1
|
Humphries MD. The Computational Bottleneck of Basal Ganglia Output (and What to Do About it). eNeuro 2025; 12:ENEURO.0431-23.2024. [PMID: 40274408 PMCID: PMC12039478 DOI: 10.1523/eneuro.0431-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 04/26/2025] Open
Abstract
What the basal ganglia do is an oft-asked question; answers range from the selection of actions to the specification of movement to the estimation of time. Here, I argue that how the basal ganglia do what they do is a less-asked but equally important question. I show that the output regions of the basal ganglia create a stringent computational bottleneck, both structurally, because they have far fewer neurons than do their target regions, and dynamically, because of their tonic, inhibitory output. My proposed solution to this bottleneck is that the activity of an output neuron is setting the weight of a basis function, a function defined by that neuron's synaptic contacts. I illustrate how this may work in practice, allowing basal ganglia output to shift cortical dynamics and control eye movements via the superior colliculus. This solution can account for troubling issues in our understanding of the basal ganglia: why we see output neurons increasing their activity during behavior, rather than only decreasing as predicted by theories based on disinhibition, and why the output of the basal ganglia seems to have so many codes squashed into such a tiny region of the brain.
Collapse
|
2
|
Chanu MP, Kumar G, Vinjamuri RK, Kakoty NM. Computational model for control of hand movement in Parkinson's disease using deep brain stimulation. Exp Brain Res 2025; 243:74. [PMID: 39987542 DOI: 10.1007/s00221-025-07026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/09/2025] [Indexed: 02/25/2025]
Abstract
Parkinson's disease (PD) is a progressive neurological disorder characterized by the loss of dopamine in the substantia nigra resulting in movement disorder. Although several computational models have been proposed to explore different aspects of PD, a comprehensive computational model of PD and its suppression remains elusive. This study presents a computational model of the Cortico-Basal Ganglia Thalamus (CBGT) network, and demonstrates the effects of close-loop deep brain stimulation (DBS) as a potential therapeutic intervention. The model focuses on addressing abnormal brain wave patterns associated with PD-related hand movement through DBS. To assess the model performance, a three-link manipulator is incorporated into the CBGT model, with the joints corresponding to shoulder, elbow and wrist of human arm. PD-like symptoms are simulated by modulating the dopaminergic input. The striatal (STR) neurons were selected as target neurons for application of DBS. A proportional-integral (PI) controller regulates DBS at different frequencies in striatal neurons based on errors in manipulator movement. The effectiveness of DBS at STR was compared with the DBS at globus pallidus externus and subthalamic nucleus. DBS suppressed neuronal signal oscillations at 13-30 Hz and reduced abnormal hand movements. The results demonstrate that application of DBS at STR could correct manipulator movement. Additionally, the trajectory of movement by the end-effector were compared with DBS at different target neurons in CBGT. These findings suggest the therapeutic potential of the proposed computational model in development of neuroprosthesis for PD patients.
Collapse
Affiliation(s)
- Maibam Pooya Chanu
- Embedded Systems and Robotics Laboratory, Tezpur University, Tezpur, Assam, India.
| | - Gajendra Kumar
- Center for Translational Neuroscience, Carney Institute for Brain Science, Brown University, Providence, USA
- Developmental Disorders Genetics Research Program, Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University and Emma Pendleton Bradley Hospital, East Providence, RI, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Ramana Kumar Vinjamuri
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, USA
| | - Nayan M Kakoty
- Embedded Systems and Robotics Laboratory, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
3
|
González-Pereyra P, Sánchez-Lobato O, Martínez-Montalvo MG, Ortega-Romero DI, Pérez-Díaz CI, Merchant H, Tellez LA, Rueda-Orozco PE. Preconfigured cortico-thalamic neural dynamics constrain movement-associated thalamic activity. Nat Commun 2024; 15:10185. [PMID: 39582075 PMCID: PMC11586408 DOI: 10.1038/s41467-024-54742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
Neural preconfigured activity patterns (nPAPs), conceptualized as organized activity parcellated into groups of neurons, have been proposed as building blocks for cognitive and sensory processing. However, their existence and function in motor networks have been scarcely studied. Here, we explore the possibility that nPAPs are present in the motor thalamus (VL/VM) and their potential contribution to motor-related activity. To this end, we developed a preparation where VL/VM multiunitary activity could be robustly recorded in mouse behavior evoked by primary motor cortex (M1) optogenetic stimulation and forelimb movements. VL/VM-evoked activity was organized as rigid stereotypical activity patterns at the single and population levels. These activity patterns were unable to dynamically adapt to different temporal architectures of M1 stimulation. Moreover, they were experience-independent, present in virtually all animals, and pairs of neurons with high correlations during M1-stimulation also presented higher correlations during spontaneous activity, confirming their preconfigured nature. Finally, subpopulations expressing specific M1-evoked patterns also displayed specific movement-related patterns. Our data demonstrate that the behaviorally related identity of specific neural subpopulations is tightly linked to nPAPs.
Collapse
Affiliation(s)
- Perla González-Pereyra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | - Oswaldo Sánchez-Lobato
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | - Mario G Martínez-Montalvo
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | - Diana I Ortega-Romero
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | - Claudia I Pérez-Díaz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | - Hugo Merchant
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | - Luis A Tellez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | - Pavel E Rueda-Orozco
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico.
| |
Collapse
|
4
|
Althumayri M, Das R, Banavath R, Beker L, Achim AM, Ceylan Koydemir H. Recent Advances in Transparent Electrodes and Their Multimodal Sensing Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405099. [PMID: 39120484 PMCID: PMC11481197 DOI: 10.1002/advs.202405099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/24/2024] [Indexed: 08/10/2024]
Abstract
This review examines the recent advancements in transparent electrodes and their crucial role in multimodal sensing technologies. Transparent electrodes, notable for their optical transparency and electrical conductivity, are revolutionizing sensors by enabling the simultaneous detection of diverse physical, chemical, and biological signals. Materials like graphene, carbon nanotubes, and conductive polymers, which offer a balance between optical transparency, electrical conductivity, and mechanical flexibility, are at the forefront of this development. These electrodes are integral in various applications, from healthcare to solar cell technologies, enhancing sensor performance in complex environments. The paper addresses challenges in applying these electrodes, such as the need for mechanical flexibility, high optoelectronic performance, and biocompatibility. It explores new materials and innovative techniques to overcome these hurdles, aiming to broaden the capabilities of multimodal sensing devices. The review provides a comparative analysis of different transparent electrode materials, discussing their applications and the ongoing development of novel electrode systems for multimodal sensing. This exploration offers insights into future advancements in transparent electrodes, highlighting their transformative potential in bioelectronics and multimodal sensing technologies.
Collapse
Affiliation(s)
- Majed Althumayri
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTX77843USA
- Center for Remote Health Technologies and SystemsTexas A&M Engineering Experiment StationCollege StationTX77843USA
| | - Ritu Das
- Department of Mechanical EngineeringKoç UniversitySariyerIstanbul34450Turkey
| | - Ramu Banavath
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTX77843USA
- Center for Remote Health Technologies and SystemsTexas A&M Engineering Experiment StationCollege StationTX77843USA
| | - Levent Beker
- Department of Mechanical EngineeringKoç UniversitySariyerIstanbul34450Turkey
| | - Alin M. Achim
- School of Computer ScienceUniversity of BristolBristolBS8 1QUUK
| | - Hatice Ceylan Koydemir
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTX77843USA
- Center for Remote Health Technologies and SystemsTexas A&M Engineering Experiment StationCollege StationTX77843USA
| |
Collapse
|
5
|
Fallah M, Udobi KC, Swiatek AE, Scott CB, Evans RC. Inhibitory basal ganglia nuclei differentially innervate pedunculopontine nucleus subpopulations and evoke opposite motor and valence behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606694. [PMID: 39149277 PMCID: PMC11326182 DOI: 10.1101/2024.08.05.606694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The canonical basal ganglia model predicts that the substantia nigra pars reticulata (SNr) and the globus pallidus externa (GPe) will have specific effects on locomotion: the SNr inhibiting locomotion and the GPe enhancing it. In this manuscript, we use in vivo optogenetics to show that a projection-defined neural subpopulation within each structure exerts non-canonical effects on locomotion. These non-canonical subpopulations are defined by their projection to the pedunculopontine nucleus (PPN) and mediate opposing effects on reward. To understand how these structures differentially modulate the PPN, we use ex vivo whole-cell recording with optogenetics to comprehensively dissect the SNr and GPe connections to regionally- and molecularly-defined populations of PPN neurons. The SNr inhibits all PPN subtypes, but most strongly inhibits caudal glutamatergic neurons. The GPe selectively inhibits caudal glutamatergic and GABAergic neurons, avoiding both cholinergic and rostral cells. This circuit characterization reveals non-canonical basal ganglia pathways for locomotion and valence.
