1
|
Shembel AC, Johnson AM, Ciucci MR, Lunaris CL, Morrison RA, Rudisch DM. The role of ultrasonic vocalizations in rat laryngological investigations. Physiol Behav 2025; 294:114887. [PMID: 40118131 DOI: 10.1016/j.physbeh.2025.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
Rat ultrasonic vocalizations (USVs) have traditionally been used in psychosocial and psychobiological studies to understand emotion, social behavior, cognition, and associative learning. However, recent studies have expanded the goal of USVs to include the study of the laryngeal system and the effects of disease processes on vocal sensorimotor control. Without the foundational understanding of the goals of this area of laryngological research, fundamental differences in study objectives between psychobehavioral and laryngological studies can easily be missed, leading to misconceptions and misinterpretations of the role USVs play in laryngology-focused studies. Standardization of terminology and methods are also needed to improve communication, enhance study replicability, and prevent ambiguity that can lead to misinterpretations of study objectives and findings in this line of research. The primary objective is to describe the role of USVs in studies of laryngeal anatomy and physiology, with a focus on their connections to the neuromuscular and neurological aspects of the laryngeal system, particularly in relation to vocal sensorimotor control and voice disorders. It is intended for novice investigators interested in laryngology-specific USV research. Researchers experienced in USV studies within the context of the larynx and vocal sensorimotor control first outline the development and refinement of various USV elicitation methods. They provide insights into how these approaches have been tested across different studies and laboratories. Finally, they advocate for standardizing terminology and methodologies to enhance study replicability, reduce ambiguity, and foster collaboration across research groups.
Collapse
Affiliation(s)
- Adrianna C Shembel
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA; Department of Otolaryngology-Head and Neck, Voice Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Aaron M Johnson
- Department of Otolaryngology-Head and Neck Surgery, NYU Voice Center, NYU Langone Health, New York, NY, USA
| | - Michelle R Ciucci
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Robert A Morrison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA; Department of Otolaryngology-Head and Neck, Voice Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Denis Michael Rudisch
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA; Institute for Clinical and Translational Research, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Černotová D, Hrůzová K, Touš J, Janča R, Stuchlík A, Levčík D, Svoboda J. Early social deficits in TgF344-AD rats are accompanied by sex-specific parvalbumin-positive interneuron reduction and altered brain oscillations in the hippocampal CA2. Neurobiol Dis 2025; 208:106875. [PMID: 40097074 DOI: 10.1016/j.nbd.2025.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025] Open
Abstract
Social withdrawal and deficits in social cognition are hallmarks of Alzheimer's disease (AD). While early deficits in social behavior and memory have been documented in mouse AD models, they remain understudied in rat models. Early-stage AD is accompanied by dysfunction of parvalbumin-positive (PV+) interneurons, implicating their potential connection to early symptoms. In this study, we employed a 5-trial social memory task to investigate early deficits in social cognition in 6-month-old TgF344-AD male and female rats. We counted the number of PV+ interneurons and recorded local field potentials during social interactions in the hippocampal CA2 - a region critical for social information processing. Our results show decreased social interest and novelty preference in TgF344-AD male and female rats. However, reduced PV+ interneuron numbers were observed only in female rats and specific to the CA2 area. The electrophysiological recordings revealed reduced theta-gamma phase-amplitude coupling in the CA2 during direct social interactions. We conclude that deficits in social cognition accompany early-stage AD in TgF344-AD rats and are potentially linked to PV+ interneuron and brain oscillatory dysfunction in the CA2 region of the hippocampus.
Collapse
Affiliation(s)
- Daniela Černotová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic; Third Faculty of Medicine, Charles University, Ruska 87, Prague 100 00, Czech Republic
| | - Karolína Hrůzová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic; Third Faculty of Medicine, Charles University, Ruska 87, Prague 100 00, Czech Republic
| | - Jan Touš
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic; Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 160 00, Czech Republic
| | - Radek Janča
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 160 00, Czech Republic
| | - Aleš Stuchlík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - David Levčík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic.
| | - Jan Svoboda
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| |
Collapse
|
3
|
Tzekaki E, Bekiari C, Pantazaki A, Tsantarliotou M, Tsolaki M, Lavrentiadou SN. A new protocol for the development of organoids based on molecular mechanisms in the developing newborn rat brain: Prospective applications in the study of Alzheimer's disease. J Neurosci Methods 2025; 417:110404. [PMID: 39978482 DOI: 10.1016/j.jneumeth.2025.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Brain organoids have emerged as powerful models for studying brain development and neurological disorders COMPARISON WITH EXISTING METHODS: Current models rely on stem cell isolation and differentiation using different growth factors. Thus, their composition varies according to the protocol followed. NEW METHOD We developed a simple protocol to generate organoids from newborn rat whole brain. It is a one-step procedure that yields organoids of consistent composition. The whole brains from 3-day old pups were digested enzymatically. All isolated cells were seeded in culture plates using a basement membrane extract (BME) matrix as a scaffold and cultured in the presence of the appropriate medium. RESULTS Hematoxylin-eosin staining of 28-day-old cultured domes revealed their structural integrity, while immunohistochemistry confirmed the presence of neurons, astrocytes, microglia, and progenitor stem cells in the structures. To assess whether these organoids can serve as a model to study brain physiopathology, and in particular neurodegenerative diseases such as Alzheimer's disease (AD), we determined how these organoids respond upon their exposure to lipopolysaccharides (LPS), a potent neuroinflammatory factor. LPS-induced amyloid precursor protein (APP), tau protein and glial fibrillary acidic protein (GFAP) expression. Moreover, the intracellular levels of IL-1β and the extracellular levels of amyloid-beta (Aβ) were also elevated. CONCLUSIONS Therefore, this simple protocol results in the generation of functional brain organoids with a consistent structure, that requires no use of varying factors that may affect the structure and function of the produced organoids, thus providing a valuable tool for the study of the physiopathology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Eleni Tzekaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001, Thermi, Thessaloniki, Greece.
| | - Chryssa Bekiari
- Laboratory of Anatomy and Histology School of Veterinary Medicine, Aristotle University of Thessaloniki, Greece.
| | - Anastasia Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001, Thermi, Thessaloniki, Greece.
| | - Maria Tsantarliotou
- Laboratory of Animal Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Greece.
| | - Magda Tsolaki
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001, Thermi, Thessaloniki, Greece.
| | - Sophia N Lavrentiadou
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001, Thermi, Thessaloniki, Greece; Laboratory of Animal Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Greece.
| |
Collapse
|
4
|
Liu Q, Song S, Liu L, Hong W. In Vivo Seeding of Amyloid-β Protein and Implications in Modeling Alzheimer's Disease Pathology. Biomolecules 2025; 15:571. [PMID: 40305318 PMCID: PMC12024744 DOI: 10.3390/biom15040571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 05/02/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by extracellular plaques containing amyloid β-protein (Aβ) and intracellular neurofibrillary tangles formed by tau. Cerebral Aβ accumulation initiates a noxious cascade that leads to irreversible neuronal degeneration and memory impairment in older adults. Recent advances in Aβ seeding studies offer a promising avenue for exploring the mechanisms underlying amyloid deposition and the complex pathological features of AD. However, the extent to which inoculated Aβ seeds can induce reproducible and reliable pathological manifestations remains unclear due to significant variability across studies. In this review, we will discuss several factors that contribute to the induction or acceleration of amyloid deposition and consequent pathologies. Specifically, we focus on the diversity of host animals, sources and recipe of Aβ seeds, and inoculating strategies. By integrating these key aspects, this review aims to offer a comprehensive perspective on Aβ seeding in AD and provide guidance for modeling AD pathogenesis through the exogenous introduction of Aβ seeds.
Collapse
Affiliation(s)
- Qianmin Liu
- School of Biomedical Sciences, Hunan University, Changsha 410082, China;
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Simin Song
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen 518055, China
| | - Lu Liu
- School of Biomedical Sciences, Hunan University, Changsha 410082, China;
| | - Wei Hong
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| |
Collapse
|
5
|
Marsland P, Vore AS, Lutzke A, Gano A, Fischer A, Trapp S, Savage LM, Deak T. Sex-specific effects of chronic alcohol consumption across the lifespan in the transgenic Alzheimer's Disease (TgF344-AD) rat model. Brain Behav Immun 2025; 128:192-207. [PMID: 40187669 DOI: 10.1016/j.bbi.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/25/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025] Open
Abstract
Alcohol consumption across the lifespan contributes to mood fluctuations and cognitive dysfunction, two neurobehavioral features also associated with Alzheimer's Disease and Related Dementias (ADRD). Yet, few studies have used rodent models to determine how a history of ethanol consumption across the lifespan might contribute to neurobehavioral and neuropathological features of ADRD. We exposed Wild Type (WT) and transgenic Fischer 344 CE rats (TgF344-AD) that have been genetically modified to express the human Amyloid Precursor Protein (APP) and presenilin-1 genes with mutations, to ethanol using a chronic, intermittent ethanol consumption model. Beginning at P28, rats were given a single bottle 10 % ethanol solution for 2 consecutive days, followed by 2 days of tap water. This pattern (2 days on, days off) was repeated for a total of 12 cycles until rats reached the age of ∼ 3 months, and repeated at 6 (Exp 1 and Exp 2) and 9 months of age (Exp 2). In experiment 1, ethanol consumption decreased alternations in a spontaneous alternation task in females, only at the 3-month time point, whereas TgF344-AD females showed increased contextual fear conditioning in the test of retention and reinstatement tests at 6 months of age. In experiment 2, a battery of anxiety-like behaviors (Elevated Plus Maze, Marble Burying, and Novelty Induced Hypophagia) were assessed following a 2-week abstinence period at 3, 6, and 9 months of age in ethanol-consuming rats. Data from the EPM and marble burying tasks revealed evidence of heightened anxiety-like behavior in Tg-F344-AD rats that varied by sex and age, with no significant effects of ethanol. In the novelty-induced hypophagia task, males with a history of ethanol consumption had a lower latency to approach a familiar, salient reward at 3 months old, but effects of ethanol were overall minimal. Examination of dorsal hippocampal gene expression at 6 months of age under basal conditions also revealed predominantly genotype and sex-specific effects on inflammation- and AD-related genes (App, Il-6, Bace1, Rage, Lrp-1). When examined at 9 months old following LPS challenge, ethanol increased inflammatory genes in males (Il-1β, Il-6) in the hippocampus, whereas ethanol decreased several inflammatory and AD-related genes (Hmgb1, Rage, Bace1, Lrp-1) in TgF344-AD females. Overall, these data provide further evidence that females are especially vulnerable to AD, and that a history of ethanol consumption had selective, rather than global, effects on AD- and inflammation-related genes following an inflammatory stimulus.
Collapse
Affiliation(s)
- Paige Marsland
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Andrew S Vore
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Ashley Lutzke
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Anny Gano
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Abigail Fischer
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Sarah Trapp
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Lisa M Savage
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
6
|
Nataraj A, Blahna K, Ježek K. Insights From TgF344-AD, a Double Transgenic Rat Model in Alzheimer's Disease Research. Physiol Res 2025; 74:1-17. [PMID: 40116546 PMCID: PMC11995940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/13/2024] [Indexed: 03/23/2025] Open
Abstract
Alzheimer's disease (AD), a leading cause of dementia worldwide, is a multifactorial neurodegenerative disorder characterized by amyloid-beta plaques, tauopathy, neuronal loss, neuro-inflammation, brain atrophy, and cognitive deficits. AD manifests as familial early-onset (FAD) with specific gene mutations or sporadic late-onset (LOAD) caused by various genetic and environmental factors. Numerous transgenic rodent models have been developed to understand AD pathology development and progression. The TgF344-AD rat model is a double transgenic model that carries two human gene mutations: APP with the Swedish mutation and PSEN-1 with delta exon 9 mutations. This model exhibits a complete repertoire of AD pathology in an age-dependent manner. This review summarizes multidisciplinary research insights gained from studying TgF344-AD rats in the context of AD pathology. We explore neuropathological findings; electrophysiological assessments revealing disrupted synaptic transmission, reduced spatial coding, network-level dysfunctions, and altered sleep architecture; behavioral studies highlighting impaired spatial memory; alterations in excitatory-inhibitory systems; and molecular and physiological changes in TgF344-AD rats emphasizing their age-related effects. Additionally, the impact of various interventions studied in the model is compiled, underscoring their role in bridging gaps in understanding AD pathogenesis. The TgF344-AD rat model offers significant potential in identifying biomarkers for early detection and therapeutic interventions, providing a robust platform for advancing translational AD research. Key words Alzheimer's disease, Transgenic AD models, TgF344-AD rats, Spatial coding.
Collapse
Affiliation(s)
- A Nataraj
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | | | | |
Collapse
|
7
|
Fang X, Border JJ, Zhang H, Challagundla L, Kaur J, Hwang SH, Hammock BD, Fan F, Roman RJ. A Soluble Epoxide Hydrolase Inhibitor Improves Cerebrovascular Dysfunction, Neuroinflammation, Amyloid Burden, and Cognitive Impairments in the hAPP/PS1 TgF344-AD Rat Model of Alzheimer's Disease. Int J Mol Sci 2025; 26:2433. [PMID: 40141075 PMCID: PMC11942141 DOI: 10.3390/ijms26062433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Alzheimer's disease (AD) is an increasing global healthcare crisis with few effective treatments. The accumulation of amyloid plaques and hyper-phosphorylated tau are thought to underlie the pathogenesis of AD. However, current studies have recognized a prominent role of cerebrovascular dysfunction in AD. We recently reported that SNPs in soluble epoxide hydrolase (sEH) are linked to AD in human genetic studies and that long-term administration of an sEH inhibitor attenuated cerebral vascular and cognitive dysfunction in a rat model of AD. However, the mechanisms linking changes in cerebral vascular function and neuroprotective actions of sEH inhibitors in AD remain to be determined. This study investigated the effects of administration of an sEH inhibitor, 1-(1-Propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea (TPPU), on neurovascular coupling, blood-brain barrier (BBB) function, neuroinflammation, and cognitive dysfunction in an hAPP/PS1 TgF344-AD rat model of AD. We observed predominant β-amyloid accumulation in the brains of 9-10-month-old AD rats and that TPPU treatment for three months reduced amyloid burden. The functional hyperemic response to whisker stimulation was attenuated in AD rats, and TPPU normalized the response. The sEH inhibitor, TPPU, mitigated capillary rarefaction, BBB leakage, and activation of astrocytes and microglia in AD rats. TPPU increased the expression of pre- and post-synaptic proteins and reduced loss of hippocampal neurons and cognitive impairments in the AD rats, which was confirmed in a transcriptome and GO analysis. These results suggest that sEH inhibitors could be a novel therapeutic strategy for AD.
