1
|
Arancibia F, Rojas M, Becerra D, Fuenzalida R, Cea-Del Rio C, Mpodozis J, Sanhueza M, Nunez-Parra A. Olfactory dysfunction and altered cortical excitability in the mouse model of Fragile X Syndrome. Biol Res 2025; 58:21. [PMID: 40275427 PMCID: PMC12023451 DOI: 10.1186/s40659-024-00582-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/17/2024] [Indexed: 04/26/2025] Open
Abstract
Fragile X Syndrome (FXS) is the most common monogenetic cause of autism and inherited intellectual disability. A key feature of FXS symptomatology is altered sensory processing greatly affecting FXS individual's life quality. Here, we use a combination of behavioral tests and slice physiology tools to study the neurophysiological alterations underlying aberrant sensory processing in the olfactory system of the FXS mouse model (Fmr1 KO). We focused on the piriform cortex (PC), since it is in this brain region where olfactory information is integrated and ultimately decoded. Using a go-no go behavioral task we have found that Fmr1 KO learn to discriminate between a rewarded and a not rewarded odorant but cannot distinguish complex odor mixtures, akin to what is found in the environment. Moreover, Fmr1 KO long-term memory is impaired compared to control mice suggesting possibly cortical processing alterations. In addition, electrophysiological data from PC layer II neurons of Fmr1 KO mice showed a hyperexcitable phenotype manifested by differences in active membrane properties and altered network connectivity. Taken together, our data suggest a possible causal link between the observed olfactory discrimination deficiencies in the Fmr1 KO mouse and the altered physiology of PC.
Collapse
Affiliation(s)
- Felipe Arancibia
- Cellular Physiology Laboratory, Biology Department, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Marcelo Rojas
- Cellular Physiology Laboratory, Biology Department, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Diego Becerra
- Cellular Physiology Laboratory, Biology Department, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Rocío Fuenzalida
- Cellular Physiology Laboratory, Biology Department, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Christian Cea-Del Rio
- Neurophysiopathology Laboratory, Center for Biomedical and Applied Research, School of Medicine, Faculty of Medical Sciences, Universidad de Santiago de Chile, Santiago, Chile
| | - Jorge Mpodozis
- Neurobiology Laboratory, Biology Department, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Magdalena Sanhueza
- Cellular Physiology Laboratory, Biology Department, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Alexia Nunez-Parra
- Cellular Physiology Laboratory, Biology Department, Faculty of Science, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Fulton KA, Zimmerman D, Samuel A, Vogt K, Datta SR. Common principles for odour coding across vertebrates and invertebrates. Nat Rev Neurosci 2024; 25:453-472. [PMID: 38806946 DOI: 10.1038/s41583-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.
Collapse
Affiliation(s)
- Kara A Fulton
- Department of Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David Zimmerman
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aravi Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
3
|
Saxon D, Alderman PJ, Sorrells SF, Vicini S, Corbin JG. Neuronal Subtypes and Connectivity of the Adult Mouse Paralaminar Amygdala. eNeuro 2024; 11:ENEURO.0119-24.2024. [PMID: 38811163 PMCID: PMC11208988 DOI: 10.1523/eneuro.0119-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
The paralaminar nucleus of the amygdala (PL) comprises neurons that exhibit delayed maturation. PL neurons are born during gestation but mature during adolescent ages, differentiating into excitatory neurons. These late-maturing PL neurons contribute to the increase in size and cell number of the amygdala between birth and adulthood. However, the function of the PL upon maturation is unknown, as the region has only recently begun to be characterized in detail. In this study, we investigated key defining features of the adult mouse PL; the intrinsic morpho-electric properties of its neurons, and its input and output circuit connectivity. We identify two subtypes of excitatory neurons in the PL based on unsupervised clustering of electrophysiological properties. These subtypes are defined by differential action potential firing properties and dendritic architecture, suggesting divergent functional roles. We further uncover major axonal inputs to the adult PL from the main olfactory network and basolateral amygdala. We also find that axonal outputs from the PL project reciprocally to these inputs and to diverse targets including the amygdala, frontal cortex, hippocampus, hypothalamus, and brainstem. Thus, the adult mouse PL is centrally placed to play a major role in the integration of olfactory sensory information, to coordinate affective and autonomic behavioral responses to salient odor stimuli.
Collapse
Affiliation(s)
- David Saxon
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20011
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Pia J Alderman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Shawn F Sorrells
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Stefano Vicini
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20011
| |
Collapse
|
4
|
Saxon D, Alderman PJ, Sorrells SF, Vicini S, Corbin JG. Neuronal subtypes and connectivity of the adult mouse paralaminar amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575250. [PMID: 38260244 PMCID: PMC10802617 DOI: 10.1101/2024.01.11.575250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The paralaminar nucleus of the amygdala (PL) is comprised of neurons which exhibit delayed maturation. PL neurons are born during gestation but mature during adolescent ages, differentiating into excitatory neurons. The PL is prominent in the adult amygdala, contributing to its increased neuron number and relative size compared to childhood. However, the function of the PL is unknown, as the region has only recently begun to be characterized in detail. In this study, we investigated key defining features of the adult PL; the intrinsic morpho-electric properties of its neurons, and its input and output connectivity. We identify two subtypes of excitatory neurons in the PL based on unsupervised clustering of electrophysiological properties. These subtypes are defined by differential action potential firing properties and dendritic architecture, suggesting divergent functional roles. We further uncover major axonal inputs to the adult PL from the main olfactory network and basolateral amygdala. We also find that axonal outputs from the PL project reciprocally to major inputs, and to diverse targets including the amygdala, frontal cortex, hippocampus, hypothalamus, and brainstem. Thus, the adult PL is centrally placed to play a major role in the integration of olfactory sensory information, likely coordinating affective and autonomic behavioral responses to salient odor stimuli. Significance Statement Mammalian amygdala development includes a growth period from childhood to adulthood, believed to support emotional and social learning. This amygdala growth is partly due to the maturation of neurons during adolescence in the paralaminar amygdala. However, the functional properties of these neurons are unknown. In our recent studies, we characterized the paralaminar amygdala in the mouse. Here, we investigate the properties of the adult PL in the mouse, revealing the existence of two neuronal subtypes that may play distinct functional roles in the adult brain. We further reveal the brain-wide input and output connectivity of the PL, indicating that the PL combines olfactory cues for emotional processing and delivers information to regions associated with reward and autonomic states.
Collapse
|
5
|
Potts Y, Bekkers JM. Dopamine Increases the Intrinsic Excitability of Parvalbumin-Expressing Fast-Spiking Cells in the Piriform Cortex. Front Cell Neurosci 2022; 16:919092. [PMID: 35755774 PMCID: PMC9218566 DOI: 10.3389/fncel.2022.919092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The piriform cortex (PCx) is essential for the adaptive processing of olfactory information. Neuromodulatory systems, including those utilizing serotonin, acetylcholine, noradrenaline, and dopamine, innervate and regulate neuronal activity in the PCx. Previous research has demonstrated the importance of acetylcholine, noradrenaline and serotonin in odor learning and memory. In contrast, the role of dopamine in the PCx remains under-explored. Here we examined how dopamine modulates the intrinsic electrical properties of identified classes of neurons in the PCx. We found that dopamine had no consistent effect on the intrinsic electrical properties of two types of glutamatergic neurons (semilunar and superficial pyramidal cells) or three types of GABAergic interneurons (horizontal, neurogliaform and somatastatin-expressing regular-spiking cells). However, dopamine had a striking effect on the intrinsic excitability of the parvalbumin-expressing fast-spiking (FS) class of GABAergic interneuron. Dopamine depolarized the resting potential, increased the input resistance and increased the firing frequency of FS cells. Co-application of dopamine with the D1-class dopamine receptor antagonist SCH 23390 blocked the effects of dopamine modulation on FS cells. Conversely, co-application of dopamine with the D2-class antagonist RS-(±)-sulpiride had no effect on dopamine modulation of these cells. Our results indicate that dopamine binds to D1-class dopamine receptors to increase the intrinsic excitability of FS cells. These findings suggest that dopamine has a highly targeted effect in the PCx and reveal how dopamine may modulate the balance between excitation and inhibition, with consequences for odor processing. In addition, our findings provide clues for understanding why neurodegenerative disorders that modify the dopamine system, such as Parkinson's disease, have a deleterious effect on the sense of smell, and may suggest novel diagnostics for the early detection of such disorders.
Collapse
Affiliation(s)
- Yasmin Potts
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - John M Bekkers
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
6
|
Suzuki N, Tantirigama MLS, Aung KP, Huang HHY, Bekkers JM. Fast and slow feedforward inhibitory circuits for cortical odor processing. eLife 2022; 11:73406. [PMID: 35297763 PMCID: PMC8929928 DOI: 10.7554/elife.73406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Feedforward inhibitory circuits are key contributors to the complex interplay between excitation and inhibition in the brain. Little is known about the function of feedforward inhibition in the primary olfactory (piriform) cortex. Using in vivo two-photon-targeted patch clamping and calcium imaging in mice, we find that odors evoke strong excitation in two classes of interneurons – neurogliaform (NG) cells and horizontal (HZ) cells – that provide feedforward inhibition in layer 1 of the piriform cortex. NG cells fire much earlier than HZ cells following odor onset, a difference that can be attributed to the faster odor-driven excitatory synaptic drive that NG cells receive from the olfactory bulb. As a result, NG cells strongly but transiently inhibit odor-evoked excitation in layer 2 principal cells, whereas HZ cells provide more diffuse and prolonged feedforward inhibition. Our findings reveal unexpected complexity in the operation of inhibition in the piriform cortex.
Collapse
Affiliation(s)
- Norimitsu Suzuki
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Malinda L S Tantirigama
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia.,Neurocure Center for Excellence, Charité Universitätsmedizin Berlin and Humboldt Universität, Berlin, Germany
| | - K Phyu Aung
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Helena H Y Huang
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - John M Bekkers
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
7
|
Nagappan S, Franks KM. Parallel processing by distinct classes of principal neurons in the olfactory cortex. eLife 2021; 10:73668. [PMID: 34913870 PMCID: PMC8676325 DOI: 10.7554/elife.73668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/19/2021] [Indexed: 01/02/2023] Open
Abstract
Understanding how distinct neuron types in a neural circuit process and propagate information is essential for understanding what the circuit does and how it does it. The olfactory (piriform, PCx) cortex contains two main types of principal neurons, semilunar (SL) and superficial pyramidal (PYR) cells. SLs and PYRs have distinct morphologies, local connectivity, biophysical properties, and downstream projection targets. Odor processing in PCx is thought to occur in two sequential stages. First, SLs receive and integrate olfactory bulb input and then PYRs receive, transform, and transmit SL input. To test this model, we recorded from populations of optogenetically identified SLs and PYRs in awake, head-fixed mice. Notably, silencing SLs did not alter PYR odor responses, and SLs and PYRs exhibited differences in odor tuning properties and response discriminability that were consistent with their distinct embeddings within a sensory-associative cortex. Our results therefore suggest that SLs and PYRs form parallel channels for differentially processing odor information in and through PCx.