Collapse
Affiliation(s)
- Michel Fallah
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA 20007
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA 20007
- Senior author
| | - Kenea C Udobi
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA 20007
| | - Aleksandra E Swiatek
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA 20007
| | - Chelsea B Scott
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA 20007
| | - Rebekah C Evans
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA 20007
- Lead contact
| |
Collapse
|
6
|
Friedman AD, Yin HH. Selective Activation of Subthalamic Nucleus Output Quantitatively Scales Movements. J Neurosci 2023; 43:7967-7981. [PMID: 37816600 PMCID: PMC10669786 DOI: 10.1523/jneurosci.0734-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/07/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
The subthalamic nucleus (STN) is a common target for deep brain stimulation (DBS) treatments of Parkinsonian motor symptoms. According to the dominant model, the STN output can suppress movement by enhancing inhibitory basal ganglia (BG) output via the indirect pathway, and disrupting STN output using DBS can restore movement in Parkinson's patients. But the mechanisms underlying STN DBS remain poorly understood, as previous studies usually relied on electrical stimulation, which cannot selectively target STN output neurons. Here, we selectively stimulated STN projection neurons using optogenetics and quantified behavior in male and female mice using 3D motion capture. STN stimulation resulted in movements with short latencies (10-15 ms). A single pulse of light was sufficient to generate movement, and there was a highly linear relationship between stimulation frequency and kinematic measures. Unilateral stimulation caused movement in the ipsiversive direction (toward the side of stimulation) and quantitatively determined head yaw and head roll, while stimulation of either STN raises the head (pitch). Bilateral stimulation does not cause turning but raised the head twice as high as unilateral stimulation of either STN. Optogenetic stimulation increased the firing rate of STN neurons in a frequency-dependent manner, and the increased firing is responsible for stimulation-induced movements. Finally, stimulation of the STN's projection to the brainstem mesencephalic locomotor region was sufficient to reproduce the behavioral effects of STN stimulation. These results question the common assumption that the STN suppresses movement, and instead suggest that STN output can precisely specify action parameters via direct projections to the brainstem.SIGNIFICANCE STATEMENT Our results question the common assumption that the subthalamic nucleus (STN) suppresses movement, and instead suggest that STN output can precisely specify action parameters via direct projections to the brainstem.
Collapse
Affiliation(s)
- Alexander D Friedman
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27708
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27708
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina 27708
| |
Collapse
|
7
|
Wärnberg E, Kumar A. Feasibility of dopamine as a vector-valued feedback signal in the basal ganglia. Proc Natl Acad Sci U S A 2023; 120:e2221994120. [PMID: 37527344 PMCID: PMC10410740 DOI: 10.1073/pnas.2221994120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/08/2023] [Indexed: 08/03/2023] Open
Abstract
It is well established that midbrain dopaminergic neurons support reinforcement learning (RL) in the basal ganglia by transmitting a reward prediction error (RPE) to the striatum. In particular, different computational models and experiments have shown that a striatum-wide RPE signal can support RL over a small discrete set of actions (e.g., no/no-go, choose left/right). However, there is accumulating evidence that the basal ganglia functions not as a selector between predefined actions but rather as a dynamical system with graded, continuous outputs. To reconcile this view with RL, there is a need to explain how dopamine could support learning of continuous outputs, rather than discrete action values. Inspired by the recent observations that besides RPE, the firing rates of midbrain dopaminergic neurons correlate with motor and cognitive variables, we propose a model in which dopamine signal in the striatum carries a vector-valued error feedback signal (a loss gradient) instead of a homogeneous scalar error (a loss). We implement a local, "three-factor" corticostriatal plasticity rule involving the presynaptic firing rate, a postsynaptic factor, and the unique dopamine concentration perceived by each striatal neuron. With this learning rule, we show that such a vector-valued feedback signal results in an increased capacity to learn a multidimensional series of real-valued outputs. Crucially, we demonstrate that this plasticity rule does not require precise nigrostriatal synapses but remains compatible with experimental observations of random placement of varicosities and diffuse volume transmission of dopamine.
Collapse
Affiliation(s)
- Emil Wärnberg
- Department of Neuroscience, Karolinska Institutet, 171 77Stockholm, Sweden
- Division of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 114 28Stockholm, Sweden
| | - Arvind Kumar
- Division of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 114 28Stockholm, Sweden
| |
Collapse
|
8
|
Fallon IP, Hughes RN, Severino FPU, Kim N, Lawry CM, Watson GDR, Roshchina M, Yin HH. The role of the parafascicular thalamic nucleus in action initiation and steering. Curr Biol 2023; 33:2941-2951.e4. [PMID: 37390830 PMCID: PMC10528051 DOI: 10.1016/j.cub.2023.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/19/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023]
Abstract
The parafascicular (Pf) nucleus of the thalamus has been implicated in arousal and attention, but its contributions to behavior remain poorly characterized. Here, using in vivo and in vitro electrophysiology, optogenetics, and 3D motion capture, we studied the role of the Pf nucleus in behavior using a continuous reward-tracking task in freely moving mice. We found that many Pf neurons precisely represent vector components of velocity, with a strong preference for ipsiversive movements. Their activity usually leads velocity, suggesting that Pf output is critical for self-initiated orienting behavior. To test this hypothesis, we expressed excitatory or inhibitory opsins in VGlut2+ Pf neurons to manipulate neural activity bidirectionally. We found that selective optogenetic stimulation of these neurons consistently produced ipsiversive head turning, whereas inhibition stopped turning and produced downward movements. Taken together, our results suggest that the Pf nucleus can send continuous top-down commands that specify detailed action parameters (e.g., direction and speed of the head), thus providing guidance for orienting and steering during behavior.
Collapse
Affiliation(s)
- Isabella P Fallon
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Ryan N Hughes
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | | | - Namsoo Kim
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Clara M Lawry
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Glenn D R Watson
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Marina Roshchina
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27708, USA.
| |
Collapse
|
9
|
Zhong C, Wang L, Cao Y, Sun C, Huang J, Wang X, Pan S, He S, Huang K, Lu Z, Xu F, Lu Y, Wang L. A neural circuit from the dorsal CA3 to the dorsomedial hypothalamus mediates balance between risk exploration and defense. Cell Rep 2022; 41:111570. [PMID: 36323263 DOI: 10.1016/j.celrep.2022.111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/28/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
Abstract
An appropriate balance between explorative and defensive behavior is essential for the survival and reproduction of prey animals in risky environments. However, the neural circuit and mechanism that allow for such a balance remains poorly understood. Here, we use a semi-naturalistic predator threat test (PTT) to observe and quantify the defense-exploration balance, especially risk exploration behavior in mice. During the PTT, the activity of the putative dorsal CA3 glutamatergic neurons (dCA3Glu) is suppressed by predatory threat and risk exploration, whereas the neurons are activated during contextual exploration. Moreover, optogenetic excitation of these neurons induces a significant increase in risk exploration. A circuit, comprising the dorsal CA3, dorsal lateral septal, and dorsomedial hypothalamic (dCA3Glu-dLSGABA-DMH) areas, may be involved. Moreover, activation of the dCA3Glu-dLSGABA-DMH circuit promotes the switch from defense to risk exploration and suppresses threat-induced increase in arousal.
Collapse
Affiliation(s)
- Cheng Zhong
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Lulu Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Yi Cao
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Chongyang Sun
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Jianyu Huang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xufang Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Suwan Pan
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Shuyu He
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Kang Huang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Zhonghua Lu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Fuqiang Xu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Center for Brain Science, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yi Lu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| | - Liping Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| |
Collapse
|
10
|
David FJ, Rivera YM, Entezar TK, Arora R, Drane QH, Munoz MJ, Rosenow JM, Sani SB, Pal GD, Verhagen-Metman L, Corcos DM. Encoding type, medication, and deep brain stimulation differentially affect memory-guided sequential reaching movements in Parkinson's disease. Front Neurol 2022; 13:980935. [PMID: 36324383 PMCID: PMC9618698 DOI: 10.3389/fneur.2022.980935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Memory-guided movements, vital to daily activities, are especially impaired in Parkinson's disease (PD). However, studies examining the effects of how information is encoded in memory and the effects of common treatments of PD, such as medication and subthalamic nucleus deep brain stimulation (STN-DBS), on memory-guided movements are uncommon and their findings are equivocal. We designed two memory-guided sequential reaching tasks, peripheral-vision or proprioception encoded, to investigate the effects of encoding type (peripheral-vision vs. proprioception), medication (on- vs. off-), STN-DBS (on- vs. off-, while off-medication), and compared STN-DBS vs. medication on reaching amplitude, error, and velocity. We collected data from 16 (analyzed n = 7) participants with PD, pre- and post-STN-DBS surgery, and 17 (analyzed n = 14) healthy controls. We had four important findings. First, encoding type differentially affected reaching performance: peripheral-vision reaches were faster and more accurate. Also, encoding type differentially affected reaching deficits in PD compared to healthy controls: peripheral-vision reaches manifested larger deficits in amplitude. Second, the effect of medication depended on encoding type: medication had no effect on amplitude, but reduced error for both encoding types, and increased velocity only during peripheral-vision encoding. Third, the effect of STN-DBS depended on encoding type: STN-DBS increased amplitude for both encoding types, increased error during proprioception encoding, and increased velocity for both encoding types. Fourth, STN-DBS was superior to medication with respect to increasing amplitude and velocity, whereas medication was superior to STN-DBS with respect to reducing error. We discuss our findings in the context of the previous literature and consider mechanisms for the differential effects of medication and STN-DBS.
