1
|
Lu C, Xu Y, Chen S, Guo L, Li P, Wei X, Rong X. Mendelian randomization analysis to identify potential drug targets for osteoarthritis. PLoS One 2025; 20:e0316824. [PMID: 39932908 PMCID: PMC11813149 DOI: 10.1371/journal.pone.0316824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent chronic joint disease for which there is a lack of effective treatments. In this study, we used Mendelian randomization analysis to identify circulating proteins that are causally associated with OA-related traits, providing important insights into potential drug targets for OA. METHOD Causal associations between 1553 circulating proteins and five OA-related traits were assessed in large-scale two-sample MR analyses using Wald ratio or inverse variance weighting, and the results were corrected for Bonferroni. In addition, sensitivity analyses were performed to validate the reliability of the MR results, including reverse MR analysis and Steiger filtering to ensure the causal direction between circulating proteins and OA; Bayesian co-localization and phenotypic scanning were used to eliminate confounding effects and horizontal pleiotropy. External validation was performed to exclude incidental findings using novel plasma protein quantitative trait loci. Finally, the online analysis tool Enrichr was utilized to screen drugs and molecular docking was performed to predict binding modes and energies between proteins and drugs to identify the most stable and likely binding modes and drugs. RESULT Four proteins were ultimately found to be reliably and causally associated with three OA-related features: DNAJB12 and USP8 were associated with knee OA, IL12B with spinal OA, and RGMB with thumb OA. The ORs for the above proteins were 1.51 (95% CI, 1.26-1.81), 1.72 (95% CI, 1.42-2.08), 0.87 (95% CI, 0.81-0.92), and 0.59 (95% CI, 0.47-0.75), respectively. Drug-predicting small molecules (doxazosin, XEN 103, and montelukast) that simultaneously target three proteins, DNAJB12, USP8, and IL12B, docked well. CONCLUSION Based on our comprehensive analysis, we can draw the conclusion that there is a causal relationship between the genetic levels of DNAJB12, USP8, IL12B, and RGMB and the risk of respective OA.They may be potential options for OA screening and prevention in clinical practice. They can also serve as candidate molecules for future mechanism exploration and drug target selection.
Collapse
Affiliation(s)
- Chengyang Lu
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanan Xu
- Department of Laboratory, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shuai Chen
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Guo
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Pengcui Li
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaochun Wei
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xueqin Rong
- Department of Pain Medicine Center, The Central Hospital of Sanya, Sanya City, Hainan Province, China
| |
Collapse
|
2
|
Zhang J, Jiang Y, Zhang Z, Li S, Fan H, Gu J, Mao R, Xu X. Repulsive guidance molecules b (RGMb): molecular mechanism, function and role in diseases. Expert Rev Mol Med 2024; 26:e24. [PMID: 39375839 PMCID: PMC11488336 DOI: 10.1017/erm.2024.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/23/2023] [Accepted: 06/11/2024] [Indexed: 10/09/2024]
Abstract
Repulsive guidance molecule b (RGMb), a glycosylphosphatidylinositol-anchored member of the RGM family, is initially identified as a co-receptor of bone morphogenetic protein (BMP) in the nervous system. The expression of RGMb is transcriptionally regulated by dorsal root ganglion 11 (DRG11), which is a transcription factor expressed in embryonic DRG and dorsal horn neurons and plays an important role in the development of sensory circuits. RGMb is involved in important physiological processes such as embryonic development, immune response, intercellular adhesion and tumorigenesis. Furthermore, RGMb is mainly involved in the regulation of RGMb-neogenin-Rho and BMP signalling pathways. The recent discovery of programmed death-ligand 2 (PD-L2)-RGMb binding reveals that the cell signalling network and functional regulation centred on RGMb are extremely complex. The latest report suggests that down-regulation of the PD-L2-RGMb pathway in the gut microbiota promotes an anti-tumour immune response, which defines a potentially effective immune strategy. However, the biological function of RGMb in a variety of human diseases has not been fully determined, and will remain an active research field. This article reviews the properties and functions of RGMb, focusing on its role under various physiological and pathological conditions.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yijing Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Zijian Zhang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Shilin Li
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Haowen Fan
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jinhua Gu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xiaohong Xu
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Gorin G, Pachter L. Length biases in single-cell RNA sequencing of pre-mRNA. BIOPHYSICAL REPORTS 2022; 3:100097. [PMID: 36660179 PMCID: PMC9843228 DOI: 10.1016/j.bpr.2022.100097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Single-cell RNA sequencing data can be modeled using Markov chains to yield genome-wide insights into transcriptional physics. However, quantitative inference with such data requires careful assessment of noise sources. We find that long pre-mRNA transcripts are over-represented in sequencing data. To explain this trend, we propose a length-based model of capture bias, which may produce false-positive observations. We solve this model and use it to find concordant parameter trends as well as systematic, mechanistically interpretable technical and biological differences in paired data sets.
Collapse
Affiliation(s)
- Gennady Gorin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Lior Pachter
- Division of Biology and Biological Engineering, Pasadena, California
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California
- Corresponding author
| |
Collapse
|
4
|
Chow SYA, Nakayama K, Osaki T, Sugiyama M, Yamada M, Takeuchi H, Ikeuchi Y. Human sensory neurons modulate melanocytes through secretion of RGMB. Cell Rep 2022; 40:111366. [PMID: 36130522 DOI: 10.1016/j.celrep.2022.111366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/24/2022] [Accepted: 08/25/2022] [Indexed: 11/03/2022] Open
Abstract
Melanocytes are surrounded by diverse cells, including sensory neurons in our skin, but their interaction and functional importance have been poorly investigated. In this study, we find that melanocytes and nociceptive neurons contact more in human skin color patch tissue than control. Co-culture with human iPSC-derived sensory neurons significantly induces morphogenesis and pigmentation of human melanocytes. To reveal melanocyte-stimulating factors secreted from neurons, we perform proteomic analyses and identify RGMB in the sensory neuron-conditioned medium. RGMB protein induces morphogenesis and melanin production of melanocytes, demonstrating that RGMB is a melanocyte-stimulating factor released from sensory neurons. Transcriptome analysis suggests that the melanosome transport machinery can be controlled by RGMB, leading us to identify the vesicle production response of melanocytes upon RGMB treatment. This study discovers a role of sensory neurons in modulating multiple aspects of human melanocytes through secretion of a key factor: RGMB.
Collapse
Affiliation(s)
- Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kazuki Nakayama
- Frontier Research Center, POLA Chemical Industries, Inc., Kanagawa, Japan
| | - Tatsuya Osaki
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Maki Sugiyama
- Frontier Research Center, POLA Chemical Industries, Inc., Kanagawa, Japan
| | - Maiko Yamada
- Frontier Research Center, POLA Chemical Industries, Inc., Kanagawa, Japan
| | - Hirotaka Takeuchi
- Frontier Research Center, POLA Chemical Industries, Inc., Kanagawa, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Pauken KE, Torchia JA, Chaudhri A, Sharpe AH, Freeman GJ. Emerging concepts in PD-1 checkpoint biology. Semin Immunol 2021; 52:101480. [PMID: 34006473 PMCID: PMC8545711 DOI: 10.1016/j.smim.2021.101480] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022]
Abstract
The PD-1 pathway is a cornerstone in immune regulation. While the PD-1 pathway has received considerable attention for its role in contributing to the maintenance of T cell exhaustion in chronic infection and cancer, the PD-1 pathway plays diverse roles in regulating host immunity beyond T cell exhaustion. Here, we discuss emerging concepts in the PD-1 pathway, including (1) the impact of PD-1 inhibitors on diverse T cell differentiation states including effector and memory T cell development during acute infection, as well as T cell exhaustion during chronic infection and cancer, (2) the role of PD-1 in regulating Treg cells, NK cells, and ILCs, and (3) the functions of PD-L1/B7-1 and PD-L2/RGMb/neogenin interactions. We then discuss the emerging use of neoadjuvant PD-1 blockade in the treatment of early-stage cancers and how the timing of PD-1 blockade may improve clinical outcomes. The diverse binding partners of PD-1 and its associated ligands, broad expression patterns of the receptors and ligands, differential impact of PD-1 modulation on cells depending on location and state of differentiation, and timing of PD-1 blockade add additional layers of complexity to the PD-1 pathway, and are important considerations for improving the efficacy and safety of PD-1 pathway therapeutics.
Collapse
Affiliation(s)
- Kristen E Pauken
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - James A Torchia
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA; Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
6
|
Harada H, Charish J, Monnier PP. Emerging evidence for cell-autonomous axon guidance. Dev Growth Differ 2020; 62:391-397. [PMID: 32279322 DOI: 10.1111/dgd.12666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 11/28/2022]
Abstract
Current models of axon guidance within the central nervous system (CNS) involve the presentation of environmental cues to navigating growth cones. The surrounding and target tissues present a variety of ligands that either restrict or promote growth, thus providing pathfinding instructions to developing axons. Recent findings show that RGMb, a GPI anchored extracellular protein present on retinal ganglion cells, down-regulates Wnt3a signaling by lowering LRP5 levels at the membrane surface. When RGMb is phosphorylated by the extracellular tyrosine kinase VLK, phosphorylated RGMb (p-RGMb) is internalized and carries LRP5 towards intracellular compartments. In the eye, a dorsal-high ventral-low gradient of VLK generates a dorsal-low ventral-high gradient of LRP5 that modulates Wnt3a signaling. These molecules, which are all expressed by individual RGCs, generate Wnt-signal gradients along the dorso-ventral axis of the retina, resulting in differential axon growth which in turn regulates proper retino-tectal/collicular map formation. This pathway represents a regulatory mechanism whereby extracellular phosphorylation generates what may be the first example of a unique self-guiding mechanism that affects neuronal-target connections independent of paracrine signals from the surrounding target tissue.