Collapse
Affiliation(s)
| | - Kevin M Franks
- Department of Neurobiology, Duke University Medical School, Durham, United States
| |
Collapse
|
8
|
Li J, Shinoda Y, Ogawa S, Ikegaya S, Li S, Matsuyama Y, Sato K, Yamagishi S. Expression of FLRT2 in Postnatal Central Nervous System Development and After Spinal Cord Injury. Front Mol Neurosci 2021; 14:756264. [PMID: 34744626 PMCID: PMC8569257 DOI: 10.3389/fnmol.2021.756264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Fibronectin and leucine-rich transmembrane (FLRT) proteins are necessary for various developmental processes and in pathological conditions. FLRT2 acts as a homophilic cell adhesion molecule, a heterophilic repulsive ligand of Unc5/Netrin receptors, and a synaptogenic molecule; the last feature is mediated by binding to latrophilins. Although the function of FLRT2 in regulating cortical migration at the late gestation stage has been analyzed, little is known about the expression pattern of FLRT2 during postnatal central nervous system (CNS) development. In this study, we used Flrt2-LacZ knock-in (KI) mice to analyze FLRT2 expression during CNS development. At the early postnatal stage, FLRT2 expression was largely restricted to several regions of the striatum and deep layers of the cerebral cortex. In adulthood, FLRT2 expression was more prominent in the cerebral cortex, hippocampus, piriform cortex (PIR), nucleus of the lateral olfactory tract (NLOT), and ventral medial nucleus (VM) of the thalamus, but lower in the striatum. Notably, in the hippocampus, FLRT2 expression was confined to the CA1 region and partly localized on pre- and postsynapses whereas only few expression was observed in CA3 and dentate gyrus (DG). Finally, we observed temporally limited FLRT2 upregulation in reactive astrocytes around lesion sites 7 days after thoracic spinal cord injury. These dynamic changes in FLRT2 expression may enable multiple FLRT2 functions, including cell adhesion, repulsion, and synapse formation in different regions during CNS development and after spinal cord injury.
Collapse
Affiliation(s)
- Juntan Li
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yo Shinoda
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Shuhei Ogawa
- Division of Integrated Research, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shunsuke Ikegaya
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shuo Li
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Orthopedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yukihiro Matsuyama
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kohji Sato
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoru Yamagishi
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
9
|
Kumar A, Barkai E, Schiller J. Plasticity of olfactory bulb inputs mediated by dendritic NMDA-spikes in rodent piriform cortex. eLife 2021; 10:70383. [PMID: 34698637 PMCID: PMC8575458 DOI: 10.7554/elife.70383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/25/2021] [Indexed: 11/19/2022] Open
Abstract
The piriform cortex (PCx) is essential for learning of odor information. The current view postulates that odor learning in the PCx is mainly due to plasticity in intracortical (IC) synapses, while odor information from the olfactory bulb carried via the lateral olfactory tract (LOT) is ‘hardwired.’ Here, we revisit this notion by studying location- and pathway-dependent plasticity rules. We find that in contrast to the prevailing view, synaptic and optogenetically activated LOT synapses undergo strong and robust long-term potentiation (LTP) mediated by only a few local NMDA-spikes delivered at theta frequency, while global spike timing-dependent plasticity (STDP) protocols failed to induce LTP in these distal synapses. In contrast, IC synapses in apical and basal dendrites undergo plasticity with both NMDA-spikes and STDP protocols but to a smaller extent compared with LOT synapses. These results are consistent with a self-potentiating mechanism of odor information via NMDA-spikes that can form branch-specific memory traces of odors that can further associate with contextual IC information via STDP mechanisms to provide cognitive and emotional value to odors.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Physiology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Edi Barkai
- Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Jackie Schiller
- Department of Physiology, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
10
|
Traub RD, Tu Y, Whittington MA. Cell assembly formation and structure in a piriform cortex model. Rev Neurosci 2021; 33:111-132. [PMID: 34271607 DOI: 10.1515/revneuro-2021-0056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/19/2021] [Indexed: 11/15/2022]
Abstract
The piriform cortex is rich in recurrent excitatory synaptic connections between pyramidal neurons. We asked how such connections could shape cortical responses to olfactory lateral olfactory tract (LOT) inputs. For this, we constructed a computational network model of anterior piriform cortex with 2000 multicompartment, multiconductance neurons (500 semilunar, 1000 layer 2 and 500 layer 3 pyramids; 200 superficial interneurons of two types; 500 deep interneurons of three types; 500 LOT afferents), incorporating published and unpublished data. With a given distribution of LOT firing patterns, and increasing the strength of recurrent excitation, a small number of firing patterns were observed in pyramidal cell networks: first, sparse firings; then temporally and spatially concentrated epochs of action potentials, wherein each neuron fires one or two spikes; then more synchronized events, associated with bursts of action potentials in some pyramidal neurons. We suggest that one function of anterior piriform cortex is to transform ongoing streams of input spikes into temporally focused spike patterns, called here "cell assemblies", that are salient for downstream projection areas.
Collapse
Affiliation(s)
- Roger D Traub
- AI Foundations, IBM T.J. Watson Research Center, Yorktown Heights, NY10598, USA
| | - Yuhai Tu
- AI Foundations, IBM T.J. Watson Research Center, Yorktown Heights, NY10598, USA
| | | |
Collapse
|
11
|
Synaptic Organization of Anterior Olfactory Nucleus Inputs to Piriform Cortex. J Neurosci 2020; 40:9414-9425. [PMID: 33115926 DOI: 10.1523/jneurosci.0965-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 11/21/2022] Open
Abstract
Odors activate distributed ensembles of neurons within the piriform cortex, forming cortical representations of odor thought to be essential to olfactory learning and behaviors. This odor response is driven by direct input from the olfactory bulb, but is also shaped by a dense network of associative or intracortical inputs to piriform, which may enhance or constrain the cortical odor representation. With optogenetic techniques, it is possible to functionally isolate defined inputs to piriform cortex and assess their potential to activate or inhibit piriform pyramidal neurons. The anterior olfactory nucleus (AON) receives direct input from the olfactory bulb and sends an associative projection to piriform cortex that has potential roles in the state-dependent processing of olfactory behaviors. Here, we provide a detailed functional assessment of the AON afferents to piriform in male and female C57Bl/6J mice. We confirm that the AON forms glutamatergic excitatory synapses onto piriform pyramidal neurons; and while these inputs are not as strong as piriform recurrent collaterals, they are less constrained by disynaptic inhibition. Moreover, AON-to-piriform synapses contain a substantial NMDAR-mediated current that prolongs the synaptic response at depolarized potentials. These properties of limited inhibition and slow NMDAR-mediated currents result in strong temporal summation of AON inputs within piriform pyramidal neurons, and suggest that the AON could powerfully enhance activation of piriform neurons in response to odor.SIGNIFICANCE STATEMENT Odor information is transmitted from olfactory receptors to olfactory bulb, and then to piriform cortex, where ensembles of activated neurons form neural representations of the odor. While these ensembles are driven by primary bulbar afferents, and shaped by intracortical recurrent connections, the potential for another early olfactory area, the anterior olfactory nucleus (AON), to contribute to piriform activity is not known. Here, we use optogenetic circuit-mapping methods to demonstrate that AON inputs can significantly activate piriform neurons, as they are coupled to NMDAR currents and to relatively modest disynaptic inhibition. The AON may enhance the piriform odor response, encouraging further study to determine the states or behaviors through which AON potentiates the cortical response to odor.
Collapse
|
12
|
Activation of Granule Cell Interneurons by Two Divergent Local Circuit Pathways in the Rat Olfactory Bulb. J Neurosci 2020; 40:9701-9714. [PMID: 33234611 DOI: 10.1523/jneurosci.0989-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
The olfactory bulb (OB) serves as a relay region for sensory information transduced by receptor neurons in the nose and ultimately routed to a variety of cortical areas. Despite the highly structured organization of the sensory inputs to the OB, even simple monomolecular odors activate large regions of the OB comprising many glomerular modules defined by afferents from different receptor neuron subtypes. OB principal cells receive their primary excitatory input from only one glomerular channel defined by inputs from one class of olfactory receptor neurons. By contrast, interneurons, such as GABAergic granule cells (GCs), integrate across multiple channels through dendodendritic inputs on their distal apical dendrites. Through their inhibitory synaptic actions, GCs appear to modulate principal cell firing to enhance olfactory discrimination, although how GCs contribute to olfactory function is not well understood. In this study, we identify a second synaptic pathway by which principal cells in the rat (both sexes) OB excite GCs by evoking potent nondepressing EPSPs (termed large-amplitude, nondendrodendritic [LANDD] EPSPs). LANDD EPSPs show little depression in response to tetanic stimulation and, therefore, can be distinguished other EPSPs that target GCs. LANDD EPSPs can be evoked by both focal stimulation near GC proximal dendrites and by activating sensory inputs in the glomerular layer in truncated GCs lacking dendrodendritic inputs. Using computational simulations, we show that LANDD EPSPs more reliably encode the duration of principal cell discharges than DD EPSPs, enabling GCs to compare contrasting versions of odor-driven activity patterns.SIGNIFICANCE STATEMENT The olfactory bulb plays a critical role in transforming broad sensory input patterns into odor-selective population responses. How this occurs is not well understood, but the local bulbar interneurons appear to be centrally involved in the process. Granule cells, the most common interneuron in the olfactory bulb, are known to broadly integrate sensory input through specialized synapses on their distal dendrites. Here we describe a second class of local excitatory inputs to granule cells that are more powerful than distal inputs and fail to depress with repeated stimulation. This second, proximal pathway allows bulbar interneurons to assay divergent versions of the same sensory input pattern.