Collapse
Affiliation(s)
- Fabian J. David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yessenia M. Rivera
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Tara K. Entezar
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, United States
| | - Rishabh Arora
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Quentin H. Drane
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Miranda J. Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joshua M. Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sepehr B. Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Gian D. Pal
- Department of Neurology, Rutgers University, New Brunswick, NJ, United States
| | - Leonard Verhagen-Metman
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
11
|
Chen Z, Zhang ZY, Zhang W, Xie T, Li Y, Xu XH, Yao H. Direct and indirect pathway neurons in ventrolateral striatum differentially regulate licking movement and nigral responses. Cell Rep 2021; 37:109847. [PMID: 34686331 DOI: 10.1016/j.celrep.2021.109847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Drinking behavior in rodents is characterized by stereotyped, rhythmic licking movement, which is regulated by the basal ganglia. It is unclear how direct and indirect pathways control the lick bout and individual spout contact. We find that inactivating D1 and D2 receptor-expressing medium spiny neurons (MSNs) in the ventrolateral striatum (VLS) oppositely alters the number of licks in a bout. D1- and D2-MSNs exhibit different patterns of lick-sequence-related activity and different phases of oscillation time-locked to the lick cycle. On the timescale of a lick cycle, transient inactivation of D1-MSNs during tongue protrusion reduces spout contact probability, whereas transiently inactivating D2-MSNs has no effect. On the timescale of a lick bout, inactivation of D1-MSNs (D2-MSNs) causes rate increase (decrease) in a subset of basal ganglia output neurons that decrease firing during licking. Our results reveal the distinct roles of D1- and D2-MSNs in regulating licking at both coarse and fine timescales.
Collapse
Affiliation(s)
- Zhaorong Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Yu Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Taorong Xie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yaping Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
12
|
Achieving natural behavior in a robot using neurally inspired hierarchical perceptual control. iScience 2021; 24:102948. [PMID: 34522850 PMCID: PMC8426206 DOI: 10.1016/j.isci.2021.102948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/25/2021] [Accepted: 08/02/2021] [Indexed: 01/20/2023] Open
Abstract
Terrestrial locomotion presents tremendous computational challenges on account of the enormous degrees of freedom in legged animals, and complex, unpredictable properties of natural environments, including the body and its effectors, yet the nervous system can achieve locomotion with ease. Here we introduce a quadrupedal robot that is capable of posture control and goal-directed locomotion across uneven terrain. The control architecture is a hierarchical network of simple negative feedback control systems inspired by the organization of the vertebrate nervous system. This robot is capable of robust posture control and locomotion in novel environments with unpredictable disturbances. Unlike current robots, our robot does not use internal inverse and forward models, nor does it require any training in order to perform successfully in novel environments. Inspired by a neural hierarchy with control of input at each level Higher level specifies reference state for lower level Successful posture control and locomotion despite unpredictable disturbances No need for training or computation of inverse or forward kinematics
Collapse
|
13
|
Bidirectional Control of Orienting Behavior by the Substantia Nigra Pars Reticulata: Distinct Significance of Head and Whisker Movements. eNeuro 2021; 8:ENEURO.0165-21.2021. [PMID: 34544763 PMCID: PMC8532345 DOI: 10.1523/eneuro.0165-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022] Open
Abstract
Detection of an unexpected, novel, or salient stimulus typically leads to an orienting response by which animals move the head, in concert with the sensors (e.g., eyes, pinna, whiskers), to evaluate the stimulus. The basal ganglia are known to control orienting movements through tonically active GABAergic neurons in the substantia nigra pars reticulata (SNr) that project to the superior colliculus. Using optogenetics, we explored the ability of GABAergic SNr neurons on one side of the brain to generate orienting movements. In a strain of mice that express channelrhodopsin (ChR2) in both SNr GABAergic neurons and afferent fibers, we found that continuous blue light produced a robust sustained excitation of SNr neurons which generated ipsiversive orienting. Conversely, in the same animal, trains of blue light excited afferent fibers more effectively than continuous blue light, producing a robust sustained inhibition of SNr neurons which generated contraversive orienting. When ChR2 expression was restricted to either GABAergic SNr neurons or GABAergic afferent fibers from the striatum, blue light patterns in SNr produced only ipsiversive or contraversive orienting movements, respectively. Interestingly, whisker positioning and the reaction to an air-puff on the whiskers were incongruent between SNr-evoked ipsiversive and contraversive head movements, indicating that orienting driven by exciting or inhibiting SNr neurons have different behavioral significance. In conclusion, unilateral SNr neuron excitation and inhibition produce orienting movements in opposite directions and, apparently, with distinct behavioral significance.
Collapse
|
14
|
Basal Ganglia Output Has a Permissive Non-Driving Role in a Signaled Locomotor Action Mediated by the Midbrain. J Neurosci 2020; 41:1529-1552. [PMID: 33328292 DOI: 10.1523/jneurosci.1067-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023] Open
Abstract
The basal ganglia are important for movement and reinforcement learning. Using mice of either sex, we found that the main basal ganglia GABAergic output in the midbrain, the substantia nigra pars reticulata (SNr), shows movement-related neural activity during the expression of a negatively reinforced signaled locomotor action known as signaled active avoidance; this action involves mice moving away during a warning signal to avoid a threat. In particular, many SNr neurons deactivate during active avoidance responses. However, whether SNr deactivation has an essential role driving or regulating active avoidance responses is unknown. We found that optogenetic excitation of SNr or striatal GABAergic fibers that project to an area in the pedunculopontine tegmentum (PPT) within the midbrain locomotor region abolishes signaled active avoidance responses, while optogenetic inhibition of SNr cells (mimicking the SNr deactivation observed during an active avoidance behavior) serves as an effective conditioned stimulus signal to drive avoidance responses by disinhibiting PPT neurons. However, preclusion of SNr deactivation, or direct inhibition of SNr fibers in the PPT, does not impair the expression of signaled active avoidance, indicating that SNr output does not drive the expression of a signaled locomotor action mediated by the midbrain. Consistent with a permissive regulatory role, SNr output provides information about the state of the ongoing action to downstream structures that mediate the action.SIGNIFICANCE STATEMENT During signaled active avoidance behavior, subjects move away to avoid a threat when directed by an innocuous sensory stimulus. Excitation of GABAergic cells in the substantia nigra pars reticulata (SNr), the main output of the basal ganglia, blocks signaled active avoidance, while inhibition of SNr cells is an effective stimulus to drive active avoidance. Interestingly, many SNr cells inhibit their firing during active avoidance responses, suggesting that SNr inhibition could be driving avoidance responses by disinhibiting downstream areas. However, interfering with the modulation of SNr cells does not impair the behavior. Thus, SNr may regulate the active avoidance movement in downstream areas that mediate the behavior, but does not drive it.
Collapse
|
15
|
Cone JJ, Bade ML, Masse NY, Page EA, Freedman DJ, Maunsell JHR. Mice Preferentially Use Increases in Cerebral Cortex Spiking to Detect Changes in Visual Stimuli. J Neurosci 2020; 40:7902-7920. [PMID: 32917791 PMCID: PMC7548699 DOI: 10.1523/jneurosci.1124-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/20/2020] [Accepted: 08/26/2020] [Indexed: 01/20/2023] Open
Abstract
Whenever the retinal image changes, some neurons in visual cortex increase their rate of firing whereas others decrease their rate of firing. Linking specific sets of neuronal responses with perception and behavior is essential for understanding mechanisms of neural circuit computation. We trained mice of both sexes to perform visual detection tasks and used optogenetic perturbations to increase or decrease neuronal spiking primary visual cortex (V1). Perceptual reports were always enhanced by increments in V1 spike counts and impaired by decrements, even when increments and decrements in spiking were generated in the same neuronal populations. Moreover, detecting changes in cortical activity depended on spike count integration rather than instantaneous changes in spiking. Recurrent neural networks trained in the task similarly relied on increments in neuronal activity when activity has costs. This work clarifies neuronal decoding strategies used by cerebral cortex to translate cortical spiking into percepts that can be used to guide behavior.SIGNIFICANCE STATEMENT Visual responses in the primary visual cortex (V1) are diverse, in that neurons can be either excited or inhibited by the onset of a visual stimulus. We selectively potentiated or suppressed V1 spiking in mice while they performed contrast change detection tasks. In other experiments, excitation or inhibition was delivered to V1 independent of visual stimuli. Mice readily detected increases in V1 spiking while equivalent reductions in V1 spiking suppressed the probability of detection, even when increases and decreases in V1 spiking were generated in the same neuronal populations. Our data raise the striking possibility that only increments in spiking are used to render information to structures downstream of V1.
Collapse
Affiliation(s)
- Jackson J Cone
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637
| | - Morgan L Bade
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637
| | - Nicolas Y Masse
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637
| | - Elizabeth A Page
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637
| | - David J Freedman
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637
| | - John H R Maunsell
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
16
|
Schwab BC, Kase D, Zimnik A, Rosenbaum R, Codianni MG, Rubin JE, Turner RS. Neural activity during a simple reaching task in macaques is counter to gating and rebound in basal ganglia-thalamic communication. PLoS Biol 2020; 18:e3000829. [PMID: 33048920 PMCID: PMC7584254 DOI: 10.1371/journal.pbio.3000829] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/23/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022] Open
Abstract
Task-related activity in the ventral thalamus, a major target of basal ganglia output, is often assumed to be permitted or triggered by changes in basal ganglia activity through gating- or rebound-like mechanisms. To test those hypotheses, we sampled single-unit activity from connected basal ganglia output and thalamic nuclei (globus pallidus-internus [GPi] and ventrolateral anterior nucleus [VLa]) in monkeys performing a reaching task. Rate increases were the most common peri-movement change in both nuclei. Moreover, peri-movement changes generally began earlier in VLa than in GPi. Simultaneously recorded GPi-VLa pairs rarely showed short-time-scale spike-to-spike correlations or slow across-trials covariations, and both were equally positive and negative. Finally, spontaneous GPi bursts and pauses were both followed by small, slow reductions in VLa rate. These results appear incompatible with standard gating and rebound models. Still, gating or rebound may be possible in other physiological situations: simulations show how GPi-VLa communication can scale with GPi synchrony and GPi-to-VLa convergence, illuminating how synchrony of basal ganglia output during motor learning or in pathological conditions may render this pathway effective. Thus, in the healthy state, basal ganglia-thalamic communication during learned movement is more subtle than expected, with changes in firing rates possibly being dominated by a common external source.