Collapse
Affiliation(s)
- Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (X.F.); (J.J.B.); (H.Z.)
| | - Jane J. Border
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (X.F.); (J.J.B.); (H.Z.)
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (X.F.); (J.J.B.); (H.Z.)
| | - Lavanya Challagundla
- Molecular and Genomics Facility, University of Mississippi Medical Center, Jackson, MS 39216, USA; (L.C.); (J.K.)
| | - Jasleen Kaur
- Molecular and Genomics Facility, University of Mississippi Medical Center, Jackson, MS 39216, USA; (L.C.); (J.K.)
| | - Sung Hee Hwang
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA; (S.H.H.); (B.D.H.)
| | - Bruce D. Hammock
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA; (S.H.H.); (B.D.H.)
| | - Fan Fan
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (X.F.); (J.J.B.); (H.Z.)
| |
Collapse
|
8
|
Ohene Y, Morrey WJ, Powell E, Smethers KF, Luka N, South K, Berks M, Lawrence CB, Parker GJM, Parkes LM, Boutin H, Dickie BR. MRI detects blood-brain barrier alterations in a rat model of Alzheimer's disease and lung infection. NPJ IMAGING 2025; 3:8. [PMID: 40051735 PMCID: PMC11879872 DOI: 10.1038/s44303-025-00071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 01/23/2025] [Indexed: 03/09/2025]
Abstract
Pneumonia is a common infection in people suffering with Alzheimer's disease, leading to delirium, critical illness or severe neurological decline, which may be due to an amplified response of the blood-brain barrier (BBB) to peripheral insult. We assess the response of the BBB to repeated Streptococcus pneumoniae lung infection in rat model of Alzheimer's disease (TgF344-AD), at 13- and 18-months old, using dynamic contrast-enhanced (DCE) MRI and filter exchange imaging. Higher BBB water exchange rate is initially detected in infected TgF344-AD rats. BBB water exchange rates correlated with hippocampus aquaporin-4 water channel expression in infected animals. We detected no differences in BBB permeability to gadolinium contrast agent measured by DCE-MRI, confirmed by staining for tight junction proteins, occludin and claudin-5. These findings provide insight into the mechanisms of how peripheral inflammation impacts the BBB.
Collapse
Affiliation(s)
- Yolanda Ohene
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - William J. Morrey
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Elizabeth Powell
- Department of Medical Physics and Biomedical Engineering and Department of Neuroinflammation, Centre for Medical Image Computing, UCL, London, UK
| | - Katherine F. Smethers
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Nadim Luka
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kieron South
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Michael Berks
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Catherine B. Lawrence
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Geoff. J. M. Parker
- Department of Medical Physics and Biomedical Engineering and Department of Neuroinflammation, Centre for Medical Image Computing, UCL, London, UK
- Bioxydyn Limited, Manchester, UK
| | - Laura M. Parkes
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Hervé Boutin
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Imaging Brain & Neuropsychiatry iBraiN, Université de Tours, INSERM, Tours, France
| | - Ben R. Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Chen Y, Chen X, Luo Z, Kang X, Ge Y, Wan R, Wang Q, Han Z, Li F, Fan Z, Xie Y, Qi B, Zhang X, Yang Z, Zhang JH, Liu D, Xu Y, Wu D, Chen S. Exercise-Induced Reduction of IGF1R Sumoylation Attenuates Neuroinflammation in APP/PS1 Transgenic Mice. J Adv Res 2025; 69:279-297. [PMID: 38565402 PMCID: PMC11954827 DOI: 10.1016/j.jare.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/03/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
INTRODUCTION Alzheimer's Disease (AD), a progressive neurodegenerative disorder, is marked by cognitive deterioration and heightened neuroinflammation. The influence of Insulin-like Growth Factor 1 Receptor (IGF1R) and its post-translational modifications, especially sumoylation, is crucial in understanding the progression of AD and exploring novel therapeutic avenues. OBJECTIVES This study investigates the impact of exercise on the sumoylation of IGF1R and its role in ameliorating AD symptoms in APP/PS1 mice, with a specific focus on neuroinflammation and innovative therapeutic strategies. METHODS APP/PS1 mice were subjected to a regimen of moderate-intensity exercise. The investigation encompassed assessments of cognitive functions, alterations in hippocampal protein expressions, neuroinflammatory markers, and the effects of exercise on IGF1R and SUMO1 nuclear translocation. Additionally, the study evaluated the efficacy of KPT-330, a nuclear export inhibitor, as an alternative to exercise. RESULTS Exercise notably enhanced cognitive functions in AD mice, possibly through modulations in hippocampal proteins, including Bcl-2 and BACE1. A decrease in neuroinflammatory markers such as IL-1β, IL-6, and TNF-α was observed, indicative of reduced neuroinflammation. Exercise modulated the nuclear translocation of SUMO1 and IGF1R in the hippocampus, thereby facilitating neuronal regeneration. Mutant IGF1R (MT IGF1R), lacking SUMO1 modification sites, showed reduced SUMOylation, leading to diminished expression of pro-inflammatory cytokines and apoptosis. KPT-330 impeded the formation of the IGF1R/RanBP2/SUMO1 complex, thereby limiting IGF1R nuclear translocation, inflammation, and neuronal apoptosis, while enhancing cognitive functions and neuron proliferation. CONCLUSION Moderate-intensity exercise effectively mitigates AD symptoms in mice, primarily by diminishing neuroinflammation, through the reduction of IGF1R Sumoylation. KPT-330, as a potential alternative to physical exercise, enhances the neuroprotective role of IGF1R by inhibiting SUMOylation through targeting XPO1, presenting a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Yisheng Chen
- Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaofeng Chen
- Department of Orthopaedics, National Regional Medical Center, Jinjiang Municipal Hospital,Shanghai Sixth People's Hospital, Fujian, Jinjiang,China.
| | - Zhiwen Luo
- Huashan Hospital, Fudan University, Shanghai, China
| | - Xueran Kang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, China
| | - Yunshen Ge
- Huashan Hospital, Fudan University, Shanghai, China
| | - Renwen Wan
- Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Zhihua Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Fangqi Li
- Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongcheng Fan
- Department of Orthopaedic Surgery, Hainan Province Clinical Medical Center, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, China
| | - Yuchun Xie
- Jiangsu Province Geriatric Hospital, China
| | - Beijie Qi
- Huashan Hospital, Fudan University, Shanghai, China
| | - Xintao Zhang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital Lianhua Road, Shenzhen City, Guangdong Province, China
| | - Zhenwei Yang
- Department of Orthopaedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - John H Zhang
- Department of Neurosurgery, Department of Physiology and Pharmacology, Department of Neurosurgery and Anesthesiology, School of Medicine, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92354, USA.
| | - Danping Liu
- Department of Orthopaedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China.
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China.
| | - Dongyan Wu
- Huashan Hospital, Fudan University, Shanghai, China.
| | - Shiyi Chen
- Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Bhagaloo KA, Yu L, West EA, Chandler DJ, Shcherbik N. Alterations in iron levels in the locus coeruleus of a transgenic Alzheimer's disease rat model. Neurosci Lett 2025; 850:138151. [PMID: 39922529 DOI: 10.1016/j.neulet.2025.138151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Iron is essential for brain function, acting as a cofactor for enzymes involved in neurotransmitter synthesis and metabolism. However, dysregulated iron homeostasis is increasingly linked to neurodegenerative diseases, including Alzheimer's disease (AD). The locus coeruleus (LC), a norepinephrine-producing brainstem nucleus, is among the earliest regions affected in AD, yet its iron dynamics remain poorly understood. This study presents the first comprehensive analysis of iron content in the LC by combining a transgenic AD rat model, precise anatomical isolation, and Inductively Coupled Plasma Mass Spectrometry for high-sensitivity metal quantification. This approach enabled the profiling of iron and zinc concentrations in the LC, uncovering novel insights into iron dysregulation in AD. We observed a significant genotype-specific increase in LC iron levels in TgF344-AD rats compared to wild-type controls. Notably, our findings reveal distinct iron alterations in TgF344-AD rats, suggesting a previously unrecognized role for iron homeostasis in LC dysfunction. These results provide new perspectives on iron dysregulation in AD pathology and its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - Lei Yu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, 08028, United States
| | - Elizabeth A West
- Department of Cell Biology and Neuroscience, Rowan-Virtua SOM, Stratford, NJ, 08084, United States
| | - Daniel J Chandler
- Department of Cell Biology and Neuroscience, Rowan-Virtua SOM, Stratford, NJ, 08084, United States
| | - Natalia Shcherbik
- Department of Cell Biology and Neuroscience, Rowan-Virtua SOM, Stratford, NJ, 08084, United States; Department of Molecular Biology, Rowan-Virtua SOM, Stratford, NJ, 08084, United States.
| |
Collapse
|
11
|
Futácsi A, Rusznák K, Szarka G, Völgyi B, Wiborg O, Czéh B. Quantification and correlation of amyloid-β plaque load, glial activation, GABAergic interneuron numbers, and cognitive decline in the young TgF344-AD rat model of Alzheimer's disease. Front Aging Neurosci 2025; 17:1542229. [PMID: 40013092 PMCID: PMC11860898 DOI: 10.3389/fnagi.2025.1542229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025] Open
Abstract
Background Animal models of Alzheimer's disease (AD) are essential tools for investigating disease pathophysiology and conducting preclinical drug testing. In this study, we examined neuronal and glial alterations in the hippocampus and medial prefrontal cortex (mPFC) of young TgF344-AD rats and correlated these changes with cognitive decline and amyloid-β plaque load. Methods We compared TgF344-AD and non-transgenic littermate rats aged 7-8 months of age. We systematically quantified β-amyloid plaques, astrocytes, microglia, four different subtypes of GABAergic interneurons (calretinin-, cholecystokinin-, parvalbumin-, and somatostatin-positive neurons), and newly generated neurons in the hippocampus. Spatial learning and memory were assessed using the Barnes maze test. Results Young TgF344-AD rats had a large number of amyloid plaques in both the hippocampus and mPFC, together with a pronounced increase in microglial cell numbers. Astrocytic activation was significant in the mPFC. Cholecystokinin-positive cell numbers were decreased in the hippocampus of transgenic rats, but calretinin-, parvalbumin-, and somatostatin-positive cell numbers were not altered. Adult neurogenesis was not affected by genotype. TgF344-AD rats had spatial learning and memory impairments, but this cognitive deficit did not correlate with amyloid plaque number or cellular changes in the brain. In the hippocampus, amyloid plaque numbers were negatively correlated with cholecystokinin-positive neuron and microglial cell numbers. In the mPFC, amyloid plaque number was negatively correlated with the number of astrocytes. Conclusion Pronounced neuropathological changes were found in the hippocampus and mPFC of young TgF344-AD rats, including the loss of hippocampal cholecystokinin-positive interneurons. Some of these neuropathological changes were negatively correlated with amyloid-β plaque load, but not with cognitive impairment.
Collapse
Affiliation(s)
- Anett Futácsi
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Imaging Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Kitti Rusznák
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Gergely Szarka
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Imaging Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Béla Völgyi
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Ove Wiborg
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Boldizsár Czéh
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Imaging Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
12
|
Ndukwe K, Serrano PA, Rockwell P, Xie L, Figueiredo-Pereira ME. Brain-penetrant histone deacetylase inhibitor RG2833 improves spatial memory in females of an Alzheimer's disease rat model. J Alzheimers Dis 2025:13872877251314777. [PMID: 39924842 DOI: 10.1177/13872877251314777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
BACKGROUND Nearly two-thirds of Alzheimer's disease (AD) patients are women. Therapeutics for women are critical to lowering their elevated risk of developing this major cause of adult dementia. Moreover, targeting epigenetic processes such as histone acetylation that regulate multiple cellular pathways is advantageous given the multifactorial nature of AD. Histone acetylation takes part in memory consolidation, and its disruption is linked to AD. OBJECTIVE Determine whether the investigational drug RG2833 has repurposing potential for AD. RG2833 is a histone deacetylase HDAC1/3 inhibitor that is orally bioavailable and permeates the blood-brain-barrier. METHODS RG2833 effects were determined on cognition, transcriptome, and AD-like pathology in 11-month TgF344-AD female and male rats. Treatment started early in the course of pathology when therapeutic intervention is predicted to be most effective. RESULTS RG2833-treatment of 11-month TgF344-AD rats: (1) Significantly improved hippocampal-dependent spatial memory in females but not males. (2) Upregulated expression of immediate early genes, such as Arc, Egr1 and c-Fos, and other genes involved in synaptic plasticity and memory consolidation in females. Remarkably, out of 17,168 genes analyzed for each sex, no significant changes in gene expression were detected in males at p < 0.05, false discovery rate <0.05, and fold-change equal or > 1.5. (3) Failed to improve amyloid beta accumulation and microgliosis in female and male TgF344-AD rats. CONCLUSIONS Our study highlights the potential of histone-modifying therapeutics such as RG2833 to improve cognitive behavior and drive the expression of immediate early, synaptic plasticity and memory consolidation genes, especially in female AD patients.