Collapse
|
13
|
Penker S, Licht T, Hofer KT, Rokni D. Mixture Coding and Segmentation in the Anterior Piriform Cortex. Front Syst Neurosci 2020; 14:604718. [PMID: 33328914 PMCID: PMC7710992 DOI: 10.3389/fnsys.2020.604718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Coding of odorous stimuli has been mostly studied using single isolated stimuli. However, a single sniff of air in a natural environment is likely to introduce airborne chemicals emitted by multiple objects into the nose. The olfactory system is therefore faced with the task of segmenting odor mixtures to identify objects in the presence of rich and often unpredictable backgrounds. The piriform cortex is thought to be the site of object recognition and scene segmentation, yet the nature of its responses to odorant mixtures is largely unknown. In this study, we asked two related questions. (1) How are mixtures represented in the piriform cortex? And (2) Can the identity of individual mixture components be read out from mixture representations in the piriform cortex? To answer these questions, we recorded single unit activity in the piriform cortex of naïve mice while sequentially presenting single odorants and their mixtures. We find that a normalization model explains mixture responses well, both at the single neuron, and at the population level. Additionally, we show that mixture components can be identified from piriform cortical activity by pooling responses of a small population of neurons-in many cases a single neuron is sufficient. These results indicate that piriform cortical representations are well suited to perform figure-background segmentation without the need for learning.
Collapse
Affiliation(s)
| | | | | | - Dan Rokni
- Department of Medical Neurobiology, School of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
14
|
Blazing RM, Franks KM. Odor coding in piriform cortex: mechanistic insights into distributed coding. Curr Opin Neurobiol 2020; 64:96-102. [PMID: 32422571 PMCID: PMC8782565 DOI: 10.1016/j.conb.2020.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
Abstract
Olfaction facilitates a large variety of animal behaviors such as feeding, mating, and communication. Recent work has begun to reveal the logic of odor transformations that occur throughout the olfactory system to form the odor percept. In this review, we describe the coding principles and mechanisms by which the piriform cortex and other olfactory areas encode three key odor features: odor identity, intensity, and valence. We argue that the piriform cortex produces a multiplexed odor code that allows non-interfering representations of distinct features of the odor stimulus to facilitate odor recognition and learning, which ultimately drives behavior.
Collapse
Affiliation(s)
- Robin M Blazing
- Department of Neurobiology, Duke University Medical School, Durham, NC, 27705, United States
| | - Kevin M Franks
- Department of Neurobiology, Duke University Medical School, Durham, NC, 27705, United States.
| |
Collapse
|
15
|
Bolding KA, Nagappan S, Han BX, Wang F, Franks KM. Recurrent circuitry is required to stabilize piriform cortex odor representations across brain states. eLife 2020; 9:e53125. [PMID: 32662420 PMCID: PMC7360366 DOI: 10.7554/elife.53125] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
Pattern completion, or the ability to retrieve stable neural activity patterns from noisy or partial cues, is a fundamental feature of memory. Theoretical studies indicate that recurrently connected auto-associative or discrete attractor networks can perform this process. Although pattern completion and attractor dynamics have been observed in various recurrent neural circuits, the role recurrent circuitry plays in implementing these processes remains unclear. In recordings from head-fixed mice, we found that odor responses in olfactory bulb degrade under ketamine/xylazine anesthesia while responses immediately downstream, in piriform cortex, remain robust. Recurrent connections are required to stabilize cortical odor representations across states. Moreover, piriform odor representations exhibit attractor dynamics, both within and across trials, and these are also abolished when recurrent circuitry is eliminated. Here, we present converging evidence that recurrently-connected piriform populations stabilize sensory representations in response to degraded inputs, consistent with an auto-associative function for piriform cortex supported by recurrent circuitry.
Collapse
Affiliation(s)
- Kevin A Bolding
- Department of Neurobiology, Duke University Medical SchoolDurhamUnited States
| | | | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical SchoolDurhamUnited States
| | - Fan Wang
- Department of Neurobiology, Duke University Medical SchoolDurhamUnited States
| | - Kevin M Franks
- Department of Neurobiology, Duke University Medical SchoolDurhamUnited States
| |
Collapse
|
16
|
Circuit-Specific Dendritic Development in the Piriform Cortex. eNeuro 2020; 7:ENEURO.0083-20.2020. [PMID: 32457067 PMCID: PMC7307633 DOI: 10.1523/eneuro.0083-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 11/21/2022] Open
Abstract
Dendritic geometry is largely determined during postnatal development and has a substantial impact on neural function. In sensory processing, postnatal development of the dendritic tree is affected by two dominant circuit motifs, ascending sensory feedforward inputs and descending and local recurrent connections. In the three-layered anterior piriform cortex (aPCx), neurons in the sublayers 2a and 2b display vertical segregation of these two circuit motifs. Here, we combined electrophysiology, detailed morphometry, and Ca2+ imaging in acute mouse brain slices and modeling to study circuit-specific aspects of dendritic development. We observed that determination of branching complexity, dendritic length increases, and pruning occurred in distinct developmental phases. Layer 2a and layer 2b neurons displayed developmental phase-specific differences between their apical and basal dendritic trees related to differences in circuit incorporation. We further identified functional candidate mechanisms for circuit-specific differences in postnatal dendritic growth in sublayers 2a and 2b at the mesoscale and microscale levels. Already in the first postnatal week, functional connectivity of layer 2a and layer 2b neurons during early spontaneous network activity scales with differences in basal dendritic growth. During the early critical period of sensory plasticity in the piriform cortex, our data are consistent with a model that proposes a role for dendritic NMDA-spikes in selecting branches for survival during developmental pruning in apical dendrites. The different stages of the morphologic and functional developmental pattern differences between layer 2a and layer 2b neurons demonstrate the complex interplay between dendritic development and circuit specificity.
Collapse
|
17
|
Terral G, Varilh M, Cannich A, Massa F, Ferreira G, Marsicano G. Synaptic Functions of Type-1 Cannabinoid Receptors in Inhibitory Circuits of the Anterior Piriform Cortex. Neuroscience 2020; 433:121-131. [DOI: 10.1016/j.neuroscience.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/23/2020] [Accepted: 03/03/2020] [Indexed: 02/08/2023]
|
18
|
Ross JM, Hamm JP. Cortical Microcircuit Mechanisms of Mismatch Negativity and Its Underlying Subcomponents. Front Neural Circuits 2020; 14:13. [PMID: 32296311 PMCID: PMC7137737 DOI: 10.3389/fncir.2020.00013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
In the neocortex, neuronal processing of sensory events is significantly influenced by context. For instance, responses in sensory cortices are suppressed to repetitive or redundant stimuli, a phenomenon termed “stimulus-specific adaptation” (SSA). However, in a context in which that same stimulus is novel, or deviates from expectations, neuronal responses are augmented. This augmentation is termed “deviance detection” (DD). This contextual modulation of neural responses is fundamental for how the brain efficiently processes the sensory world to guide immediate and future behaviors. Notably, context modulation is deficient in some neuropsychiatric disorders such as schizophrenia (SZ), as quantified by reduced “mismatch negativity” (MMN), an electroencephalography waveform reflecting a combination of SSA and DD in sensory cortex. Although the role of NMDA-receptor function and other neuromodulatory systems on MMN is established, the precise microcircuit mechanisms of MMN and its underlying components, SSA and DD, remain unknown. When coupled with animal models, the development of powerful precision neurotechnologies over the past decade carries significant promise for making new progress into understanding the neurobiology of MMN with previously unreachable spatial resolution. Currently, rodent models represent the best tool for mechanistic study due to the vast genetic tools available. While quantifying human-like MMN waveforms in rodents is not straightforward, the “oddball” paradigms used to study it in humans and its underlying subcomponents (SSA/DD) are highly translatable across species. Here we summarize efforts published so far, with a focus on cortically measured SSA and DD in animals to maintain relevance to the classically measured MMN, which has cortical origins. While mechanistic studies that measure and contrast both components are sparse, we synthesize a potential set of microcircuit mechanisms from the existing rodent, primate, and human literature. While MMN and its subcomponents likely reflect several mechanisms across multiple brain regions, understanding fundamental microcircuit mechanisms is an important step to understand MMN as a whole. We hypothesize that SSA reflects adaptations occurring at synapses along the sensory-thalamocortical pathways, while DD depends on both SSA inherited from afferent inputs and resulting disinhibition of non-adapted neurons arising from the distinct physiology and wiring properties of local interneuronal subpopulations and NMDA-receptor function.
Collapse
Affiliation(s)
- Jordan M Ross
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, United States
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, United States.,Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
19
|
Benedetti B, Dannehl D, König R, Coviello S, Kreutzer C, Zaunmair P, Jakubecova D, Weiger TM, Aigner L, Nacher J, Engelhardt M, Couillard-Després S. Functional Integration of Neuronal Precursors in the Adult Murine Piriform Cortex. Cereb Cortex 2020; 30:1499-1515. [PMID: 31647533 PMCID: PMC7132906 DOI: 10.1093/cercor/bhz181] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 06/05/2019] [Accepted: 07/09/2019] [Indexed: 11/20/2022] Open
Abstract
The extent of functional maturation and integration of nonproliferative neuronal precursors, becoming neurons in the adult murine piriform cortex, is largely unexplored. We thus questioned whether precursors eventually become equivalent to neighboring principal neurons or whether they represent a novel functional network element. Adult brain neuronal precursors and immature neurons (complex cells) were labeled in transgenic mice (DCX-DsRed and DCX-CreERT2 /flox-EGFP), and their cell fate was characterized with patch clamp experiments and morphometric analysis of axon initial segments. Young (DCX+) complex cells in the piriform cortex of 2- to 4-month-old mice received sparse synaptic input and fired action potentials at low maximal frequency, resembling neonatal principal neurons. Following maturation, the synaptic input detected on older (DCX-) complex cells was larger, but predominantly GABAergic, despite evidence of glutamatergic synaptic contacts. Furthermore, the rheobase current of old complex cells was larger and the maximal firing frequency was lower than those measured in neighboring age-matched principal neurons. The striking differences between principal neurons and complex cells suggest that the latter are a novel type of neuron and new coding element in the adult brain rather than simple addition or replacement for preexisting network components.