Collapse
Affiliation(s)
- Bettina C. Schwab
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Technical Medical Center, University of Twente, Enschede, the Netherlands
| | - Daisuke Kase
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Andrew Zimnik
- Department of Neuroscience, Columbia University Medical Center, New York, New York, United States of America
| | - Robert Rosenbaum
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, South Bend, Indiana, United States of America
| | - Marcello G. Codianni
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jonathan E. Rubin
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert S. Turner
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
17
|
Phillips RS, Rosner I, Gittis AH, Rubin JE. The effects of chloride dynamics on substantia nigra pars reticulata responses to pallidal and striatal inputs. eLife 2020; 9:e55592. [PMID: 32894224 PMCID: PMC7476764 DOI: 10.7554/elife.55592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/14/2020] [Indexed: 11/20/2022] Open
Abstract
As a rodent basal ganglia (BG) output nucleus, the substantia nigra pars reticulata (SNr) is well positioned to impact behavior. SNr neurons receive GABAergic inputs from the striatum (direct pathway) and globus pallidus (GPe, indirect pathway). Dominant theories of action selection rely on these pathways' inhibitory actions. Yet, experimental results on SNr responses to these inputs are limited and include excitatory effects. Our study combines experimental and computational work to characterize, explain, and make predictions about these pathways. We observe diverse SNr responses to stimulation of SNr-projecting striatal and GPe neurons, including biphasic and excitatory effects, which our modeling shows can be explained by intracellular chloride processing. Our work predicts that ongoing GPe activity could tune the SNr operating mode, including its responses in decision-making scenarios, and GPe output may modulate synchrony and low-frequency oscillations of SNr neurons, which we confirm using optogenetic stimulation of GPe terminals within the SNr.
Collapse
Affiliation(s)
- Ryan S Phillips
- Department of Mathematics, University of PittsburghPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
| | - Ian Rosner
- Center for the Neural Basis of CognitionPittsburghUnited States
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Aryn H Gittis
- Center for the Neural Basis of CognitionPittsburghUnited States
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Jonathan E Rubin
- Department of Mathematics, University of PittsburghPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
| |
Collapse
|
18
|
Whalen TC, Willard AM, Rubin JE, Gittis AH. Delta oscillations are a robust biomarker of dopamine depletion severity and motor dysfunction in awake mice. J Neurophysiol 2020; 124:312-329. [PMID: 32579421 PMCID: PMC7500379 DOI: 10.1152/jn.00158.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Delta oscillations (0.5-4 Hz) are a robust feature of basal ganglia pathophysiology in patients with Parkinson's disease (PD) in relationship to tremor, but their relationship to other parkinsonian symptoms has not been investigated. While delta oscillations have been observed in mouse models of PD, they have only been investigated in anesthetized animals, suggesting that the oscillations may be an anesthesia artifact and limiting the ability to relate them to motor symptoms. Here, we establish a novel approach to detect spike oscillations embedded in noise to provide the first study of delta oscillations in awake, dopamine-depleted mice. We find that approximately half of neurons in the substantia nigra pars reticulata (SNr) exhibit delta oscillations in dopamine depletion and that these oscillations are a strong indicator of dopamine loss and akinesia, outperforming measures such as changes in firing rate, irregularity, bursting, and synchrony. These oscillations are typically weakened, but not ablated, during movement. We further establish that these oscillations are caused by the loss of D2-receptor activation and do not originate from motor cortex, contrary to previous findings in anesthetized animals. Instead, SNr oscillations precede those in M1 at a 100- to 300-ms lag, and these neurons' relationship to M1 oscillations can be used as the basis for a novel classification of SNr into two subpopulations. These results give insight into how dopamine loss leads to motor dysfunction and suggest a reappraisal of delta oscillations as a marker of akinetic symptoms in PD.NEW & NOTEWORTHY This work introduces a novel method to detect spike oscillations amidst neural noise. Using this method, we demonstrate that delta oscillations in the basal ganglia are a defining feature of awake, dopamine-depleted mice and are strongly correlated with dopamine loss and parkinsonian motor symptoms. These oscillations arise from a loss of D2-receptor activation and do not require motor cortex. Similar oscillations in human patients may be an underappreciated marker and target for Parkinson's disease (PD) treatment.
Collapse
Affiliation(s)
- Timothy C Whalen
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Neuroscience Institute and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Amanda M Willard
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Neuroscience Institute and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Department of Biology and Geosciences, Clarion University, Clarion, Pennsylvania
| | - Jonathan E Rubin
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aryn H Gittis
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Neuroscience Institute and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Unbalanced Inhibitory/Excitatory Responses in the Substantia Nigra Pars Reticulata Underlie Cannabinoid-Related Slowness of Movements. J Neurosci 2020; 40:5769-5784. [PMID: 32532888 DOI: 10.1523/jneurosci.0045-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 11/21/2022] Open
Abstract
The substantia nigra pars reticulata (SNr), where the basal ganglia (BG) direct and indirect pathways converge, contains among the highest expression of cannabinoid receptor type 1 (CB1r) in the brain. Hence, SNr is an ideal locus to study pathway interactions and cannabinergic modulations. The objective of this study was to characterize the effects of systemic injections of the CB1r agonist (CP55940) on the balanced activity of the direct/indirect pathways in the SNr and its associated behaviors. To this aim, we recorded somatosensory and pathway-specific representations in the spiking activity of the SNr of male rats under CP55940. CB1r activation mainly decreased the inhibitory, potentially direct pathway component while sparing the excitatory, potentially indirect pathway component of somatosensory responses. As a result, cutaneous stimulation produced unbalanced responses favoring increased SNr firing rates, suggesting a potential locus for cannabinergic motor-related effects. To test this hypothesis, we implemented an ad hoc behavioral protocol for rats in which systemic administration of CP55940 produced kinematic impairments that were completely reverted by nigral injections of the CB1r antagonist (AM251). Our data suggest that cannabinoid-related motor effects are associated with unbalanced direct/indirect pathway activations that may be reverted by CB1r manipulation at the SNr.SIGNIFICANCE STATEMENT The cannabinergic system has been the target of multiple studies to master its potential use as a therapeutic agent. However, significant advances have been precluded by the lack of mechanistic explanations for the variety of its desirable/undesirable effects. Here, we have combined electrophysiological recordings, pharmacological and optogenetic manipulations, and an ad hoc behavioral protocol to understand how basal ganglia (BG) is affected by cannabinoids. We found that cannabinoids principally affect inhibitory inputs, potentially from the direct pathway, resulting in unbalanced responses in the substantia nigra pars reticulata (SNr) and suggesting a mechanism for the cannabinoid-related slowness of movements. This possibility was confirmed by behavioral experiments in which cannabinoid-related slowness of purposeful movements was reverted by cannabinoid receptor type 1 (CB1r) manipulations directly into the SNr.
Collapse
|
20
|
Mediodorsal Thalamus Contributes to the Timing of Instrumental Actions. J Neurosci 2020; 40:6379-6388. [PMID: 32493711 DOI: 10.1523/jneurosci.0695-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022] Open
Abstract
The perception of time is critical to adaptive behavior. While prefrontal cortex and basal ganglia have been implicated in interval timing in the seconds to minutes range, little is known about the role of the mediodorsal thalamus (MD), which is a key component of the limbic cortico-basal ganglia-thalamocortical loop. In this study, we tested the role of the MD in timing, using an operant temporal production task in male mice. In this task, that the expected timing of available rewards is indicated by lever pressing. Inactivation of the MD with muscimol produced rightward shifts in peak pressing on probe trials as well as increases in peak spread, thus significantly altering both temporal accuracy and precision. Optogenetic inhibition of glutamatergic projection neurons in the MD also resulted in similar changes in timing. The observed effects were found to be independent of significant changes in movement. Our findings suggest that the MD is a critical component of the neural circuit for interval timing, without playing a direct role in regulating ongoing performance.SIGNIFICANCE STATEMENT The mediodorsal nucleus (MD) of the thalamus is strongly connected with the prefrontal cortex and basal ganglia, areas which have been implicated in interval timing. Previous work has shown that the MD contributes to working memory and learning of action-outcome contingencies, but its role in behavioral timing is poorly understood. Using an operant temporal production task, we showed that inactivation of the MD significantly impaired timing behavior.
Collapse
|
21
|
Bakhurin KI, Li X, Friedman AD, Lusk NA, Watson GDR, Kim N, Yin HH. Opponent regulation of action performance and timing by striatonigral and striatopallidal pathways. eLife 2020; 9:e54831. [PMID: 32324535 PMCID: PMC7180055 DOI: 10.7554/elife.54831] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/08/2020] [Indexed: 11/13/2022] Open
Abstract
The basal ganglia have been implicated in action selection and timing, but the relative contributions of the striatonigral (direct) and striatopallidal (indirect) pathways to these functions remain unclear. We investigated the effects of optogenetic stimulation of D1+ (direct) and A2A+ (indirect) neurons in the ventrolateral striatum in head-fixed mice on a fixed time reinforcement schedule. Direct pathway stimulation initiates licking, whereas indirect pathway stimulation suppresses licking and results in rebound licking after stimulation. Moreover, direct and indirect pathways also play distinct roles in timing. Direct pathway stimulation produced a resetting of the internal timing process, whereas indirect pathway stimulation transiently paused timing, and proportionally delayed the next bout of licking. Our results provide evidence for the continuous and opposing contributions of the direct and indirect pathways in the production and timing of reward-guided behavior.
