At the same time, advances in our understanding of the developmental mechanisms involved in corpus callosum formation have provided insights into the possible causes of these disorders. This review provides the first comprehensive classification of the clinical and genetic features of syndromes associated with callosal agenesis, and provides a genetic and developmental framework for the interpretation of future research that will guide the next advances in the field.
Collapse
Affiliation(s)
- Timothy J Edwards
- 1 Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia2 Departments of Neurology and Pediatrics, The University of California and the Benioff Children's Hospital, CA, 94158, USA
| | - Elliott H Sherr
- 3 Departments of Pediatrics and Neurosurgery, Radiology and Biomedical Imaging, The University of California Children's Hospital, CA 94143, USA
| | - A James Barkovich
- 3 Departments of Pediatrics and Neurosurgery, Radiology and Biomedical Imaging, The University of California Children's Hospital, CA 94143, USA4 Departments of Paediatrics and Neurosurgery, Radiology and Biomedical Imaging, The University of California San Francisco and The Benioff Children's Hospital, CA 94143-0628 USA
| | - Linda J Richards
- 1 Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia5 School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
38
|
EphB receptor forward signaling regulates area-specific reciprocal thalamic and cortical axon pathfinding. Proc Natl Acad Sci U S A 2014; 111:2188-93. [PMID: 24453220 DOI: 10.1073/pnas.1324215111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In early brain development, ascending thalamocortical axons (TCAs) navigate through the ventral telencephalon (VTel) to reach their target regions in the young cerebral cortex. Descending, deep-layer cortical axons subsequently target appropriate thalamic and subcortical target regions. However, precisely how and when corticothalamic axons (CTAs) identify their appropriate, reciprocal thalamic targets remains unclear. We show here that EphB1 and EphB2 receptors control proper navigation of a subset of TCA and CTA projections through the VTel. We show in vivo that EphB receptor forward signaling and the ephrinB1 ligand are required during the early navigation of L1-CAM(+) thalamic fibers in the VTel, and that the misguided thalamic fibers in EphB1/2 KO mice appear to interact with cortical subregion-specific axon populations during reciprocal cortical axon guidance. As such, our findings suggest that descending cortical axons identify specific TCA subpopulations in the dorsal VTel to coordinate reciprocal cortical-thalamic connectivity in the early developing brain.
Collapse
|
39
|
Yamamoto A, Uchiyama K, Nara T, Nishimura N, Hayasaka M, Hanaoka K, Yamamoto T. Structural Abnormalities of Corpus Callosum and Cortical Axonal Tracts Accompanied by Decreased Anxiety-Like Behavior and Lowered Sociability inSpock3-Mutant Mice. Dev Neurosci 2014; 36:381-95. [DOI: 10.1159/000363101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/22/2014] [Indexed: 11/19/2022] Open
|
40
|
Leyva-Díaz E, López-Bendito G. In and out from the cortex: development of major forebrain connections. Neuroscience 2013; 254:26-44. [PMID: 24042037 DOI: 10.1016/j.neuroscience.2013.08.070] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 12/21/2022]
Abstract
In this review we discuss recent advances in the understanding of the development of forebrain projections attending to their origin, fate determination, and axon guidance. Major forebrain connections include callosal, corticospinal, corticothalamic and thalamocortical projections. Although distinct transcriptional programs specify these subpopulations of projecting neurons, the mechanisms involved in their axonal development are similar. Guidance by short- and long-range molecular cues, interaction with intermediate target populations and activity-dependent mechanisms contribute to their development. Moreover, some of these connections interact with each other showing that the development of these axonal tracts is a well-orchestrated event. Finally, we will recapitulate recent discoveries that challenge the field of neural wiring that show that these forebrain connections can be changed once formed. The field of reprogramming has arrived to postmitotic cortical neurons and has showed us that forebrain connectivity is not immutable and might be changed by manipulations in the transcriptional program of matured cells.
Collapse
Affiliation(s)
- E Leyva-Díaz
- Instituto de Neurociencias de Alicante, CSIC & Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.