Collapse
Affiliation(s)
- Hidekiyo Harada
- Vision Division, Krembil Research Institute, Krembil Discovery Tower, Toronto, Ontario, Canada
| | - Jason Charish
- Vision Division, Krembil Research Institute, Krembil Discovery Tower, Toronto, Ontario, Canada
| | - Philippe P Monnier
- Vision Division, Krembil Research Institute, Krembil Discovery Tower, Toronto, Ontario, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Zhang S, He Y, Liu C, Li G, Lu S, Jing Q, Chen X, Ma H, Zhang D, Wang Y, Huang D, Tan P, Chen J, Zhang X, Liu Y, Qiu Y. miR-93-5p enhances migration and invasion by targeting RGMB in squamous cell carcinoma of the head and neck. J Cancer 2020; 11:3871-3881. [PMID: 32328191 PMCID: PMC7171485 DOI: 10.7150/jca.43854] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Invasion and metastasis represent the primary causes of therapeutic failure in patients diagnosed with squamous cell carcinoma of the head and neck (SCCHN). Therefore, disease prediction and inhibition of invasion and metastasis are critical for enhancing the survival of patients with SCCHN. Our previous study revealed that increased expression of miR-93-5p is associated with poor prognosis in SCCHN; however, the mechanism underlying the oncogenic functions of miR-93-5p in SCCHN migration and invasion remains unclear. Using qPCR analyses, transwell assays, and scratch tests, we demonstrated that expression of ectopic miR-93-5p induced the migration and invasion of SCCHN, and this was accompanied by corresponding alterations in biomarkers and transcription factors specific for epithelial-mesenchymal transition (EMT). Luciferase reporter assays were used to demonstrate that miR-93-5p directly targeted the 3' UTR of RGMB, and we further found that the tumor-promoting functions of miR-93-5p were partly mediated by targeting RGMB, whose downregulation also promoted the migration and invasion of SCCHN. Overall, our results indicate that miR-93-5p acts as an oncogene in the regulation of migration and invasion by suppressing RGMB in SCCHN. These findings provide novel evidence that miR-93-5p may serve as a valuable predictive biomarker and potential intervention target in patients with SCCHN.
Collapse
Affiliation(s)
- Shuiting Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yanjuan He
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Shanhong Lu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Qiancheng Jing
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Department of Otolaryngology Head and Neck Surgery, Changsha Central Hospital,161 Shaoshan Road, University of South China, Changsha, Hunan 410004, People's Republic of China
| | - Xiyu Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Huiling Ma
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Diekuo Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yunyun Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Donghai Huang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Pingqing Tan
- Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, 283 Tongzipo Road, Changsha, Hunan 410013, People's Republic of China
| | - Jie Chen
- Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, 283 Tongzipo Road, Changsha, Hunan 410013, People's Republic of China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
8
|
Ito T, Sakai A, Maruyama M, Miyagawa Y, Okada T, Fukayama H, Suzuki H. Dorsal Root Ganglia Homeobox downregulation in primary sensory neurons contributes to neuropathic pain in rats. Mol Pain 2020; 16:1744806920904462. [PMID: 32000573 PMCID: PMC7099666 DOI: 10.1177/1744806920904462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Transcriptional changes in primary sensory neurons are involved in initiation and maintenance of neuropathic pain. However, the transcription factors in primary sensory neurons responsible for neuropathic pain are not fully understood. Dorsal Root Ganglia Homeobox (DRGX) is a paired-like homeodomain transcription factor necessary for the development of nociceptive primary sensory neurons during the early postnatal period. However, roles for DRGX after development are largely unknown. Here, we report that DRGX downregulation in primary sensory neurons as a result of post-developmental nerve injury contributes to neuropathic pain in rats. DRGX expression was decreased in nuclei of small and medium primary sensory neurons after spinal nerve ligation. DRGX downregulation by transduction of a short hairpin RNA with an adeno-associated viral vector induced mechanical allodynia and thermal hyperalgesia. In contrast, DRGX overexpression in primary sensory neurons suppressed neuropathic pain. DRGX regulated matrix metalloproteinase-9 (MMP-9) and prostaglandin E receptor 2 mRNA expression in the DRG. MMP-9 inhibitor attenuated DRGX downregulation-induced pain. These results suggest that DRGX downregulation after development contributes to neuropathic pain through transcriptional modulation of pain-related genes in primary sensory neurons.
Collapse
Affiliation(s)
- Takaya Ito
- Anesthesiology and Clinical Physiology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Pharmacology, Nippon Medical School, Tokyo, Japan
| | - Atsushi Sakai
- Department of Pharmacology, Nippon Medical School, Tokyo, Japan
| | - Motoyo Maruyama
- Department of Pharmacology, Nippon Medical School, Tokyo, Japan.,Division of Laboratory Animal Science, Nippon Medical School, Tokyo, Japan
| | - Yoshitaka Miyagawa
- Department of Molecular and Medical Genetics, Nippon Medical School, Tokyo, Japan
| | - Takashi Okada
- Department of Molecular and Medical Genetics, Nippon Medical School, Tokyo, Japan
| | - Haruhisa Fukayama
- Anesthesiology and Clinical Physiology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
9
|
Harada H, Farhani N, Wang XF, Sugita S, Charish J, Attisano L, Moran M, Cloutier JF, Reber M, Bremner R, Monnier PP. Extracellular phosphorylation drives the formation of neuronal circuitry. Nat Chem Biol 2019; 15:1035-1042. [PMID: 31451763 DOI: 10.1038/s41589-019-0345-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/14/2019] [Indexed: 12/29/2022]
Abstract
Until recently, the existence of extracellular kinase activity was questioned. Many proteins of the central nervous system are targeted, but it remains unknown whether, or how, extracellular phosphorylation influences brain development. Here we show that the tyrosine kinase vertebrate lonesome kinase (VLK), which is secreted by projecting retinal ganglion cells, phosphorylates the extracellular protein repulsive guidance molecule b (RGMb) in a dorsal-ventral descending gradient. Silencing of VLK or RGMb causes aberrant axonal branching and severe axon misguidance in the chick optic tectum. Mice harboring RGMb with a point mutation in the phosphorylation site also display aberrant axonal pathfinding. Mechanistic analyses show that VLK-mediated RGMb phosphorylation modulates Wnt3a activity by regulating LRP5 protein gradients. Thus, the secretion of VLK by projecting neurons provides crucial signals for the accurate formation of nervous system circuitry. The dramatic effect of VLK on RGMb and Wnt3a signaling implies that extracellular phosphorylation likely has broad and profound effects on brain development, function and disease.
Collapse
Affiliation(s)
- Hidekiyo Harada
- Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, Ontario, Canada
| | - Nahal Farhani
- Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, Ontario, Canada
| | - Xue-Fan Wang
- Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, Ontario, Canada
| | - Shuzo Sugita
- Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, Ontario, Canada
| | - Jason Charish
- Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, Ontario, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Liliana Attisano
- Department of Biochemistry, Donnelly Center, University of Toronto, Toronto, Ontario, Canada
| | - Michael Moran
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Michael Reber
- Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Ontario, Toronto, Canada.,CNRS UPR3212, University of Strasbourg, Strasbourg, France
| | - Rod Bremner
- Lunenfeld Tannenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Philippe P Monnier
- Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, Ontario, Canada. .,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. .,Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Ontario, Toronto, Canada.
| |
Collapse
|
10
|
Yu S, Leung KM, Kim HY, Umetsu SE, Xiao Y, Albacker LA, Lee HJ, Umetsu DT, Freeman GJ, DeKruyff RH. Blockade of RGMb inhibits allergen-induced airways disease. J Allergy Clin Immunol 2019; 144:94-108.e11. [PMID: 30703386 PMCID: PMC8088837 DOI: 10.1016/j.jaci.2018.12.1022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Allergic asthma causes morbidity in many subjects, and novel precision-directed treatments would be valuable. OBJECTIVE We sought to examine the role of a novel innate molecule, repulsive guidance molecule b (RGMb), in murine models of allergic asthma. METHODS In models of allergic asthma using ovalbumin or cockroach allergen, mice were treated with anti-RGMb or control mAb and examined for airway inflammation and airway hyperreactivity (AHR), a cardinal feature of asthma. The mechanisms by which RGMb causes airways disease were also examined. RESULTS We found that blockade of RGMb by treatment with anti-RGMb mAb effectively blocked the development of airway inflammation and AHR. Importantly, blockade of RGMb completely blocked the development of airway inflammation and AHR, even if treatment occurred only during the challenge (effector) phase. IL-25 played an important role in these models of asthma because IL-25 receptor-deficient mice did not develop disease after sensitization and challenge with allergen. RGMb was expressed primarily by innate cells in the lungs, including bronchial epithelial cells (known producers of IL-25), activated eosinophils, and interstitial macrophages, which in the inflamed lung expressed the IL-25 receptor and produced IL-5 and IL-13. We also found that neogenin, the canonical receptor for RGMb, was expressed by interstitial macrophages and bronchial epithelial cells in the inflamed lung, suggesting that an innate RGMb-neogenin axis might modulate allergic asthma. CONCLUSIONS These results demonstrate an important role for a novel innate pathway in regulating type 2 inflammation in patients with allergic asthma involving RGMb and RGMb-expressing cells, such as interstitial macrophages and bronchial epithelial cells. Moreover, targeting this previously unappreciated innate pathway might provide an important treatment option for allergic asthma.