Collapse
Affiliation(s)
- Bruno Benedetti
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Dominik Dannehl
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria
- Institute of Neuroanatomy, CBTM, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Richard König
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Simona Coviello
- BIOTECMED, Universitat de València and Center for Collaborative Research on Mental Health CIBERSAM, 46100 València, Spain
| | - Christina Kreutzer
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Pia Zaunmair
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Dominika Jakubecova
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Thomas M Weiger
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Ludwig Aigner
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Juan Nacher
- BIOTECMED, Universitat de València and Center for Collaborative Research on Mental Health CIBERSAM, 46100 València, Spain
| | - Maren Engelhardt
- Institute of Neuroanatomy, CBTM, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Sébastien Couillard-Després
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, 5020 Salzburg, Austria
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
20
|
Wang L, Zhang Z, Chen J, Manyande A, Haddad R, Liu Q, Xu F. Cell-Type-Specific Whole-Brain Direct Inputs to the Anterior and Posterior Piriform Cortex. Front Neural Circuits 2020; 14:4. [PMID: 32116571 PMCID: PMC7019026 DOI: 10.3389/fncir.2020.00004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/21/2020] [Indexed: 12/20/2022] Open
Abstract
The piriform cortex (PC) is a key brain area involved in both processing and coding of olfactory information. It is implicated in various brain disorders, such as epilepsy, Alzheimer’s disease, and autism. The PC consists of the anterior (APC) and posterior (PPC) parts, which are different anatomically and functionally. However, the direct input networks to specific neuronal populations within the APC and PPC remain poorly understood. Here, we mapped the whole-brain direct inputs to the two major neuronal populations, the excitatory glutamatergic principal neurons and inhibitory γ-aminobutyric acid (GABA)-ergic interneurons within the APC and PPC using the rabies virus (RV)-mediated retrograde trans-synaptic tracing system. We found that for both types of neurons, APC and PPC share some similarities in input networks, with dominant inputs originating from the olfactory region (OLF), followed by the cortical subplate (CTXsp), isocortex, cerebral nuclei (CNU), hippocampal formation (HPF) and interbrain (IB), whereas the midbrain (MB) and hindbrain (HB) were rarely labeled. However, APC and PPC also show distinct features in their input distribution patterns. For both types of neurons, the input proportion from the OLF to the APC was higher than that to the PPC; while the PPC received higher proportions of inputs from the HPF and CNU than the APC did. Overall, our results revealed the direct input networks of both excitatory and inhibitory neuronal populations of different PC subareas, providing a structural basis to analyze the diverse PC functions.
Collapse
Affiliation(s)
- Li Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Zhijian Zhang
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Jiacheng Chen
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex, United Kingdom
| | - Rafi Haddad
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Qing Liu
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Fuqiang Xu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
21
|
Sequential pattern of sublayer formation in the paleocortex and neocortex. Med Mol Morphol 2020; 53:168-176. [PMID: 32002665 DOI: 10.1007/s00795-020-00245-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 01/29/2023]
Abstract
The piriform cortex (paleocortex) is the olfactory cortex or the primary cortex for the sense of smell. It receives the olfactory input from the mitral and tufted cells of the olfactory bulb and is involved in the processing of information pertaining to odors. The piriform cortex and the adjoining neocortex have different cytoarchitectures; while the former has a three-layered structure, the latter has a six-layered structure. The regulatory mechanisms underlying the building of the six-layered neocortex are well established; in contrast, less is known about of the regulatory mechanisms responsible for structure formation of the piriform cortex. The differences as well as similarities in the regulatory mechanisms between the neocortex and the piriform cortex remain unclear. Here, the expression of neocortical layer-specific genes in the piriform cortex was examined. Two sublayers were found to be distinguished in layer II of the piriform cortex using Ctip2/Bcl11b and Brn1/Pou3f3. The sequential expression pattern of Ctip2 and Brn1 in the piriform cortex was similar to that detected in the neocortex, although the laminar arrangement in the piriform cortex exhibited an outside-in arrangement, unlike that observed in the neocortex.
Collapse
|
22
|
Serotonergic afferents from the dorsal raphe decrease the excitability of pyramidal neurons in the anterior piriform cortex. Proc Natl Acad Sci U S A 2020; 117:3239-3247. [PMID: 31992641 DOI: 10.1073/pnas.1913922117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The olfactory system receives extensive serotonergic inputs from the dorsal raphe, a nucleus involved in control of behavior, regulation of mood, and modulation of sensory processing. Although many studies have investigated how serotonin modulates the olfactory bulb, few have focused on the anterior piriform cortex (aPC), a region important for olfactory learning and encoding of odor identity and intensity. Specifically, the mechanism and functional significance of serotonergic modulation of the aPC remain largely unknown. Here we used pharmacologic, optogenetic, and fiber photometry techniques to examine the serotonergic modulation of neural activity in the aPC in vitro and in vivo. We found that serotonin (5-HT) reduces the excitability of pyramidal neurons directly via 5-HT2C receptors, phospholipase C, and calcium-activated potassium (BK) channels. Furthermore, endogenous serotonin attenuates odor-evoked calcium responses in aPC pyramidal neurons. These findings identify the mechanism underlying serotonergic modulation of the aPC and shed light on its potential role.
Collapse
|
23
|
Glutamatergic Neurons in the Piriform Cortex Influence the Activity of D1- and D2-Type Receptor-Expressing Olfactory Tubercle Neurons. J Neurosci 2019; 39:9546-9559. [PMID: 31628176 DOI: 10.1523/jneurosci.1444-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 11/21/2022] Open
Abstract
Sensory cortices process stimuli in manners essential for perception. Very little is known regarding interactions between olfactory cortices. The piriform "primary" olfactory cortex, especially its anterior division (aPCX), extends dense association fibers into the ventral striatum's olfactory tubercle (OT), yet whether this corticostriatal pathway is capable of shaping OT activity, including odor-evoked activity, is unknown. Further unresolved is the synaptic circuitry and the spatial localization of OT-innervating PCX neurons. Here we build upon standing literature to provide some answers to these questions through studies in mice of both sexes. First, we recorded the activity of OT neurons in awake mice while optically stimulating principal neurons in the aPCX and/or their association fibers in the OT while the mice were delivered odors. This uncovered evidence that PCX input indeed influences OT unit activity. We then used patch-clamp recordings and viral tracing to determine the connectivity of aPCX neurons upon OT neurons expressing dopamine receptor types D1 or D2, two prominent cell populations in the OT. These investigations uncovered that both populations of neurons receive monosynaptic inputs from aPCX glutamatergic neurons. Interestingly, this input originates largely from the ventrocaudal aPCX. These results shed light on some of the basic physiological properties of this pathway and the cell-types involved and provide a foundation for future studies to identify, among other things, whether this pathway has implications for perception.SIGNIFICANCE STATEMENT Sensory cortices interact to process stimuli in manners considered essential for perception. Very little is known regarding interactions between olfactory cortices. The present study sheds light on some of the basic physiological properties of a particular intercortical pathway in the olfactory system and provides a foundation for future studies to identify, among other things, whether this pathway has implications for perception.
Collapse
|
24
|
Terral G, Busquets-Garcia A, Varilh M, Achicallende S, Cannich A, Bellocchio L, Bonilla-Del Río I, Massa F, Puente N, Soria-Gomez E, Grandes P, Ferreira G, Marsicano G. CB1 Receptors in the Anterior Piriform Cortex Control Odor Preference Memory. Curr Biol 2019; 29:2455-2464.e5. [PMID: 31327715 DOI: 10.1016/j.cub.2019.06.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/23/2019] [Accepted: 06/13/2019] [Indexed: 01/26/2023]
Abstract
The retrieval of odor-related memories shapes animal behavior. The anterior piriform cortex (aPC) is the largest part of the olfactory cortex, and it plays important roles in olfactory processing and memory. However, it is still unclear whether specific cellular mechanisms in the aPC control olfactory memory, depending on the appetitive or aversive nature of the stimuli involved. Cannabinoid-type 1 (CB1) receptors are present in the aPC (aPC-CB1), but their potential impact on olfactory memory was never explored. Here, we used a combination of behavioral, genetic, anatomical, and electrophysiological approaches to characterize the functions of aPC-CB1 receptors in the regulation of appetitive and aversive olfactory memory. Pharmacological blockade or genetic deletion of aPC-CB1 receptors specifically impaired the retrieval of conditioned odor preference (COP). Interestingly, expression of conditioned odor aversion (COA) was unaffected by local CB1 receptor blockade, indicating that the role of aPC endocannabinoid signaling is selective for retrieval of appetitive memory. Anatomical investigations revealed that CB1 receptors are highly expressed on aPC GABAergic interneurons, and ex vivo electrophysiological recordings showed that their pharmacological activation reduces miniature inhibitory post-synaptic currents (mIPSCs) onto aPC semilunar (SL), but not pyramidal principal neurons. COP retrieval, but not COA, was associated with a specific CB1-receptor-dependent decrease of mIPSCs in SL cells. Altogether, these data indicate that aPC-CB1 receptor-dependent mechanisms physiologically control the retrieval of olfactory memory, depending on odor valence and engaging modulation of local inhibitory transmission.
Collapse
Affiliation(s)
- Geoffrey Terral
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Arnau Busquets-Garcia
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Marjorie Varilh
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Svein Achicallende
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Astrid Cannich
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Federico Massa
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Nagore Puente
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Edgar Soria-Gomez
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France; Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Pedro Grandes
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena s\n, 48940 Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Guillaume Ferreira
- University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France; INRA, Bordeaux INP, Nutrition and Integrative Neurobiology, UMR 1286, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux Cedex, France; University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France.
| |
Collapse
|
25
|
Perrier SP, Gleizes M, Fonta C, Nowak LG. Effect of adenosine on short-term synaptic plasticity in mouse piriform cortex in vitro: adenosine acts as a high-pass filter. Physiol Rep 2019; 7:e13992. [PMID: 30740934 PMCID: PMC6369103 DOI: 10.14814/phy2.13992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 02/01/2023] Open
Abstract
We examined the effect of adenosine and of adenosine A1 receptor blockage on short-term synaptic plasticity in slices of adult mouse anterior piriform cortex maintained in vitro in an in vivo-like ACSF. Extracellular recording of postsynaptic responses was performed in layer 1a while repeated electrical stimulation (5-pulse-trains, frequency between 3.125 and 100 Hz) was applied to the lateral olfactory tract. Our stimulation protocol was aimed at covering the frequency range of oscillatory activities observed in the olfactory bulb in vivo. In control condition, postsynaptic response amplitude showed a large enhancement for stimulation frequencies in the beta and gamma frequency range. A phenomenological model of short-term synaptic plasticity fitted to the data suggests that this frequency-dependent enhancement can be explained by the interplay between a short-term facilitation mechanism and two short-term depression mechanisms, with fast and slow recovery time constants. In the presence of adenosine, response amplitude evoked by low-frequency stimulation decreased in a dose-dependent manner (IC50 = 70 μmol/L). Yet short-term plasticity became more dominated by facilitation and less influenced by depression. Both changes compensated for the initial decrease in response amplitude in a way that depended on stimulation frequency: compensation was strongest at high frequency, up to restoring response amplitudes to values similar to those measured in control condition. The model suggested that the main effects of adenosine were to decrease neurotransmitter release probability and to attenuate short-term depression mechanisms. Overall, these results suggest that adenosine does not merely inhibit neuronal activity but acts in a more subtle, frequency-dependent manner.