Collapse
Affiliation(s)
- Kelechi Ndukwe
- CUNY Neuroscience Collaborative Program, The Graduate Center, CUNY, New York, NY, USA
- Department of Biological Sciences, Hunter College, CUNY and The Graduate Center, CUNY, New York, NY, USA
| | - Peter A Serrano
- Department of Psychology, Hunter College, CUNY and The Graduate Center, CUNY, New York, NY, USA
| | - Patricia Rockwell
- Department of Biological Sciences, Hunter College, CUNY and The Graduate Center, CUNY, New York, NY, USA
| | - Lei Xie
- Department of Computer Science, Hunter College, CUNY and The Graduate Center, CUNY, New York, NY, USA
| | - Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, CUNY and The Graduate Center, CUNY, New York, NY, USA
| |
Collapse
|
13
|
Morrey WJ, Ceyzériat K, Amossé Q, Badina AM, Dickie B, Schiessl I, Tsartsalis S, Millet P, Boutin H, Tournier BB. Early metabolic changes in the brain of Alzheimer's disease rats are driven by GLAST+ cells. J Cereb Blood Flow Metab 2025:271678X251318923. [PMID: 39917849 PMCID: PMC11806453 DOI: 10.1177/0271678x251318923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/27/2024] [Accepted: 01/19/2025] [Indexed: 02/11/2025]
Abstract
Glucose metabolic dysfunction is a hallmark of Alzheimer's disease (AD) pathology and is used to diagnose the disease or predict imminent cognitive decline. The main method to measure brain metabolism in vivo is positron emission tomography with 2-Deoxy-2-[18F]fluoroglucose ([18F]FDG-PET). The cellular origin of changes in the [18F]FDG-PET signal in AD is controversial. We addressed this by combining [18F]FDG-PET with subsequent cell-sorting and γ-counting of [18F]FDG-accumulation in sorted cell populations. 7-month-old male TgF344-AD rats and wild-type controls (n = 24/group) received sham or ceftriaxone (200 mg/kg) injection prior to [18F]FDG-PET imaging to increase glutamate uptake and glucose utilisation. The same animals were injected again one week later, and radiolabelled brains were dissected, with hippocampi taken for magnetically-activated cell sorting of radioligand-treated tissues (MACS-RTT). Radioactivity in sorted cell populations was measured to quantify cell-specific [18F]FDG uptake. Transcriptional analyses of metabolic enzymes/transporters were also performed. Hypometabolism in the frontal association cortex of TgF344-AD rats was identified using [18F]FDG-PET, whereas hypermetabolism was identified in the hippocampus using MACS-RTT. Hypermetabolism was primarily driven by GLAST+ cells. This was supported by transcriptional analyses which showed alteration to metabolic apparatus, including upregulation of hexokinase 2 and altered expression of glucose/lactate transporters. See Figure 1 for summary.
Collapse
Affiliation(s)
- William J Morrey
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Kelly Ceyzériat
- CIBM Center for BioMedical Imaging, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Quentin Amossé
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | | | - Ben Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Ingo Schiessl
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Stergios Tsartsalis
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Millet
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Hervé Boutin
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, Inserm, Tours, France
| | - Benjamin B Tournier
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Tang C, Border JJ, Zhang H, Gregory A, Bai S, Fang X, Liu Y, Wang S, Hwang SH, Gao W, Morgan GC, Smith J, Bunn D, Cantwell C, Wagner KM, Morisseau C, Yang J, Shin SM, O'Herron P, Bagi Z, Filosa JA, Dong Y, Yu H, Hammock BD, Roman RJ, Fan F. Inhibition of soluble epoxide hydrolase ameliorates cerebral blood flow autoregulation and cognition in alzheimer's disease and diabetes-related dementia rat models. GeroScience 2025:10.1007/s11357-025-01550-8. [PMID: 39903369 DOI: 10.1007/s11357-025-01550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025] Open
Abstract
Alzheimer's Disease and Alzheimer's Disease-related dementias (AD/ADRD) pose major global healthcare challenges, with diabetes mellitus (DM) being a key risk factor. Both AD and DM-related ADRD are characterized by reduced cerebral blood flow, although the exact mechanisms remain unclear. We previously identified compromised cerebral hemodynamics as early signs in TgF344-AD and type 2 DM-ADRD (T2DN) rat models. Genome-wide studies have linked AD/ADRD to SNPs in soluble epoxide hydrolase (sEH). This study explored the effects of sEH inhibition with TPPU on cerebral vascular function and cognition in AD and DM-ADRD models. Chronic TPPU treatment improved cognition in both AD and DM-ADRD rats without affecting body weight. In DM-ADRD rats, TPPU reduced plasma glucose and HbA1c levels. Transcriptomic analysis of primary cerebral vascular smooth muscle cells from AD rats treated with TPPU revealed enhanced pathways related to cell contraction, alongside decreased oxidative stress and inflammation. Both AD and DM-ADRD rats exhibited impaired myogenic responses and autoregulation in the cerebral circulation, which were normalized with chronic sEH inhibition. Additionally, TPPU improved acetylcholine-induced vasodilation in the middle cerebral arteries (MCA) of DM-ADRD rats. Acute TPPU administration unexpectedly caused vasoconstriction in the MCA of DM-ADRD rats at lower doses. In contrast, higher doses or longer durations were required to induce effective vasodilation at physiological perfusion pressure in both control and ADRD rats. Additionally, TPPU decreased reactive oxygen species production in cerebral vessels of AD and DM-ADRD rats. These findings provide novel evidence that chronic sEH inhibition can reverse cerebrovascular dysfunction and cognitive impairments in AD/ADRD, offering a promising avenue for therapeutic development.
Collapse
Affiliation(s)
- Chengyun Tang
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jane J Border
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Huawei Zhang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Andrew Gregory
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Shan Bai
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xing Fang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yedan Liu
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Shaoxun Wang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sung Hee Hwang
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Wenjun Gao
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gilbert C Morgan
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jhania Smith
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David Bunn
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Cameron Cantwell
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Karen M Wagner
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Christophe Morisseau
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Jun Yang
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Seung Min Shin
- Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Philip O'Herron
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zsolt Bagi
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jessica A Filosa
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yanbin Dong
- Georgia Prevention Center, Augusta University, Augusta, GA, USA
| | - Hongwei Yu
- Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bruce D Hammock
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA
| | - Richard J Roman
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Fan Fan
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Physiology, Medical College of Georgia, Augusta University, 1462 Laney Walker Blvd, Augusta, GA, 30912, USA.
| |
Collapse
|
15
|
Duncan S, Rehman S, Sagen V, Choi I, Lawrence S, Kalani O, Gold L, Goldman L, Ramlo S, Stickel K, Layfield D, Wolbers T, Tiganj Z, Newman EL. rTCT: Rodent Triangle Completion Task to facilitate translational study of path integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636463. [PMID: 39975325 PMCID: PMC11838589 DOI: 10.1101/2025.02.04.636463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Path integration is navigation in the absence of environmental landmarks and is a primary cognitive mechanism underlying spatial memory. Path integration performance is primarily assessed in humans using the Triangle Completion Task (TCT). In humans, TCT has shown promise for the early diagnosis of Alzheimer's disease. In rodents, however, path integration is assessed using a wide variety of tasks but none of which currently provide a homologue for the TCT. As rodents are routinely used as preclinical models, homologous path integration tasks that result in comparable performance metrics between species are important. In the present study we developed and tested a novel rodent version of the triangle completion task to enhance cross species comparability of path integration performance. Rats were able to comprehend and perform the task. A group of Alzheimer's disease model rats (TgF344-AD) exhibited similar path integration performance to their wild-type littermates; however, analysis of behavioural structure suggests use of differing behavioural strategies. This work establishes a novel rodent homologue of the triangle completion task, facilitating enhanced reverse translational study of human path integration.
Collapse
Affiliation(s)
- Stephen Duncan
- Department of Psychology & Brain Sciences, Indiana University; 1101 E. 10 Street, Bloomington, IN, 47405, U.S.A
| | - Sulaiman Rehman
- Department of Psychology & Brain Sciences, Indiana University; 1101 E. 10 Street, Bloomington, IN, 47405, U.S.A
| | - Vladislava Sagen
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
| | - Irene Choi
- Department of Psychology & Brain Sciences, Indiana University; 1101 E. 10 Street, Bloomington, IN, 47405, U.S.A
| | - Sami Lawrence
- Department of Psychology & Brain Sciences, Indiana University; 1101 E. 10 Street, Bloomington, IN, 47405, U.S.A
| | - Om Kalani
- Department of Psychology & Brain Sciences, Indiana University; 1101 E. 10 Street, Bloomington, IN, 47405, U.S.A
| | - Lisette Gold
- Department of Psychology & Brain Sciences, Indiana University; 1101 E. 10 Street, Bloomington, IN, 47405, U.S.A
| | - Lillian Goldman
- Department of Psychology & Brain Sciences, Indiana University; 1101 E. 10 Street, Bloomington, IN, 47405, U.S.A
| | - Sophia Ramlo
- Department of Psychology & Brain Sciences, Indiana University; 1101 E. 10 Street, Bloomington, IN, 47405, U.S.A
| | - Kylene Stickel
- Department of Psychology & Brain Sciences, Indiana University; 1101 E. 10 Street, Bloomington, IN, 47405, U.S.A
| | - Dylan Layfield
- Department of Psychology & Brain Sciences, Indiana University; 1101 E. 10 Street, Bloomington, IN, 47405, U.S.A
| | - Thomas Wolbers
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
| | - Zoran Tiganj
- Department of Psychology & Brain Sciences, Indiana University; 1101 E. 10 Street, Bloomington, IN, 47405, U.S.A
| | - Ehren L. Newman
- Department of Psychology & Brain Sciences, Indiana University; 1101 E. 10 Street, Bloomington, IN, 47405, U.S.A
| |
Collapse
|
16
|
Applebey SV, Xiao AG, Harris EP, Levine C, Belser DL, Geisler CE, Parent MB, Bangasser DA, Crist RC, Reiner BC, Hayes MR. Characterizing Brainstem GLP-1 Control of Sensory-Specific Satiety in Male and Female Rats Across the Estrous Cycle. Biol Psychiatry 2025:S0006-3223(25)00054-X. [PMID: 39855409 DOI: 10.1016/j.biopsych.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Meal variety promotes overconsumption by delaying sensory-specific satiety (SSS), the transient reduction in reward value of a recently consumed food. Despite its role in meal cessation, the neuroendocrine mechanisms that underlie SSS are largely unknown. METHODS Here, we developed a preclinical model of SSS wherein rats consume more of a different food compared with the same food presented again, leading to greater caloric intake. Using pharmacological and molecular approaches targeting the brainstem, we investigated the involvement of the satiation signal glucagon-like peptide-1 (GLP-1) in mediating SSS in male rats (n = 96) and in female rats (n = 85) across their estrous cycle. We also evaluated the sufficiency of the hormone estradiol to modulate GLP-1 and SSS. RESULTS In males, brainstem GLP-1 receptors (GLP-1Rs) were necessary for the SSS-induced decrease in same food intake, while agonizing brainstem GLP-1Rs was sufficient to attenuate overconsumption of the different food. Female rats showed SSS in an estrous cycle-dependent manner and did not consume more of the different food in diestrus-to-proestrus and proestrus-to-estrus. However, blockade of brainstem GLP-1Rs restored different food overconsumption. Furthermore, the brainstem's nucleus tractus solitarius and area postrema showed increased expression of the GLP-1 precursor glucagon (Gcg), during diestrus-to-proestrus and proestrus-to-estrus and greater Glp1r expression in proestrus-to-estrus. Similarly, 17β-estradiol injections in males not only increased Glp1r and Gcg expression but also reduced SSS. CONCLUSIONS We identified a bidirectional role for brainstem GLP-1R signaling in modulating SSS, effects that are estrous cycle dependent. Moreover, our data indicate that estradiol regulates Glp1r and Gcg expression and likely influences SSS.
Collapse
Affiliation(s)
- Sarah V Applebey
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Allison G Xiao
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erin P Harris
- Neuroscience Institute, Georgia State University, Atlanta, Georgia; Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia
| | - Caleb Levine
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Drew L Belser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Caroline E Geisler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, Georgia; Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Debra A Bangasser
- Neuroscience Institute, Georgia State University, Atlanta, Georgia; Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia
| | - Richard C Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin C Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
17
|
Ramakrishnan NK, Zhao AZ, Thompson S, Milicevic Sephton S, Williamson DJ, Smolek T, Žilka N, Aigbirhio FI. PET Imaging of a Transgenic Tau Rat Model SHR24 with [ 18F]AV1451. Mol Imaging Biol 2025:10.1007/s11307-024-01972-4. [PMID: 39838233 DOI: 10.1007/s11307-024-01972-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/30/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025]
Abstract
PURPOSE Positron Emission Tomography (PET) scans with radioligands targeting tau neurofibrillary tangles (NFT) have accelerated our understanding of the role of misfolded tau in neurodegeneration. While intended for human research, applying these radioligands to small animals establishes a vital translational link. Transgenic animal models of dementia, such as the tau rat SHR24, play a crucial role in enhancing our understanding of these disorders. This study aims to evaluate the utility of SHR24 rat model for PET studies. PROCEDURES Dynamic PET scans were conducted in male SHR24 rats and their wild-type SHR (SHRwt) littermates using [18F]AV1451. Rapid blood sampling and metabolite analysis were performed to acquire input curves. Time activity curves were obtained from various brain regions over 60 min. Blood-based, 2-Tissue Compartment Model (2-TCM) and Logan graphical analysis were used to obtain kinetic modelling parameters. The ability of reference tissue models to predict the binding potential (BPND) were assessed. Autoradiography studies were performed to corroborate the scan data. RESULTS Total distribution volume (VT) was the best predicted parameter which revealed significantly higher uptake of [18F]AV1451 in the cortex (5.8 ± 1.1 vs 4.6 ± 0.7, P < 0.05) of SHR24 rats compared to SHRwt rats. Binding potential obtained from 2-TCM was variable, however BPND from reference tissue models detected significantly higher binding in cortex (0.28 ± 0.07 vs 0.20 ± 0.04, P < 0.01 by SRTM) and brainstem (0.14 ± 0.04 vs 0.08 ± 0.02, P < 0.01, by SRTM). CONCLUSIONS With the ability to detect binding of established radioligand [18F]AV1451 in these rats, we have demonstrated the utility of this model for assessing aggregated tau neurobiology by PET, with reference tissue models providing potential for longitudinal studies.
Collapse
Affiliation(s)
- Nisha K Ramakrishnan
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Preclinical Imaging Research Laboratory, Anne McLaren Building, 90 Francis Crick Avenue, Trumpington, Cambridge, CB2 0BA, UK.
| | - Annie Ziyi Zhao
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stephen Thompson
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Selena Milicevic Sephton
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - David J Williamson
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Tomáš Smolek
- Axon Neuroscience R&D Services SE, Dubravska vćesta 9, 811 02, Bratislava, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Norbert Žilka
- Axon Neuroscience R&D Services SE, Dubravska vćesta 9, 811 02, Bratislava, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10, Bratislava, Slovakia
| | - Franklin I Aigbirhio
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
18
|
Samani EK, Hasan SMN, Waas M, Keszei AFA, Xu X, Heydari M, Hill ME, McLaurin J, Kislinger T, Mazhab-Jafari MT. Unveiling the structural proteome of an Alzheimer's disease rat brain model. Structure 2025; 33:51-61.e3. [PMID: 39615488 DOI: 10.1016/j.str.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 12/08/2024]
Abstract
Studying native protein structures at near-atomic resolution in a crowded environment presents challenges. Consequently, understanding the structural intricacies of proteins within pathologically affected tissues often relies on mass spectrometry and proteomic analysis. Here, we utilized cryoelectron microscopy (cryo-EM) and the Build and Retrieve (BaR) method to investigate protein complexes' structural characteristics such as post-translational modification, active site occupancy, and arrested conformational state in Alzheimer's disease (AD) using brain lysate from a rat model (TgF344-AD). Our findings reveal novel insights into the architecture of these complexes, corroborated through mass spectrometry analysis. Interestingly, it has been shown that the dysfunction of these protein complexes extends beyond AD, implicating them in cancer, as well as other neurodegenerative disorders such as Parkinson's disease, Huntington's disease, and schizophrenia. By elucidating these structural details, our work not only enhances our understanding of disease pathology but also suggests new avenues for future approaches in therapeutic intervention.