Collapse
Affiliation(s)
- Sanhong Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Mass; Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Krystle M Leung
- Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Hye-Young Kim
- Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Sarah E Umetsu
- Department of Pathology, University of California, San Francisco, Calif
| | - Yanping Xiao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Mass
| | - Lee A Albacker
- Boston Children's Hospital, Harvard Medical School, Boston, Mass; Immunology Program, Harvard Medical School, Boston, Mass
| | - Hyun-Jun Lee
- Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Dale T Umetsu
- Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Mass
| | - Rosemarie H DeKruyff
- Boston Children's Hospital, Harvard Medical School, Boston, Mass; Sean N Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University, Stanford, Calif.
| |
Collapse
|
11
|
Rotwein P. Variation in the repulsive guidance molecule family in human populations. Physiol Rep 2019; 7:e13959. [PMID: 30746893 PMCID: PMC6370684 DOI: 10.14814/phy2.13959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/17/2023] Open
Abstract
Repulsive guidance molecules, RGMA, RGMB, and RGMC, are related proteins discovered independently through different experimental paradigms. They are encoded by single copy genes in mammalian and other vertebrate genomes, and are ~50% identical in amino acid sequence. The importance of RGM actions in human physiology has not been realized, as most research has focused on non-human models, although mutations in RGMC are the cause of the severe iron storage disorder, juvenile hemochromatosis. Here I show that repositories of human genomic and population genetic data can be used as starting points for discovery and for developing new testable hypotheses about each of these paralogs in human biology and disease susceptibility. Information was extracted, aggregated, and analyzed from the Ensembl and UCSC Genome Browsers, the Exome Aggregation Consortium, the Genotype-Tissue Expression project portal, the cBio portal for Cancer Genomics, and the National Cancer Institute Genomic Data Commons data site. Results identify extensive variation in gene expression patterns, substantial alternative RNA splicing, and possible missense alterations and other modifications in the coding regions of each of the three genes, with many putative mutations being detected in individuals with different types of cancers. Moreover, selected amino acid substitutions are highly prevalent in the world population, with minor allele frequencies of up to 37% for RGMA and up to 8% for RGMB. These results indicate that protein sequence variation is common in the human RGM family, and raises the possibility that individual variants will have a significant population impact on human physiology and/or disease predisposition.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Biomedical SciencesPaul L. Foster School of MedicineTexas Tech Health University Health Sciences CenterEl PasoTexas
| |
Collapse
|
12
|
RGMb protects against acute kidney injury by inhibiting tubular cell necroptosis via an MLKL-dependent mechanism. Proc Natl Acad Sci U S A 2018; 115:E1475-E1484. [PMID: 29382757 DOI: 10.1073/pnas.1716959115] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tubular cell necrosis is a key histological feature of acute kidney injury (AKI). Necroptosis is a type of programed necrosis, which is executed by mixed lineage kinase domain-like protein (MLKL) upon its binding to the plasma membrane. Emerging evidence indicates that necroptosis plays a critical role in the development of AKI. However, it is unclear whether renal tubular cells undergo necroptosis in vivo and how the necroptotic pathway is regulated during AKI. Repulsive guidance molecule (RGM)-b is a member of the RGM family. Our previous study demonstrated that RGMb is highly expressed in kidney tubular epithelial cells, but its biological role in the kidney has not been well characterized. In the present study, we found that RGMb reduced membrane-associated MLKL levels and inhibited necroptosis in cultured cells. During ischemia/reperfusion injury (IRI) or oxalate nephropathy, MLKL was induced to express on the apical membrane of proximal tubular (PT) cells. Specific knockout of Rgmb in tubular cells (Rgmb cKO) increased MLKL expression at the apical membrane of PT cells and induced more tubular cell death and more severe renal dysfunction compared with wild-type mice. Treatment with the necroptosis inhibitor Necrostatin-1 or GSK'963 reduced MLKL expression on the apical membrane of PT cells and ameliorated renal function impairment after IRI in both wild-type and Rgmb cKO mice. Taken together, our results suggest that proximal tubular cell necroptosis plays an important role in AKI, and that RGMb protects against AKI by inhibiting MLKL membrane association and necroptosis in proximal tubular cells.
Collapse
|
13
|
Nickel J, Ten Dijke P, Mueller TD. TGF-β family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:12-36. [PMID: 29293886 DOI: 10.1093/abbs/gmx126] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor-β (TGF-β) family members, which include TGF-βs, activins and bone morphogenetic proteins, are pleiotropic cytokines that elicit cell type-specific effects in a highly context-dependent manner in many different tissues. These secreted protein ligands signal via single-transmembrane Type I and Type II serine/threonine kinase receptors and intracellular SMAD transcription factors. Deregulation in signaling has been implicated in a broad array of diseases, and implicate the need for intricate fine tuning in cellular signaling responses. One important emerging mechanism by which TGF-β family receptor signaling intensity, duration, specificity and diversity are regulated and/or mediated is through cell surface co-receptors. Here, we provide an overview of the co-receptors that have been identified for TGF-β family members. While some appear to be specific to TGF-β family members, others are shared with other pathways and provide possible ways for signal integration. This review focuses on novel functions of TGF-β family co-receptors, which continue to be discovered.
Collapse
Affiliation(s)
- Joachim Nickel
- Universitätsklinikum Würzburg, Lehrstuhl für Tissue Engineering und Regenerative Medizin und Fraunhofer Institut für Silicatforschung (ISC), Translationszentrum "Regenerative Therapien", Röntgenring 11, D-97070 Würzburg, Germany
| | - Peter Ten Dijke
- Department of Molecular and Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | - Thomas D Mueller
- Lehrstuhl für molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| |
Collapse
|
14
|
Li J, Ye L, Shi X, Chen J, Feng F, Chen Y, Xiao Y, Shen J, Li P, Jiang WG, He J. Repulsive guidance molecule B inhibits metastasis and is associated with decreased mortality in non-small cell lung cancer. Oncotarget 2017; 7:15678-89. [PMID: 26910889 PMCID: PMC4941269 DOI: 10.18632/oncotarget.7463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
Repulsive guidance molecules (RGMs) are co-receptors of bone morphogenetic proteins (BMPs) and programmed death ligand 2 (PD-L2), and might be involved in lung and other cancers. We evaluated repulsive guidance molecule B (RGMB) expression in 165 non-small cell lung cancer (NSCLC) tumors and 22 normal lung tissue samples, and validated the results in an independent series of 131 samples. RGMB was downregulated in NSCLC (P ≤ 0.001), possibly through promoter hypermethylation. Reduced RGMB expression was observed in advanced-stage tumors (P = 0.017) and in tumors with vascular invasion (P < 0.01), and was significantly associated with poor overall survival (39 vs. 62 months, P < 0.001) and with disease-associated patient mortality (P = 0.015). RGMB knockdown promoted cell adhesion, invasion and migration, in both NSCLC cell lines and an in vivo mouse model, which enhanced metastatic potential. Conversely, RGMB overexpression and secretion suppressed cancer progression. The tumor-suppressing effect of RGMB was exerted through inhibition of the Smad1/5/8 pathway. Our results demonstrate that RGMB is an important inhibitor of NSCLC metastasis and that low RGMB expression is a novel predictor or a poor prognosis.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Lin Ye
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Xiaoshun Shi
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Jingyi Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Fenglan Feng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Yaoqi Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Yiren Xiao
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jianfei Shen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Peng Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Wen G Jiang
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Jianxing He
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| |
Collapse
|
15
|
Repulsive Guidance Molecule a (RGMa) Induces Neuropathological and Behavioral Changes That Closely Resemble Parkinson's Disease. J Neurosci 2017; 37:9361-9379. [PMID: 28842419 DOI: 10.1523/jneurosci.0084-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 07/12/2017] [Accepted: 08/11/2017] [Indexed: 01/06/2023] Open
Abstract
Repulsive guidance molecule member a (RGMa) is a membrane-associated or released guidance molecule that is involved in axon guidance, cell patterning, and cell survival. In our previous work, we showed that RGMa is significantly upregulated in the substantia nigra of patients with Parkinson's disease. Here we demonstrate the expression of RGMa in midbrain human dopaminergic (DA) neurons. To investigate whether RGMa might model aspects of the neuropathology of Parkinson's disease in mouse, we targeted RGMa to adult midbrain dopaminergic neurons using adeno-associated viral vectors. Overexpression of RGMa resulted in a progressive movement disorder, including motor coordination and imbalance, which is typical for a loss of DA release in the striatum. In line with this, RGMa induced selective degeneration of dopaminergic neurons in the substantia nigra (SN) and affected the integrity of the nigrostriatal system. The degeneration of dopaminergic neurons was accompanied by a strong microglia and astrocyte activation. The behavioral, molecular, and anatomical changes induced by RGMa in mice are remarkably similar to the clinical and neuropathological hallmarks of Parkinson's disease. Our data indicate that dysregulation of RGMa plays an important role in the pathology of Parkinson's disease, and antibody-mediated functional interference with RGMa may be a disease modifying treatment option.SIGNIFICANCE STATEMENT Parkinson's disease (PD) is a neurodegenerative disease characterized by severe motor dysfunction due to progressive degeneration of mesencephalic dopaminergic (DA) neurons in the substantia nigra. To date, there is no regenerative treatment available. We previously showed that repulsive guidance molecule member a (RGMa) is upregulated in the substantia nigra of PD patients. Adeno-associated virus-mediated targeting of RGMa to mouse DA neurons showed that overexpression of this repulsive axon guidance and cell patterning cue models the behavioral and neuropathological characteristics of PD in a remarkable way. These findings have implications for therapy development as interfering with the function of this specific axon guidance cue may be beneficial to the survival of DA neurons.
Collapse
|
16
|
B7-DC (PD-L2) costimulation of CD4 + T-helper 1 response via RGMb. Cell Mol Immunol 2017; 15:888-897. [PMID: 28479601 DOI: 10.1038/cmi.2017.17] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2017] [Indexed: 12/20/2022] Open
Abstract
The role of B7-DC in T-cell responses remains controversial because both coinhibitory and costimulatory functions have been reported in various experimental systems in vitro and in vivo. In addition to interacting with the coinhibitory receptor PD-1, B7-DC has also been shown to bind repulsive guidance molecule b (RGMb). The functional consequences of the B7-DC/RGMb interaction, however, remain unclear. More than a decade ago, we reported that replacement of a murine B7-DC mutant lysine with serine (K113S) at positive 113 resulted in a loss of binding capacity to PD-1. Nevertheless, K113S remained costimulatory for T cells in vitro, implicating a dual functionality for B7-DC in T-cell responses. Here we show that recombinant K113S protein interacts with RGMb with a similar affinity to wild-type B7-DC. More importantly, K113S costimulates CD4+ T-cell responses via RGMb and promotes Th1 polarization. RGMb is expressed on the surface of naive mouse T cells, macrophages, neutrophils and dendritic cells. Finally, K113S/RGMb costimulation suppresses Th2-mediated asthma and ameliorates small airway inflammation and lung pathology in an experimental mouse model. Our findings indicate that RGMb is a costimulatory receptor for B7-DC. These findings from the K113S variant provide not only a possible explanation for the B7-DC-triggered contradictory effects on T-cell responses, but also a novel approach to investigate the B7-DC/PD-1/RGMb axis. Recombinant K113S or its derivatives could potentially be developed as an agonist for RGMb to costimulate the Th1 response without triggering PD-1-mediated T-cell inhibition.