Collapse
|
26
|
Meissner-Bernard C, Dembitskaya Y, Venance L, Fleischmann A. Encoding of Odor Fear Memories in the Mouse Olfactory Cortex. Curr Biol 2019; 29:367-380.e4. [DOI: 10.1016/j.cub.2018.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 10/19/2018] [Accepted: 12/04/2018] [Indexed: 11/26/2022]
|
27
|
Yu D, Xiao R, Huang J, Cai Y, Bao X, Jing S, Du Z, Yang T, Fan X. Neonatal exposure to propofol affects interneuron development in the piriform cortex and causes neurobehavioral deficits in adult mice. Psychopharmacology (Berl) 2019; 236:657-670. [PMID: 30415279 DOI: 10.1007/s00213-018-5092-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 10/25/2018] [Indexed: 11/24/2022]
Abstract
RATIONALE Animal studies have shown that early postnatal propofol administration is involved in neurobehavioral alterations in adults. However, the underlying mechanism is not clear. METHODS We used c-Fos immunohistochemistry to identify activated neurons in brain regions of neonatal mice under propofol exposure and performed behavioral tests to observe the long-term consequences. RESULTS Exposure to propofol (30g or 60 mg/kg) on P7 produced significant c-Fos expression in the deep layers of the piriform cortex on P8. Double immunofluorescence of c-Fos with interneuron markers in the piriform cortex revealed that c-Fos was specifically induced in calbindin (CB)-positive interneurons. Repeated propofol exposure from P7 to P9 induced behavioral deficits in adult mice, such as olfactory function deficit in a buried food test, decreased sociability in a three-chambered choice task, and impaired recognitive ability of learning and memory in novel object recognition tests. However, locomotor activity in the open-field test was not generally affected. Propofol treatment also significantly decreased the number of CB-positive interneurons in the piriform cortex of mice on P21 and adulthood. CONCLUSIONS These results suggest that CB-positive interneurons in the piriform cortex are vulnerable to propofol exposure during the neonatal period, and these neurons are involved in the damage effects of propofol on behavior changes. These data provide a new target of propofol neurotoxicity and may elucidate the mechanism of neurobehavioral deficits in adulthood.
Collapse
Affiliation(s)
- Dan Yu
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China.,Department of Anesthesiology, Wuhan No.4 Hospital, Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, People's Republic of China
| | - Rui Xiao
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China.,Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Jing Huang
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Yulong Cai
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Xiaohang Bao
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China.,Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Sheng Jing
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Zhiyong Du
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Tiande Yang
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China.
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
28
|
Kumar A, Schiff O, Barkai E, Mel BW, Poleg-Polsky A, Schiller J. NMDA spikes mediate amplification of inputs in the rat piriform cortex. eLife 2018; 7:38446. [PMID: 30575520 PMCID: PMC6333441 DOI: 10.7554/elife.38446] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
The piriform cortex (PCx) receives direct input from the olfactory bulb (OB) and is the brain's main station for odor recognition and memory. The transformation of the odor code from OB to PCx is profound: mitral and tufted cells in olfactory glomeruli respond to individual odorant molecules, whereas pyramidal neurons (PNs) in the PCx responds to multiple, apparently random combinations of activated glomeruli. How these 'discontinuous' receptive fields are formed from OB inputs remains unknown. Counter to the prevailing view that olfactory PNs sum their inputs passively, we show for the first time that NMDA spikes within individual dendrites can both amplify OB inputs and impose combination selectivity upon them, while their ability to compartmentalize voltage signals allows different dendrites to represent different odorant combinations. Thus, the 2-layer integrative behavior of olfactory PN dendrites provides a parsimonious account for the nonlinear remapping of the odor code from bulb to cortex.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Physiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Oded Schiff
- Department of Physiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Edi Barkai
- Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Bartlett W Mel
- Biomedical Engineering Department, University of Southern California, Los Angeles, United States
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, United States
| | - Jackie Schiller
- Department of Physiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
29
|
Ikeda K, Suzuki N, Bekkers JM. Sodium and potassium conductances in principal neurons of the mouse piriform cortex: a quantitative description. J Physiol 2018; 596:5397-5414. [PMID: 30194865 DOI: 10.1113/jp275824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/21/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The primary olfactory (or piriform) cortex is a promising model system for understanding how the cerebral cortex processes sensory information, although an investigation of the piriform cortex is hindered by a lack of detailed information about the intrinsic electrical properties of its component neurons. In the present study, we quantify the properties of voltage-dependent sodium currents and voltage- and calcium-dependent potassium currents in two important classes of excitatory neurons in the main input layer of the piriform cortex. We identify several classes of these currents and show that their properties are similar to those found in better-studied cortical regions. Our detailed quantitative descriptions of these currents will be valuable to computational neuroscientists who aim to build models that explain how the piriform cortex encodes odours. ABSTRACT The primary olfactory cortex (or piriform cortex, PC) is an anatomically simple palaeocortex that is increasingly used as a model system for investigating cortical sensory processing. However, little information is available on the intrinsic electrical conductances in neurons of the PC, hampering efforts to build realistic computational models of this cortex. In the present study, we used nucleated macropatches and whole-cell recordings to rigorously quantify the biophysical properties of voltage-gated sodium (NaV ), voltage-gated potassium (KV ) and calcium-activated potassium (KCa ) conductances in two major classes of glutamatergic neurons in layer 2 of the PC, semilunar (SL) cells and superficial pyramidal (SP) cells. We found that SL and SP cells both express a fast-inactivating NaV current, two types of KV current (A-type and delayed rectifier-type) and three types of KCa current (fast-, medium- and slow-afterhyperpolarization currents). The kinetic and voltage-dependent properties of the NaV and KV conductances were, with some exceptions, identical in SL and SP cells and similar to those found in neocortical pyramidal neurons. The KCa conductances were also similar across the different types of neurons. Our results are summarized in a series of empirical equations that should prove useful to computational neuroscientists seeking to model the PC. More broadly, our findings indicate that, at the level of single-cell electrical properties, this palaeocortex is not so different from the neocortex, vindicating efforts to use the PC as a model of cortical sensory processing in general.
Collapse
Affiliation(s)
- Kaori Ikeda
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | | | - John M Bekkers
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
30
|
Al Koborssy D, Palouzier-Paulignan B, Canova V, Thevenet M, Fadool DA, Julliard AK. Modulation of olfactory-driven behavior by metabolic signals: role of the piriform cortex. Brain Struct Funct 2018; 224:315-336. [PMID: 30317390 DOI: 10.1007/s00429-018-1776-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/08/2018] [Indexed: 12/25/2022]
Abstract
Olfaction is one of the major sensory modalities that regulates food consumption and is in turn regulated by the feeding state. Given that the olfactory bulb has been shown to be a metabolic sensor, we explored whether the anterior piriform cortex (aPCtx)-a higher olfactory cortical processing area-had the same capacity. Using immunocytochemical approaches, we report the localization of Kv1.3 channel, glucose transporter type 4, and the insulin receptor in the lateral olfactory tract and Layers II and III of the aPCtx. In current-clamped superficial pyramidal (SP) cells, we report the presence of two populations of SP cells: glucose responsive and non-glucose responsive. Using varied glucose concentrations and a glycolysis inhibitor, we found that insulin modulation of the instantaneous and spike firing frequency are both glucose dependent and require glucose metabolism. Using a plethysmograph to record sniffing frequency, rats microinjected with insulin failed to discriminate ratiometric enantiomers; considered a difficult task. Microinjection of glucose prevented discrimination of odorants of different chain-lengths, whereas injection of margatoxin increased the rate of habituation to repeated odor stimulation and enhanced discrimination. These data suggest that metabolic signaling pathways that are present in the aPCtx are capable of neuronal modulation and changing complex olfactory behaviors in higher olfactory centers.
Collapse
Affiliation(s)
- Dolly Al Koborssy
- Program in Neuroscience, The Florida State University, Tallahassee, FL, USA.,Department of Biological Science, The Florida State University, Tallahassee, FL, USA
| | - Brigitte Palouzier-Paulignan
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/CNRS UMR5292 Team Olfaction: From Coding to Memory, 50 Av. Tony Garnier, 69366, Lyon, France
| | - Vincent Canova
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/CNRS UMR5292 Team Olfaction: From Coding to Memory, 50 Av. Tony Garnier, 69366, Lyon, France
| | - Marc Thevenet
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/CNRS UMR5292 Team Olfaction: From Coding to Memory, 50 Av. Tony Garnier, 69366, Lyon, France
| | - Debra Ann Fadool
- Program in Neuroscience, The Florida State University, Tallahassee, FL, USA.,Institute of Molecular Biophysics, The Florida State University, Tallahassee, FL, USA.,Department of Biological Science, The Florida State University, Tallahassee, FL, USA
| | - Andrée Karyn Julliard
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/CNRS UMR5292 Team Olfaction: From Coding to Memory, 50 Av. Tony Garnier, 69366, Lyon, France.
| |
Collapse
|
31
|
Differential inhibition of pyramidal cells and inhibitory interneurons along the rostrocaudal axis of anterior piriform cortex. Proc Natl Acad Sci U S A 2018; 115:E8067-E8076. [PMID: 30087186 DOI: 10.1073/pnas.1802428115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spatial representation of stimuli in sensory neocortices provides a scaffold for elucidating circuit mechanisms underlying sensory processing. However, the anterior piriform cortex (APC) lacks topology for odor identity as well as afferent and intracortical excitation. Consequently, olfactory processing is considered homogenous along the APC rostral-caudal (RC) axis. We recorded excitatory and inhibitory neurons in APC while optogenetically activating GABAergic interneurons along the RC axis. In contrast to excitation, we find opposing, spatially asymmetric inhibition onto pyramidal cells (PCs) and interneurons. PCs are strongly inhibited by caudal stimulation sites, whereas interneurons are strongly inhibited by rostral sites. At least two mechanisms underlie spatial asymmetries. Enhanced caudal inhibition of PCs is due to increased synaptic strength, whereas rostrally biased inhibition of interneurons is mediated by increased somatostatin-interneuron density. Altogether, we show differences in rostral and caudal inhibitory circuits in APC that may underlie spatial variation in odor processing along the RC axis.