Collapse
Affiliation(s)
| | - Xiaoran Li
- Department of Psychology and Neuroscience, Duke UniversityDurhamUnited States
| | | | - Nicholas A Lusk
- Department of Psychology and Neuroscience, Duke UniversityDurhamUnited States
| | - Glenn DR Watson
- Department of Psychology and Neuroscience, Duke UniversityDurhamUnited States
| | - Namsoo Kim
- Department of Psychology and Neuroscience, Duke UniversityDurhamUnited States
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke UniversityDurhamUnited States
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| |
Collapse
|
22
|
Abstract
Behavior is readily classified into patterns of movements with inferred common goals-actions. Goals may be discrete; movements are continuous. Through the careful study of isolated movements in laboratory settings, or via introspection, it has become clear that animals can exhibit exquisite graded specification to their movements. Moreover, graded control can be as fundamental to success as the selection of which action to perform under many naturalistic scenarios: a predator adjusting its speed to intercept moving prey, or a tool-user exerting the perfect amount of force to complete a delicate task. The basal ganglia are a collection of nuclei in vertebrates that extend from the forebrain (telencephalon) to the midbrain (mesencephalon), constituting a major descending extrapyramidal pathway for control over midbrain and brainstem premotor structures. Here we discuss how this pathway contributes to the continuous specification of movements that endows our voluntary actions with vigor and grace.
Collapse
Affiliation(s)
- Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Luke T Coddington
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| |
Collapse
|
23
|
Hughes RN, Bakhurin KI, Barter JW, Zhang J, Yin HH. A Head-Fixation System for Continuous Monitoring of Force Generated During Behavior. Front Integr Neurosci 2020; 14:11. [PMID: 32210772 PMCID: PMC7076082 DOI: 10.3389/fnint.2020.00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/20/2020] [Indexed: 11/28/2022] Open
Abstract
Many studies in neuroscience use head-fixed behavioral preparations, which confer a number of advantages, including the ability to limit the behavioral repertoire and use techniques for large-scale monitoring of neural activity. But traditional studies using this approach use extremely limited behavioral measures, in part because it is difficult to detect the subtle movements and postural adjustments that animals naturally exhibit during head fixation. Here we report a new head-fixed setup with analog load cells capable of precisely monitoring the continuous forces exerted by mice. The load cells reveal the dynamic nature of movements generated not only around the time of task-relevant events, such as presentation of stimuli and rewards, but also during periods in between these events, when there is no apparent overt behavior. It generates a new and rich set of behavioral measures that have been neglected in previous experiments. We detail the construction of the system, which can be 3D-printed and assembled at low cost, show behavioral results collected from head-fixed mice, and demonstrate that neural activity can be highly correlated with the subtle, whole-body movements continuously produced during head restraint.
Collapse
Affiliation(s)
- Ryan N Hughes
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Konstantin I Bakhurin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Joseph W Barter
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Jinyong Zhang
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States.,Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
24
|
Palmisano C, Brandt G, Vissani M, Pozzi NG, Canessa A, Brumberg J, Marotta G, Volkmann J, Mazzoni A, Pezzoli G, Frigo CA, Isaias IU. Gait Initiation in Parkinson's Disease: Impact of Dopamine Depletion and Initial Stance Condition. Front Bioeng Biotechnol 2020; 8:137. [PMID: 32211390 PMCID: PMC7068722 DOI: 10.3389/fbioe.2020.00137] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/11/2020] [Indexed: 01/14/2023] Open
Abstract
Postural instability, in particular at gait initiation (GI), and resulting falls are a major determinant of poor quality of life in subjects with Parkinson’s disease (PD). Still, the contribution of the basal ganglia and dopamine on the feedforward postural control associated with this motor task is poorly known. In addition, the influence of anthropometric measures (AM) and initial stance condition on GI has never been consistently assessed. The biomechanical resultants of anticipatory postural adjustments contributing to GI [imbalance (IMB), unloading (UNL), and stepping phase) were studied in 26 unmedicated subjects with idiopathic PD and in 27 healthy subjects. A subset of 13 patients was analyzed under standardized medication conditions and the striatal dopaminergic innervation was studied in 22 patients using FP-CIT and SPECT. People with PD showed a significant reduction in center of pressure (CoP) displacement and velocity during the IMB phase, reduced first step length and velocity, and decreased velocity and acceleration of the center of mass (CoM) at toe off of the stance foot. All these measurements correlated with the dopaminergic innervation of the putamen and substantially improved with levodopa. These results were not influenced by anthropometric parameters or by the initial stance condition. In contrast, most of the measurements of the UNL phase were influenced by the foot placement and did not correlate with putaminal dopaminergic innervation. Our results suggest a significant role of dopamine and the putamen particularly in the elaboration of the IMB phase of anticipatory postural adjustments and in the execution of the first step. The basal ganglia circuitry may contribute to defining the optimal referent body configuration for a proper initiation of gait and possibly gait adaptation to the environment.
Collapse
Affiliation(s)
- Chiara Palmisano
- Department of Neurology, University Hospital Würzburg and The Julius Maximilian University of Würzburg, Würzburg, Germany.,MBMC Lab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Gregor Brandt
- Department of Neurology, University Hospital Würzburg and The Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Matteo Vissani
- Translational Neural Engineering Area, The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Nicoló G Pozzi
- Department of Neurology, University Hospital Würzburg and The Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Andrea Canessa
- Fondazione Europea di Ricerca Biomedica (FERB Onlus), Cernusco s/N (Milan), Italy
| | - Joachim Brumberg
- Department of Nuclear Medicine, University Hospital Würzburg and The Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Giorgio Marotta
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg and The Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Alberto Mazzoni
- Translational Neural Engineering Area, The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | | | - Carlo A Frigo
- MBMC Lab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Ioannis U Isaias
- Department of Neurology, University Hospital Würzburg and The Julius Maximilian University of Würzburg, Würzburg, Germany
| |
Collapse
|
25
|
Parker MG, Willett ABS, Tyson SF, Weightman AP, Mansell W. A systematic evaluation of the evidence for perceptual control theory in tracking studies. Neurosci Biobehav Rev 2020; 112:616-633. [PMID: 32092312 DOI: 10.1016/j.neubiorev.2020.02.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/08/2020] [Accepted: 02/20/2020] [Indexed: 10/25/2022]
Abstract
Perceptual control theory (PCT) proposes that perceptual inputs are controlled to intentional 'reference' states by hierarchical negative feedback control, evidence for which comes from manual tracking experiments in humans. We reviewed these experiments to determine whether tracking is a process of perceptual control, and to assess the state-of-the-evidence for PCT. A systematic literature search was conducted of peer-review journal and book chapters in which tracking data were simulated with a PCT model (13 studies, 53 participants). We report a narrative review of these studies and a qualitative assessment of their methodological quality. We found evidence that individuals track to individual-specific endogenously-specified reference states and act against disturbances, and evidence that hierarchical PCT can simulate complex tracking. PCT's learning algorithm, reorganization, was not modelled. Limitations exist in the range of tracking conditions under which the PCT model has been tested. Future PCT research should apply the PCT methodology to identify control variables in real-world tasks and develop hierarchical PCT architectures for goal-oriented robotics to test the plausibility of PCT model-based action control.
Collapse
Affiliation(s)
| | | | - Sarah F Tyson
- Division of Nursing, Midwifery and Social Work, University of Manchester, UK.
| | - Andrew P Weightman
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, UK.
| | - Warren Mansell
- Division of Psychology and Mental Health, University of Manchester, UK.
| |
Collapse
|
26
|
Morrissette AE, Chen PH, Bhamani C, Borden PY, Waiblinger C, Stanley GB, Jaeger D. Unilateral Optogenetic Inhibition and Excitation of Basal Ganglia Output Affect Directional Lick Choices and Movement Initiation in Mice. Neuroscience 2019; 423:55-65. [PMID: 31705892 DOI: 10.1016/j.neuroscience.2019.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 11/30/2022]
Abstract
Models of basal ganglia (BG) function predict that tonic inhibitory output to motor thalamus (MT) suppresses unwanted movements, and that a decrease in such activity leads to action selection. Further, for unilateral activity changes in the BG, a lateralized effect on contralateral movements can be expected due to ipsilateral thalamocortical connectivity. However, a direct test of these outcomes of thalamic inhibition has not been performed. To conduct such a direct test, we utilized rapid optogenetic activation and inactivation of the GABAergic output of the substantia nigra pars reticulata (SNr) to MT in male and female mice that were trained in a sensory cued left/right licking task. Directional licking tasks have previously been shown to depend on a thalamocortical feedback loop between ventromedial MT and antero-lateral premotor cortex. In confirmation of model predictions, we found that unilateral optogenetic inhibition of GABAergic output from the SNr, during ipsilaterally cued trials, biased decision making towards a contralateral lick without affecting motor performance. In contrast, optogenetic excitation of SNr terminals in MT resulted in an opposite bias towards the ipsilateral direction confirming a bidirectional effect of tonic nigral output on directional decision making. However, direct optogenetic excitation of neurons in the SNr resulted in bilateral movement suppression, which is in agreement with previous results that show such suppression for nigral terminals in the superior colliculus (SC), which receives a bilateral projection from SNr.