Collapse
|
17
|
A role for prolyl isomerase PIN1 in the phosphorylation-dependent modulation of PRRXL1 function. Biochem J 2017; 474:683-697. [PMID: 28049756 DOI: 10.1042/bcj20160560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/10/2016] [Accepted: 01/03/2017] [Indexed: 11/17/2022]
Abstract
Prrxl1 encodes for a paired-like homeodomain transcription factor essential for the correct establishment of the dorsal root ganglion - spinal cord nociceptive circuitry during development. Prrxl1-null mice display gross anatomical disruption of this circuitry, which translates to a markedly diminished sensitivity to noxious stimuli. Here, by the use of an immunoprecipitation and mass spectrometry approach, we identify five highly conserved phosphorylation sites (T110, S119, S231, S233 and S251) in PRRXL1 primary structure. Four are phospho-S/T-P sites, which suggest a role for the prolyl isomerase PIN1 in regulating PRRXL1. Accordingly, PRRXL1 physically interacts with PIN1 and displays diminished transcriptional activity in a Pin1-null cell line. Additionally, these S/T-P sites seem to be important for PRRXL1 conformation, and their point mutation to alanine or aspartate down-regulates PRRXL1 transcriptional activity. Altogether, our findings provide evidence for a putative novel role of PIN1 in the development of the nociceptive system and indicate phosphorylation-mediated conformational changes as a mechanism for regulating the PRRXL1 role in the process.
Collapse
|
18
|
Liu J, Wang W, Liu M, Su L, Zhou H, Xia Y, Ran J, Lin HY, Yang B. Repulsive guidance molecule b inhibits renal cyst development through the bone morphogenetic protein signaling pathway. Cell Signal 2016; 28:1842-1851. [DOI: 10.1016/j.cellsig.2016.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 02/04/2023]
|
19
|
Li N, Qiao M, Zhao Q, Zhang P, Song L, Li L, Cui C. Effects of maternal lead exposure on RGMa and RGMb expression in the hippocampus and cerebral cortex of mouse pups. Brain Res Bull 2016; 127:38-46. [DOI: 10.1016/j.brainresbull.2016.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 11/26/2022]
|
20
|
Shi Y, Chen GB, Huang XX, Xiao CX, Wang HH, Li YS, Zhang JF, Li S, Xia Y, Ren JL, Guleng B. Dragon (repulsive guidance molecule b, RGMb) is a novel gene that promotes colorectal cancer growth. Oncotarget 2016; 6:20540-54. [PMID: 26029998 PMCID: PMC4653024 DOI: 10.18632/oncotarget.4110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/21/2015] [Indexed: 12/27/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer death. However, the molecular mechanisms underlying CRC initiation, growth and metastasis are poorly understood. Dragon (RGMb), a member of the repulsive guidance molecule (RGM) family, has been recently identified as a co-receptor for bone morphogenetic protein (BMP) signaling, but the role of Dragon in CRC development is undefined. Here, we show that Dragon expression was increased in colon cancer tissues compared to control tissues in CAC mouse model and in human patients. Dragon promoted proliferation of CT26.WT and CMT93 colon cancer cells and accelerated tumor growth in the xenograft mouse model. Dragon's action on colon cancer development was mediated via the BMP4-Smad1/5/8 and Erk1/2 pathways. Therefore, our results have revealed that Dragon is a novel gene that promotes CRC growth through the BMP pathway. Dragon may be exploited as a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Ying Shi
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Guo-Bin Chen
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Xiao-Xiao Huang
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Chuan-Xing Xiao
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Huan-Huan Wang
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Ye-Sen Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, China.,Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Jin-Fang Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Shao Li
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.,School of Biomedical Sciences Core Laboratory, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Jian-Lin Ren
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China.,Faculty of Clinical Medicine, Medical College, Xiamen University, Xiamen, Fujian Province, China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian Province, China
| |
Collapse
|
21
|
Li P, Zhang G, Li J, Yang R, Chen S, Wu S, Zhang F, Bai Y, Zhao H, Wang Y, Dun S, Chen X, Sun Q, Zhao G. Long Noncoding RNA RGMB-AS1 Indicates a Poor Prognosis and Modulates Cell Proliferation, Migration and Invasion in Lung Adenocarcinoma. PLoS One 2016; 11:e0150790. [PMID: 26950071 PMCID: PMC4780832 DOI: 10.1371/journal.pone.0150790] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/19/2016] [Indexed: 11/19/2022] Open
Abstract
Lung cancer is the most common cause of cancer-related mortality worldwide. It is a complex disease involving multiple genetic and epigenetic alterations. The development of transcriptomics revealed the important role of long non-coding RNAs (lncRNAs) in lung cancer occurrence and development. Here, microarray analysis of lung adenocarcinoma tissues showed the abnormal expression of lncRNA RGMB-AS1. However, the role of lncRNA RGMB-AS1 in lung adenocarcinoma remains largely unknown. We showed that upregulation of lncRNA RGMB-AS1 was significantly correlated with differentiation, TNM stage, and lymph node metastasis. In lung adenocarcinoma cells, downregulation of lncRNA RGMB-AS1 inhibited cell proliferation, migration, invasion, and caused cell cycle arrest at the G1/G0 phase. In vivo experiments showed that lncRNA RGMB-AS1 downregulation significantly suppressed the growth of lung adenocarcinoma. The expression of lncRNA RGMB-AS1 was inversely correlated with that of repulsive guidance molecule b (RGMB) in lung adenocarcinoma tissues, and UCSC analysis and fluorescence detection assay indicated that lncRNA RGMB-AS1 may be involved in the development of human lung adenocarcinoma by regulating RGMB expression though exon2 of RGMB. In summary, our findings indicate that lncRNA RGMB-AS1 may play an important role in lung adenocarcinoma and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Ping Li
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Guojun Zhang
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- * E-mail: (GJZ); (GQZ)
| | - Juan Li
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Rui Yang
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shanshan Chen
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shujun Wu
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Furui Zhang
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yong Bai
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huasi Zhao
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuanyuan Wang
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shaozhi Dun
- Emergency Department, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaonan Chen
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Qianqian Sun
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Guoqiang Zhao
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- * E-mail: (GJZ); (GQZ)
| |
Collapse
|
22
|
Kovac S, Böser P, Cui Y, Ferring-Appel D, Casarrubea D, Huang L, Fung E, Popp A, Mueller BK, Hentze MW. Anti-hemojuvelin antibody corrects anemia caused by inappropriately high hepcidin levels. Haematologica 2016; 101:e173-6. [PMID: 26944476 DOI: 10.3324/haematol.2015.140772] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Suzana Kovac
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Yifang Cui
- Abbvie Deutschland GmbH & Co KG, Ludwigshafen, Germany
| | | | | | - Lili Huang
- Abbvie Bioresearch Center, Worcester, USA
| | - Emma Fung
- Abbvie Bioresearch Center, Worcester, USA
| | - Andreas Popp
- Abbvie Deutschland GmbH & Co KG, Ludwigshafen, Germany
| | | | | |
Collapse
|
23
|
Meng C, Liu W, Huang H, Wang Y, Chen B, Freeman GJ, Schneyer A, Lin HY, Xia Y. Repulsive Guidance Molecule b (RGMb) Is Dispensable for Normal Gonadal Function in Mice. Biol Reprod 2016; 94:78. [PMID: 26911425 DOI: 10.1095/biolreprod.115.135921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/11/2016] [Indexed: 12/22/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling plays an important role in spermatogenesis and follicle development. Our previous studies have shown that repulsive guidance molecule b (RGMb, also known as Dragon) is a coreceptor that enhances BMP2 and BMP4 signaling in several cell types and that RGMb is expressed in spermatocytes and spermatids in the testis and in oocytes of the secondary follicles in the ovary. Here, we demonstrated that specific deletion of Rgmb in germ cells in the testis and ovary did not alter Smad1/5/8 phosphorylation, gonadal structures, and fertility. In addition, ovaries from postnatal global Rgmb knockout mice showed similar structures to the wild-type ovaries. Our results suggest that RGMb is not essential for normal gonadal function.
Collapse
Affiliation(s)
- Chenling Meng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenjing Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Huihui Huang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yang Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Binbin Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Alan Schneyer
- Pioneer Valley Life Science Institute and Department of Veterinary and Animal Science, University of Massachusetts-Amherst, Amherst, Massachusetts
| | - Herbert Y Lin
- Program in Membrane Biology, Center for Systems Biology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yin Xia
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China School of Biomedical Sciences Core Laboratory, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
24
|
Martins AF, Xavier Neto J, Azambuja A, Sereno ML, Figueira A, Campos-Junior PH, Rosário MF, Toledo CBB, Silva GAB, Kitten GT, Coutinho LL, Dietrich S, Jorge EC. Repulsive Guidance Molecules a, b and c Are Skeletal Muscle Proteins, and Repulsive Guidance Molecule a Promotes Cellular Hypertrophy and Is Necessary for Myotube Fusion. Cells Tissues Organs 2015; 200:326-38. [PMID: 26397945 DOI: 10.1159/000433491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
Repulsive guidance molecules (RGMs) compose a family of glycosylphosphatidylinositol (GPI)-anchored axon guidance molecules and perform several functions during neural development. New evidence has suggested possible new roles for these axon guidance molecules during skeletal muscle development, which has not been investigated thus far. In the present study, we show that RGMa, RGMb and RGMc are all induced during skeletal muscle differentiation in vitro. Immunolocalization performed on adult skeletal muscle cells revealed that RGMa, RGMb and RGMc are sarcolemmal proteins. Additionally, RGMa was found to be a sarcoplasmic protein with a surprisingly striated pattern. RGMa colocalization with known sarcoplasmic proteins suggested that this axon guidance molecule is a skeletal muscle sarcoplasmic protein. Western blot analysis revealed two RGMa fragments of 60 and 33 kDa, respectively, in adult skeletal muscle samples. RGMa phenotypes in skeletal muscle cells (C2C12 and primary myoblasts) were also investigated. RGMa overexpression produced hypertrophic cells, whereas RGMa knockdown resulted in the opposite phenotype. RGMa knockdown also blocked myotube formation in both skeletal muscle cell types. Our results are the first to show an axon guidance molecule as a skeletal muscle sarcoplasmic protein and to include RGMa in a system that regulates skeletal muscle cell size and differentiation.