Collapse
|
32
|
Stern M, Bolding KA, Abbott LF, Franks KM. A transformation from temporal to ensemble coding in a model of piriform cortex. eLife 2018; 7:34831. [PMID: 29595470 PMCID: PMC5902166 DOI: 10.7554/elife.34831] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/20/2018] [Indexed: 11/29/2022] Open
Abstract
Different coding strategies are used to represent odor information at various stages of the mammalian olfactory system. A temporal latency code represents odor identity in olfactory bulb (OB), but this temporal information is discarded in piriform cortex (PCx) where odor identity is instead encoded through ensemble membership. We developed a spiking PCx network model to understand how this transformation is implemented. In the model, the impact of OB inputs activated earliest after inhalation is amplified within PCx by diffuse recurrent collateral excitation, which then recruits strong, sustained feedback inhibition that suppresses the impact of later-responding glomeruli. We model increasing odor concentrations by decreasing glomerulus onset latencies while preserving their activation sequences. This produces a multiplexed cortical odor code in which activated ensembles are robust to concentration changes while concentration information is encoded through population synchrony. Our model demonstrates how PCx circuitry can implement multiplexed ensemble-identity/temporal-concentration odor coding.
Collapse
Affiliation(s)
- Merav Stern
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem, Israel.,Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Kevin A Bolding
- Department of Neurobiology, Duke University School of Medicine, Durham, United States
| | - L F Abbott
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Kevin M Franks
- Department of Neurobiology, Duke University School of Medicine, Durham, United States
| |
Collapse
|
33
|
Gerrard LB, Tantirigama MLS, Bekkers JM. Pre- and Postsynaptic Activation of GABA B Receptors Modulates Principal Cell Excitation in the Piriform Cortex. Front Cell Neurosci 2018; 12:28. [PMID: 29459821 PMCID: PMC5807346 DOI: 10.3389/fncel.2018.00028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022] Open
Abstract
The piriform cortex (PC), like other cortical regions, normally operates in a state of dynamic equilibrium between excitation and inhibition. Here we examined the roles played by pre- and postsynaptic GABAB receptors in maintaining this equilibrium in the PC. Using whole-cell recordings in brain slices from the anterior PC of mice, we found that synaptic activation of postsynaptic GABAB receptors hyperpolarized the two major classes of layer 2 principal neurons and reduced the intrinsic electrical excitability of these neurons. Presynaptic GABAB receptors are expressed on the terminals of associational (intracortical) glutamatergic axons in the PC. Heterosynaptic activation of these receptors reduced excitatory associational inputs onto principal cells. Presynaptic GABAB receptors are also expressed on the axons of GABAergic interneurons in the PC, and blockade of these autoreceptors enhanced inhibitory inputs onto principal cells. Hence, presynaptic GABAB autoreceptors produce disinhibition of principal cells. To study the functional consequences of GABAB activation in vivo, we used 2-photon calcium imaging to simultaneously monitor the activity of ~200 layer 2 neurons. Superfusion of the GABAB agonist baclofen reduced spontaneous random firing but also promoted synchronous epileptiform activity. These findings suggest that, while GABAB activation can dampen excitability by engaging pre- and postsynaptic GABAB heteroreceptors on glutamatergic neurons, it can also promote excitability by disinhibiting principal cells by activating presynaptic GABAB autoreceptors on interneurons. Thus, depending on the dynamic balance of hetero- and autoinhibition, GABAB receptors can function as variable modulators of circuit excitability in the PC.
Collapse
Affiliation(s)
- Leah B Gerrard
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Malinda L S Tantirigama
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - John M Bekkers
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
34
|
Willems JGP, Wadman WJ, Cappaert NLM. Parvalbumin interneuron mediated feedforward inhibition controls signal output in the deep layers of the perirhinal-entorhinal cortex. Hippocampus 2018; 28:281-296. [PMID: 29341361 PMCID: PMC5900730 DOI: 10.1002/hipo.22830] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 11/11/2022]
Abstract
The perirhinal (PER) and lateral entorhinal (LEC) cortex form an anatomical link between the neocortex and the hippocampus. However, neocortical activity is transmitted through the PER and LEC to the hippocampus with a low probability, suggesting the involvement of the inhibitory network. This study explored the role of interneuron mediated inhibition, activated by electrical stimulation in the agranular insular cortex (AiP), in the deep layers of the PER and LEC. Activated synaptic input by AiP stimulation rarely evoked action potentials in the PER‐LEC deep layer excitatory principal neurons, most probably because the evoked synaptic response consisted of a small excitatory and large inhibitory conductance. Furthermore, parvalbumin positive (PV) interneurons—a subset of interneurons projecting onto the axo‐somatic region of principal neurons—received synaptic input earlier than principal neurons, suggesting recruitment of feedforward inhibition. This synaptic input in PV interneurons evoked varying trains of action potentials, explaining the fast rising, long lasting synaptic inhibition received by deep layer principal neurons. Altogether, the excitatory input from the AiP onto deep layer principal neurons is overruled by strong feedforward inhibition. PV interneurons, with their fast, extensive stimulus‐evoked firing, are able to deliver this fast evoked inhibition in principal neurons. This indicates an essential role for PV interneurons in the gating mechanism of the PER‐LEC network.
Collapse
Affiliation(s)
- Janske G P Willems
- Center for Neuroscience, Sammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, Amsterdam 1098 XH, The Netherlands
| | - Wytse J Wadman
- Center for Neuroscience, Sammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, Amsterdam 1098 XH, The Netherlands
| | - Natalie L M Cappaert
- Center for Neuroscience, Sammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
35
|
Zhou Y, Wang X, Cao T, Xu J, Wang D, Restrepo D, Li A. Insulin Modulates Neural Activity of Pyramidal Neurons in the Anterior Piriform Cortex. Front Cell Neurosci 2017; 11:378. [PMID: 29234275 PMCID: PMC5712367 DOI: 10.3389/fncel.2017.00378] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/13/2017] [Indexed: 01/12/2023] Open
Abstract
Insulin is an important peptide hormone that regulates food intake and olfactory function. While a multitude of studies investigated the effect of insulin in the olfactory bulb and olfactory epithelium, research on how it modulates higher olfactory centers is lacking. Here we investigate how insulin modulates neural activity of pyramidal neurons in the anterior piriform cortex, a key olfactory signal processing center that plays important roles in odor perception, preference learning, and odor pattern separation. In vitro we find from brain slice recordings that insulin increases the excitation of pyramidal neurons, and excitatory synaptic transmission while it decreases inhibitory synaptic transmission. In vivo local field potential (LFP) recordings indicate that insulin decreases both ongoing gamma oscillations and odor evoked beta responses. Moreover, recordings of calcium activity from pyramidal neurons reveal that insulin modulates the odor-evoked responses by an inhibitory effect. These results indicate that insulin alters olfactory signal processing in the anterior piriform cortex.
Collapse
Affiliation(s)
- Yang Zhou
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Xiaojie Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Tiantian Cao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Jinshan Xu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Dejuan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
36
|
Frade-Pérez MD, Miquelajáuregui A, Varela-Echavarría A. Origin and Migration of Olfactory Cajal-Retzius Cells. Front Neuroanat 2017; 11:97. [PMID: 29163070 PMCID: PMC5671926 DOI: 10.3389/fnana.2017.00097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/17/2017] [Indexed: 11/29/2022] Open
Abstract
Early telencephalic development involves the migration of diverse cell types that can be identified by specific molecular markers. Most prominent among them are Cajal-Retzius (CR) cells that emanate mainly from the cortical hem and to a lesser extent from rostrolateral, septal and caudo-medial regions. One additional territory proposed to give rise to CR cells that migrate dorsally into the neocortex lies at the ventral pallium, although contradictory results question this notion. With the use of a cell-permeable fluorescent tracer in cultured embryos, we identified novel migratory paths of putative CR cells and other populations that originate from the rostrolateral telencephalon at its olfactory region. Moreover, extensive labeling on the lateral telencephalon along its rostro-caudal extent failed to reveal a dorsally-migrating CR cell population from the ventral pallium at the stages analyzed. Hence, this work reveals a novel olfactory CR cell migration and supports the idea that the ventral pallium, where diverse types of neurons converge, does not actually generate CR cells.
Collapse
Affiliation(s)
| | - Amaya Miquelajáuregui
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | |
Collapse
|
37
|
Direct Recording of Dendrodendritic Excitation in the Olfactory Bulb: Divergent Properties of Local and External Glutamatergic Inputs Govern Synaptic Integration in Granule Cells. J Neurosci 2017; 37:11774-11788. [PMID: 29066560 DOI: 10.1523/jneurosci.2033-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/22/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022] Open
Abstract
The olfactory bulb contains excitatory principal cells (mitral and tufted cells) that project to cortical targets as well as inhibitory interneurons. How the local circuitry in this region facilitates odor-specific output is not known, but previous work suggests that GABAergic granule cells plays an important role, especially during fine odor discrimination. Principal cells interact with granule cells through reciprocal dendrodendritic connections that are poorly understood. While many studies examined the GABAergic output side of these reciprocal connections, little is known about how granule cells are excited. Only two previous studies reported monosynaptically coupled mitral/granule cell connections and neither attempted to determine the fundamental properties of these synapses. Using dual intracellular recordings and a custom-built loose-patch amplifier, we have recorded unitary granule cell EPSPs evoked in response to mitral cell action potentials in rat (both sexes) brain slices. We find that the unitary dendrodendritic input is relatively weak with highly variable release probability and short-term depression. In contrast with the weak dendrodendritic input, the facilitating cortical input to granule cells is more powerful and less variable. Our computational simulations suggest that dendrodendritic synaptic properties prevent individual principal cells from strongly depolarizing granule cells, which likely discharge in response to either concerted activity among a large proportion of inputs or coactivation of a smaller subset of local dendrodendritic inputs with coincidence excitation from olfactory cortex. This dual-pathway requirement likely enables the sparse mitral/granule cell interconnections to develop highly odor-specific responses that facilitate fine olfactory discrimination.SIGNIFICANCE STATEMENT The olfactory bulb plays a central role in converting broad, highly overlapping, sensory input patterns into odor-selective population responses. How this occurs is not known, but experimental and theoretical studies suggest that local inhibition often plays a central role. Very little is known about how the most common local interneuron subtype, the granule cell, is excited during odor processing beyond the unusual anatomical arraignment of the interconnections (reciprocal dendrodendritic synapses). Using paired recordings and two-photon imaging, we determined the properties of the primary input to granule cells for the first time and show that these connections bias interneurons to fire in response to spiking in large populations of principal cells rather than a small group of highly active cells.