Collapse
Affiliation(s)
- Elnaz Khalili Samani
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - S M Naimul Hasan
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Matthew Waas
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Alexander F A Keszei
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Xiaoxiao Xu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mahtab Heydari
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Mary Elizabeth Hill
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - JoAnne McLaurin
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Mohammad T Mazhab-Jafari
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Deak T, Burzynski HE, Nunes PT, Day SM, Savage LM. Adolescent Alcohol and the Spectrum of Cognitive Dysfunction in Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:257-298. [PMID: 40128483 DOI: 10.1007/978-3-031-81908-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Among the many changes associated with aging, inflammation in the central nervous system (CNS) and throughout the body likely contributes to the constellation of health-related maladies associated with aging. Genetics, lifestyle factors, and environmental experiences shape the trajectory of aging-associated inflammation, including the developmental timing, frequency, and intensity of alcohol consumption. This chapter posits that neuroinflammatory processes form a critical link between alcohol exposure and the trajectory of healthy aging, at least in part through direct or indirect interactions with cholinergic circuits that are crucial to cognitive integrity. In this chapter, we begin with a discussion of how inflammation changes from early development through late aging; discuss the role of inflammation and alcohol in the emergence of mild cognitive impairment (MCI); elaborate on critical findings on the contribution of alcohol-related thiamine deficiency to the loss of cholinergic function and subsequent development of Wernicke-Korsakoff syndrome (WKS); and present emerging findings at the intersection of alcohol and Alzheimer's disease and related dementias (ADRD). In doing so, our analysis points toward inflammation-mediated compromise of basal forebrain cholinergic function as a key culprit in cognitive dysfunction associated with chronic alcohol exposure, effects that may be rescuable through either pharmacological or behavioral approaches. Furthermore, our chapter reveals an interesting dichotomy in the effects of alcohol on neuropathological markers of ADRD that depend upon both biological sex and genetic vulnerability.
Collapse
Affiliation(s)
- Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA.
| | - Hannah E Burzynski
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Polliana T Nunes
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Stephen M Day
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Lisa M Savage
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| |
Collapse
|
20
|
Ciacciarelli EJ, Dunn SD, Gohar T, Joseph Sloand T, Niedringhaus M, West EA. Medial prefrontal cortex to nucleus reuniens circuit is critical for performance in an operant delayed nonmatch to position task. Neurobiol Learn Mem 2025; 217:108007. [PMID: 39586458 PMCID: PMC11769756 DOI: 10.1016/j.nlm.2024.108007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Working memory refers to the temporary retention of a small amount of information used in the execution of a cognitive task. The prefrontal cortex and its connections with thalamic subregions are thought to mediate specific aspects of working memory, including engaging with the hippocampus to mediate memory retrieval. We used an operant delayed-non match to position task, which does not require the hippocampus, to determine roles of the rodent medial prefrontal cortex (mPFC), the nucleus reuniens thalamic region (RE), and their connection. We found that transient inactivation of the mPFC and RE using the GABA-A agonist muscimol led to a delay-independent reduction in behavioral performance in the delayed non-match to position paradigm. We used a chemogenetic approach to determine the directionality of the necessary circuitry for behavioral performance reliant on working memory. Specifically, when we targeted mPFC neurons that project to the RE (mPFC-RE) we found a delay-independent reduction in the delayed non-match to position task, but not when we targeted RE neurons that project to the mPFC (RE-mPFC). Our results suggest a broader role for the mPFC-RE circuit in mediating working memory beyond the connection with the hippocampus.
Collapse
Affiliation(s)
- Evan J Ciacciarelli
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, United States; Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ, 08084, United States
| | - Scott D Dunn
- Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ, 08084, United States
| | - Taqdees Gohar
- Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ, 08084, United States; MARC Program, Rutgers University-Camden, Camden, NJ, 08102, United States
| | - T Joseph Sloand
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, United States; Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ, 08084, United States
| | - Mark Niedringhaus
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, United States; Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ, 08084, United States.
| | - Elizabeth A West
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, United States; Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ, 08084, United States.
| |
Collapse
|
21
|
Koundal S, Chen X, Gursky Z, Lee H, Xu K, Liang F, Xie Z, Xu F, Lin HM, Van Nostrand WE, Gu X, Elkin R, Tannenbaum A, Benveniste H. Divergent brain solute clearance in rat models of cerebral amyloid angiopathy and Alzheimer's disease. iScience 2024; 27:111463. [PMID: 39720539 PMCID: PMC11667077 DOI: 10.1016/j.isci.2024.111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/05/2024] [Accepted: 11/20/2024] [Indexed: 12/26/2024] Open
Abstract
Brain waste clearance from the interstitial fluid environment is challenging to measure, which has contributed to controversy regarding the significance of glymphatic transport impairment for neurodegenerative processes. Dynamic contrast enhanced MRI (DCE-MRI) with cerebrospinal fluid administration of Gd-tagged tracers is often used to assess glymphatic system function. We previously quantified glymphatic transport from DCE-MRI data utilizing regularized optimal mass transport (rOMT) analysis, however, information specific to glymphatic clearance was not directly derived. To fill this knowledge gap, we here implemented unbalanced rOMT analysis which allows for assessment of both influx and clearance. Dynamic influx/clearance brain maps were derived from rTg-DI rats with cerebral amyloid angiopathy (CAA) and TgSD-AD rats with Alzheimer's disease (AD). The rTg-DI rats with severe CAA disease exhibited abnormal influx/clearance kinetics, while TgSD-AD rats with a moderate Aβ plaque load exhibited normal transport suggesting that different Aβ lesions and their overall burden differentially impact glymphatic system function.
Collapse
Affiliation(s)
- Sunil Koundal
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Xinan Chen
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Zachary Gursky
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kaiming Xu
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Feng Liang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Feng Xu
- George and Anne Ryan Institute for Neuroscience and the Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02906, USA
| | - Hung-Mo Lin
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - William E. Van Nostrand
- George and Anne Ryan Institute for Neuroscience and the Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02906, USA
| | - Xianfeng Gu
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY 11794, USA
- Departments of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rena Elkin
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Allen Tannenbaum
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY 11794, USA
- Departments of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale School of Medicine New Haven, New Haven, CT 06510, USA
| |
Collapse
|
22
|
Power SK, Venkatesan S, Qu S, McLaurin J, Lambe EK. Enhanced prefrontal nicotinic signaling as evidence of active compensation in Alzheimer's disease models. Transl Neurodegener 2024; 13:58. [PMID: 39623428 PMCID: PMC11613856 DOI: 10.1186/s40035-024-00452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/22/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Cognitive reserve allows for resilience to neuropathology, potentially through active compensation. Here, we examine ex vivo electrophysiological evidence for active compensation in Alzheimer's disease (AD) focusing on the cholinergic innervation of layer 6 in prefrontal cortex. Cholinergic pathways are vulnerable to neuropathology in AD and its preclinical models, and their modulation of deep layer prefrontal cortex is essential for attention and executive function. METHODS We functionally interrogated cholinergic modulation of prefrontal layer 6 pyramidal neurons in two preclinical models: a compound transgenic AD mouse model that permits optogenetically-triggered release of endogenous acetylcholine and a transgenic AD rat model that closely recapitulates the human trajectory of AD. We then tested the impact of therapeutic interventions to further amplify the compensated responses and preserve the typical kinetic profile of cholinergic signaling. RESULTS In two AD models, we found potentially compensatory upregulation of functional cholinergic responses above non-transgenic controls after onset of pathology. To identify the locus of this enhanced cholinergic signal, we dissected key pre- and post-synaptic components with pharmacological strategies. We identified a significant and selective increase in post-synaptic nicotinic receptor signalling on prefrontal cortical neurons. To probe the additional impact of therapeutic intervention on the adapted circuit, we tested cholinergic and nicotinic-selective pro-cognitive treatments. Inhibition of acetylcholinesterase further enhanced endogenous cholinergic responses but greatly distorted their kinetics. Positive allosteric modulation of nicotinic receptors, by contrast, enhanced endogenous cholinergic responses and retained their rapid kinetics. CONCLUSIONS We demonstrate that functional nicotinic upregulation occurs within the prefrontal cortex in two AD models. Promisingly, this nicotinic signal can be further enhanced while preserving its rapid kinetic signature. Taken together, our work suggests that compensatory mechanisms are active within the prefrontal cortex that can be harnessed by nicotinic receptor positive allosteric modulation, highlighting a new direction for cognitive treatment in AD neuropathology.
Collapse
Affiliation(s)
- Saige K Power
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sridevi Venkatesan
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sarah Qu
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - JoAnne McLaurin
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Evelyn K Lambe
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1E2, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
23
|
Ding G, Li L, Chopp M, Zhang L, Li Q, Luo H, Wei M, Zhang J, Boyd E, Zhang Z, Jiang Q. Velocity of cerebrospinal fluid in the aqueduct measured by phase-contrast MRI in rat. NMR IN BIOMEDICINE 2024; 37:e5233. [PMID: 39104053 DOI: 10.1002/nbm.5233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Cerebrospinal fluid (CSF) circulation plays a key role in cerebral waste clearance via the glymphatic system. Although CSF flow velocity is an essential component of CSF dynamics, it has not been sufficiently characterized, and particularly, in studies of the glymphatic system in rat. To investigate the relationship between the flow velocity of CSF in the brain aqueduct and the glymphatic waste clearance rate, using phase-contrast MRI we performed the first measurements of CSF velocity in rats. Phase-contrast MRI was performed using a 7 T system to map mean velocity of CSF flow in the aqueduct in rat brain. The effects of age (3 months old versus 18 months old), gender, strain (Wistar, RNU, Dark Agouti), anesthetic agents (isoflurane versus dexmedetomidine), and neurodegenerative disorder (Alzheimer' disease in Fischer TgF344-AD rats, males and females) on CSF velocity were investigated in eight independent groups of rats (12 rats per group). Our results demonstrated that quantitative velocities of CSF flow in the aqueduct averaged 5.16 ± 0.86 mm/s in healthy young adult male Wistar rats. CSF flow velocity in the aqueduct was not altered by rat gender, strain, and the employed anesthetic agents in all rats, also age in the female rats. However, aged (18 months) Wistar male rats exhibited significantly reduced the CSF flow velocity in the aqueduct (4.31 ± 1.08 mm/s). In addition, Alzheimer's disease further reduced the CSF flow velocity in the aqueduct of male and female rats.
Collapse
Affiliation(s)
- Guangliang Ding
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Lian Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Qingjiang Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Hao Luo
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Min Wei
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Jing Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Edward Boyd
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
24
|
Rezaei A, van den Berg M, Mirlohi H, Verhoye M, Amiri M, Keliris GA. Recurrence quantification analysis of rs-fMRI data: A method to detect subtle changes in the TgF344-AD rat model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108378. [PMID: 39260164 DOI: 10.1016/j.cmpb.2024.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/07/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND OBJECTIVE Alzheimer's disease (AD) is one of the leading causes of dementia, affecting the world's population at a growing rate. The preclinical stage of AD lasts over a decade, hence understanding AD-related early neuropathological effects on brain function at this stage facilitates early detection of the disease. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) has been a powerful tool for understanding brain function, and it has been widely used in AD research. In this study, we apply Recurrence Quantification Analysis (RQA) on rs-fMRI images of 4-months (4 m) and 6-months-old (6 m) TgF344-AD rats and WT littermates to identify changes related to the AD phenotype and aging. RQA has been focused on areas of the default mode-like network (DMLN) and was performed based on Recurrence Plots (RP). RP is a mathematical representation of any dynamical system that evolves over time as a set of its state recurrences. In this paper, RPs were extracted in order to identify the affected regions of the DMLN at very early stages of AD. RESULTS Using the RQA approach, we identified significant changes related to the AD phenotype at 4 m and/or 6 m in several areas of the rat DMLN including the BFB, Hippocampal fields CA1 and CA3, CG1, CG2, PrL, PtA, RSC, TeA, V1, V2. In addition, with age, brain activity of WT rats showed less predictability, while the AD rats presented reduced decline of predictability. CONCLUSIONS The results of this study demonstrate that RQA of rs-fMRI data is a potent approach that can detect subtle changes which might be missed by other methodologies due to the brain's non-linear dynamics. Moreover, this study provides helpful information about specific areas involved in AD pathology at very early stages of the disease in a very promising rat model of AD. Our results provide valuable information for the development of early detection methods and novel diagnosis tools for AD.
Collapse
Affiliation(s)
- Arash Rezaei
- Medical Biology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Monica van den Berg
- Bio-Imaging Lab, University of Antwerp, Belgium; µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Hajar Mirlohi
- Medical Biology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Belgium; µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mahmood Amiri
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Georgios A Keliris
- Bio-Imaging Lab, University of Antwerp, Belgium; µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium; Institute of Computer Science, Foundation for Research & Technology, Hellas, Heraklion, Crete, Greece
| |
Collapse
|
25
|
Hayden MR. Brain endothelial cell activation and dysfunction associate with and contribute to the development of enlarged perivascular spaces and cerebral small vessel disease. Histol Histopathol 2024; 39:1565-1586. [PMID: 39051093 DOI: 10.14670/hh-18-792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Multiple injurious stimuli to the brain's endothelium results in brain endothelial cell activation and dysfunction (BECact/dys) with upregulation of inflammatory signaling cascades and a decrease in bioavailable nitric oxide respectively. These injurious stimuli initiate a brain injury and a response to injury wound healing genetically programed cascade of events, which result in cellular remodeling of the neurovascular unit and blood-brain barrier with increased inflammation and permeability. These remodeling changes also include the perivascular spaces that become dilated to form enlarged perivascular spaces (EPVS) that may be identified noninvasively by magnetic resonance imaging. These EPVS are associated with and considered to be a biomarker for cerebral small vessel disease (SVD) and a dysfunctional glymphatic system with impaired removal of neurotoxic waste, which ultimately results in neurodegeneration with impaired cognition and dementia. The penultimate section discusses the understudied role of venous cerebral circulation in relation to EPVS, SVD, and the vascular contribution to cognitive impairment (VCID). The focus of this review will be primarily on BECact/dys that associates with and contributes to the development of EPVS, SVD, and impaired glymphatic system efflux. Importantly, BECact/dys may be a key piece of the puzzle to unlock this complicated story of EPVS and SVD. Multiple transmission electron micrographs and illustrations will be utilized to depict anatomical ultrastructure and allow for the discussion of multiple functional molecular cascades.