Collapse
Affiliation(s)
- Aline Fagundes Martins
- Departamento de Morfologia, Instituto de Cix00EA;ncias Biolx00F3;gicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Li P, Li J, Yang R, Zhang F, Wang H, Chu H, Lu Y, Dun S, Wang Y, Zang W, Du Y, Chen X, Zhao G, Zhang G. Study on expression of lncRNA RGMB-AS1 and repulsive guidance molecule b in non-small cell lung cancer. Diagn Pathol 2015; 10:63. [PMID: 26055877 PMCID: PMC4460650 DOI: 10.1186/s13000-015-0297-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/12/2015] [Indexed: 11/17/2022] Open
Abstract
Background The relationships between lncRNAs and tumors have currently become one of the focuses on cancer studies. However, there are a few studies about lncRNAs in non-small cell lung cancer (NSCLC) at present. Methods Microarray analysis was designed to study the expression patterns of lncRNAs in three pairs of NSCLC tissues. The expression of lncRNA RGMB-AS1 and repulsive guidance molecule b (RGMB) were detected in 72 paired NSCLC tissues and adjacent normal tissues by qRT-PCR assay. The relations of lncRNA RGMB-AS1 and RGMB expression with clinicopathological factors of NSCLC patients were explored. A549 and SPC-A-1 cells were transfected with siRNA of lncRNA RGMB-AS1 and negative control. RGMB expression level was detected by qRT-PCR assay and western blot analysis. Results The results of microarray found that 571 lncRNAs were differentially expressed in NSCLC tissues (Fold change cut-off: 5.0, P < 0.05), including 304 upregulated and 267 downregulated lncRNAs. The results of qRT-PCR showed that lncRNA RGMB-AS1 expression was significantly higher in NSCLC tissues than in adjacent normal tissues (P < 0.05), while RGMB mRNA showed an opposite trend (P < 0.05). Correlation analysis indicated that the expression of lncRNA RGMB-AS1and RGMB mRNA were inversely correlated (R2 = 0.590, P < 0.05). While lncRNA RGMB-AS1 and RGMB expression levels in NSCLC tissues were associated with the occurrence of differentiation status, lymph node metastases and TNM stage (P < 0.05). Transfection with siRNA of lncRNA RGMB-AS1, subsequent results showed that RGMB mRNA and protein expression were upregulated (P < 0.05) in A549 and SPC-A-1 cells compared to the control groups. Conclusion We identified lncRNA RGMB-AS1 was upregulated and RGMB was downregulated in NSCLC patients. Both were related to differentiation status, lymph node metastases and TNM stage. Studies also indicated that lncRNA RGMB-AS1and RGMB were inversely correlated. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/7911587521528276
Collapse
Affiliation(s)
- Ping Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Juan Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Rui Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Furui Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Huaqi Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Heying Chu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yao Lu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Shaozhi Dun
- Emergency Department, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China.
| | - Yuanyuan Wang
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Wenqiao Zang
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yuwen Du
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiaonan Chen
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guoqiang Zhao
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guojun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
26
|
Javeed N, Tardi NJ, Maher M, Singari S, Edwards KA. Controlled expression of Drosophila homeobox loci using the Hostile takeover system. Dev Dyn 2015; 244:808-25. [PMID: 25820349 PMCID: PMC4449281 DOI: 10.1002/dvdy.24279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Hostile takeover (Hto) is a Drosophila protein trapping system that allows the investigator to both induce a gene and tag its product. The Hto transposon carries a GAL4-regulated promoter expressing an exon encoding a FLAG-mCherry tag. Upon expression, the Hto exon can splice to a downstream genomic exon, generating a fusion transcript and tagged protein. RESULTS Using rough-eye phenotypic screens, Hto inserts were recovered at eight homeobox or Pax loci: cut, Drgx/CG34340, Pox neuro, araucan, shaven/D-Pax2, Zn finger homeodomain 2, Sex combs reduced (Scr), and the abdominal-A region. The collection yields diverse misexpression phenotypes. Ectopic Drgx was found to alter the cytoskeleton and cell adhesion in ovary follicle cells. Hto expression of cut, araucan, or shaven gives phenotypes similar to those of the corresponding UAS-cDNA constructs. The cut and Pox neuro phenotypes are suppressed by the corresponding RNAi constructs. The Scr and abdominal-A inserts do not make fusion proteins, but may act by chromatin- or RNA-based mechanisms. CONCLUSIONS Hto can effectively express tagged homeodomain proteins from their endogenous loci; the Minos vector allows inserts to be obtained even in transposon cold-spots. Hto screens may recover homeobox genes at high rates because they are particularly sensitive to misexpression.
Collapse
Affiliation(s)
- Naureen Javeed
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Nicholas J. Tardi
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Maggie Maher
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Swetha Singari
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Kevin A. Edwards
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| |
Collapse
|
27
|
Meng C, Guo N, Wei Q, Shi F, Schneyer AL, Xia Y, Mao D. Expression of repulsive guidance molecule b (RGMb) in the uterus and ovary during the estrous cycle in rats. Acta Histochem 2014; 116:1231-6. [PMID: 25085051 DOI: 10.1016/j.acthis.2014.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/12/2014] [Accepted: 07/13/2014] [Indexed: 10/25/2022]
Abstract
Repulsive guidance molecule b (RGMb; a.k.a. Dragon), initially identified in the embryonic dorsal root ganglion, is the first member of the RGM family shown to enhance bone morphogenetic protein (BMP) signaling by acting as a BMP co-receptor. BMP signaling has been demonstrated to play an important role in the reproductive organs. Our previous study found that RGMb was expressed in the reproductive axis, but whether RGMb expression in reproductive organs changes across the estrous cycle remains unknown. Here, we show in the rat that RGMb mRNA expression in the uterus was significantly higher during metesterus and diestrus than during proestrus and estrus. Western blotting indicated that RGMb protein was significantly lower during estrus compared with the other three stages. Immunohistochemistry revealed that RGMb protein was mainly localized to the uterine luminal and glandular epithelial cells of the endometrium. RGMb mRNA and protein in the ovary remained unchanged during the estrous cycle. RGMb protein was expressed in the oocytes of all follicles. Weak staining for RGMb protein was also found in corpora lutea. RGMb was not detected in granulosa cells and stromal cells. Taken together, RGMb expression in the uterus and ovary across the estrus cycle demonstrate that RGMb may be involved in the regulation of uterine function, follicular development as well as luteal activity.
Collapse
|
28
|
Monteiro CB, Costa MF, Reguenga C, Lima D, Castro DS, Monteiro FA. Paired related homeobox protein-like 1 (Prrxl1) controls its own expression by a transcriptional autorepression mechanism. FEBS Lett 2014; 588:3475-82. [PMID: 25131932 DOI: 10.1016/j.febslet.2014.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/21/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
Abstract
The homeodomain factor paired related homeobox protein-like 1 (Prrxl1) is crucial for proper assembly of dorsal root ganglia (DRG)-dorsal spinal cord (SC) pain-sensing circuit. By performing chromatin immunoprecipitation with either embryonic DRG or dorsal SC, we identified two evolutionarily conserved regions (i.e. proximal promoter and intron 4) of Prrxl1 locus that show tissue-specific binding of Prrxl1. Transcriptional assays confirm the identified regions can mediate repression by Prrxl1, while gain-of-function studies in Prrxl1 expressing ND7/23 cells indicate Prrxl1 can down-regulate its own expression. Altogether, our results suggest that Prrxl1 uses distinct regulatory regions to repress its own expression in DRG and dorsal SC.
Collapse
Affiliation(s)
- César B Monteiro
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; Morfofisiologia do Sistema Somatosensitivo, IBMC - Instituto de Biologia Celular e Molecular, 4150-180 Porto, Portugal.
| | - Mariana F Costa
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; Morfofisiologia do Sistema Somatosensitivo, IBMC - Instituto de Biologia Celular e Molecular, 4150-180 Porto, Portugal.
| | - Carlos Reguenga
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; Morfofisiologia do Sistema Somatosensitivo, IBMC - Instituto de Biologia Celular e Molecular, 4150-180 Porto, Portugal.
| | - Deolinda Lima
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; Morfofisiologia do Sistema Somatosensitivo, IBMC - Instituto de Biologia Celular e Molecular, 4150-180 Porto, Portugal.
| | - Diogo S Castro
- Molecular Neurobiology, IGC - Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| | - Filipe A Monteiro
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; Morfofisiologia do Sistema Somatosensitivo, IBMC - Instituto de Biologia Celular e Molecular, 4150-180 Porto, Portugal.
| |
Collapse
|
29
|
Sanders AJ, Ye L, Li J, Mason MD, Jiang WG. Tumour angiogenesis and repulsive guidance molecule b: a role in HGF- and BMP-7-mediated angiogenesis. Int J Oncol 2014; 45:1304-12. [PMID: 24970050 DOI: 10.3892/ijo.2014.2508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/26/2014] [Indexed: 11/05/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a key growth factor linked to promoting cancer progression and angiogenesis. The present study identifies repulsive guidance molecule b (RGMb), a bone morphogenetic protein (BMP) co-receptor, as a gene whose expression is regulated by HGF and explores the potential of RGMb to contribute to the process of angiogenesis. Microarray analysis was used to identify HGF responsive genes in HECV endothelial cells, identifying RGMb. RGMb was subsequently targeted using a ribozyme transgene system and its role in angiogenesis assessed using in vitro and in vivo assays. The importance of RGMb in pro-angiogenic responses to HGF and BMP-7 was also assessed. Microarray analysis identified RGMb as a gene upregulated as a result of HGF treatment. Knockdown of RGMb, in HECV cells, had minimal effects on tubule formation, brought about a general, although non-significant increase in cell growth and enhanced cell migration. Similarly, no significant effect of RGMb knockdown was found in vivo using a co-inoculation angiogenesis model. Knockdown of RGMb was, however, found to reduce the responsiveness of HECV cells to HGF treatment and particularly to BMP-7 treatment in regard to the enhanced migratory and tubule formation brought about by these treatments in vitro. Our results indicate that RGMb expression can be influenced by HGF treatment. Whilst this molecule appears to have minimal impact on angiogenic traits individually, it demonstrates an involvement in propagating pro-angiogenic effects of HGF and particularly BMP-7 and thus, may play a role in regulating angiogenic responses to HGF and BMP-7.