Collapse
Affiliation(s)
| | - Po-Han Chen
- Department of Biology, Emory University, Atlanta, GA, United States
| | | | - Peter Y Borden
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Christian Waiblinger
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Garrett B Stanley
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Dieter Jaeger
- Department of Biology, Emory University, Atlanta, GA, United States.
| |
Collapse
|
27
|
Hughes RN, Watson GDR, Petter EA, Kim N, Bakhurin KI, Yin HH. Precise Coordination of Three-Dimensional Rotational Kinematics by Ventral Tegmental Area GABAergic Neurons. Curr Biol 2019; 29:3244-3255.e4. [PMID: 31564491 PMCID: PMC7001733 DOI: 10.1016/j.cub.2019.08.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/22/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022]
Abstract
The ventral tegmental area (VTA) is a midbrain region implicated in a variety of motivated behaviors. However, the function of VTA GABAergic (Vgat+) neurons remains poorly understood. Here, using three-dimensional motion capture, in vivo electrophysiology, calcium imaging, and optogenetics, we demonstrate a novel function of VTAVgat+ neurons. We found three distinct populations of neurons, each representing head angle about a principal axis of rotation: yaw, roll, and pitch. For each axis, opponent cell groups were found that increase firing when the head moves in one direction and decrease firing in the opposite direction. Selective excitation and inhibition of VTAVgat+ neurons generate opposite rotational movements. Thus, VTAVgat+ neurons serve a critical role in the control of rotational kinematics while pursuing a moving target. This general-purpose steering function can guide animals toward desired spatial targets in any motivated behavior.
Collapse
Affiliation(s)
- Ryan N Hughes
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Glenn D R Watson
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Elijah A Petter
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Namsoo Kim
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | | | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27708, USA.
| |
Collapse
|
28
|
Cellular and Synaptic Dysfunctions in Parkinson's Disease: Stepping out of the Striatum. Cells 2019; 8:cells8091005. [PMID: 31470672 PMCID: PMC6769933 DOI: 10.3390/cells8091005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/30/2022] Open
Abstract
The basal ganglia (BG) are a collection of interconnected subcortical nuclei that participate in a great variety of functions, ranging from motor programming and execution to procedural learning, cognition, and emotions. This network is also the region primarily affected by the degeneration of midbrain dopaminergic neurons localized in the substantia nigra pars compacta (SNc). This degeneration causes cellular and synaptic dysfunctions in the BG network, which are responsible for the appearance of the motor symptoms of Parkinson’s disease. Dopamine (DA) modulation and the consequences of its loss on the striatal microcircuit have been extensively studied, and because of the discrete nature of DA innervation of other BG nuclei, its action outside the striatum has been considered negligible. However, there is a growing body of evidence supporting functional extrastriatal DA modulation of both cellular excitability and synaptic transmission. In this review, the functional relevance of DA modulation outside the striatum in both normal and pathological conditions will be discussed.
Collapse
|
29
|
A striatal interneuron circuit for continuous target pursuit. Nat Commun 2019; 10:2715. [PMID: 31222009 PMCID: PMC6586681 DOI: 10.1038/s41467-019-10716-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/28/2019] [Indexed: 12/19/2022] Open
Abstract
Most adaptive behaviors require precise tracking of targets in space. In pursuit behavior with a moving target, mice use distance to target to guide their own movement continuously. Here, we show that in the sensorimotor striatum, parvalbumin-positive fast-spiking interneurons (FSIs) can represent the distance between self and target during pursuit behavior, while striatal projection neurons (SPNs), which receive FSI projections, can represent self-velocity. FSIs are shown to regulate velocity-related SPN activity during pursuit, so that movement velocity is continuously modulated by distance to target. Moreover, bidirectional manipulation of FSI activity can selectively disrupt performance by increasing or decreasing the self-target distance. Our results reveal a key role of the FSI-SPN interneuron circuit in pursuit behavior and elucidate how this circuit implements distance to velocity transformation required for the critical underlying computation. Many natural behaviours involve tracking of a target in space. Here, the authors describe a task to assess this behaviour in mice and use in vivo electrophysiology, calcium imaging, optogenetics, and chemogenetics to investigate the role of the striatum in target pursuit.
Collapse
|
30
|
Willard AM, Isett BR, Whalen TC, Mastro KJ, Ki CS, Mao X, Gittis AH. State transitions in the substantia nigra reticulata predict the onset of motor deficits in models of progressive dopamine depletion in mice. eLife 2019; 8:e42746. [PMID: 30839276 PMCID: PMC6402832 DOI: 10.7554/elife.42746] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/28/2019] [Indexed: 01/04/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder whose cardinal motor symptoms are attributed to dysfunction of basal ganglia circuits under conditions of low dopamine. Despite well-established physiological criteria to define basal ganglia dysfunction, correlations between individual parameters and motor symptoms are often weak, challenging their predictive validity and causal contributions to behavior. One limitation is that basal ganglia pathophysiology is studied only at end-stages of depletion, leaving an impoverished understanding of when deficits emerge and how they evolve over the course of depletion. In this study, we use toxin- and neurodegeneration-induced mouse models of dopamine depletion to establish the physiological trajectory by which the substantia nigra reticulata (SNr) transitions from the healthy to the diseased state. We find that physiological progression in the SNr proceeds in discrete state transitions that are highly stereotyped across models and correlate well with the prodromal and symptomatic stages of behavior.
Collapse
Affiliation(s)
- Amanda M Willard
- Department of Biological SciencesCarnegie Mellon UniversityPittsburghUnited States
- Center for the Neural Basis of CognitionCarnegie Mellon UniversityPittsburghUnited States
| | - Brian R Isett
- Department of Biological SciencesCarnegie Mellon UniversityPittsburghUnited States
| | - Timothy C Whalen
- Center for the Neural Basis of CognitionCarnegie Mellon UniversityPittsburghUnited States
| | - Kevin J Mastro
- Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Chris S Ki
- University of California, BerkeleyBerkeleyUnited States
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreUnited States
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreUnited States
| | - Aryn H Gittis
- Department of Biological SciencesCarnegie Mellon UniversityPittsburghUnited States
- Center for the Neural Basis of CognitionCarnegie Mellon UniversityPittsburghUnited States
| |
Collapse
|
31
|
Cáceres-Chávez VA, Hernández-Martínez R, Pérez-Ortega J, Herrera-Valdez MA, Aceves JJ, Galarraga E, Bargas J. Acute dopamine receptor blockade in substantia nigra pars reticulata: a possible model for drug-induced Parkinsonism. J Neurophysiol 2018; 120:2922-2938. [PMID: 30256736 DOI: 10.1152/jn.00579.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dopamine (DA) depletion modifies the firing pattern of neurons in the substantia nigra pars reticulata (SNr), shifting their mostly tonic firing toward irregularity and bursting, traits of pathological firing underlying rigidity and postural instability in Parkinson's disease (PD) patients and animal models of Parkinsonism (PS). Drug-induced Parkinsonism (DIP) represents 20-40% of clinical cases of PS, becoming a problem for differential diagnosis, and is still not well studied with physiological tools. It may co-occur with tardive dyskinesia. Here we use in vitro slice preparations including the SNr to observe drug-induced pathological firing by using drugs that most likely produce it, DA-receptor antagonists (SCH23390 plus sulpiride), to compare with firing patterns found in DA-depleted tissue. The hypothesis is that SNr firing would be similar under both conditions, a prerequisite to the proposal of a similar preparation to test other DIP-producing drugs. Firing was analyzed with three complementary metrics, showing similarities between DA depletion and acute DA-receptor blockade. Moreover, blockade of either nonselective cationic channels or Cav3 T-type calcium channels hyperpolarized the membrane and abolished bursting and irregular firing, silencing SNr neurons in both conditions. Therefore, currents generating firing in control conditions are in part responsible for pathological firing. Haloperidol, a DIP-producing drug, reproduced DA-receptor antagonist firing modifications. Since acute DA-receptor blockade induces SNr neuron firing similar to that found in the 6-hydroxydopamine model of PS, output basal ganglia neurons may play a role in generating DIP. Therefore, this study opens the way to test other DIP-producing drugs. NEW & NOTEWORTHY Dopamine (DA) depletion enhances substantia nigra pars reticulata (SNr) neuron bursting and irregular firing, hallmarks of Parkinsonism. Several drugs, including antipsychotics, antidepressants, and calcium channel antagonists, among others, produce drug-induced Parkinsonism. Here we show the first comparison between SNr neuron firing after DA depletion vs. firing found after acute blockade of DA receptors. It was found that firing in both conditions is similar, implying that pathological SNr neuron firing is also a physiological correlate of drug-induced Parkinsonism.
Collapse
Affiliation(s)
| | - Ricardo Hernández-Martínez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , México City, México
| | - Jesús Pérez-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México , Querétaro, México
| | - Marco Arieli Herrera-Valdez
- Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México , México City, México
| | - Jose J Aceves
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán , Mexico City, México
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , México City, México
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , México City, México
| |
Collapse
|
32
|
Mansell W, Huddy V. The Assessment and Modeling of Perceptual Control: A Transformation in Research Methodology to Address the Replication Crisis. REVIEW OF GENERAL PSYCHOLOGY 2018. [DOI: 10.1037/gpr0000147] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Replication in the behavioral sciences is a matter of considerable debate. We describe a series of fundamental interrelated conceptual and methodological issues with current research that undermine replication and we explain how they could be addressed. Conceptually, we need a shift (a) from verbally described theories to mathematically specified theories, (b) from lineal stimulus-cognition-response theories to closed-loop theories that model behavior as feeding back to sensory input via the environment, and (c) from theories that “chunk” responses to theories that acknowledge the continuous, dynamic nature of behavior. A closely related shift in methodology would involve studies that attempt to model each individual's performance as a continuous and dynamic activity within a closed-loop process. We explain how this shift can be made within a single framework—perceptual control theory (PCT)—that regards behavior as the control of perceptual input. We report evidence of multiple replication using this approach within visual tracking, and go on to demonstrate in practical research terms how the same overarching principle can guide research across diverse domains of psychology and the behavioral sciences, promoting their coherent integration. We describe ways to address current challenges to this approach and provide recommendations for how researchers can manage the transition.