Collapse
Affiliation(s)
- Melvin Ray Hayden
- University of Missouri, School of Medicine, Columbia, Missouri, USA.
| |
Collapse
|
26
|
Kulik V, Edler MK, Raghanti MA, Imam A, Sherwood CC. Amyloid-Beta, Tau, and Microglial Activation in Aged Felid Brains. J Comp Neurol 2024; 532:e25679. [PMID: 39474737 PMCID: PMC11572721 DOI: 10.1002/cne.25679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/23/2024] [Accepted: 10/03/2024] [Indexed: 11/20/2024]
Abstract
Alzheimer's disease (AD) and its associated pathology have been primarily identified in humans, who have relatively large brains and long lifespans. To expand what is known about aging and neurodegeneration across mammalian species, we characterized amyloid-beta (Aβ) and tau lesions in five species of aged felids (n = 9; cheetah, clouded leopard, African lion, serval, Siberian tiger). We performed immunohistochemistry to detect Aβ40 and Aβ42 in plaques and vessels and hyperphosphorylated tau in the temporal lobe gyrus sylvius and in the CA1 and CA3 subfields of the hippocampus. We also quantified the densities and morphological types of microglia expressing IBA1. We found that diffuse Aβ42 plaques, but not dense-core plaques, were present more frequently in the temporal cortex and tended to be more common than Aβ40 plaques across species. Conversely, vascular Aβ was labeled more consistently with Aβ40 for each species on average. Although all individuals showed some degree of Aβ40 and/or Aβ42 immunoreactivity, only the cheetahs and clouded leopards exhibited intraneuronal hyperphosphorylated tau (i.e., pretangles), which was more common in the hippocampus. Reactive, intermediate microglia were significantly associated with total Aβ40 vessel area and pretangle load in the hippocampus. This study demonstrates the co-occurrence of Aβ and tau pathology in two felid species, cheetahs and clouded leopards. Overall, these results provide an initial view of the manifestation of Aβ and tau pathology in aged, large-brained felids, which can be compared with markers of neurodegeneration across different taxa, including domestic cats, nonhuman primates, and humans.
Collapse
Affiliation(s)
- Veronika Kulik
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC
| | - Melissa K. Edler
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH
| | - Aminu Imam
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC
- Department of Anatomy, University of Ilorin, Ilorin, Nigeria
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC
| |
Collapse
|
27
|
Wang MY, Zhou Y, Li WL, Zhu LQ, Liu D. Friend or foe: Lactate in neurodegenerative diseases. Ageing Res Rev 2024; 101:102452. [PMID: 39127445 DOI: 10.1016/j.arr.2024.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Lactate, a byproduct of glycolysis, was considered as a metabolic waste until identified by studies on the Warburg effect. Increasing evidence elucidates that lactate functions as energy fuel, signaling molecule, and donor for protein lactylation. Altered lactate utilization is a common metabolic feature of the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. This review offers an overview of lactate metabolism from the perspective of production, transportation and clearance, and the role of lactate in neurodegenerative progression, as well as a summary of protein lactylation and the signaling function of lactate in neurodegenerative diseases. Besides, this review delves into the dual roles of changed lactate metabolism during neurodegeneration and explores prospective therapeutic methods targeting lactate. We propose that elucidating the correlation between lactate and neurodegeneration is pivotal for exploring innovative therapeutic interventions for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ming-Yu Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wen-Lian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
28
|
Birnbaum EM, Xie L, Serrano P, Rockwell P, Figueiredo-Pereira ME. BT-11 repurposing potential for Alzheimer's disease and insights into its mode of actions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620882. [PMID: 39553925 PMCID: PMC11565763 DOI: 10.1101/2024.10.29.620882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Neuroinflammation is a key pathological hallmark of Alzheimer's disease (AD). Investigational and FDA approved drugs targeting inflammation already exist, thus drug repurposing for AD is a suitable approach. BT-11 is an investigational drug that reduces inflammation in the gut and improves cognitive function. BT-11 is orally active and binds to lanthionine synthetase C-like 2 (LANCL2), a glutathione-s-transferase, thus potentially reducing oxidative stress. We investigated the effects of BT-11 long-term treatment on the TgF344-AD rat model. BT-11 reduced hippocampal-dependent spatial memory deficits, Aβ plaque load and neuronal loss in males, and mitigated microglia numbers in females. BT-11 treatment led to hippocampal transcriptomic changes in signaling receptor, including G-protein coupled receptor pathways. We detected LANCL2 in hippocampal nuclear and cytoplasmic fractions with potential different post-translational modifications, suggesting distinct functions based on its subcellular localization. LANCL2 was present in oligodendrocytes, showing a role in oligodendrocyte function. To our knowledge, these last two findings have not been reported. Overall, our data suggest that targeting LANCL2 with BT-11 improves cognition and reduces AD-like pathology by potentially modulating G-protein signaling and oligodendrocyte function. Our studies contribute to the field of novel immunomodulatory AD therapeutics, and merit further research on the role of LANCL2 in this disease.
Collapse
|
29
|
Almanza DLV, Koletar MM, Lai AY, Lam WW, Joo L, Hill ME, Stanisz GJ, McLaurin J, Stefanovic B. High caloric intake improves neuronal metabolism and functional hyperemia in a rat model of early AD pathology. Theranostics 2024; 14:7405-7423. [PMID: 39659583 PMCID: PMC11626934 DOI: 10.7150/thno.98793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/24/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction: While obesity has been linked to both increased and decreased rate of cognitive decline in Alzheimer's Disease (AD) patients, there is no consensus on the interaction between obesity and AD. Methods: The TgF344-AD rat model was used to investigate the effects of high carbohydrate, high fat (HCHF) diet on brain glucose metabolism and hemodynamics in the presence or absence of AD transgenes, in presymptomatic (6-month-old) vs. symptomatic (12-month-old) stages of AD progression using non-invasive neuroimaging. Results: In presymptomatic AD, HCHF exerted detrimental effects, attenuating both hippocampal glucose uptake and resting perfusion in both non-transgenic and TgAD cohorts, when compared to CHOW-fed cohorts. In contrast, HCHF consumption was beneficial in established AD, resolving the AD-progression associated attenuation in hippocampal glucose uptake and functional hyperemia. Discussion: Whereas HCHF was harmful to the presymptomatic AD brain, it ameliorated deficits in hippocampal metabolism and neurovascular coupling in symptomatic TgAD rats.
Collapse
Affiliation(s)
- Dustin Loren V. Almanza
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Aaron Y. Lai
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Wilfred W. Lam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Lewis Joo
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Mary E. Hill
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Greg J. Stanisz
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin, Poland
| | - JoAnne McLaurin
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Bojana Stefanovic
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
30
|
Nakagomi T, Narita A, Nishie H, Nakano-Doi A, Sawano T, Fukuda Y, Matsuyama T. L-PGDS-PGD2-DP1 Axis Regulates Phagocytosis by CD36 + MGs/MΦs That Are Exclusively Present Within Ischemic Areas After Stroke. Cells 2024; 13:1737. [PMID: 39451255 PMCID: PMC11505914 DOI: 10.3390/cells13201737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Brain injuries, such as ischemic stroke, cause cell death. Although phagocytosis of cellular debris is mainly performed by microglia/macrophages (MGs/MΦs), excessive accumulation beyond their phagocytic capacities results in waste product buildup, delaying brain cell regeneration. Therefore, it is essential to increase the potential for waste product removal from damaged brains. Lipocalin-type prostaglandin D synthase (L-PGDS) is the primary synthase for prostaglandin D2 (PGD2) and has been reported as a scavenger of waste products. However, the mechanism by which the L-PGDS-PGD2 axis exerts such an effect remains unelucidated. In this study, using a mouse model of ischemic stroke, we found that L-PGDS and its downstream signaling pathway components, including PGD2 and PGD2 receptor DP1 (but not DP2), were significantly upregulated in ischemic areas. Immunohistochemistry revealed the predominant expression of L-PGDS in the leptomeninges of ischemic areas and high expression levels of DP1 in CD36+ MGs/MΦs that were specifically present within ischemic areas. Furthermore, PGD2 treatment promoted the conversion of MGs/MΦs into CD36+ scavenger types and increased phagocytic activities of CD36+ MGs/MΦs. Because CD36+ MGs/MΦs specifically appeared within ischemic areas after stroke, our findings suggest that the L-PGDS-PGD2-DP1 axis plays an important role in brain tissue repair by regulating phagocytic activities of CD36+ MGs/MΦs.
Collapse
Affiliation(s)
- Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan; (A.N.); (A.N.-D.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan;
| | - Aya Narita
- Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan; (A.N.); (A.N.-D.)
| | - Hideaki Nishie
- Nippon Zoki Pharmaceutical Co., Ltd., 4-2-3 Hirano-machi, Chuo-ku, Osaka 541-0046, Japan; (H.N.); (Y.F.)
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan; (A.N.); (A.N.-D.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan;
| | - Toshinori Sawano
- Department of Biomedical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan;
| | - Yu Fukuda
- Nippon Zoki Pharmaceutical Co., Ltd., 4-2-3 Hirano-machi, Chuo-ku, Osaka 541-0046, Japan; (H.N.); (Y.F.)
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan;
| |
Collapse
|
31
|
Kelberman MA, Rodberg E, Arabzadeh E, Bair-Marshall CJ, Berridge CW, Berrocoso E, Breton-Provencher V, Chandler DJ, Che A, Davy O, Devilbiss DM, Downs AM, Drummond G, Dvorkin R, Fazlali Z, Froemke RC, Glennon E, Gold JI, Ito H, Jiang X, Johansen JP, Kaye AP, Kim JR, Kuo CC, Liu RJ, Liu Y, Llorca-Torralba M, McCall JG, McElligott ZA, McKinney AM, Miguelez C, Min MY, Nowlan AC, Omrani M, Poe GR, Pickering AE, Ranjbar-Slamloo Y, Razquin J, Rodenkirch C, Sales AC, Satyasambit R, Shea SD, Sur M, Tkaczynski JA, Torres-Sanchez S, Uematsu A, Vazquez CR, Vreven A, Wang Q, Waterhouse BD, Yang HW, Yang JH, Zhao L, Zouridis IS, Weinshenker D, Vazey E, Totah NK. Diversity of ancestral brainstem noradrenergic neurons across species and multiple biological factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618224. [PMID: 39464004 PMCID: PMC11507722 DOI: 10.1101/2024.10.14.618224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The brainstem region, locus coeruleus (LC), has been remarkably conserved across vertebrates. Evolution has woven the LC into wide-ranging neural circuits that influence functions as broad as autonomic systems, the stress response, nociception, sleep, and high-level cognition among others. Given this conservation, there is a strong possibility that LC activity is inherently similar across species, and furthermore that age, sex, and brain state influence LC activity similarly across species. The degree to which LC activity is homogenous across these factors, however, has never been assessed due to the small sample size of individual studies. Here, we pool data from 20 laboratories (1,855 neurons) and show diversity across both intrinsic and extrinsic factors such as species, age, sex and brain state. We use a negative binomial regression model to compare activity from male monkeys, and rats and mice of both sexes that were recorded across brain states from brain slices ex vivo or under different anesthetics or during wakefulness in vivo. LC activity differed due to complex interactions of species, sex, and brain state. The LC became more active during aging, independent of sex. Finally, in contrast to the foundational principle that all species express two distinct LC firing modes ("tonic" or "phasic"), we discovered great diversity within spontaneous LC firing patterns. Different factors were associated with higher incidence of some firing modes. We conclude that the activity of the evolutionarily-ancient LC is not conserved. Inherent differences due to age and species-sex-brain state interactions have implications for understanding the role of LC in species-specific naturalistic behavior, as well as in psychiatric disorders, cardiovascular disease, immunology, and metabolic disorders.