Collapse
Affiliation(s)
- Andrew J Sanders
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Lin Ye
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Jin Li
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Malcolm D Mason
- Section of Oncology and Palliative Medicine, Cardiff University School of Medicine, Cardiff, UK
| | - Wen G Jiang
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
30
|
Core AB, Canali S, Babitt JL. Hemojuvelin and bone morphogenetic protein (BMP) signaling in iron homeostasis. Front Pharmacol 2014; 5:104. [PMID: 24860505 PMCID: PMC4026703 DOI: 10.3389/fphar.2014.00104] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/21/2014] [Indexed: 12/13/2022] Open
Abstract
Mutations in hemojuvelin (HJV) are the most common cause of the juvenile-onset form of the iron overload disorder hereditary hemochromatosis. The discovery that HJV functions as a co-receptor for the bone morphogenetic protein (BMP) family of signaling molecules helped to identify this signaling pathway as a central regulator of the key iron hormone hepcidin in the control of systemic iron homeostasis. This review highlights recent work uncovering the mechanism of action of HJV and the BMP-SMAD signaling pathway in regulating hepcidin expression in the liver, as well as additional studies investigating possible extra-hepatic functions of HJV. This review also explores the interaction between HJV, the BMP-SMAD signaling pathway and other regulators of hepcidin expression in systemic iron balance.
Collapse
Affiliation(s)
- Amanda B Core
- Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Program in Anemia Signaling Research Boston, MA, USA
| | - Susanna Canali
- Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Program in Anemia Signaling Research Boston, MA, USA
| | - Jodie L Babitt
- Division of Nephrology, Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Program in Anemia Signaling Research Boston, MA, USA
| |
Collapse
|
31
|
Ser¹¹⁹ phosphorylation modulates the activity and conformation of PRRXL1, a homeodomain transcription factor. Biochem J 2014; 459:441-53. [PMID: 24564673 DOI: 10.1042/bj20131014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PRRXL1 [paired related homeobox-like 1; also known as DRG11 (dorsal root ganglia 11)] is a paired-like homeodomain transcription factor expressed in DRG and dSC (dorsal spinal cord) nociceptive neurons. PRRXL1 is crucial for the establishment and maintenance of nociceptive circuitry, as Prrxl1(-/-) mice present neuronal loss, reduced pain sensitivity and failure to thrive. In the present study, we show that PRRXL1 is highly phosphorylated in vivo, and that its multiple band pattern on electrophoretic analysis is the result of different phosphorylation states. PRRXL1 phosphorylation appears to be differentially regulated along the dSC and DRG development and it is mapped to two functional domains. One region comprises amino acids 107-143, whereas the other one encompasses amino acids 227-263 and displays repressor activity. Using an immunoprecipitation-MS approach, two phosphorylation sites were identified, Ser¹¹⁹ and Ser²³⁸. Phosphorylation at Ser¹¹⁹ is shown to be determinant for PRRXL1 conformation and transcriptional activity. Ser¹¹⁹ phosphorylation is thus proposed as a mechanism for regulating PRRXL1 function and conformation during nociceptive system development.
Collapse
|
32
|
Tian C, Liu J. Repulsive guidance molecules (RGMs) and neogenin in bone morphogenetic protein (BMP) signaling. Mol Reprod Dev 2013; 80:700-17. [PMID: 23740870 DOI: 10.1002/mrd.22199] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/28/2013] [Indexed: 02/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-beta (TGFβ) superfamily. BMPs mediate a highly conserved signal transduction cascade through the type-I and type-II serine/threonine kinase receptors and intracellular Smad proteins, which regulate multiple developmental and homeostatic processes. Mutations in this pathway can cause various diseases in humans, such as skeletal disorders, cardiovascular diseases, and various cancers. Multiple levels of regulation, including extracellular regulation, help to ensure proper spatiotemporal control of BMP signaling in the right cellular context. The family of repulsive guidance molecules (RGMs) and the type-I transmembrane protein neogenin, a paralog of DCC (Deleted in Colorectal Cancer), have been implicated in modulating the BMP pathway. In this review, we discuss the properties and functions of RGM proteins and neogenin, focusing on their roles in the modulation of BMP signal transduction.
Collapse
Affiliation(s)
- Chenxi Tian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | | |
Collapse
|
33
|
Nili M, David L, Elferich J, Shinde U, Rotwein P. Proteomic analysis and molecular modelling characterize the iron-regulatory protein haemojuvelin/repulsive guidance molecule c. Biochem J 2013; 452:87-95. [PMID: 23464809 PMCID: PMC3890427 DOI: 10.1042/bj20121845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
HJV (haemojuvelin) plays a key role in iron metabolism in mammals by regulating expression of the liver-derived hormone hepcidin, which controls systemic iron uptake and release. Mutations in HJV cause juvenile haemochromatosis, a rapidly progressing iron overload disorder in humans. HJV, also known as RGMc (repulsive guidance molecule c), is a member of the three-protein RGM family. RGMs are GPI (glycosylphosphatidylinositol)-linked glycoproteins that share ~50% amino acid identity and several structural motifs, including the presence of 14 cysteine residues in analogous locations. Unlike RGMa and RGMb, HJV/RGMc is composed of both single-chain and two-chain isoforms. To date there is no structural information for any member of the RGM family. In the present study we have mapped the disulfide bonds in mouse HJV/RGMc using a proteomics strategy combining sequential MS steps composed of ETD (electron transfer dissociation) and CID (collision-induced dissociation), in which ETD induces cleavage of disulfide linkages, and CID establishes disulfide bond assignments between liberated peptides. The results of the present study identified an HJV/RGMc molecular species containing four disulfide linkages. We predict using ab initio modelling that this molecule is a single-chain HJV/RGMc isoform. Our observations outline a general approach using tandem MS and ab initio molecular modelling to define unknown structural features in proteins.
Collapse
Affiliation(s)
- Mahta Nili
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | | | | | | | | |
Collapse
|
34
|
Spatiotemporal expression of repulsive guidance molecules (RGMs) and their receptor neogenin in the mouse brain. PLoS One 2013; 8:e55828. [PMID: 23457482 PMCID: PMC3573027 DOI: 10.1371/journal.pone.0055828] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/02/2013] [Indexed: 02/07/2023] Open
Abstract
Neogenin has been implicated in a variety of developmental processes such as neurogenesis, neuronal differentiation, apoptosis, migration and axon guidance. Binding of repulsive guidance molecules (RGMs) to Neogenin inhibits axon outgrowth of different neuronal populations. This effect requires Neogenin to interact with co-receptors of the uncoordinated locomotion-5 (Unc5) family to activate downstream Rho signaling. Although previous studies have reported RGM, Neogenin, and/or Unc5 expression, a systematic comparison of RGM and Neogenin expression in the developing nervous system is lacking, especially at later developmental stages. Furthermore, information on RGM and Neogenin expression at the protein level is limited. To fill this void and to gain further insight into the role of RGM-Neogenin signaling during mouse neural development, we studied the expression of RGMa, RGMb, Neogenin and Unc5A-D using in situ hybridization, immunohistochemistry and RGMa section binding. Expression patterns in the primary olfactory system, cortex, hippocampus, habenula, and cerebellum were studied in more detail. Characteristic cell layer-specific expression patterns were detected for RGMa, RGMb, Neogenin and Unc5A-D. Furthermore, strong expression of RGMa, RGMb and Neogenin protein was found on several major axon tracts such as the primary olfactory projections, anterior commissure and fasciculus retroflexus. These data not only hint at a role for RGM-Neogenin signaling during the development of different neuronal systems, but also suggest that Neogenin partners with different Unc5 family members in different systems. Overall, the results presented here will serve as a framework for further dissection of the role of RGM-Neogenin signaling during neural development.
Collapse
|
35
|
Yang P, Zhang J, Zhao L, Jiao Q, Jin H, Xiao X, Zhang H, Hu M, Lu H, Liu Y. Developmental distribution pattern of metabotropic glutamate receptor 5 in prenatal human hippocampus. Neurosci Bull 2012; 28:704-14. [PMID: 23225313 DOI: 10.1007/s12264-012-1286-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 05/17/2012] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Metabotropic glutamate receptor 5 (mGluR5) is concentrated in zones of active neurogenesis in the prenatal and postnatal rodent brain and plays an important role in the regulation of neurogenesis. However, little is known about mGluR5 in the prenatal human brain. Here, we aimed to explore the expression pattern and cellular distribution of mGluR5 in human fetal hippocampus. METHODS Thirty-four human fetuses were divided into four groups according to gestational age: 9-11, 14-16, 22-24 and 32-36 weeks. The hippocampus was dissected out and prepared. The protein and mRNA expression of mGluR5 were evaluated by Western blot and immunohistochemistry or real-time PCR. The cellular distribution of mGluR5 was observed with double-labeling immunofluorescence. RESULTS Both mGluR5 mRNA and protein were detected in the prenatal human hippocampus by real-time PCR and immunoblotting, and the expression levels increased gradually over time. The immunohistochemistry results were consistent with immunoblotting and showed that mGluR5 immunoreactivity was mainly present in the inner marginal zone (IMZ), hippocampal plate (HP) and ventricular zone (VZ). The double-labeling immunofluorescence showed that mGluR5 was present in neural stem cells (nestin-positive), neuroblasts (DCX-positive) and mature neurons (NeuN-positive), but not in typical astrocytes (GFAP-positive). The cells co-expressing mGluR5 and nestin were mainly located in the IMZ, HP and subplate at 11 weeks, all layers at 16 weeks, and CA1 at 24 weeks. As development proceeded, the number of mGluR5/nestin double-positive cells decreased gradually so that there were only a handful of double-labeled cells at 32 weeks. However, mGluR5/DCX double-positive cells were only found in the HP, IZ and IMZ at 11 weeks. CONCLUSION The pattern of mGluR5 expression by neural stem/progenitor cells, neuroblasts and neurons provides important anatomical evidence for the role of mGluR5 in the regulation of human hippocampal development.