Collapse
Affiliation(s)
| | - Vyv Huddy
- Research Department of Clinical, Educational and Health Psychology, University College London
| |
Collapse
|
33
|
Yttri EA, Dudman JT. A Proposed Circuit Computation in Basal Ganglia: History-Dependent Gain. Mov Disord 2018; 33:704-716. [PMID: 29575303 PMCID: PMC6001446 DOI: 10.1002/mds.27321] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/21/2017] [Accepted: 01/08/2018] [Indexed: 12/24/2022] Open
Abstract
In this Scientific Perspectives we first review the recent advances in our understanding of the functional architecture of basal ganglia circuits. Then we argue that these data can best be explained by a model in which basal ganglia act to control the gain of movement kinematics to shape performance based on prior experience, which we refer to as a history-dependent gain computation. Finally, we discuss how insights from the history-dependent gain model might translate from the bench to the bedside, primarily the implications for the design of adaptive deep brain stimulation. Thus, we explicate the key empirical and conceptual support for a normative, computational model with substantial explanatory power for the broad role of basal ganglia circuits in health and disease. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Eric Allen Yttri
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnVirginiaUSA
- Present address:
Department of Biological SciencesCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Joshua Tate Dudman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnVirginiaUSA
| |
Collapse
|
34
|
O’Hare J, Calakos N, Yin HH. Recent Insights into Corticostriatal Circuit Mechanisms underlying Habits: Invited review for Current Opinions in Behavioral Sciences. Curr Opin Behav Sci 2018; 20:40-46. [PMID: 29450220 PMCID: PMC5808988 DOI: 10.1016/j.cobeha.2017.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Habits have been studied for decades, but it was not until recent years that experiments began to elucidate the underlying cellular and circuit mechanisms. The latest experiments have been enabled by advances in cell-type specific monitoring and manipulation of activity in large neuronal populations. Here we will review recent efforts to understand the neural substrates underlying habit formation, focusing on rodent studies on corticostriatal circuits.
Collapse
Affiliation(s)
| | - Nicole Calakos
- Department of Neurobiology, Duke University
- Department of Neurology, Duke University
| | - Henry H. Yin
- Department of Neurobiology, Duke University
- Department of Psychology and Neuroscience, Duke University
| |
Collapse
|
35
|
Salimi-Badr A, Ebadzadeh MM, Darlot C. A system-level mathematical model of Basal Ganglia motor-circuit for kinematic planning of arm movements. Comput Biol Med 2018; 92:78-89. [PMID: 29156412 DOI: 10.1016/j.compbiomed.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023]
Abstract
In this paper, a novel system-level mathematical model of the Basal Ganglia (BG) for kinematic planning, is proposed. An arm composed of several segments presents a geometric redundancy. Thus, selecting one trajectory among an infinite number of possible ones requires overcoming redundancy, according to some kinds of optimization. Solving this optimization is assumed to be the function of BG in planning. In the proposed model, first, a mathematical solution of kinematic planning is proposed for movements of a redundant arm in a plane, based on minimizing energy consumption. Next, the function of each part in the model is interpreted as a possible role of a nucleus of BG. Since the kinematic variables are considered as vectors, the proposed model is presented based on the vector calculus. This vector model predicts different neuronal populations in BG which is in accordance with some recent experimental studies. According to the proposed model, the function of the direct pathway is to calculate the necessary rotation of each joint, and the function of the indirect pathway is to control each joint rotation considering the movement of the other joints. In the proposed model, the local feedback loop between Subthalamic Nucleus and Globus Pallidus externus is interpreted as a local memory to store the previous amounts of movements of the other joints, which are utilized by the indirect pathway. In this model, activities of dopaminergic neurons would encode, at short-term, the error between the desired and actual positions of the end-effector. The short-term modulating effect of dopamine on Striatum is also modeled as cross product. The model is simulated to generate the commands of a redundant manipulator. The performance of the model is studied for different reaching movements between 8 points in a plane. Finally, some symptoms of Parkinson's disease such as bradykinesia and akinesia are simulated by modifying the model parameters, inspired by the dopamine depletion.
Collapse
Affiliation(s)
- Armin Salimi-Badr
- Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran; INSERM-U1093 Cognition, Action, et Plasticité Sensorimotrice, Université de Bourgogne, Dijon, France
| | - Mohammad Mehdi Ebadzadeh
- Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran.
| | - Christian Darlot
- INSERM-U1093 Cognition, Action, et Plasticité Sensorimotrice, Université de Bourgogne, Dijon, France
| |
Collapse
|
36
|
Toda K, Lusk NA, Watson GD, Kim N, Lu D, Li HE, Meck WH, Yin HH. Nigrotectal Stimulation Stops Interval Timing in Mice. Curr Biol 2017; 27:3763-3770.e3. [DOI: 10.1016/j.cub.2017.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/29/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
|
37
|
A possible correlation between the basal ganglia motor function and the inverse kinematics calculation. J Comput Neurosci 2017; 43:295-318. [DOI: 10.1007/s10827-017-0665-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/24/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
|
38
|
Abstract
There is limited evidence regarding the accuracy of inferences about intention. The research described in this article shows how perceptual control theory (PCT) can provide a “ground truth” for these judgments. In a series of 3 studies, participants were asked to identify a person’s intention in a tracking task where the person’s true intention was to control the position of a knot connecting a pair of rubber bands. Most participants failed to correctly infer the person’s intention, instead inferring complex but nonexistent goals (such as “tracing out two kangaroos boxing”) based on the actions taken to keep the knot under control. Therefore, most of our participants experienced what we call “control blindness.” The effect persisted with many participants even when their awareness was successfully directed at the knot whose position was under control. Beyond exploring the control blindness phenomenon in the context of our studies, we discuss its implications for psychological research and public policy.
Collapse
|
39
|
Fiore VG, Kottler B, Gu X, Hirth F. In silico Interrogation of Insect Central Complex Suggests Computational Roles for the Ellipsoid Body in Spatial Navigation. Front Behav Neurosci 2017; 11:142. [PMID: 28824390 PMCID: PMC5540904 DOI: 10.3389/fnbeh.2017.00142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/18/2017] [Indexed: 11/13/2022] Open
Abstract
The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features identify central complex circuitry, and especially the ellipsoid body, as a key neural correlate involved in spatial navigation.
Collapse
Affiliation(s)
- Vincenzo G Fiore
- School of Behavioral and Brain Sciences, University of Texas at DallasDallas, TX, United States
| | - Benjamin Kottler
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College LondonLondon, United Kingdom
| | - Xiaosi Gu
- School of Behavioral and Brain Sciences, University of Texas at DallasDallas, TX, United States
| | - Frank Hirth
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College LondonLondon, United Kingdom
| |
Collapse
|
40
|
Abstract
The basal ganglia (BG) are the major subcortical nuclei in the brain. Disorders implicating the BG are characterized by diverse symptoms, but it remains unclear what these symptoms have in common or how they can be explained by changes in the BG circuits. This review summarizes recent findings that not only question traditional assumptions about the role of the BG in movement but also elucidate general computations performed by these circuits. To explain these findings, a new conceptual framework is introduced for understanding the role of the BG in behavior. According to this framework, the cortico-BG networks implement transition control in an extended hierarchy of closed loop negative feedback control systems. The transition control model provides a solution to the posture/movement problem, by postulating that BG outputs send descending signals to alter the reference states of downstream position control systems for orientation and body configuration. It also explains major neurological symptoms associated with BG pathology as a result of changes in system parameters such as multiplicative gain and damping.
Collapse
Affiliation(s)
- Henry H Yin
- 1 Department of Psychology and Neuroscience and Department of Neurobiology, Center for Cognitive Neuroscience, Duke University, NC, USA
| |
Collapse
|
41
|
Alberico SL, Kim YC, Lence T, Narayanan NS. Axial levodopa-induced dyskinesias and neuronal activity in the dorsal striatum. Neuroscience 2016; 343:240-249. [PMID: 27956068 DOI: 10.1016/j.neuroscience.2016.11.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/17/2022]
Abstract
Levodopa-induced dyskinesias are abnormal involuntary movements that limit the effectiveness of treatments for Parkinson's disease. Although dyskinesias involve the striatum, it is unclear how striatal neurons are involved in dyskinetic movements. Here we record from striatal neurons in mice during levodopa-induced axial dyskinesias. We developed an automated 3-dimensional motion tracking system to capture the development of axial dyskinesias at ∼10ms resolution, and correlated these movements with neuronal activity of striatal medium spiny neurons and fast-spiking interneurons. The average firing rate of medium spiny neurons increased as axial dyskinesias developed, and both medium spiny neurons and fast-spiking interneurons were modulated around axial dyskinesias. We also found that delta field potential power increased in the striatum with dyskinesia, and that this increased delta power coupled with striatal neurons. Our findings provide insight into how striatal networks change as levodopa-induced dyskinesias develop, and suggest that increased medium spiny neuron firing, increased delta field potential power, and abnormal delta-coupling may be neurophysiological signatures of dyskinesias. These data could be helpful in understanding the role of the striatum in the pathogenesis of dyskinesias in Parkinson's disease.