Collapse
Affiliation(s)
- Michael A. Kelberman
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Ellen Rodberg
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, AUS
| | - Chloe J. Bair-Marshall
- Neuroscience Institute, NYU Langone Medical Center, New York University, New York, New York, USA
| | - Craig W. Berridge
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, School of Medicine, Biomedical Research and Innovation Institute of Cádiz (INiBICA), University of Cadiz, Cadiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Alicia Che
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Oscar Davy
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | | | - Anthony M. Downs
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabrielle Drummond
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roman Dvorkin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Zeinab Fazlali
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Robert C. Froemke
- Neuroscience Institute, NYU Langone Medical Center, New York University, New York, New York, USA
- Department of Otolaryngology, NYU Grossman School of Medicine, New York, NY, USA
| | - Erin Glennon
- Neuroscience Institute, NYU Langone Medical Center, New York University, New York, New York, USA
- Department of Neurology, Weill Cornell Medicine, New York
| | - Joshua I. Gold
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Hiroki Ito
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Xiaolong Jiang
- Department of Neuroscience, Baylor College of Medicine Neurological Research Institute at Texas Children’s Hospital, 1250, Houston, TX, USA
- Department of Ophthalmology, Baylor College of Medicine Neurological Research Institute at Texas Children’s Hospital, 1250, Houston, TX, USA
| | | | - Alfred P. Kaye
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Clinical Neurosciences Division, VA National Center for PTSD, West Haven, CT, USA
| | - Jenny R. Kim
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Chao-Cheng Kuo
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Rong-Jian Liu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yang Liu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, School of Medicine, Biomedical Research and Innovation Institute of Cádiz (INiBICA), University of Cadiz, Cadiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordan G. McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Zoe A. McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew M. McKinney
- Department of Neuroscience, Baylor College of Medicine Neurological Research Institute at Texas Children’s Hospital, 1250, Houston, TX, USA
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Ming-Yuan Min
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Alexandra C. Nowlan
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mohsen Omrani
- Department of Psychiatry, Queen’s University, Kingston, ON, Canada
| | - Gina R. Poe
- Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Anthony Edward Pickering
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Yadollah Ranjbar-Slamloo
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Jone Razquin
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Charles Rodenkirch
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Anna C. Sales
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Rath Satyasambit
- RIKEN Center for Brain Science, Wako-shi Saitama, Japan
- Department of Computer Science, Tokyo Institute of Technology, Midori, Yokohama, Japan
| | | | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Sonia Torres-Sanchez
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, School of Medicine, Biomedical Research and Innovation Institute of Cádiz (INiBICA), University of Cadiz, Cadiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Akira Uematsu
- Human Informatics and Information Research Institute, National Institute of Advanced Industrial Science and Technology, Japan
| | - Chayla R. Vazquez
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Amelien Vreven
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Hsiu-Wen Yang
- Department of Biomedical Sciences, Chung-Shan Medical University, Taichung, Taiwan
| | - Jen-Hau Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Doctoral Program of Clinical and Experimental Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Liping Zhao
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Ioannis S. Zouridis
- Graduate Training Centre of Neuroscience, International Max Planck Research School (IMPRS), University of Tübingen, Tübingen, Germany
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | | | - Elena Vazey
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Nelson K. Totah
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
32
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
33
|
Soyer A, Goutal S, Leterrier S, Marie S, Larrat B, Selingue E, Winkeler A, Sarazin M, Bottlaender M, Tournier N. [ 18F]2-fluoro-2-deoxy-sorbitol ([ 18F]FDS) PET imaging repurposed for quantitative estimation of blood-brain barrier permeability in a rat model of Alzheimer's disease. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:822-829. [PMID: 38657857 DOI: 10.1016/j.pharma.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/05/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Numerous studies suggest that blood-brain barrier (BBB) dysfunction may contribute to the progression of Alzheimer's disease (AD). Clinically available neuroimaging methods are needed for quantitative "scoring" of BBB permeability in AD patients. [18F]2-fluoro-2-deoxy-sorbitol ([18F]FDS), which can be easily obtained from simple chemical reduction of commercial [18F]2-fluoro-2-deoxy-glucose ([18F]FDG), was investigated as a small-molecule marker of BBB permeability, in a pre-clinical model of AD using in vivo PET imaging. Chemical reduction of [18F]FDG to [18F]FDS was obtained with a 100% conversion yield. Dynamic PET acquisitions were performed in the APP/PS1 rat model of AD (TgF344-AD, n=3) compared with age-matched littermates (WT, n=4). The brain uptake of [18F]FDS was determined in selected brain regions, delineated from a coregistered rat brain template. The brain uptake of [18F]FDS in the brain regions of AD rats versus WT rats was compared using a 2-way ANOVA. The uptake of [18F]FDS was significantly higher in the whole brain of AD rats, as compared with WT rats (P<0.001), suggesting increased BBB permeability. Enhanced brain uptake of [18F]FDS in AD rats was significantly different across brain regions (P<0.001). Minimum difference was observed in the amygdala (+89.0±7.6%, P<0.001) and maximum difference was observed in the midbrain (+177.8±29.2%, P<0.001). [18F]FDS, initially proposed as radio-pharmaceutical to estimate renal filtration using PET imaging, can be repurposed for non-invasive and quantitative determination of BBB permeability in vivo. Making the best with the quantitative properties of PET imaging, it was possible to estimate the extent of enhanced BBB permeability in a rat model of AD.
Collapse
Affiliation(s)
- Amélie Soyer
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France
| | - Sébastien Goutal
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France
| | - Sarah Leterrier
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France
| | - Solène Marie
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France
| | - Benoit Larrat
- Centre d'études de Saclay, CEA, CNRS, NeuroSpin/BAOBAB, Paris-Saclay University, 91191 Gif-sur-Yvette, France
| | - Erwan Selingue
- Centre d'études de Saclay, CEA, CNRS, NeuroSpin/BAOBAB, Paris-Saclay University, 91191 Gif-sur-Yvette, France
| | - Alexandra Winkeler
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France
| | - Marie Sarazin
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France
| | - Michel Bottlaender
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France
| | - Nicolas Tournier
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France.
| |
Collapse
|
34
|
Tang C, Border JJ, Zhang H, Gregory A, Bai S, Fang X, Liu Y, Wang S, Hwang SH, Gao W, Morgan GC, Smith J, Bunn D, Cantwell C, Wagner KM, Morisseau C, Yang J, Shin SM, O’Herron P, Bagi Z, Filosa JA, Dong Y, Yu H, Hammock BD, Roman RJ, Fan F. Inhibition of Soluble Epoxide Hydrolase Ameliorates Cerebral Blood Flow Autoregulation and Cognition in Alzheimer's Disease and Diabetes-Related Dementia Rat Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610540. [PMID: 39257786 PMCID: PMC11383657 DOI: 10.1101/2024.08.30.610540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Alzheimer's Disease and Alzheimer's Disease-related dementias (AD/ADRD) pose major global healthcare challenges, with diabetes mellitus (DM) being a key risk factor. Both AD and DM-related ADRD are characterized by reduced cerebral blood flow, although the exact mechanisms remain unclear. We previously identified compromised cerebral hemodynamics as early signs in TgF344-AD and type 2 DM-ADRD (T2DN) rat models. Genome-wide studies have linked AD/ADRD to SNPs in soluble epoxide hydrolase (sEH). This study explored the effects of sEH inhibition with TPPU on cerebral vascular function and cognition in AD and DM-ADRD models. Chronic TPPU treatment improved cognition in both AD and DM-ADRD rats without affecting body weight. In DM-ADRD rats, TPPU reduced plasma glucose and HbA1C levels. Transcriptomic analysis of primary cerebral vascular smooth muscle cells from AD rats treated with TPPU revealed enhanced pathways related to cell contraction, alongside decreased oxidative stress and inflammation. Both AD and DM-ADRD rats exhibited impaired myogenic responses and autoregulation in the cerebral circulation, which were normalized with chronic sEH inhibition. Additionally, TPPU improved acetylcholine-induced vasodilation in the middle cerebral arteries (MCA) of DM-ADRD rats. Acute TPPU administration unexpectedly caused vasoconstriction in the MCA of DM-ADRD rats at lower doses. In contrast, higher doses or longer durations were required to induce effective vasodilation at physiological perfusion pressure in both control and ADRD rats. Additionally, TPPU decreased reactive oxygen species production in cerebral vessels of AD and DM-ADRD rats. These findings provide novel evidence that chronic sEH inhibition can reverse cerebrovascular dysfunction and cognitive impairments in AD/ADRD, offering a promising avenue for therapeutic development.
Collapse
Affiliation(s)
- Chengyun Tang
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Jane J. Border
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Huawei Zhang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Andrew Gregory
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Shan Bai
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Xing Fang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Yedan Liu
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Shaoxun Wang
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Sung Hee Hwang
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA
| | - Wenjun Gao
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Gilbert C. Morgan
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jhania Smith
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - David Bunn
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Cameron Cantwell
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Karen M. Wagner
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA
| | - Christophe Morisseau
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA
| | - Jun Yang
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA
| | - Seung Min Shin
- Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - Philip O’Herron
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Zsolt Bagi
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jessica A. Filosa
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Yanbin Dong
- Georgia Prevention Center, Augusta University, Augusta, GA
| | - Hongwei Yu
- Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - Bruce D. Hammock
- Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA
| | - Richard J. Roman
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Fan Fan
- Physiology, Medical College of Georgia, Augusta University, Augusta, GA
- Pharmacology &Toxicology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
35
|
Reitz NL, Nunes PT, Savage LM. Exercise leads to sex-specific recovery of behavior and pathological AD markers following adolescent ethanol exposure in the TgF344-AD model. Front Behav Neurosci 2024; 18:1448691. [PMID: 39148897 PMCID: PMC11324591 DOI: 10.3389/fnbeh.2024.1448691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Human epidemiological studies suggest that heavy alcohol consumption may lead to earlier onset of Alzheimer's Disease (AD), especially in individuals with a genetic predisposition for AD. Alcohol-related brain damage (ARBD) during a critical developmental timepoint, such as adolescence, interacts with AD-related pathologies to accelerate disease progression later in life. The current study investigates if voluntary exercise in mid-adulthood can recover memory deficits caused by the interactions between adolescence ethanol exposure and AD-transgenes. Methods Male and female TgF344-AD and wildtype F344 rats were exposed to an intragastric gavage of water (control) or 5 g/kg of 20% ethanol (adolescent intermittent ethanol; AIE) for a 2 day on/off schedule throughout adolescence (PD27-57). At 6 months old, rats either remained in their home cage (stationary) or were placed in a voluntary wheel running apparatus for 4 weeks and then underwent several behavioral tests. The number of cholinergic neurons in the basal forebrain and measure of neurogenesis in the hippocampus were assessed. Results Voluntary wheel running recovers spatial working memory deficits selectively in female TgF344-AD rats exposed to AIE and improves pattern separation impairment seen in control TgF344-AD female rats. There were sex-dependent effects on brain pathology: Exercise improves the integration of recently born neurons in AIE-exposed TgF344-AD female rats. Exercise led to a decrease in amyloid burden in the hippocampus and entorhinal cortex, but only in male AIE-exposed TgF344-AD rats. Although the number of basal forebrain cholinergic neurons was not affected by AD-transgenes in either sex, AIE did reduce the number of basal forebrain cholinergic neurons in female rats. Discussion These data provide support that even after symptom onset, AIE and AD related cognitive decline and associated neuropathologies can be rescued with exercise in unique sex-specific ways.
Collapse
Affiliation(s)
| | | | - Lisa M. Savage
- Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| |
Collapse
|
36
|
Bregman-Yemini N, Nitzan K, Franko M, Doron R. Connecting the emotional-cognitive puzzle: The role of tyrosine kinase B (TrkB) receptor isoform imbalance in age-related emotional and cognitive impairments. Ageing Res Rev 2024; 99:102349. [PMID: 38823488 DOI: 10.1016/j.arr.2024.102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Age-related cognitive and affective disorders pose significant public health challenges. Notably, emotional and cognitive symptoms co-occur across multiple age-associated conditions like normal aging, Alzheimer's disease (AD), and mood disorders such as depression and anxiety. While the intricate interplay underlying this relationship remains poorly understood, this article highlights the possibility that an imbalance between full-length (TrkB.FL) and truncated (TrkB.T1) isoforms of tyrosine kinase receptor TrkB in the neurotrophic system may significantly affect age-associated emotional and cognitive functions, by altering brain-derived neurotrophic factor (BDNF) signaling, integral to neuronal health, cognitive functions and mood regulation. While the contribution of this imbalance to pathogenesis awaits full elucidation, this review evaluates its potential mediating role, linking emotional and cognitive decline across age-related disorders The interplay between TrkB.T1 and TrkB.FL isoforms may be considered as a pivotal shared regulator underlying this complex relationship. The current review aims to synthesize current knowledge on TrkB isoform imbalance, specifically its contribution to age-related cognitive decline and mood disorders. By examining shared pathogenic pathways between aging, cognitive decline, and mood disorders through the lens of TrkB signaling, this review uncovers potential therapeutic targets not previously considered, offering a fresh perspective on combating age-related mental health issues as well as cognitive deficits.
Collapse
Affiliation(s)
- Noa Bregman-Yemini
- Department of Education and Psychology, The Open University, Israel; Department of Psychology, The Hebrew University, Israel
| | - Keren Nitzan
- Department of Education and Psychology, The Open University, Israel
| | - Motty Franko
- Department of Education and Psychology, The Open University, Israel; Department of Psychology, Ben-Gurion University, Israel
| | - Ravid Doron
- Department of Education and Psychology, The Open University, Israel.
| |
Collapse
|
37
|
Hernandez CM, McCuiston MA, Davis K, Halls Y, Carcamo Dal Zotto JP, Jackson NL, Dobrunz LE, King PH, McMahon LL. In a circuit necessary for cognition and emotional affect, Alzheimer's-like pathology associates with neuroinflammation, cognitive and motivational deficits in the young adult TgF344-AD rat. Brain Behav Immun Health 2024; 39:100798. [PMID: 39022628 PMCID: PMC11253229 DOI: 10.1016/j.bbih.2024.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024] Open
Abstract
In addition to extracellular amyloid plaques, intracellular neurofibrillary tau tangles, and inflammation, cognitive and emotional affect perturbations are characteristic of Alzheimer's disease (AD). The cognitive and emotional domains impaired by AD include several forms of decision making (such as intertemporal choice), blunted motivation (increased apathy), and impaired executive function (such as working memory and cognitive flexibility). However, the interaction between these domains of the mind and their supporting neurobiological substrates at prodromal stages of AD, or whether these interactions can be predictive of AD severity (individual variability), remain unclear. In this study, we employed a battery of cognitive and emotional tests in the young adult (5-7 mo) transgenic Fisher-344 AD (TgF344-AD; TgAD) rat model of AD. We also assessed whether markers of inflammation or AD-like pathology in the prelimbic cortex (PrL) of the medial prefrontal cortex (mPFC), basolateral amygdala (BLA), or nucleus accumbens (NAc), all structures that directly support the aforementioned behaviors, were predictive of behavioral deficits. We found TgAD rats displayed maladaptive decision making, greater apathy, and impaired working memory that was indeed predicted by AD-like pathology in the relevant brain structures, even at an early age. Moreover, we report that the BLA is an early epicenter of inflammation, and notably, AD-like pathology in the PrL, BLA, and NAc was predictive of BLA inflammation. These results suggest that operant-based battery testing may be sensitive enough to determine pathology trajectories, including neuroinflammation, from early stages of AD.