| | | |
Collapse
|
41
|
Niquille M, Minocha S, Hornung JP, Rufer N, Valloton D, Kessaris N, Alfonsi F, Vitalis T, Yanagawa Y, Devenoges C, Dayer A, Lebrand C. Two specific populations of GABAergic neurons originating from the medial and the caudal ganglionic eminences aid in proper navigation of callosal axons. Dev Neurobiol 2013; 73:647-72. [PMID: 23420573 DOI: 10.1002/dneu.22075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/10/2013] [Accepted: 02/11/2013] [Indexed: 12/22/2022]
Abstract
The corpus callosum (CC) plays a crucial role in interhemispheric communication. It has been shown that CC formation relies on the guidepost cells located in the midline region that include glutamatergic and GABAergic neurons as well as glial cells. However, the origin of these guidepost GABAergic neurons and their precise function in callosal axon pathfinding remain to be investigated. Here, we show that two distinct GABAergic neuronal subpopulations converge toward the midline prior to the arrival of callosal axons. Using in vivo and ex vivo fate mapping we show that CC GABAergic neurons originate in the caudal and medial ganglionic eminences (CGE and MGE) but not in the lateral ganglionic eminence (LGE). Time lapse imaging on organotypic slices and in vivo analyses further revealed that CC GABAergic neurons contribute to the normal navigation of callosal axons. The use of Nkx2.1 knockout (KO) mice confirmed a role of these neurons in the maintenance of proper behavior of callosal axons while growing through the CC. Indeed, using in vitro transplantation assays, we demonstrated that both MGE- and CGE-derived GABAergic neurons exert an attractive activity on callosal axons. Furthermore, by combining a sensitive RT-PCR technique with in situ hybridization, we demonstrate that CC neurons express multiple short and long range guidance cues. This study strongly suggests that MGE- and CGE-derived interneurons may guide CC axons by multiple guidance mechanisms and signaling pathways.
Collapse
Affiliation(s)
- Mathieu Niquille
- Département des neurosciences fondamentales, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Axon position within the corpus callosum determines contralateral cortical projection. Proc Natl Acad Sci U S A 2013; 110:E2714-23. [PMID: 23812756 DOI: 10.1073/pnas.1310233110] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
How developing axons in the corpus callosum (CC) achieve their homotopic projection to the contralateral cortex remains unclear. We found that axonal position within the CC plays a critical role in this projection. Labeling of nearby callosal axons in mice showed that callosal axons were segregated in an orderly fashion, with those from more medial cerebral cortex located more dorsally and subsequently projecting to more medial contralateral cortical regions. The normal axonal order within the CC was grossly disturbed when semaphorin3A/neuropilin-1 signaling was disrupted. However, the order in which axons were positioned within the CC still determined their contralateral projection, causing a severe disruption of the homotopic contralateral projection that persisted at postnatal day 30, when the normal developmental refinement of contralateral projections is completed in wild-type (WT) mice. Thus, the orderly positioning of axons within the CC is a primary determinant of how homotopic interhemispheric projections form in the contralateral cortex.
Collapse
|
43
|
Salin-Cantegrel A, Shekarabi M, Rasheed S, Charron FM, Laganière J, Gaudet R, Dion PA, Lapointe JY, Rouleau GA. Potassium-chloride cotransporter 3 interacts with Vav2 to synchronize the cell volume decrease response with cell protrusion dynamics. PLoS One 2013; 8:e65294. [PMID: 23724134 PMCID: PMC3665532 DOI: 10.1371/journal.pone.0065294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 04/29/2013] [Indexed: 12/01/2022] Open
Abstract
Loss-of-function of the potassium-chloride cotransporter 3 (KCC3) causes hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC), a severe neurodegenerative disease associated with defective midline crossing of commissural axons in the brain. Conversely, KCC3 over-expression in breast, ovarian and cervical cancer is associated with enhanced tumor cell malignancy and invasiveness. We identified a highly conserved proline-rich sequence within the C-terminus of the cotransporter which when mutated leads to loss of the KCC3-dependent regulatory volume decrease (RVD) response in Xenopus Laevis oocytes. Using SH3 domain arrays, we found that this poly-proline motif is a binding site for SH3-domain containing proteins in vitro. This approach identified the guanine nucleotide exchange factor (GEF) Vav2 as a candidate partner for KCC3. KCC3/Vav2 physical interaction was confirmed using GST-pull down assays and immuno-based experiments. In cultured cervical cancer cells, KCC3 co-localized with the active form of Vav2 in swelling-induced actin-rich protruding sites and within lamellipodia of spreading and migrating cells. These data provide evidence of a molecular and functional link between the potassium-chloride co-transporters and the Rho GTPase-dependent actin remodeling machinery in RVD, cell spreading and cell protrusion dynamics, thus providing new insights into KCC3's involvement in cancer cell malignancy and in corpus callosum agenesis in HMSN/ACC.