Collapse
Affiliation(s)
- Stephanie L Alberico
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Young-Cho Kim
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Tomas Lence
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Nandakumar S Narayanan
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
42
|
Interactive roles of the cerebellum and striatum in sub-second and supra-second timing: Support for an initiation, continuation, adjustment, and termination (ICAT) model of temporal processing. Neurosci Biobehav Rev 2016; 71:739-755. [PMID: 27773690 DOI: 10.1016/j.neubiorev.2016.10.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/06/2016] [Accepted: 10/19/2016] [Indexed: 12/29/2022]
|
43
|
|
44
|
Fiore VG, Dolan RJ, Strausfeld NJ, Hirth F. Evolutionarily conserved mechanisms for the selection and maintenance of behavioural activity. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0053. [PMID: 26554043 PMCID: PMC4650127 DOI: 10.1098/rstb.2015.0053] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Survival and reproduction entail the selection of adaptive behavioural repertoires. This selection manifests as phylogenetically acquired activities that depend on evolved nervous system circuitries. Lorenz and Tinbergen already postulated that heritable behaviours and their reliable performance are specified by genetically determined programs. Here we compare the functional anatomy of the insect central complex and vertebrate basal ganglia to illustrate their role in mediating selection and maintenance of adaptive behaviours. Comparative analyses reveal that central complex and basal ganglia circuitries share comparable lineage relationships within clusters of functionally integrated neurons. These clusters are specified by genetic mechanisms that link birth time and order to their neuronal identities and functions. Their subsequent connections and associated functions are characterized by similar mechanisms that implement dimensionality reduction and transition through attractor states, whereby spatially organized parallel-projecting loops integrate and convey sensorimotor representations that select and maintain behavioural activity. In both taxa, these neural systems are modulated by dopamine signalling that also mediates memory-like processes. The multiplicity of similarities between central complex and basal ganglia suggests evolutionarily conserved computational mechanisms for action selection. We speculate that these may have originated from ancestral ground pattern circuitries present in the brain of the last common ancestor of insects and vertebrates.
Collapse
Affiliation(s)
- Vincenzo G Fiore
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Raymond J Dolan
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | | | - Frank Hirth
- Institute of Psychiatry, Psychology & Neuroscience, Department of Basic & Clinical Neuroscience, King's College London, London, UK
| |
Collapse
|
45
|
Abstract
This review is an attempt to explain the role of basal ganglia (BG) outputs in generating movements. Recent work showed that opponent outputs from the BG represent instantaneous body position coordinates during behavior. On the other hand, projection neurons in the striatum, the major input nucleus, as well as dopaminergic neurons that form the nigrostriatal pathway, can represent movement velocity. To explain these findings, a new model is proposed, in which the BG implement the level of transition control in an extended control hierarchy. BG outputs represent descending reference signals that command diverse lower-level position controllers. This model not only explains major neurological symptoms but also makes quantitative and testable predictions.
Collapse
Affiliation(s)
- Henry H Yin
- Department of Psychology & Neuroscience, Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
46
|
Hilt PM, Berret B, Papaxanthis C, Stapley PJ, Pozzo T. Evidence for subjective values guiding posture and movement coordination in a free-endpoint whole-body reaching task. Sci Rep 2016; 6:23868. [PMID: 27053508 PMCID: PMC4823734 DOI: 10.1038/srep23868] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/15/2016] [Indexed: 11/10/2022] Open
Abstract
When moving, humans must overcome intrinsic (body centered) and extrinsic (target-related) redundancy, requiring decisions when selecting one motor solution among several potential ones. During classical reaching studies the position of a salient target determines where the participant should reach, constraining the associated motor decisions. We aimed at investigating implicit variables guiding action selection when faced with the complexity of human-environment interaction. Subjects had to perform whole body reaching movements towards a uniform surface. We observed little variation in the self-chosen motor strategy across repeated trials while movements were variable across subjects being on a continuum from a pure 'knee flexion' associated with a downward center of mass (CoM) displacement to an 'ankle dorsi-flexion' associated with an upward CoM displacement. Two optimality criteria replicated these two strategies: a mix between mechanical energy expenditure and joint smoothness and a minimization of the amount of torques. Our results illustrate the presence of idiosyncratic values guiding posture and movement coordination that can be combined in a flexible manner as a function of context and subject. A first value accounts for the reach efficiency of the movement at the price of selecting possibly unstable postures. The other predicts stable dynamic equilibrium but requires larger energy expenditure and jerk.
Collapse
Affiliation(s)
- P. M. Hilt
- INSERM-U1093, Action Cognition et Plasticité Sensorimotrice, Univ Bourgogne-Franche-Comté, Dijon, France
- Italian Institute of Technology CTNSC@UniFe (Center of Translational Neurophysiology for Speech and Communication) Via Fossato di Mortara, 17/19 - 44100 - Ferrara
| | - B. Berret
- CIAMS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
- CIAMS, Université d’Orléans, 45067, Orléans, France
| | - C. Papaxanthis
- INSERM-U1093, Action Cognition et Plasticité Sensorimotrice, Univ Bourgogne-Franche-Comté, Dijon, France
| | - P. J. Stapley
- Neural Control of Movement Lab, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - T. Pozzo
- INSERM-U1093, Action Cognition et Plasticité Sensorimotrice, Univ Bourgogne-Franche-Comté, Dijon, France
- Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genova, Italy
- Italian Institute of Technology CTNSC@UniFe (Center of Translational Neurophysiology for Speech and Communication) Via Fossato di Mortara, 17/19 - 44100 - Ferrara
- Institut Universitaire de France, Université de Bourgogne, Campus Universitaire, UFR STAPS Dijon, France.
| |
Collapse
|
47
|
A GABAergic nigrotectal pathway for coordination of drinking behavior. Nat Neurosci 2016; 19:742-748. [PMID: 27043290 PMCID: PMC5014542 DOI: 10.1038/nn.4285] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/10/2016] [Indexed: 12/13/2022]
Abstract
The contribution of basal ganglia outputs to consummatory behavior remains poorly understood. We recorded from the substantia nigra pars reticulata (SNR), the major basal ganglia output nucleus, during self-initiated drinking. The firing rates of many lateral SNR neurons were time-locked to individual licks. These neurons send GABAergic projections to the deep layers of the orofacial region of the lateral tectum (superior colliculus, SC). Many tectal neurons are also time-locked to licking, but their activity is usually antiphase to that of SNR neurons, suggesting inhibitory nigrotectal projections. We used optogenetics to selectively activate the GABAergic nigrotectal afferents in the deep layers of the SC. Photo-stimulation of the nigrotectal projections transiently inhibited the activity of the lick-related tectal neurons, disrupted their licking-related oscillatory pattern, and suppressed self-initiated drinking. These results demonstrate that GABAergic nigrotectal projections play a crucial role in coordinating drinking behavior.
Collapse
|
48
|
Dudman JT, Krakauer JW. The basal ganglia: from motor commands to the control of vigor. Curr Opin Neurobiol 2016; 37:158-166. [DOI: 10.1016/j.conb.2016.02.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 01/20/2023]
|
49
|
Changing pattern in the basal ganglia: motor switching under reduced dopaminergic drive. Sci Rep 2016; 6:23327. [PMID: 27004463 PMCID: PMC4804216 DOI: 10.1038/srep23327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/25/2016] [Indexed: 11/24/2022] Open
Abstract
Action selection in the basal ganglia is often described within the framework of a standard model, associating low dopaminergic drive with motor suppression. Whilst powerful, this model does not explain several clinical and experimental data, including varying therapeutic efficacy across movement disorders. We tested the predictions of this model in patients with Parkinson’s disease, on and off subthalamic deep brain stimulation (DBS), focussing on adaptive sensory-motor responses to a changing environment and maintenance of an action until it is no longer suitable. Surprisingly, we observed prolonged perseverance under on-stimulation, and high inter-individual variability in terms of the motor selections performed when comparing the two conditions. To account for these data, we revised the standard model exploring its space of parameters and associated motor functions and found that, depending on effective connectivity between external and internal parts of the globus pallidus and saliency of the sensory input, a low dopaminergic drive can result in increased, dysfunctional, motor switching, besides motor suppression. This new framework provides insight into the biophysical mechanisms underlying DBS, allowing a description in terms of alteration of the signal-to-baseline ratio in the indirect pathway, which better account of known electrophysiological data in comparison with the standard model.
Collapse
|
50
|
Bartholomew RA, Li H, Gaidis EJ, Stackmann M, Shoemaker CT, Rossi MA, Yin HH. Striatonigral control of movement velocity in mice. Eur J Neurosci 2016; 43:1097-110. [PMID: 27091436 DOI: 10.1111/ejn.13187] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/21/2016] [Indexed: 11/28/2022]
Abstract
The basal ganglia have long been implicated in action initiation. Using three-dimensional motion capture, we quantified the effects of optogenetic stimulation of the striatonigral (direct) pathway on movement kinematics. We generated transgenic mice with channelrhodopsin-2 expression in striatal neurons that express the D1-like dopamine receptor. With optic fibres placed in the sensorimotor striatum, an area known to contain movement velocity-related single units, photo-stimulation reliably produced movements that could be precisely quantified with our motion capture programme. A single light pulse was sufficient to elicit movements with short latencies (< 30 ms). Increasing stimulation frequency increased movement speed, with a highly linear relationship. These findings support the hypothesis that the sensorimotor striatum is part of a velocity controller that controls rate of change in body configurations.
Collapse
Affiliation(s)
- Ryan A Bartholomew
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Haofang Li
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Erin J Gaidis
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Michelle Stackmann
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | | | - Mark A Rossi
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.,Department of Neurobiology, Duke University, Durham, NC, USA.,Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|