Collapse
Affiliation(s)
- Pengbo Yang
- Institute of Neurobiology, Key Laboratory for Environment and Genes Related to Diseases of the Ministry of Education, Xi'an Jiaotong University College of Medicine, Xi'an 710061, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jorge EC, Ahmed MU, Bothe I, Coutinho LL, Dietrich S. RGMa and RGMb expression pattern during chicken development suggest unexpected roles for these repulsive guidance molecules in notochord formation, somitogenesis, and myogenesis. Dev Dyn 2012; 241:1886-900. [PMID: 23073896 DOI: 10.1002/dvdy.23889] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Repulsive guidance molecules (RGM) are high-affinity ligands for the Netrin receptor Neogenin, and they are crucial for nervous system development including neural tube closure; neuronal and neural crest cell differentiation and axon guidance. Recent studies implicated RGM molecules in bone morphogenetic protein signaling, which regulates a variety of developmental processes. Moreover, a role for RGMc in iron metabolism has been established. This suggests that RGM molecules may play important roles in non-neural tissues. RESULTS To explore which tissues and processed may be regulated by RGM molecules, we systematically investigated the expression of RGMa and RGMb, the only RGM molecules currently known for avians, in the chicken embryo. CONCLUSIONS Our study suggests so far unknown roles of RGM molecules in notochord, somite and skeletal muscle development.
Collapse
Affiliation(s)
- Erika Cristina Jorge
- Universidade Federal de Minas Gerais-Departamento de Morfologia, Belo Horizonte, MG, Brazil.
| | | | | | | | | |
Collapse
|
37
|
Li J, Ye L, Sanders AJ, Jiang WG. Repulsive guidance molecule B (RGMB) plays negative roles in breast cancer by coordinating BMP signaling. J Cell Biochem 2012; 113:2523-31. [PMID: 22415859 DOI: 10.1002/jcb.24128] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Repulsive guidance molecules (RGMs) coordinate axon formation and iron homestasis. These molecules are also known as co-receptors of bone morphogenetic proteins (BMPs). However, the role played by RGMs in breast cancer remains unclear. The present study investigated the impact of RGMB on functions of breast cancer cells and corresponding mechanisms. RGMB was knocked down in breast cancer cells by way of an anti-RGMB ribozyme transgene. Knockdown of RGMB resulted in enhanced capacities of proliferation, adhesion, and migration in breast cancer cells. Further investigations demonstrated RGMB knockdown resulted in a reduced expression and activity of Caspase-3, accompanied with better survival in RGMB knockdown cells under serum starvation, which might be induced by its repression on MAPK JNK pathway. Up-regulations of Snai1, Twist, FAK, and Paxillin via enhanced Smad dependent sigaling led to increased capacities of adhesion and migration. Our current data firstly revealed that RGMB may act as a negative regulator in breast cancer through BMP signaling.
Collapse
Affiliation(s)
- Jin Li
- Metastasis & Angiogenesis Research Group, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | | | | | | |
Collapse
|
38
|
Grondona JM, Hoyo-Becerra C, Visser R, Fernández-Llebrez P, López-Ávalos MD. The subcommissural organ and the development of the posterior commissure. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:63-137. [PMID: 22559938 DOI: 10.1016/b978-0-12-394307-1.00002-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Growing axons navigate through the developing brain by means of axon guidance molecules. Intermediate targets producing such signal molecules are used as guideposts to find distal targets. Glial, and sometimes neuronal, midline structures represent intermediate targets when axons cross the midline to reach the contralateral hemisphere. The subcommissural organ (SCO), a specialized neuroepithelium located at the dorsal midline underneath the posterior commissure, releases SCO-spondin, a large glycoprotein belonging to the thrombospondin superfamily that shares molecular domains with axonal pathfinding molecules. Several evidences suggest that the SCO could be involved in the development of the PC. First, both structures display a close spatiotemporal relationship. Second, certain mutants lacking an SCO present an abnormal PC. Third, some axonal guidance molecules are expressed by SCO cells. Finally, SCO cells, the Reissner's fiber (the aggregated form of SCO-spondin), or synthetic peptides from SCO-spondin affect the neurite outgrowth or neuronal aggregation in vitro.
Collapse
Affiliation(s)
- Jesús M Grondona
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Spain.
| | | | | | | | | |
Collapse
|
39
|
Repulsive guidance molecule (RGM) family proteins exhibit differential binding kinetics for bone morphogenetic proteins (BMPs). PLoS One 2012; 7:e46307. [PMID: 23029472 PMCID: PMC3459908 DOI: 10.1371/journal.pone.0046307] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/29/2012] [Indexed: 11/30/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor beta superfamily that exert their effects via type I and type II serine threonine kinase receptors and the SMAD intracellular signaling pathway to regulate diverse biologic processes. Recently, we discovered that the repulsive guidance molecule (RGM) family, including RGMA, RGMB, and RGMC/hemojuvelin (HJV), function as co-receptors that enhance cellular responses to BMP ligands. Here, we use surface plasmon resonance to quantitate the binding kinetics of RGM proteins for BMP ligands. We show that among the RGMs, HJV exhibits the highest affinity for BMP6, BMP5, and BMP7 with KD 8.1, 17, and 20 nM respectively, versus 28, 33, and 166 nM for RGMB, and 55, 83, and 63 nM for RGMA. Conversely, RGMB exhibits preferential binding to BMP4 and BMP2 with KD 2.6 and 5.5 nM respectively, versus 4.5 and 9.4 nM for HJV, and 14 and 22 nM for RGMA, while RGMA exhibits the lowest binding affinity for most BMPs tested. Among the BMP ligands, RGMs exhibit the highest relative affinity for BMP4 and the lowest relative affinity for BMP7, while none of the RGMs bind to BMP9. Thus, RGMs exhibit preferential binding for distinct subsets of BMP ligands. The preferential binding of HJV for BMP6 is consistent with the functional role of HJV and BMP6 in regulating systemic iron homeostasis. Our data may help explain the mechanism by which BMPs exert cell-context specific effects via a limited number of type I and type II receptors.
Collapse
|
40
|
Chen W, Sun CC, Chen S, Meynard D, Babitt JL, Lin HY. A novel validated enzyme-linked immunosorbent assay to quantify soluble hemojuvelin in mouse serum. Haematologica 2012; 98:296-304. [PMID: 22875629 DOI: 10.3324/haematol.2012.070136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hemojuvelin is a critical regulator of hepcidin expression and can be cleaved by proteases to form soluble hemojuvelin. Soluble hemojuvelin has been recently identified in human serum but the presence and quantity of soluble hemojuvelin in mouse serum is unknown. We developed a two-site enzyme-linked immunosorbent assay using a monoclonal anti-hemojuvelin as the capture antibody and a biotinylated polyclonal anti-hemojuvelin as the detection antibody to quantify the levels of soluble hemojuvelin in mouse serum. We validated this assay using cell-conditioned media and serum from Hemojuvelin-null and Bone morphogenetic protein 6-null mice. We also used this validated assay to measure serum soluble hemojuvelin concentrations in mice receiving an acute low iron or high iron treatment. This two-site enzyme-linked immunosorbent assay was highly specific for mouse hemojuvelin, with a lower limit of detection at 13.2-26.8 ng/mL of soluble hemojuvelin in mouse serum. The median serum soluble hemojuvelin concentration in wild-type C57BL/6J mice was 57.9 ± 22 ng/mL, which is 4- to 20-fold less than that reported in healthy human volunteers. After acute low iron diet treatment in these mice, serum soluble hemojuvelin levels were increased and correlated with lowered serum iron levels and decreased hepatic hepcidin expression. An acute high iron diet in wild-type mice or chronically iron-overloaded Bone morphogenetic protein 6-null mice did not significantly lower serum soluble hemojuvelin concentrations. Here we report reliable quantitation of mouse serum soluble hemojuvelin using a novel and validated enzyme-linked immunosorbent assay. This assay may provide a useful tool to elucidate the source and physiological role of serum soluble hemojuvelin in hepcidin regulation and iron metabolism using well-established mouse models of iron-related disorders.
Collapse
Affiliation(s)
- Wenjie Chen
- Program in Anemia Signaling Research, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
41
|
Lah GJ, Key B. Dual roles of the chemorepellent axon guidance molecule RGMa in establishing pioneering axon tracts and neural fate decisions in embryonic vertebrate forebrain. Dev Neurobiol 2012; 72:1458-70. [DOI: 10.1002/dneu.22010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/01/2011] [Accepted: 01/19/2012] [Indexed: 11/11/2022]
|
42
|
Key B, Lah GJ. Repulsive guidance molecule A (RGMa): a molecule for all seasons. Cell Adh Migr 2012; 6:85-90. [PMID: 22568948 DOI: 10.4161/cam.20167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RGMa (repulsive guidance molecule a) was the first identified molecule that possessed the necessary functional activity to repulse and steer growth cones to their target in the brain. By binding to its neogenin receptor, RGMa caused the collapse of growth cones and encouraged axons to grow along specific trajectories in vitro. Although originally characterized in 1990, RGMa was not conclusively shown to mediate axon guidance in vivo for another 12 years. Loss-of-function analysis in mice revealed that RGMa may play a more important role in neural tube morphogenesis. RGMa has now emerged as a molecule with pleiotropic roles involving cell adhesion, cell migration, cell polarity and cell differentiation which together strongly influence early morphogenetic events as well as immune responses. RGMa can be regarded as a molecule for all seasons.