Collapse
Affiliation(s)
- Caesar M. Hernandez
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, USA
| | - Macy A. McCuiston
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristian Davis
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yolanda Halls
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Juan Pablo Carcamo Dal Zotto
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nateka L. Jackson
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, USA
- Department of Neuroscience, Medical University of South Carolina, USA
| | - Lynn E. Dobrunz
- Department of Neurobiology, The University of Alabama at Birmingham, USA
| | - Peter H. King
- Department of Neurology, The University of Alabama at Birmingham, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| | - Lori L. McMahon
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, USA
- Department of Neuroscience, Medical University of South Carolina, USA
| |
Collapse
|
38
|
Hart DA. Lithium Ions as Modulators of Complex Biological Processes: The Conundrum of Multiple Targets, Responsiveness and Non-Responsiveness, and the Potential to Prevent or Correct Dysregulation of Systems during Aging and in Disease. Biomolecules 2024; 14:905. [PMID: 39199293 PMCID: PMC11352090 DOI: 10.3390/biom14080905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Lithium is one of the lightest elements on Earth and it has been in the environment since the formation of the galaxy. While a common element, it has not been found to be an essential element in biological processes, ranging from single cell organisms to Homo sapiens. Instead, at an early stage of evolution, organisms committed to a range of elements such as sodium, potassium, calcium, magnesium, zinc, and iron to serve essential functions. Such ions serve critical functions in ion channels, as co-factors in enzymes, as a cofactor in oxygen transport, in DNA replication, as a storage molecule in bone and liver, and in a variety of other roles in biological processes. While seemingly excluded from a major essential role in such processes, lithium ions appear to be able to modulate a variety of biological processes and "correct" deviation from normal activity, as a deficiency of lithium can have biological consequences. Lithium salts are found in low levels in many foods and water supplies, but the effectiveness of Li salts to affect biological systems came to recent prominence with the work of Cade, who reported that administrating Li salts calmed guinea pigs and was subsequently effective at relatively high doses to "normalize" a subset of patients with bipolar disorders. Because of its ability to modulate many biological pathways and processes (e.g., cyclic AMP, GSK-3beta, inositol metabolism, NaK ATPases, neuro processes and centers, immune-related events, respectively) both in vitro and in vivo and during development and adult life, Li salts have become both a useful tool to better understand the molecular regulation of such processes and to also provide insights into altered biological processes in vivo during aging and in disease states. While the range of targets for lithium action supports its possible role as a modulator of biological dysregulation, it presents a conundrum for researchers attempting to elucidate its specific primary target in different tissues in vivo. This review will discuss aspects of the state of knowledge regarding some of the systems that can be influenced, focusing on those involving neural and autoimmunity as examples, some of the mechanisms involved, examples of how Li salts can be used to study model systems, as well as suggesting areas where the use of Li salts could lead to additional insights into both disease mechanisms and natural processes at the molecular and cell levels. In addition, caveats regarding lithium doses used, the strengths and weaknesses of rodent models, the background genetics of the strain of mice or rats employed, and the sex of the animals or the cells used, are discussed. Low-dose lithium may have excellent potential, alone or in combination with other interventions to prevent or alleviate aging-associated conditions and disease progression.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
39
|
Reitz NL, Nunes PT, Savage LM. Adolescent alcohol exposure alters age-related progression of behavioral and neurotrophic dysfunction in the TgF344-AD model in a sex-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603911. [PMID: 39091885 PMCID: PMC11291002 DOI: 10.1101/2024.07.17.603911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Alzheimer's Disease (AD) and heavy alcohol use are widely prevalent and lead to brain pathology. Both alcohol-related brain damage (ABRD) and AD result in cholinergic dysfunction, reductions in hippocampal neurogenesis, and the emergence of hippocampal-dependent cognitive impairments. It is still unknown how ARBD caused during a critical developmental timepoint, such as adolescence, interacts with AD-related pathologies to accelerate disease progression later in life. The current study utilized a longitudinal design to characterize behavioral and pathological changes in a transgenic rat model of AD (TgF344-AD) following adolescent intermittent ethanol (AIE) exposure. We found that AIE accelerates cognitive decline associated with AD transgenes in female rats at 6 months of age, and male AD-rats are impaired on spatial navigation by 3-months with no additional deficits due to AIE exposure. Protein levels of various AD-pathological markers were analyzed in the dorsal and ventral hippocampus of male and female rats. The data suggests that AIE-induced alterations of the tropomyosin-related kinase A receptor (TrkA) / p75 neurotrophin receptor (p75NTR) ratio creates a brain that is vulnerable to age- and AD-related pathologies, which leads to an acceleration of cognitive decline, particularly in female rats.
Collapse
|
40
|
Panwar A, Rentsendorj A, Jhun M, Cohen RM, Cordner R, Gull N, Pechnick RN, Duvall G, Mardiros A, Golchian D, Schubloom H, Jin LW, Van Dam D, Vermeiren Y, De Reu H, De Deyn PP, Raskatov JA, Black KL, Irvin DK, Williams BA, Wheeler CJ. Antigen-specific age-related memory CD8 T cells induce and track Alzheimer's-like neurodegeneration. Proc Natl Acad Sci U S A 2024; 121:e2401420121. [PMID: 38995966 PMCID: PMC11260139 DOI: 10.1073/pnas.2401420121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/23/2024] [Indexed: 07/14/2024] Open
Abstract
Cerebral (Aβ) plaque and (pTau) tangle deposition are hallmarks of Alzheimer's disease (AD), yet are insufficient to confer complete AD-like neurodegeneration experimentally. Factors acting upstream of Aβ/pTau in AD remain unknown, but their identification could enable earlier diagnosis and more effective treatments. T cell abnormalities are emerging AD hallmarks, and CD8 T cells were recently found to mediate neurodegeneration downstream of tangle deposition in hereditary neurodegeneration models. The precise impact of T cells downstream of Aβ/pTau, however, appears to vary depending on the animal model. Our prior work suggested that antigen-specific memory CD8 T ("hiT") cells act upstream of Aβ/pTau after brain injury. Here, we examine whether hiT cells influence sporadic AD-like pathophysiology upstream of Aβ/pTau. Examining neuropathology, gene expression, and behavior in our hiT mouse model we show that CD8 T cells induce plaque and tangle-like deposition, modulate AD-related genes, and ultimately result in progressive neurodegeneration with both gross and fine features of sporadic human AD. T cells required Perforin to initiate this pathophysiology, and IFNγ for most gene expression changes and progression to more widespread neurodegenerative disease. Analogous antigen-specific memory CD8 T cells were significantly elevated in the brains of human AD patients, and their loss from blood corresponded to sporadic AD and related cognitive decline better than plasma pTau-217, a promising AD biomarker candidate. We identify an age-related factor acting upstream of Aβ/pTau to initiate AD-like pathophysiology, the mechanisms promoting its pathogenicity, and its relevance to human sporadic AD.
Collapse
Affiliation(s)
- Akanksha Panwar
- Department Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Altan Rentsendorj
- Department Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Michelle Jhun
- Department Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Robert M. Cohen
- Department Psychiatry & Behavioral Sciences and Neuroscience Program, Graduate Division of Biological and Biomedical Sciences (GDBBS), Emory University, Atlanta, GA30322
| | - Ryan Cordner
- Department Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA90048
- Department Biomedical & Translational Sciences, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Nicole Gull
- Department Biomedical & Translational Sciences, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Robert N. Pechnick
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, CA91766
| | - Gretchen Duvall
- Department Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Armen Mardiros
- Department Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - David Golchian
- Department Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Hannah Schubloom
- Department Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Lee-Way Jin
- Department Medical Pathology and Laboratory Medicine, Laboratory Medicine, Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California, Davis, Sacramento, CA95817
| | - Debby Van Dam
- Department of Biomedical Sciences, Institute Born-Bunge, Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp2610, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen AB9700, Netherlands
| | - Yannick Vermeiren
- Department of Biomedical Sciences, Institute Born-Bunge, Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp2610, Belgium
- Faculty of Medicine & Health Sciences, Department of Translational Neurosciences, University of Antwerp, Antwerp2610, Belgium
- Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University & Research, Wageningen AA6700, The Netherlands
| | - Hans De Reu
- Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute, Laboratory of Experimental Hematology, University of Antwerp, Antwerp2610, Belgium
| | - Peter Paul De Deyn
- Department of Biomedical Sciences, Institute Born-Bunge, Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp2610, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen AB9700, Netherlands
- Department of Neurology, Memory Clinic of Hospital Network Antwerp, Middelheim and Hoge Beuken, Antwerp BE-2660, Belgium
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, CA95064
| | - Jevgenij A. Raskatov
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, CA95064
| | - Keith L. Black
- Department Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA90048
| | - Dwain K. Irvin
- Department Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA90048
- NovAccess Global and StemVax LLC, Cleveland, OH44023
| | - Brian A. Williams
- Transcriptome Function and Technology Program, Department of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Christopher J. Wheeler
- Department Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA90048
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, CA95064
- NovAccess Global and StemVax LLC, Cleveland, OH44023
- Society for Brain Mapping & Therapeutics, World Brain Mapping Foundation, Pacific Palisades, CA90272
- T-Neuro Pharma, Inc., Albuquerque, NM87123
| |
Collapse
|
41
|
Sillau SH, Coughlan C, Ahmed MM, Nair K, Araya P, Galbraith MD, Bettcher BM, Espinosa JM, Chial HJ, Epperson N, Boyd TD, Potter H. Neuron loss in the brain starts in childhood, increases exponentially with age and is halted by GM-CSF treatment in Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.14.24310223. [PMID: 39072024 PMCID: PMC11275665 DOI: 10.1101/2024.07.14.24310223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Aging increases the risk of neurodegeneration, cognitive decline, and Alzheimer's disease (AD). Currently no means exist to measure neuronal cell death during life or to prevent it. Here we show that cross-sectional measures of human plasma proteins released from dying/damaged neurons (ubiquitin C-terminal hydrolase-L1/UCH-L1 and neurofilament light/NfL) become exponentially higher from age 2-85; UCH-L1 rises faster in females. Glial fibrillary acidic protein (GFAP) concentrations, indicating astrogliosis/inflammation, increase exponentially after age 40. Treatment with human granulocyte-macrophage colony-stimulating factor (GM-CSF/sargramostim) halted neuronal cell death, as evidenced by reduced plasma UCH-L1 concentrations, in AD participants to levels equivalent to those of five-year-old healthy controls. The ability of GM-CSF treatment to reduce neuronal apoptosis was confirmed in a rat model of AD. These findings suggest that the exponential increase in neurodegeneration with age, accelerated by neuroinflammation, may underlie the contribution of aging to cognitive decline and AD and can be halted by GM-CSF/sargramostim treatment.
Collapse
|
42
|
Foret MK, Orciani C, Welikovitch LA, Huang C, Cuello AC, Do Carmo S. Early oxidative stress and DNA damage in Aβ-burdened hippocampal neurons in an Alzheimer's-like transgenic rat model. Commun Biol 2024; 7:861. [PMID: 39004677 PMCID: PMC11247100 DOI: 10.1038/s42003-024-06552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Oxidative stress is a key contributor to AD pathology. However, the earliest role of pre-plaque neuronal oxidative stress, remains elusive. Using laser microdissected hippocampal neurons extracted from McGill-R-Thy1-APP transgenic rats we found that intraneuronal amyloid beta (iAβ)-burdened neurons had increased expression of genes related to oxidative stress and DNA damage responses including Ercc2, Fancc, Sod2, Gsr, and Idh1. DNA damage was further evidenced by increased neuronal levels of XPD (Ercc2) and γH2AX foci, indicative of DNA double stranded breaks (DSBs), and by increased expression of Ercc6, Rad51, and Fen1, and decreased Sirt6 in hippocampal homogenates. We also found increased expression of synaptic plasticity genes (Grin2b (NR2B), CamkIIα, Bdnf, c-fos, and Homer1A) and increased protein levels of TOP2β. Our findings indicate that early accumulation of iAβ, prior to Aβ plaques, is accompanied by incipient oxidative stress and DSBs that may arise directly from oxidative stress or from maladaptive synaptic plasticity.
Collapse
Affiliation(s)
- Morgan K Foret
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Chiara Orciani
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | - Chunwei Huang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Department of Pharmacology, Oxford University, Oxford, UK.
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
43
|
Amiri S, van den Berg M, Nazem-Zadeh MR, Verhoye M, Amiri M, Keliris GA. Nodal degree centrality in the default mode-like network of the TgF344-AD Alzheimer's disease rat model as a measure of early network alterations. NPJ AGING 2024; 10:29. [PMID: 38902224 PMCID: PMC11190202 DOI: 10.1038/s41514-024-00151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/19/2024] [Indexed: 06/22/2024]
Abstract
This study investigates brain network alterations in the default mode-like network (DMLN) at early stages of disease progression in a rat model of Alzheimer's disease (AD) with application in the development of early diagnostic biomarkers of AD in translational studies. Thirteen male TgF344-AD (TG) rats, and eleven male wild-types (WT) littermates underwent longitudinal resting-state fMRI at the age of 4 and 6 months (pre and early-plaque stages of AD). Alterations in connectivity within DMLN were characterized by calculating the nodal degree (ND), a graph theoretical measure of centrality. The ND values of the left CA2 subregion of the hippocampus was found to be significantly lower in the 4-month-old TG cohort compared to the age-matched WT littermates. Moreover, a lower ND value (hypo-connectivity) was observed in the right prelimbic cortex (prL) and basal forebrain in the 6-month-old TG cohort, compared to the same age WT cohort. Indeed, the ND pattern in the DMLN in both TG and WT cohorts showed significant differences across the two time points that represent pre-plaque and early plaque stages of disease progression. Our findings indicate that lower nodal degree (hypo-connectivity) in the left CA2 in the pre-plaque stage of AD and hypo-connectivity between the basal forebrain and the DMLN regions in the early-plaque stage demonstrated differences in comparison to healthy controls. These results suggest that a graph-theoretical measure such as the nodal degree, can characterize brain networks and improve our insights into the mechanisms underlying Alzheimer's disease.
Collapse
Affiliation(s)
- Saba Amiri
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Monica van den Berg
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mohammad-Reza Nazem-Zadeh
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
- Department of neuroscience, Monash university, Melbourne, Vic, Australia
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mahmood Amiri
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Georgios A Keliris
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium.
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
- Institute of Computer Science, Hellas Foundation for Research & Technology - Hellas, Heraklion, Crete, Greece.
| |
Collapse
|
44
|
Collins HM, Greenfield S. Rodent Models of Alzheimer's Disease: Past Misconceptions and Future Prospects. Int J Mol Sci 2024; 25:6222. [PMID: 38892408 PMCID: PMC11172947 DOI: 10.3390/ijms25116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no effective treatments, not least due to the lack of authentic animal models. Typically, rodent models recapitulate the effects but not causes of AD, such as cholinergic neuron loss: lesioning of cholinergic neurons mimics the cognitive decline reminiscent of AD but not its neuropathology. Alternative models rely on the overexpression of genes associated with familial AD, such as amyloid precursor protein, or have genetically amplified expression of mutant tau. Yet transgenic rodent models poorly replicate the neuropathogenesis and protein overexpression patterns of sporadic AD. Seeding rodents with amyloid or tau facilitates the formation of these pathologies but cannot account for their initial accumulation. Intracerebral infusion of proinflammatory agents offer an alternative model, but these fail to replicate the cause of AD. A novel model is therefore needed, perhaps similar to those used for Parkinson's disease, namely adult wildtype rodents with neuron-specific (dopaminergic) lesions within the same vulnerable brainstem nuclei, 'the isodendritic core', which are the first to degenerate in AD. Site-selective targeting of these nuclei in adult rodents may recapitulate the initial neurodegenerative processes in AD to faithfully mimic its pathogenesis and progression, ultimately leading to presymptomatic biomarkers and preventative therapies.