Collapse
|
38
|
Gleizes M, Perrier SP, Fonta C, Nowak LG. Prominent facilitation at beta and gamma frequency range revealed with physiological calcium concentration in adult mouse piriform cortex in vitro. PLoS One 2017; 12:e0183246. [PMID: 28820903 PMCID: PMC5562311 DOI: 10.1371/journal.pone.0183246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/01/2017] [Indexed: 12/25/2022] Open
Abstract
Neuronal activity is characterized by a diversity of oscillatory phenomena that are associated with multiple behavioral and cognitive processes, yet the functional consequences of these oscillations are not fully understood. Our aim was to determine whether and how these different oscillatory activities affect short-term synaptic plasticity (STP), using the olfactory system as a model. In response to odorant stimuli, the olfactory bulb displays a slow breathing rhythm as well as beta and gamma oscillations. Since the firing of olfactory bulb projecting neurons is phase-locked with beta and gamma oscillations, structures downstream from the olfactory bulb should be driven preferentially at these frequencies. We examined STP exhibited by olfactory bulb inputs in slices of adult mouse piriform cortex maintained in vitro in an in vivo-like ACSF (calcium concentration: 1.1 mM). We replaced the presynaptic neuronal firing rate by repeated electrical stimulation (frequency between 3.125 and 100 Hz) applied to the lateral olfactory tract. Our results revealed a considerable enhancement of postsynaptic response amplitude for stimulation frequencies in the beta and gamma range. A phenomenological model of STP fitted to the data suggests that the experimental results can be explained by the interplay between three mechanisms: a short-term facilitation mechanism (time constant ≈160 msec), and two short-term depression mechanisms (recovery time constants <20 msec and ≈140 msec). Increasing calcium concentration (2.2 mM) resulted in an increase in the time constant of facilitation and in a strengthening of the slowest depression mechanism. As a result, response enhancement was reduced and its peak shifted toward the low beta and alpha ranges while depression became predominant in the gamma band. Using environmental conditions corresponding to those that prevail in vivo, our study shows that STP in the lateral olfactory tract to layer Ia synapse allows amplification of olfactory bulb inputs at beta and gamma frequencies.
Collapse
Affiliation(s)
- Marie Gleizes
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
- Unité Mixte de Recherche 5549, Centre National de la Recherche Scientifique, Toulouse, France
| | - Simon P. Perrier
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
- Unité Mixte de Recherche 5549, Centre National de la Recherche Scientifique, Toulouse, France
| | - Caroline Fonta
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
- Unité Mixte de Recherche 5549, Centre National de la Recherche Scientifique, Toulouse, France
| | - Lionel G. Nowak
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
- Unité Mixte de Recherche 5549, Centre National de la Recherche Scientifique, Toulouse, France
| |
Collapse
|
39
|
Mazo C, Grimaud J, Shima Y, Murthy VN, Lau CG. Distinct projection patterns of different classes of layer 2 principal neurons in the olfactory cortex. Sci Rep 2017; 7:8282. [PMID: 28811534 PMCID: PMC5558010 DOI: 10.1038/s41598-017-08331-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/07/2017] [Indexed: 11/16/2022] Open
Abstract
The broadly-distributed, non-topographic projections to and from the olfactory cortex may suggest a flat, non-hierarchical organization in odor information processing. Layer 2 principal neurons in the anterior piriform cortex (APC) can be divided into 2 subtypes: semilunar (SL) and superficial pyramidal (SP) cells. Although it is known that SL and SP cells receive differential inputs from the olfactory bulb (OB), little is known about their projections to other olfactory regions. Here, we examined axonal projections of SL and SP cells using a combination of mouse genetics and retrograde labeling. Retrograde tracing from the OB or posterior piriform cortex (PPC) showed that the APC projects to these brain regions mainly through layer 2b cells, and dual-labeling revealed many cells extending collaterals to both target regions. Furthermore, a transgenic mouse line specifically labeling SL cells showed that they send profuse axonal projections to olfactory cortical areas, but not to the OB. These findings support a model in which information flow from SL to SP cells and back to the OB is mediated by a hierarchical feedback circuit, whereas both SL and SP cells broadcast information to higher olfactory areas in a parallel manner.
Collapse
Affiliation(s)
- Camille Mazo
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.,Ecole Normale Supérieure de Cachan, Université Paris-Saclay, F-94235, Cachan, France
| | - Julien Grimaud
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.,Ecole Normale Supérieure de Cachan, Université Paris-Saclay, F-94235, Cachan, France
| | - Yasuyuki Shima
- Department of Biology, Brandeis University, Waltham, MA, 02454, USA
| | - Venkatesh N Murthy
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
| | - C Geoffrey Lau
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA. .,Department of Biomedical Sciences and Centre for Biosystems, Neuroscience and Nanotechnology, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong.
| |
Collapse
|
40
|
Ghosh A, Mukherjee B, Chen X, Yuan Q. β-Adrenoceptor activation enhances L-type calcium channel currents in anterior piriform cortex pyramidal cells of neonatal mice: implication for odor learning. ACTA ACUST UNITED AC 2017; 24:132-135. [PMID: 28202717 PMCID: PMC5311384 DOI: 10.1101/lm.044818.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/03/2017] [Indexed: 01/05/2023]
Abstract
Early odor preference learning occurs in one-week-old rodents when a novel odor is paired with a tactile stimulation mimicking maternal care. β-Adrenoceptors and L-type calcium channels (LTCCs) in the anterior piriform cortex (aPC) are critically involved in this learning. However, whether β-adrenoceptors interact directly with LTCCs in aPC pyramidal cells is unknown. Here we show that pyramidal cells expressed significant LTCC currents that declined with age. β-Adrenoceptor activation via isoproterenol age-dependently enhanced LTCC currents. Nifedipine-sensitive, isoproterenol enhancement of calcium currents was only observed in post-natal day 7–10 mice. APC β-adrenoceptor activation induced early odor preference learning was blocked by nifedipine coinfusion.
Collapse
Affiliation(s)
- Abhinaba Ghosh
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Bandhan Mukherjee
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Xihua Chen
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| |
Collapse
|
41
|
Anwar H, Li X, Bucher D, Nadim F. Functional roles of short-term synaptic plasticity with an emphasis on inhibition. Curr Opin Neurobiol 2017; 43:71-78. [PMID: 28122326 DOI: 10.1016/j.conb.2017.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/16/2022]
Abstract
Almost all synapses show activity-dependent dynamic changes in efficacy. Numerous studies have explored the mechanisms underlying different forms of short-term synaptic plasticity (STP), but the functional role of STP for circuit output and animal behavior is less understood. This is particularly true for inhibitory synapses that can play widely varied roles in circuit activity. We review recent findings on the role of synaptic STP in sensory, pattern generating, thalamocortical, and hippocampal networks, with a focus on synaptic inhibition. These studies show a variety of functions including sensory adaptation and gating, dynamic gain control and rhythm generation. Because experimental manipulations of STP are difficult and nonspecific, a clear demonstration of STP function often requires a combination of experimental and computational techniques.
Collapse
Affiliation(s)
- Haroon Anwar
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, 323 Martin Luther King Blvd, Newark, NJ 07102, United States
| | - Xinping Li
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, 323 Martin Luther King Blvd, Newark, NJ 07102, United States
| | - Dirk Bucher
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, 323 Martin Luther King Blvd, Newark, NJ 07102, United States
| | - Farzan Nadim
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, 323 Martin Luther King Blvd, Newark, NJ 07102, United States.
| |
Collapse
|
42
|
Choy JM, Suzuki N, Shima Y, Budisantoso T, Nelson SB, Bekkers JM. Optogenetic Mapping of Intracortical Circuits Originating from Semilunar Cells in the Piriform Cortex. Cereb Cortex 2017; 27:589-601. [PMID: 26503263 PMCID: PMC5939214 DOI: 10.1093/cercor/bhv258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Despite its comparatively simple trilaminar architecture, the primary olfactory (piriform) cortex of mammals is capable of performing sophisticated sensory processing, an ability that is thought to depend critically on its extensive associational (intracortical) excitatory circuits. Here, we used a novel transgenic mouse model and optogenetics to measure the connectivity of associational circuits that originate in semilunar (SL) cells in layer 2a of the anterior piriform cortex (aPC). We generated a mouse line (48L) in which channelrhodopsin-2 (ChR) could be selectively expressed in a subset of SL cells. Light-evoked excitatory postsynaptic currents (EPSCs) could be evoked in superficial pyramidal cells (17.4% of n = 86 neurons) and deep pyramidal cells (33.3%, n = 9) in the aPC, but never in ChR- SL cells (0%, n = 34). Thus, SL cells monosynaptically excite pyramidal cells, but not other SL cells. Light-evoked EPSCs were also selectively elicited in 3 classes of GABAergic interneurons in layer 3 of the aPC. Our results show that SL cells are specialized for providing feedforward excitation of specific classes of neurons in the aPC, confirming that SL cells comprise a functionally distinctive input layer.