Collapse
Affiliation(s)
- Brian Key
- Brain Growth and Regeneration Lab, School of Biomedical Sciences, University of Queensland, Brisbane, QLD Australia.
| | | |
Collapse
|
43
|
The BMP coreceptor RGMb promotes while the endogenous BMP antagonist noggin reduces neurite outgrowth and peripheral nerve regeneration by modulating BMP signaling. J Neurosci 2012; 31:18391-400. [PMID: 22171041 DOI: 10.1523/jneurosci.4550-11.2011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repulsive guidance molecule b (RGMb) is a bone morphogenetic protein (BMP) coreceptor and sensitizer of BMP signaling, highly expressed in adult dorsal root ganglion (DRG) sensory neurons. We used a murine RGMb knock-out to gain insight into the physiological role of RGMb in the DRG, and address whether RGMb-mediated modulation of BMP signaling influences sensory axon regeneration. No evidence for altered development of the PNS and CNS was detected in RGMb(-/-) mice. However, both cultured neonatal whole DRG explants and dissociated DRG neurons from RGMb(-/-) mice exhibited significantly fewer and shorter neurites than those from wild-type littermates, a phenomenon that could be fully rescued by BMP-2. Moreover, Noggin, an endogenous BMP signaling antagonist, inhibited neurite outgrowth in wild-type DRG explants from naive as well as nerve injury-preconditioned mice. Noggin is downregulated in the DRG after nerve injury, and its expression is highly correlated and inversely associated with the known regeneration-associated genes, which are induced in the DRG by peripheral axonal injury. We show that diminished BMP signaling in vivo, achieved either through RGMb deletion or BMP inhibition with Noggin, retarded early axonal regeneration after sciatic nerve crush injury. Our data suggest a positive modulatory contribution of RGMb and BMP signaling to neurite extension in vitro and early axonal regrowth after nerve injury in vivo and a negative effect of Noggin.
Collapse
|
44
|
Novel roles of the chemorepellent axon guidance molecule RGMa in cell migration and adhesion. Mol Cell Biol 2012; 32:968-80. [PMID: 22215618 DOI: 10.1128/mcb.06128-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The repulsive guidance molecule A (RGMa) is a contact-mediated axon guidance molecule that has significant roles in central nervous system (CNS) development. Here we have examined whether RGMa has novel roles in cell migration and cell adhesion outside the nervous system. RGMa was found to stimulate cell migration from Xenopus animal cap explants in a neogenin-dependent and BMP-independent manner. RGMa also stimulated the adhesion of Xenopus animal cap cells, and this adhesion was dependent on neogenin and independent of calcium. To begin to functionally characterize the role of specific domains in RGMa, we assessed the migratory and adhesive activities of deletion mutants. RGMa lacking the partial von Willebrand factor type D (vWF) domain preferentially perturbed cell adhesion, while mutants lacking the RGD motif affected cell migration. We also revealed that manipulating the levels of RGMa in vivo caused major migration defects during Xenopus gastrulation. We have revealed here novel roles of RGMa in cell migration and adhesion and demonstrated that perturbations to the homeostasis of RGMa expression can severely disrupt major morphogenetic events. These results have implications for understanding the role of RGMa in both health and disease.
Collapse
|
45
|
Metzger M, Conrad S, Skutella T, Just L. RGMa inhibits neurite outgrowth of neuronal progenitors from murine enteric nervous system via the neogenin receptor in vitro. J Neurochem 2011; 103:2665-78. [PMID: 17953666 DOI: 10.1111/j.1471-4159.2007.04994.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The enteric nervous system (ENS) in vertebrate embryos is formed by neural crest-derived cells. During development, these cells undergo extensive migration from the vagal and sacral regions to colonize the entire gut, where they differentiate into neurons and glial cells. Guidance molecules like netrins, semaphorins, slits, and ephrins are known to be involved in neuronal migration and axon guidance. In the CNS, the repulsive guidance molecule (RGMa) has been implicated in neuronal differentiation, migration, and apoptosis. Recently, we described the expression of the subtypes RGMa and RGMb and their receptor neogenin during murine gut development. In the present study, we investigated the influence of RGMa on neurosphere cultures derived from fetal ENS. In functional in vitro assays, RGMa strongly inhibited neurite outgrowth of differentiating progenitors via the receptor neogenin. The repulsive effect of RGMa on processes of differentiated enteric neural progenitors could be demonstrated by collapse assay. The influence of the RGM receptor on ENS was also analyzed in neogenin knockout mice. In the adult large intestine of mutants we observed disturbed ganglia formation in the myenteric plexus. Our data indicate that RGMa may be involved in differentiation processes of enteric neurons in the murine gut.
Collapse
Affiliation(s)
- Marco Metzger
- Institute of Anatomy, Centre for Regenerative Medicine, University of Tuebingen, Tuebingen, Germany
| | | | | | | |
Collapse
|
46
|
Liu J, Chen SS, Dan QQ, Rong R, Zhou X, Zhang LF, Wang TH. Crucial roles of NGF in dorsal horn plasticity in partially deafferentated cats. Growth Factors 2011; 29:49-56. [PMID: 21291350 DOI: 10.3109/08977194.2010.549129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Though exogenous nerve growth factor (NGF) has been implicated in spinal cord plasticity, whether endogenous NGF plays a crucial role has not been established in vivo. This study investigated first the role of endogenous NGF in spinal dorsal horn (DH) plasticity following removal of L1-L5 and L7-S2 dorsal root ganglions (DRGs) in cats. Co-culture of chick embryo DRG with DH condition media, protein band fishing by cells as well as western blot showed that NGF could promote neurite growth in vitro. Immunohistochemistry and in situ hybridization technique revealed an increase in the NGF and NGF mRNA immunoreactive cells in the DH after partial deafferentation. Lastly, after blocking with NGF antibody, choleragen subunit B horseradish peroxidase (CB-HRP) tracing showed a reduction in the neuronal sprouting observed in the DH. Our results demonstrated that in the cat, endogenous NGF plays a crucial role in DH plasticity after partial deafferentation.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | | | | | | | | | | | | |
Collapse
|
47
|
BMP signaling modulates hepcidin expression in zebrafish embryos independent of hemojuvelin. PLoS One 2011; 6:e14553. [PMID: 21283739 PMCID: PMC3024971 DOI: 10.1371/journal.pone.0014553] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 12/14/2010] [Indexed: 01/25/2023] Open
Abstract
Hemojuvelin (Hjv), a member of the repulsive-guidance molecule (RGM) family, upregulates transcription of the iron regulatory hormone hepcidin by activating the bone morphogenetic protein (BMP) signaling pathway in mammalian cells. Mammalian models have identified furin, neogenin, and matriptase-2 as modifiers of Hjv's function. Using the zebrafish model, we evaluated the effects of hjv and its interacting proteins on hepcidin expression during embryonic development. We found that hjv is strongly expressed in the notochord and somites of the zebrafish embryo and that morpholino knockdown of hjv impaired the development of these structures. Knockdown of hjv or other hjv-related genes, including zebrafish orthologs of furin or neogenin, however, failed to decrease hepcidin expression relative to liver size. In contrast, overexpression of bmp2b or knockdown of matriptase-2 enhanced the intensity and extent of hepcidin expression in zebrafish embryos, but this occurred in an hjv-independent manner. Furthermore, we demonstrated that zebrafish hjv can activate the human hepcidin promoter and enhance BMP responsive gene expression in vitro, but is expressed at low levels in the zebrafish embryonic liver. Taken together, these data support an alternative mechanism for hepcidin regulation during zebrafish embryonic development, which is independent of hjv.
Collapse
|
48
|
Xia Y, Cortez-Retamozo V, Niederkofler V, Salie R, Chen S, Samad TA, Hong CC, Arber S, Vyas JM, Weissleder R, Pittet MJ, Lin HY. Dragon (repulsive guidance molecule b) inhibits IL-6 expression in macrophages. THE JOURNAL OF IMMUNOLOGY 2010; 186:1369-76. [PMID: 21187450 DOI: 10.4049/jimmunol.1002047] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Repulsive guidance molecule (RGM) family members RGMa, RGMb/Dragon, and RGMc/hemojuvelin were found recently to act as bone morphogenetic protein (BMP) coreceptors that enhance BMP signaling activity. Although our previous studies have shown that hemojuvelin regulates hepcidin expression and iron metabolism through the BMP pathway, the role of the BMP signaling mediated by Dragon remains largely unknown. We have shown previously that Dragon is expressed in neural cells, germ cells, and renal epithelial cells. In this study, we demonstrate that Dragon is highly expressed in macrophages. Studies with RAW264.7 and J774 macrophage cell lines reveal that Dragon negatively regulates IL-6 expression in a BMP ligand-dependent manner via the p38 MAPK and Erk1/2 pathways but not the Smad1/5/8 pathway. We also generated Dragon knockout mice and found that IL-6 is upregulated in macrophages and dendritic cells derived from whole lung tissue of these mice compared with that in respective cells derived from wild-type littermates. These results indicate that Dragon is an important negative regulator of IL-6 expression in immune cells and that Dragon-deficient mice may be a useful model for studying immune and inflammatory disorders.
Collapse
Affiliation(s)
- Yin Xia
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Severyn CJ, Rotwein P. Conserved proximal promoter elements control repulsive guidance molecule c/hemojuvelin (Hfe2) gene transcription in skeletal muscle. Genomics 2010; 96:342-51. [PMID: 20858542 PMCID: PMC2988867 DOI: 10.1016/j.ygeno.2010.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 09/06/2010] [Accepted: 09/15/2010] [Indexed: 01/18/2023]
Abstract
Repulsive guidance molecule c (RGMc; gene symbol: Hfe2) plays a critical role in iron metabolism. Inactivating mutations cause juvenile hemochromatosis, a severe iron overload disorder. Understanding mechanisms controlling RGMc biosynthesis has been hampered by minimal information about the RGMc gene. Here we define the structure, examine the evolution, and establish mechanisms of regulation of the mouse RGMc gene. RGMc is a 4-exon gene that undergoes alternative RNA splicing to yield 3 mRNAs with 5' different untranslated regions. Gene transcription is induced during myoblast differentiation, producing all 3 mRNAs. We identify 3 critical promoter elements responsible for transcriptional activation in skeletal muscle, comprising paired E-boxes, a putative Stat and/or Ets element, and a MEF2 site, and muscle transcription factors myogenin and MEF2C stimulate RGMc promoter function in non-muscle cells. As these elements are conserved in RGMc genes from multiple species, our results suggest that RGMc has been a muscle-enriched gene throughout its evolutionary history.
Collapse
Affiliation(s)
- Christopher J. Severyn
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239-3098, U.S.A
| | - Peter Rotwein
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239-3098, U.S.A
| |
Collapse
|
50
|
Bian YH, Xu C, Li J, Xu J, Zhang H, Du SJ. Development of a transgenic zebrafish model expressing GFP in the notochord, somite and liver directed by the hfe2 gene promoter. Transgenic Res 2010; 20:787-98. [DOI: 10.1007/s11248-010-9465-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 11/15/2010] [Indexed: 12/18/2022]
|