Collapse
Affiliation(s)
- Helen M. Collins
- Neuro-Bio Ltd., Building F5 The Culham Campus, Abingdon OX14 3DB, UK;
| | | |
Collapse
|
45
|
Khan S, Jatala FH, Muti A, Afza N, Noor A, Mumtaz S, Zafar S. Therapeutic Potential of Nitrogen-Doped Rutin-Bound Glucose Carbon Dots for Alzheimer's Disease. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:153-164. [PMID: 38947101 PMCID: PMC11202111 DOI: 10.59249/ewoi2166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The blood-brain barrier (BBB) prevents the use of many drugs for the treatment of neurological disorders. Recently, nitrogen-doped carbon dots (NCDs) have emerged as promising nanocarriers to cross BBB. The primary focus of our study was to evaluate the effectiveness of NCDs for the symptomatic treatment of Alzheimer's disease (AD). In this study, we developed and characterized NCDs bound to rutin, a flavonoid with known benefits for AD. Despite its benefits, the transportation of rutin via NCDs for AD therapy has not been explored previously. We characterized the particles using FTIR and UV-visible spectroscopy followed by atomic force microscopy. Once the design was optimized and validated, we performed in vivo testing via a hemolytic assay to optimize the dosage. Preliminary in vitro testing was performed in AlCl3-induced rat models of AD whereby a single dose of 10 mg/kg NCDs-rutin was administered intraperitoneally. Interestingly, this single dose of 10 mg/kg NCDs-rutin produced the same behavioral effects as 50 mg/kg rutin administered intraperitoneally for 1 month. Similarly, histological and biomarker profiles (SOD2 and TLR4) also presented significant protective effects of NCDs-rutin against neuronal loss, inflammation, and oxidative stress. Hence, NCDs-rutin are a promising approach for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Sana Khan
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
| | - Faria Hasan Jatala
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
| | - Alveena Muti
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
| | - Noor Afza
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
| | - Aneeqa Noor
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
| | - Sara Mumtaz
- Department of Biological Sciences, National University
of Medical Sciences, Rawalpindi, Pakistan
| | - Saima Zafar
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
- Clinical Department of Neurology, University Medical
Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE),
Göttingen, Germany
| |
Collapse
|
46
|
Hernandez AR, Parker E, Babar M, Banerjee A, Ding S, Simley A, Buford TW. Microbiome-driven alterations in metabolic pathways and impaired cognition in aged female TgF344-AD rats. AGING BRAIN 2024; 5:100119. [PMID: 38881651 PMCID: PMC11179252 DOI: 10.1016/j.nbas.2024.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/09/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Alzheimer's disease (AD) not only affects cognition and neuropathology, but several other facets capable of negatively impacting quality of life and potentially driving impairments, including altered gut microbiome (GMB) composition and metabolism. Aged (20 + mo) female TgF344-AD and wildtype rats were cognitively characterized on several tasks incorporating several cognitive domains, including task acquisition, object recognition memory, anxiety-like behaviors, and spatial navigation. Additionally, metabolic phenotyping, GMB sequencing throughout the intestinal tract (duodenum, jejunum, ileum, colon, and feces), neuropathological burden assessment and marker gene functional abundance predictions (PICRUSt2) were conducted. TgF344-AD rats demonstrated significant cognitive impairment in multiple domains, as well as regionally specific GMB dysbiosis. Relationships between peripheral factors were investigated using Canonical Correspondence Analysis (CCA), revealing correlations between GMB changes and both cognitive and metabolic factors. Moreover, communities of gut microbes contributing to essential metabolic pathways were significantly altered in TgF344-AD rats. These data indicate dysbiosis may affect cognitive outcomes in AD through alterations in metabolism-related enzymatic pathways that are necessary for proper brain function. Moreover, these changes were mostly observed in intestinal segments required for carbohydrate digestion, not fecal samples. These data support the targeting of intestinal and microbiome health for the treatment of AD.
Collapse
Affiliation(s)
- Abbi R Hernandez
- Department of Medicine, Division of Geriatrics, Gerontology & Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Erik Parker
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - Maham Babar
- Department of Medicine, Division of Geriatrics, Gerontology & Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Anisha Banerjee
- Department of Medicine, Division of Geriatrics, Gerontology & Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Sarah Ding
- Department of Medicine, Division of Geriatrics, Gerontology & Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Alexis Simley
- Department of Medicine, Division of Geriatrics, Gerontology & Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Thomas W Buford
- Department of Medicine, Division of Geriatrics, Gerontology & Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
- Birmingham/Atlanta VA GRECC, Birmingham VA Medical Center, Birmingham, AL 35244, USA
| |
Collapse
|
47
|
Tan S, Wu L, Liu J, Wu Z, Cheng Q, Qu Q, Zhu L, Yan Y, Wu H, Ling TJ, Liu RT, Yang S. Quercetin-3-O-glc-1-3-rham-1-6-glucoside decreases Aβ production, inhibits Aβ aggregation and neurotoxicity, and prohibits the production of inflammatory cytokines. Eur J Pharmacol 2024; 970:176491. [PMID: 38503399 DOI: 10.1016/j.ejphar.2024.176491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/24/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with the hallmark of aggregation of beta-amyloid (Aβ) into extracellular fibrillar deposition. Accumulating evidence suggests that soluble toxic Aβ oligomers exert diverse roles in neuronal cell death, oxidative stress, neuroinflammation, and the eventual pathogenesis of AD. Aβ is derived from the sequential cleavage of amyloid-β precursor protein (APP) by β-secretase (BACE1) and γ-secretase. The current effect of single targeting is not ideal for the treatment of AD. Therefore, developing multipotent agents with multiple properties, including anti-Aβ generation and anti-Aβ aggregation, is attracting more attention for AD treatment. Previous studies indicated that Quercetin was able to attenuate the effects of several pathogenetic factors in AD. Here, we showed that naturally synthesized Quercetin-3-O-glc-1-3-rham-1-6-glucoside (YCC31) could inhibit Aβ production by reducing β-secretase activity. Further investigations indicated that YCC31 could suppress toxic Aβ oligomer formation by directly binding to Aβ. Moreover, YCC31 could attenuate Aβ-mediated neuronal death, ROS and NO production, and pro-inflammatory cytokines release. Taken together, YCC31 targeting multiple pathogenetic factors deserves further investigation for drug development of AD.
Collapse
Affiliation(s)
- Shuo Tan
- School of Basic Medical Sciences, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Linmei Wu
- School of Basic Medical Sciences, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jiayi Liu
- School of Basic Medical Sciences, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhaoyuan Wu
- School of Basic Medical Sciences, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Qiang Cheng
- School of Basic Medical Sciences, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Qiuhao Qu
- School of Basic Medical Sciences, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lianghao Zhu
- School of Basic Medical Sciences, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yizhu Yan
- School of Basic Medical Sciences, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Hao Wu
- School of Basic Medical Sciences, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Tie-Jun Ling
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Rui-Tian Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Shigao Yang
- School of Basic Medical Sciences, School of Life Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
48
|
Porter VA, Hobson BA, Foster B, Lein PJ, Chaudhari AJ. Fully automated whole brain segmentation from rat MRI scans with a convolutional neural network. J Neurosci Methods 2024; 405:110078. [PMID: 38340902 PMCID: PMC11000587 DOI: 10.1016/j.jneumeth.2024.110078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Whole brain delineation (WBD) is utilized in neuroimaging analysis for data preprocessing and deriving whole brain image metrics. Current automated WBD techniques for analysis of preclinical brain MRI data show limited accuracy when images present with significant neuropathology and anatomical deformations, such as that resulting from organophosphate intoxication (OPI) and Alzheimer's Disease (AD), and inadequate generalizability. METHODS A modified 2D U-Net framework was employed for WBD of MRI rodent brains, consisting of 27 convolutional layers, batch normalization, two dropout layers and data augmentation, after training parameter optimization. A total of 265 T2-weighted 7.0 T MRI scans were utilized for the study, including 125 scans of an OPI rat model for neural network training. For testing and validation, 20 OPI rat scans and 120 scans of an AD rat model were utilized. U-Net performance was evaluated using Dice coefficients (DC) and Hausdorff distances (HD) between the U-Net-generated and manually segmented WBDs. RESULTS The U-Net achieved a DC (median[range]) of 0.984[0.936-0.990] and HD of 1.69[1.01-6.78] mm for OPI rat model scans, and a DC (mean[range]) of 0.975[0.898-0.991] and HD of 1.49[0.86-3.89] for the AD rat model scans. COMPARISON WITH EXISTING METHODS The proposed approach is fully automated and robust across two rat strains and longitudinal brain changes with a computational speed of 8 seconds/scan, overcoming limitations of manual segmentation. CONCLUSIONS The modified 2D U-Net provided a fully automated, efficient, and generalizable segmentation approach that achieved high accuracy across two disparate rat models of neurological diseases.
Collapse
Affiliation(s)
- Valerie A Porter
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA; Department of Radiology, University of California, Davis, CA 95817, USA
| | - Brad A Hobson
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA; Center for Molecular and Genomic Imaging, University of California, Davis, CA 95616, USA
| | - Brent Foster
- TechMah Medical LLC, 2099 Thunderhead Rd, Knoxville, TN 37922, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA
| | - Abhijit J Chaudhari
- Department of Radiology, University of California, Davis, CA 95817, USA; Center for Molecular and Genomic Imaging, University of California, Davis, CA 95616, USA.
| |
Collapse
|
49
|
Rutkowsky JM, Roland Z, Valenzuela A, Nguyen AB, Park HH, Six N, Dursun I, Kim K, Lein PJ, Ramsey JJ. The impact of continuous and intermittent ketogenic diets on cognitive behavior, motor function, and blood lipids in TgF344-AD rats. Aging (Albany NY) 2024; 16:5811-5828. [PMID: 38613791 PMCID: PMC11042947 DOI: 10.18632/aging.205741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Studies suggest that ketogenic diets (KD) may improve memory in mouse models of aging and Alzheimer's disease (AD). This study determined whether a continuous or intermittent KD (IKD) enhanced cognitive behavior in the TgF344-AD rat model of AD. At 6 months-old, TgF344-AD and wild-type (WT) littermates were placed on a control (CD), KD, or IKD (morning CD and afternoon KD) provided as two meals per day for 2 or 6 months. Cognitive and motor behavior and circulating β-hydroxybutyrate (BHB), AD biomarkers and blood lipids were assessed. Animals on a KD diet had elevated circulating BHB, with IKD levels intermediate to CD and KD. TgF344-AD rats displayed impaired spatial learning memory in the Barnes maze at 8 and 12 months of age and impaired motor coordination at 12 months of age. Neither KD nor IKD improved performance compared to CD. At 12 months of age, TgF344-AD animals had elevated blood lipids. IKD reduced lipids to WT levels with KD further reducing cholesterol below WT levels. This study shows that at 8 or 12 months of age, KD or IKD intervention did not improve measures of cognitive or motor behavior in TgF344-AD rats; however, both IKD and KD positively impacted circulating lipids.
Collapse
Affiliation(s)
- Jennifer M. Rutkowsky
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Zabrisky Roland
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Anthony Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - An B. Nguyen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Heui Hye Park
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Natalie Six
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Ilknur Dursun
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Physiology, School of Medicine, Istinye University, Istanbul 34396, Turkey
| | - Kyoungmi Kim
- Department of Public Health Sciences, School of Medicine, University of California, Davis, CA 95616, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- The MIND Institute, School of Medicine, University of California, Davis, CA 95817, USA
- Center for Neuroscience, University of California, Davis, CA 95616, USA
| | - Jon J. Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
50
|
De Waegenaere S, van den Berg M, Keliris GA, Adhikari MH, Verhoye M. Early altered directionality of resting brain network state transitions in the TgF344-AD rat model of Alzheimer's disease. Front Hum Neurosci 2024; 18:1379923. [PMID: 38646161 PMCID: PMC11026683 DOI: 10.3389/fnhum.2024.1379923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is a progressive neurodegenerative disease resulting in memory loss and cognitive decline. Synaptic dysfunction is an early hallmark of the disease whose effects on whole-brain functional architecture can be identified using resting-state functional MRI (rsfMRI). Insights into mechanisms of early, whole-brain network alterations can help our understanding of the functional impact of AD's pathophysiology. Methods Here, we obtained rsfMRI data in the TgF344-AD rat model at the pre- and early-plaque stages. This model recapitulates the major pathological and behavioral hallmarks of AD. We used co-activation pattern (CAP) analysis to investigate if and how the dynamic organization of intrinsic brain functional networks states, undetectable by earlier methods, is altered at these early stages. Results We identified and characterized six intrinsic brain states as CAPs, their spatial and temporal features, and the transitions between the different states. At the pre-plaque stage, the TgF344-AD rats showed reduced co-activation of hub regions in the CAPs corresponding to the default mode-like and lateral cortical network. Default mode-like network activity segregated into two distinct brain states, with one state characterized by high co-activation of the basal forebrain. This basal forebrain co-activation was reduced in TgF344-AD animals mainly at the pre-plaque stage. Brain state transition probabilities were altered at the pre-plaque stage between states involving the default mode-like network, lateral cortical network, and basal forebrain regions. Additionally, while the directionality preference in the network-state transitions observed in the wild-type animals at the pre-plaque stage had diminished at the early-plaque stage, TgF344-AD animals continued to show directionality preference at both stages. Discussion Our study enhances the understanding of intrinsic brain state dynamics and how they are impacted at the early stages of AD, providing a nuanced characterization of the early, functional impact of the disease's neurodegenerative process.
Collapse
Affiliation(s)
- Sam De Waegenaere
- Department of Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Monica van den Berg
- Department of Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Georgios A. Keliris
- Institute of Computer Science, Foundation for Research and Technology – Hellas, Heraklion, Greece
| | - Mohit H. Adhikari
- Department of Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Department of Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|