Collapse
Affiliation(s)
- Adèle Salin-Cantegrel
- Centre of Excellence in Neuroscience of University of Montreal, Montréal, Québec, Canada
- Centre Hospitalier de l′Université de Montréal Research Centre, Montréal, Québec, Canada
| | - Masoud Shekarabi
- Centre of Excellence in Neuroscience of University of Montreal, Montréal, Québec, Canada
- Centre Hospitalier de l′Université de Montréal Research Centre, Montréal, Québec, Canada
| | - Sarah Rasheed
- Centre of Excellence in Neuroscience of University of Montreal, Montréal, Québec, Canada
- Centre Hospitalier de l′Université de Montréal Research Centre, Montréal, Québec, Canada
| | | | - Janet Laganière
- Centre of Excellence in Neuroscience of University of Montreal, Montréal, Québec, Canada
- Centre Hospitalier de l′Université de Montréal Research Centre, Montréal, Québec, Canada
| | - Rebecca Gaudet
- Centre of Excellence in Neuroscience of University of Montreal, Montréal, Québec, Canada
- Centre Hospitalier de l′Université de Montréal Research Centre, Montréal, Québec, Canada
| | - Patrick A. Dion
- Centre of Excellence in Neuroscience of University of Montreal, Montréal, Québec, Canada
- Centre Hospitalier de l′Université de Montréal Research Centre, Montréal, Québec, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada
| | | | - Guy A. Rouleau
- Centre of Excellence in Neuroscience of University of Montreal, Montréal, Québec, Canada
- Centre Hospitalier de l′Université de Montréal Research Centre, Montréal, Québec, Canada
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
44
|
Axon guidance mechanisms for establishment of callosal connections. Neural Plast 2013; 2013:149060. [PMID: 23533817 PMCID: PMC3595665 DOI: 10.1155/2013/149060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 12/30/2012] [Accepted: 01/21/2013] [Indexed: 01/03/2023] Open
Abstract
Numerous studies have investigated the formation of interhemispheric connections which are involved in high-ordered functions of the cerebral cortex in eutherian animals, including humans. The development of callosal axons, which transfer and integrate information between the right/left hemispheres and represent the most prominent commissural system, must be strictly regulated. From the beginning of their growth, until reaching their targets in the contralateral cortex, the callosal axons are guided mainly by two environmental cues: (1) the midline structures and (2) neighboring? axons. Recent studies have shown the importance of axona guidance by such cues and the underlying molecular mechanisms. In this paper, we review these guidance mechanisms during the development of the callosal neurons. Midline populations express and secrete guidance molecules, and "pioneer" axons as well as interactions between the medial and lateral axons are also involved in the axon pathfinding of the callosal neurons. Finally, we describe callosal dysgenesis in humans and mice, that results from a disruption of these navigational mechanisms.
Collapse
|
45
|
The combinatorial guidance activities of draxin and Tsukushi are essential for forebrain commissure formation. Dev Biol 2013. [DOI: 10.1016/j.ydbio.2012.11.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
46
|
Activity-dependent callosal axon projections in neonatal mouse cerebral cortex. Neural Plast 2012; 2012:797295. [PMID: 23213574 PMCID: PMC3507157 DOI: 10.1155/2012/797295] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/21/2012] [Indexed: 12/18/2022] Open
Abstract
Callosal axon projections are among the major long-range axonal projections in the mammalian brain. They are formed during the prenatal and early postnatal periods in the mouse, and their development relies on both activity-independent and -dependent mechanisms. In this paper, we review recent findings about the roles of neuronal activity in callosal axon projections. In addition to the well-documented role of sensory-driven neuronal activity, recent studies using in utero electroporation demonstrated an essential role of spontaneous neuronal activity generated in neonatal cortical circuits. Both presynaptic and postsynaptic neuronal activities are critically involved in the axon development. Studies have begun to reveal intracellular signaling pathway which works downstream of neuronal activity. We also review several distinct patterns of neuronal activity observed in the developing cerebral cortex, which might play roles in activity-dependent circuit construction. Such neuronal activity during the neonatal period can be disrupted by genetic factors, such as mutations in ion channels. It has been speculated that abnormal activity caused by such factors may affect activity-dependent circuit construction, leading to some developmental disorders. We discuss a possibility that genetic mutation in ion channels may impair callosal axon projections through an activity-dependent mechanism.
Collapse
|
47
|
A chemical genetic approach reveals distinct EphB signaling mechanisms during brain development. Nat Neurosci 2012; 15:1645-54. [PMID: 23143520 PMCID: PMC3509236 DOI: 10.1038/nn.3249] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/01/2012] [Indexed: 12/15/2022]
Abstract
EphB receptor tyrosine kinases control multiple steps in nervous system development. However, it remains unclear whether EphBs regulate these different developmental processes directly or indirectly. In addition, as EphBs signal through multiple mechanisms, it has been challenging to define which signaling functions of EphBs regulate particular developmental events. To address these issues, we engineered triple knockin mice in which the kinase activity of three neuronally expressed EphBs can be rapidly, reversibly, and specifically blocked. Using these mice we demonstrate that the tyrosine kinase activity of EphBs is required for axon guidance in vivo. By contrast, EphB-mediated synaptogenesis occurs normally when the kinase activity of EphBs is inhibited suggesting that EphBs mediate synapse development by an EphB tyrosine kinase-independent mechanism. Taken together, these experiments reveal that EphBs control axon guidance and synaptogenesis by distinct mechanisms, and provide a new mouse model for dissecting EphB function in development and disease.