Collapse
Affiliation(s)
- Julian M.C. Choy
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Norimitsu Suzuki
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Yasuyuki Shima
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - Timotheus Budisantoso
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
- Department of Physiological Sciences, Graduate University for Advanced Studies, Okazaki444-8787, Japan
- Current address: Department of Physiology, School of Medicine, Keio University, Shinjuku, Tokyo 160-8582, Japan
| | - Sacha B. Nelson
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - John M. Bekkers
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
43
|
Shima Y, Sugino K, Hempel CM, Shima M, Taneja P, Bullis JB, Mehta S, Lois C, Nelson SB. A Mammalian enhancer trap resource for discovering and manipulating neuronal cell types. eLife 2016; 5:e13503. [PMID: 26999799 PMCID: PMC4846381 DOI: 10.7554/elife.13503] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/18/2016] [Indexed: 12/16/2022] Open
Abstract
There is a continuing need for driver strains to enable cell-type-specific manipulation in the nervous system. Each cell type expresses a unique set of genes, and recapitulating expression of marker genes by BAC transgenesis or knock-in has generated useful transgenic mouse lines. However, since genes are often expressed in many cell types, many of these lines have relatively broad expression patterns. We report an alternative transgenic approach capturing distal enhancers for more focused expression. We identified an enhancer trap probe often producing restricted reporter expression and developed efficient enhancer trap screening with the PiggyBac transposon. We established more than 200 lines and found many lines that label small subsets of neurons in brain substructures, including known and novel cell types. Images and other information about each line are available online (enhancertrap.bio.brandeis.edu). DOI:http://dx.doi.org/10.7554/eLife.13503.001 Scientists can track and even alter the activity of different kinds of neurons, as well as the connections between neurons, by manipulating their genes. However, most genes are active in many different kinds of cells in many different places in the brain, making it difficult to track or target only a particular neuron or brain area. Enhancers are sections of DNA that can regulate the activity of nearby genes so that they are only active in very specific cell types, and an “enhancer trap” is a genetic approach that essentially hijacks enhancers to express artificial genes in those same cell types. The technique relies on inserting a genetic marker, which can be easily tracked, into random locations in the genome. If this marker then interacts with an enhancer, it is activated and the effect of the enhancer on gene expression can be assessed. This method has been used in fruit flies and fish to identify enhancers that specifically restrict gene expression to a small subset of cells. Now, Shima et al. show that enhancer traps can be used successfully in mammals too. The experiments produced over 200 different strains of mice, many with the fluorescent marker only in specific brain areas or in specific kinds of brain cells. Some of the types of brain cells uncovered by these experiments are new, and the labelling of specific brain cells and brain areas in different strains makes these mice a useful resource for future work. Furthermore, it will be relatively straightforward to produce many more strains of these mice, because it would simply involve crossbreeding mice. It is likely that some of these to-be-discovered strains will be useful tools for research as well. DOI:http://dx.doi.org/10.7554/eLife.13503.002
Collapse
Affiliation(s)
- Yasuyuki Shima
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Ken Sugino
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Chris Martin Hempel
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Masami Shima
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Praveen Taneja
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - James B Bullis
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Sonam Mehta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Carlos Lois
- Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, United States
| | - Sacha B Nelson
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| |
Collapse
|
44
|
Balanced feedforward inhibition and dominant recurrent inhibition in olfactory cortex. Proc Natl Acad Sci U S A 2016; 113:2276-81. [PMID: 26858458 DOI: 10.1073/pnas.1519295113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Throughout the brain, the recruitment of feedforward and recurrent inhibition shapes neural responses. However, disentangling the relative contributions of these often-overlapping cortical circuits is challenging. The piriform cortex provides an ideal system to address this issue because the interneurons responsible for feedforward and recurrent inhibition are anatomically segregated in layer (L) 1 and L2/3 respectively. Here we use a combination of optical and electrical activation of interneurons to profile the inhibitory input received by three classes of principal excitatory neuron in the anterior piriform cortex. In all classes, we find that L1 interneurons provide weaker inhibition than L2/3 interneurons. Nonetheless, feedforward inhibitory strength covaries with the amount of afferent excitation received by each class of principal neuron. In contrast, intracortical stimulation of L2/3 evokes strong inhibition that dominates recurrent excitation in all classes. Finally, we find that the relative contributions of feedforward and recurrent pathways differ between principal neuron classes. Specifically, L2 neurons receive more reliable afferent drive and less overall inhibition than L3 neurons. Alternatively, L3 neurons receive substantially more intracortical inhibition. These three features--balanced afferent drive, dominant recurrent inhibition, and differential recruitment by afferent vs. intracortical circuits, dependent on cell class--suggest mechanisms for olfactory processing that may extend to other sensory cortices.
Collapse
|
45
|
Abstract
The medial amygdala (MeA) is a central hub in the olfactory neural network. It receives vomeronasal information directly from the accessory olfactory bulb (AOB) and main olfactory information largely via odor-processing regions such as the olfactory cortical amygdala (CoA). How these inputs are processed by MeA neurons is poorly understood. Using the GAD67-GFP mouse, we show that MeA principal neurons receive convergent AOB and CoA inputs. Somatically recorded AOB synaptic inputs had slower kinetics than CoA inputs, suggesting that they are electrotonically more distant. Field potential recording, pharmacological manipulation, and Ca(2+) imaging revealed that AOB synapses are confined to distal dendrites and segregated from the proximally located CoA synapses. Moreover, unsynchronized AOB inputs had significantly broader temporal summation that was dependent on the activation of NMDA receptors. These findings show that MeA principal neurons process main and accessory olfactory inputs differentially in distinct dendritic compartments. Significance statement: In most vertebrates, olfactory cues are processed by two largely segregated neural pathways, the main and accessory olfactory systems, which are specialized to detect odors and nonvolatile chemosignals, respectively. Information from these two pathways ultimately converges at higher brain regions, one of the major hubs being the medial amygdala. Little is known about how olfactory inputs are processed by medial amygdala neurons. This study shows that individual principal neurons in this region receive input from both pathways and that these synapses are spatially segregated on their dendritic tree. We provide evidence suggesting that this dendritic segregation leads to distinct input integration and impact on neuronal output; hence, dendritic mechanisms control olfactory processing in the amygdala.
Collapse
|
46
|
Crockett T, Wright N, Thornquist S, Ariel M, Wessel R. Turtle Dorsal Cortex Pyramidal Neurons Comprise Two Distinct Cell Types with Indistinguishable Visual Responses. PLoS One 2015; 10:e0144012. [PMID: 26633877 PMCID: PMC4669164 DOI: 10.1371/journal.pone.0144012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/12/2015] [Indexed: 11/25/2022] Open
Abstract
A detailed inventory of the constituent pieces in cerebral cortex is considered essential to understand the principles underlying cortical signal processing. Specifically, the search for pyramidal neuron subtypes is partly motivated by the hypothesis that a subtype-specific division of labor could create a rich substrate for computation. On the other hand, the extreme integration of individual neurons into the collective cortical circuit promotes the hypothesis that cellular individuality represents a smaller computational role within the context of the larger network. These competing hypotheses raise the important question to what extent the computational function of a neuron is determined by its individual type or by its circuit connections. We created electrophysiological profiles from pyramidal neurons within the sole cellular layer of turtle visual cortex by measuring responses to current injection using whole-cell recordings. A blind clustering algorithm applied to these data revealed the presence of two principle types of pyramidal neurons. Brief diffuse light flashes triggered membrane potential fluctuations in those same cortical neurons. The apparently network driven variability of the visual responses concealed the existence of subtypes. In conclusion, our results support the notion that the importance of diverse intrinsic physiological properties is minimized when neurons are embedded in a synaptic recurrent network.
Collapse
Affiliation(s)
- Thomas Crockett
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| | - Nathaniel Wright
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Stephen Thornquist
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Michael Ariel
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Ralf Wessel
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
47
|
Characterizing the Input-Output Function of the Olfactory-Limbic Pathway in the Guinea Pig. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2015; 2015:359590. [PMID: 26290660 PMCID: PMC4531155 DOI: 10.1155/2015/359590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/06/2015] [Indexed: 11/17/2022]
Abstract
Nowadays the neuroscientific community is taking more and more advantage of the continuous interaction between engineers and computational neuroscientists in order to develop neuroprostheses aimed at replacing damaged brain areas with artificial devices. To this end, a technological effort is required to develop neural network models which can be fed with the recorded electrophysiological patterns to yield the correct brain stimulation to recover the desired functions. In this paper we present a machine learning approach to derive the input-output function of the olfactory-limbic pathway in the in vitro whole brain of guinea pig, less complex and more controllable than an in vivo system. We first experimentally characterized the neuronal pathway by delivering different sets of electrical stimuli from the lateral olfactory tract (LOT) and by recording the corresponding responses in the lateral entorhinal cortex (l-ERC). As a second step, we used information theory to evaluate how much information output features carry about the input. Finally we used the acquired data to learn the LOT-l-ERC “I/O function,” by means of the kernel regularized least squares method, able to predict l-ERC responses on the basis of LOT stimulation features. Our modeling approach can be further exploited for brain prostheses applications.
Collapse
|
48
|
Vaughan DN, Jackson GD. The piriform cortex and human focal epilepsy. Front Neurol 2014; 5:259. [PMID: 25538678 PMCID: PMC4259123 DOI: 10.3389/fneur.2014.00259] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 11/22/2014] [Indexed: 11/28/2022] Open
Abstract
It is surprising that the piriform cortex, when compared to the hippocampus, has been given relatively little significance in human epilepsy. Like the hippocampus, it has a phylogenetically preserved three-layered cortex that is vulnerable to excitotoxic injury, has broad connections to both limbic and cortical areas, and is highly epileptogenic – being critical to the kindling process. The well-known phenomenon of early olfactory auras in temporal lobe epilepsy highlights its clinical relevance in human beings. Perhaps because it is anatomically indistinct and difficult to approach surgically, as it clasps the middle cerebral artery, it has, until now, been understandably neglected. In this review, we emphasize how its unique anatomical and functional properties, as primary olfactory cortex, predispose it to involvement in focal epilepsy. From recent convergent findings in human neuroimaging, clinical epileptology, and experimental animal models, we make the case that the piriform cortex is likely to play a facilitating and amplifying role in human focal epileptogenesis, and may influence progression to epileptic intractability.
Collapse
Affiliation(s)
- David N Vaughan
- Florey Institute of Neuroscience and Mental Health , Heidelberg, VIC , Australia ; Department of Neurology, Austin Health , Heidelberg, VIC , Australia
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health , Heidelberg, VIC , Australia ; Department of Neurology, Austin Health , Heidelberg, VIC , Australia ; Department of Medicine, University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
49
|
Looking for the roots of cortical sensory computation in three-layered cortices. Curr Opin Neurobiol 2014; 31:119-26. [PMID: 25291080 DOI: 10.1016/j.conb.2014.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 02/03/2023]
Abstract
Despite considerable effort over a century and the benefit of remarkable technical advances in the past few decades, we are still far from understanding mammalian cerebral neocortex. With its six layers, modular architecture, canonical circuits, innumerable cell types, and computational complexity, isocortex remains a challenging mystery. In this review, we argue that identifying the structural and functional similarities between mammalian piriform cortex and reptilian dorsal cortex could help reveal common organizational and computational principles and by extension, some of the most primordial computations carried out in cortical networks.
Collapse
|
50
|
Abstract
The medial nucleus of the amygdala (MeA) plays a key role in innate emotional behaviors by relaying olfactory information to hypothalamic nuclei involved in reproduction and defense. However, little is known about the neuronal components of this region or their role in the olfactory-processing circuitry of the amygdala. Here, we have characterized neurons in the posteroventral division of the medial amygdala (MePV) using the GAD67-GFP mouse. Based on their electrophysiological properties and GABA expression, unsupervised cluster analysis divided MePV neurons into three types of GABAergic (Types 1-3) and two non-GABAergic cells (Types I and II). All cell types received olfactory synaptic input from the accessory olfactory bulb and, with the exception of Type 2 GABAergic neurons, sent projections to both reproductive and defensive hypothalamic nuclei. Type 2 GABAergic cells formed a chemically and electrically interconnected network of local circuit inhibitory interneurons that resembled neurogliaform cells of the piriform cortex and provided feedforward inhibition of the olfactory-processing circuitry of the MeA. These findings provide a description of the cellular organization and connectivity of the MePV and further our understanding of amygdala circuits involved in olfactory processing and innate emotions.
Collapse
|