Collapse
|
48
|
Srivastava N, Robichaux MA, Chenaux G, Henkemeyer M, Cowan CW. EphB2 receptor forward signaling controls cortical growth cone collapse via Nck and Pak. Mol Cell Neurosci 2012; 52:106-16. [PMID: 23147113 DOI: 10.1016/j.mcn.2012.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 10/03/2012] [Accepted: 11/02/2012] [Indexed: 02/08/2023] Open
Abstract
EphB receptors and their ephrinB ligands transduce bidirectional signals that mediate contact-dependent axon guidance primarily by promoting growth cone repulsion. However, how EphB receptor-mediated forward signaling induces axonal repulsion remains poorly understood. Here, we identify Nck and Pak proteins as essential forward signaling components of EphB2-dependent growth cone collapse in cortical neurons. We show that kinase-active EphB2 binds to Pak and promotes growth cone repulsion via Pak kinase activity, Pak-Nck binding, RhoA signaling and endocytosis. However, Pak's function in this context appears to be independent of Rac/Cdc42-GTP, consistent with the absence of Rac-GTP production after ephrinB treatment of cortical neurons. Taken together, our findings suggest that ephrinB-activated EphB2 receptors recruit a novel Nck/Pak signaling complex to mediate repulsive cortical growth cone guidance, which may be relevant for EphB forward signaling-dependent axon guidance in vivo.
Collapse
Affiliation(s)
- Nishi Srivastava
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, United States
| | | | | | | | | |
Collapse
|
49
|
A network of genetic repression and derepression specifies projection fates in the developing neocortex. Proc Natl Acad Sci U S A 2012; 109:19071-8. [PMID: 23144223 DOI: 10.1073/pnas.1216793109] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neurons within each layer in the mammalian cortex have stereotypic projections. Four genes-Fezf2, Ctip2, Tbr1, and Satb2-regulate these projection identities. These genes also interact with each other, and it is unclear how these interactions shape the final projection identity. Here we show, by generating double mutants of Fezf2, Ctip2, and Satb2, that cortical neurons deploy a complex genetic switch that uses mutual repression to produce subcortical or callosal projections. We discovered that Tbr1, EphA4, and Unc5H3 are critical downstream targets of Satb2 in callosal fate specification. This represents a unique role for Tbr1, implicated previously in specifying corticothalamic projections. We further show that Tbr1 expression is dually regulated by Satb2 and Ctip2 in layers 2-5. Finally, we show that Satb2 and Fezf2 regulate two disease-related genes, Auts2 (Autistic Susceptibility Gene2) and Bhlhb5 (mutated in Hereditary Spastic Paraplegia), providing a molecular handle to investigate circuit disorders in neurodevelopmental diseases.
Collapse
|
50
|
Grondona JM, Hoyo-Becerra C, Visser R, Fernández-Llebrez P, López-Ávalos MD. The subcommissural organ and the development of the posterior commissure. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:63-137. [PMID: 22559938 DOI: 10.1016/b978-0-12-394307-1.00002-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Growing axons navigate through the developing brain by means of axon guidance molecules. Intermediate targets producing such signal molecules are used as guideposts to find distal targets. Glial, and sometimes neuronal, midline structures represent intermediate targets when axons cross the midline to reach the contralateral hemisphere. The subcommissural organ (SCO), a specialized neuroepithelium located at the dorsal midline underneath the posterior commissure, releases SCO-spondin, a large glycoprotein belonging to the thrombospondin superfamily that shares molecular domains with axonal pathfinding molecules. Several evidences suggest that the SCO could be involved in the development of the PC. First, both structures display a close spatiotemporal relationship. Second, certain mutants lacking an SCO present an abnormal PC. Third, some axonal guidance molecules are expressed by SCO cells. Finally, SCO cells, the Reissner's fiber (the aggregated form of SCO-spondin), or synthetic peptides from SCO-spondin affect the neurite outgrowth or neuronal aggregation in vitro.
Collapse
Affiliation(s)
- Jesús M Grondona
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Spain.
| | | | | | | | | |
Collapse
|